This application is based upon and claims the benefit of priority from the prior Japanese Patent Application No. 2014-050877, filed on Mar. 13, 2014, the entire contents of which are incorporated herein by reference.
Embodiments described herein relate generally to a semiconductor device.
When GaN is grown on a silicon (Si) substrate, tensile stress is generated in the GaN layer due to a lattice constant difference (about 17%) and a thermal expansion coefficient difference (about 56%) between silicon (Si) and GaN. Such a tensile stress causes a problem that it is difficult to obtain a high-quality crack-free GaN-based nitride semiconductor epitaxial film.
In the accompanying drawings:
In accordance with an embodiment, a semiconductor device includes a GaN layer and a first AlxGa1-xN layer (0≦X<1). The first AlxGa1-xN layer (0≦X<1) is located in contact with the GaN layer and includes carbon (C).
Embodiments will now be explained with reference to the accompanying drawings. Like components are provided with like reference signs throughout the drawings and repeated descriptions thereof are appropriately omitted.
It is to be noted that the accompanying drawings illustrate the invention and assist in the understanding of the illustration and that the shapes, dimensions, and ratios in each of the drawings are different in some parts from those in an actual apparatus.
In the specification of the present application, “stacking” not only includes stacking layers in contact with each other but also includes staking layers with another layer interposed in between. “Providing on” not only includes providing a layer in direct contact with a layer but also includes providing a layer on a layer with another layer interposed therebetween.
In the present embodiment, the substrate S is a silicon
(Si) substrate comprising a (111) plane. The thickness of the silicon (Si) substrate is, for example, 500 μm or more and 2 mm or less, and is preferably 700 μm or more and 1.5 mm or less. The substrate S may be a base material having a thin layer silicon (Si) stacked on the surface thereof. When the base material having the thin layer silicon (Si) stacked thereon is used, the thickness of the thin layer silicon (Si) is, for example, 5 nm or more and 500 nm or less.
The buffer layer 10 includes an AlN layer 101 provided on the substrate S in contact with the substrate S, and an AlyGa1-yN layer (0<y<1) 102 provided on the AlN layer 101 in contact with the AlN layer 101. The thickness of the AlN layer 101 is, for example, 50 nm or more and 500 nm or less, and is preferably 100 nm or more and 300 nm or less. The AlyGa1-yN layer (0<y<1) 102 may have, for example, a thickness of 100 nm or more and 1000 nm or less, and may be formed by stacking a plurality of layers having an aluminum (Al) composition. When a plurality of layers having the aluminum (Al) composition are stacked, the AlyGa1-yN layer (0<y<1) 102 may have, for example, a stack structure in which an AlyGa1-yN layer (0.3<y<0.7) and an AlzGa1-zN layer (0.05<z<0.3) are stacked in this order. However, no AlyGa1-yN layer (0<y<1) 102 may be needed depending on the thickness of the whole semiconductor device or the design of the semiconductor device.
The C-AlxGa1-xN layer 13 is an AlxGa1-xN layer (0≦X<1) which is provided on the buffer layer 10 and which includes carbon (C). The C-AlxGa1-xN layer 13 has, for example, a thickness of 500 nm or more and 10 μm or less, and the concentration of carbon (C) is, for example, 5×1017 cm−3 or more and 5×1019 cm−3 or less. In a preferred embodiment, in, for example, an AlxGa1-xN layer (X=0), the concentration of carbon (C) to be added is 1×1018 cm−3 or more and 1×1019 cm−3 or less, and the thickness is 0.5 μm or more and 5 μm or less. In, for example, an AlxGa1-xN layer (X=0.03), the concentration of carbon (C) to be added is 8×1017 cm−3 or more and 5×1018 cm−3 or less, and the thickness is 0.5 μm or more and 3 μm or less. In the present embodiment, the C-AlxGa1-xN layer 13 corresponds to, for example, a first AlxGa1-xN layer.
The undoped-GaN (hereinafter briefly referred to as a “u-GaN”) layer 11 which is intentionally formed without the addition of an impurity is provided to be interposed between the buffer layer 10 and the C-AlxGa1-xN layer 13. The u-GaN layer 11 is a GaN layer which is intentionally formed without the addition of an impurity, and has a thickness of, for example, 100 nm or more and 2 μm or less, and preferably has a thickness of 200 nm or more and 1 μm or less. The impurity concentration of the u-GaN layer 11 is less than 5×1012 cm−3 regarding any of carbon (C), oxygen (O), and silicon (Si). Although the dislocation density included in the buffer layer 10 is 1×1010 cm−2 or more, it is possible to obtain nitride semiconductor crystal in which the threading dislocation density of a nitride-based semiconductor layer to be stacked in the upper layer is less than 2×109 cm−2 by interposing the u-GaN layer 11. If the u-GaN layer 11 is not interposed in the present semiconductor device, the threading dislocation density of the nitride-based semiconductor layer to be stacked in the upper layer would be 2×109 cm−2 or more.
The i-GaN layer 14 is provided on the C-AlxGa1-xN layer 13. The impurity concentration of the i-GaN layer 14 is preferably lower than the impurity concentration of the u-GaN layer 11. The thickness of the i-GaN layer 14 is, for example, 0.5 μm or more and 3 μm or less, and the impurity concentration of the i-GaN layer 14 is less than 3×1017 cm−3 regarding any of carbon (C), oxygen (O), and silicon (Si).
The AlxGa1-xN layer 15 is formed on the i-GaN layer 14, and includes non-doped or n-type AlxGa1-xN (0<X≦1). A two-dimensional electron gas 30e is generated in the vicinity of a boundary in the i-GaN layer 14 between the i-GaN layer 14 and the AlxGa1-xN layer 15. Thus, the i-GaN layer 14 functions as a channel. In the present embodiment, the AlxGa1-xN layer 15 corresponds to, for example, a second AlxGa1-xN layer.
In the present embodiment, a semiconductor device which uses a GaN-on-Si epitaxial substrate and which has a breakdown voltage of 1000 V or more is obtained by stacking the thick nitride-based semiconductor layer on the substrate S.
As described above, adding carbon (C) or aluminum (Al) to GaN is important in improving the breakdown voltage. However, the lattice constant of GaN is decreased by the increase in the addition amount of carbon (C) which is an impurity having a small atomic radius or by the increase in an aluminum (Al) molar fraction. This affects the accumulation of compressive stress in the nitride-based semiconductor layer stacked on the buffer layer 10. Specifically, as shown in a reference example in
Thus, in the present embodiment, the undoped-GaN layer 11 is provided as a stress control layer between the buffer layer 10 and the C-AlxGa1-xN layer 13.
The accumulation of compressive stress in the semiconductor device according to the present embodiment is schematically shown in
Since the C-AlxGa1-xN layer 13 contains high-concentration impurity, the C-AlxGa1-xN layer 13 does not tend to have a flat surface not only when influenced by the decrease in the accumulation of the compressive stress due to the small atomic radius of the C-AlxGa1-xN layer 13 but also when the u-GaN layer 11 is not interposed on the buffer layer 10. The growth mode of the nitride-based semiconductor layer tends to be three-dimensional, and this also means that the interposition of the u-GaN layer 11 is effective because the effect on the accumulation of the compressive stress is small.
When the u-GaN layer 11 is interposed, the nitride-based semiconductor layer tends to be a film having a flat surface, that is, the accumulation of the compressive stress is accelerated. Therefore, the C-AlxGa1-xN layer 13 may not only contain an impurity having a small atomic radius but also contain, for example, a transition metal of about 1×1018 cm−2, such as Fe, Mg, or Zn.
As obvious from the contrast with
More specifically, the semiconductor device shown in
The source (or drain) electrode 31 and the drain (or source) electrode 32 are provided apart from each other on the barrier layer 15, and are formed so as to be ohmic contact with the barrier layer 15. In the present embodiment, the source (or drain) electrode 31 and the drain (or source) electrode 32 correspond to, for example, first and second electrodes, respectively.
The gate electrode 33 is formed on the barrier layer 15 between the source (or drain) electrode 31 and the drain (or source) electrode 32. In the present embodiment, the gate electrode 33 corresponds to, for example, a control electrode.
Although not shown in
The semiconductor device according to at least one of the embodiments described above includes a semiconductor device having GaN in which compressive stress is accumulated, so that a robust semiconductor device having a high breakdown voltage is provided.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions.
For example, although a stack of the AlN layer 101 and the AIGaN layer 102 is used as the buffer layer 10 in the embodiments described above, a multilayer film having a superlattice structure may be used instead of the buffer layer 10. Here, the “superlattice structure” refers to a structure in which, for example, 20 pairs of AlN layers and GaN layers are alternately stacked in such a manner that each pair includes, for example, an AlN layer having a thickness of 5 nm and a GaN layer having a thickness of 20 nm.
Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
Number | Date | Country | Kind |
---|---|---|---|
2014-050877 | Mar 2014 | JP | national |