The following will specifically explain a semiconductor device according to one preferred embodiment of the present invention with reference to
As illustrated in
The N-type epitaxial layer 3 is deposited on a top surface of the P-type monocrystalline silicon substrate 2. It is noted that the epitaxial layer 3 of the present embodiment corresponds to “a semiconductor layer” of the present invention. Then, although the present embodiment shows a case in which one epitaxial layer 3 is formed on the substrate 2, the embodiment of the present invention is not limited to this case. For example, as “the semiconductor layer” of the present invention, a plurality of epitaxial layers may be formed on the top surface of the substrate. Moreover, only the substrate may be used as “the semiconductor layer” of the present invention, and the substrate may include an N-type monocrystalline silicon substrate and a compound semiconductor substrate.
The N-type buried diffusion layer 4 is formed in both regions of the substrate 2 and the epitaxial layer 3. As illustrated in
The P-type diffusion layers 5 and 6 are formed in the epitaxial layer 3. The P-type diffusion layer 5 is formed on diffusion conditions that, for example, an impurity concentration of a surface thereof is about 10×1016 to 1.0×1017 (/cm2) and a diffusion depth is about 5 to 6 (μm). The P-type diffusion layer 6 is formed on diffusion conditions that, for example, an impurity concentration of a surface thereof is about 10×1019 to 10×1020 (/cm2) and a diffusion depth is about 1 to 3 (μm). Then, the P-type diffusion layer 5 and the N-type epitaxial layer 3 form a PN junction and the P-type diffusion layers 5 and 6 are used as the anode region of a PN diode. It is noted that this embodiment has the P-type diffusion layers 5 and 6. However, only the P-type diffusion layer 5 or P-type diffusion layer 6 may be used. Furthermore, a triple diffusion structure may be used in which a P-type diffusion layer, having, for example, an impurity concentration of a surface thereof which is about 1.0×1017 to 1.0×1018 (/cm2) and a diffusion depth of about 2 to 4 (μm), is formed on the P-type diffusion layers 5 and 6.
The N-type diffusion layers 7 and 8 are formed in the epitaxial layer 3 and surround the P-type diffusion layer 5 annularly. The N-type diffusion layers 7 and 8 and the N-type epitaxial layer 3 are used as the cathode region of the PN diode and the Schottky barrier diode. Then, a wide diffusion region is formed as the N-type diffusion layer 7, thereby reducing a parasitic capacitance value. On the other hand, although the N-type diffusion layer 8 is a narrow diffusion layer, this layer is formed to have a high impurity concentration, thereby establishing a low resistance. It is noted that this embodiment has the N-type diffusion layers 7 and 8. However, only one of the N-type diffusion layer 7 and N-type diffusion layer 8 can be used. Also, a multi-diffusion structure such as the triple diffusion structure may be used.
The P-type diffusion layer 9 is formed in the epitaxial layer 3 and surrounds the P-type diffusion layer 5 annularly. The P-type diffusion layer 9 is formed on diffusion conditions that, for example, its surface impurity concentration is about 1.0×1015 to 1.0×1016 (/cm2) and a diffusion depth is about 1 to 3(μm). Then, the P-type diffusion layer 9 is formed below an end portion 20 of the Schottky barrier metal layer 14 which serves as an anode electrode. Then, the P-type diffusion layer 9 relaxes an electric field concentration on the end portion 20 of the Schottky barrier metal layer 14 to improve a breakdown voltage characteristic of the protection diode 1. It is noted that this embodiment has the P-type diffusion layer 9. However, the multi-diffusion structure such as the triple diffusion structure may be used instead.
The P-type diffusion layers 10 and 11 are formed to be closer to the N-type diffusion layer 7 than the P-type diffusion layer 9 so that forming regions thereof are overlapped on each other. Also, the P-type diffusion layers 10 and 11 are formed to surround the P-type diffusion layer 5 annularly. The P-type diffusion layer 10 is formed on diffusion conditions that, for example, an impurity concentration of a surface thereof is about 1.0×1015 to 1.0×1016 (/cm2) and a diffusion depth is about 1 to 3 (μm). The P-type diffusion layer 11 is formed on diffusion conditions that, for example, its surface impurity concentration is about 1.0×1017 to 1.0×1018 (/cm2) and a diffusion depth is about 2 to 4 (μm). Then, the P-type diffusion layers 10 and 11 are formed as floating diffusion layers. Further, although specifically described later, the P-type diffusion layer 11, which has a higher impurity concentration than that of the P type diffusion layer 10, is formed on the P-type diffusion layer 10 to be overlapped thereon. This structure can prevent a region where the P-type diffusion layers 10 and 11 are overlapped from being filled with a depletion layer when a reverse bias is applied to the protection diode 1. As a result, the region where the P-type diffusion layers 10 and 11 are overlapped can keep a capacitive coupling to the metal layer 18 or Schottky barrier metal layer 14. It is noted that the P-type diffusion layers 10 and 11 of the present embodiment are the one in which at least a part of the P-type diffusion layer is not filled with the depletion layer, and design changes may be arbitrarily made to the diffusion structure.
The P-type diffusion layers 12 and 13 are formed in the N-type diffusion layer 7 and their forming regions are overlapped on each other. The P-type diffusion layers 12 and 13 are formed to surround the P-type diffusion layer 5 annularly. The P-type diffusion layer 12 is formed on diffusion conditions that, for example, an impurity concentration of a surface thereof is about 1.0×1016 to 1.0×1017 (/cm2) and a diffusion depth is about 5 to 6 (μm). The P-type diffusion layer 13 is formed on diffusion conditions that, for example, its surface impurity concentration is about 1.0×1019 to 1.0×1020 (/cm2) and a diffusion depth is about 1 to 3 (μm). Then, the metal layer 15, which is used as a cathode electrode, is brought in contact with the N-type diffusion layer 8 and the P-type diffusion layer 13. With this structure, the P-type diffusion layers 12 and 13 are formed to have electric potentials equal to that of as the N-type diffusion layers 7 and 8.
The Schottky barrier metal layer 14 is formed on the top surface of the epitaxial layer 3. The Schottky barrier metal layer 14 is formed, for example, by depositing an aluminum alloy (for example an aluminum silicon (AlSi) layer, an aluminum copper (AlCu) layer or an aluminum silicon copper (AlSiCu) layer) on a titanium (Ti) layer and a titanium nitride (TiN) layer serving as the barrier metal layer. As shown by a thick line, a silicide layer 21 of a titanium silicide (TiSi2) is formed on the surface of the epitaxial layer 3 positioned between the P-type diffusion layer 5 and the P-type diffusion layer 9. Then, a Schottky barrier diode is formed of the silicide layer 21 of the Schottky barrier metal layer 14, and the epitaxial layer 3. It is noted that metals such as tungsten (W), molybdenum (Mo), tantalum (Ta), cobalt (Co), nickel (Ni), and platinum (Pt) may be used in place of the titanium (Ti) layer. In this case, a tungsten silicide (WSi2) layer, a molybdenum silicide (MoSi2) layer, a cobalt silicide (CoSi2) layer, a nickel silicide (NiSi2) layer, a platinum silicide (PtSi2) layer are formed as a silicide layer 21.
The metal layer 15 is formed on the top surface of the epitaxial layer 3. The metal layer 15 has a structure in which the aluminum alloy (for example the aluminum silicon (AlSi) layer, the aluminum copper (AlCu) layer or the aluminum silicon copper (AlSiCu) layer) is layered on the barrier metal layer. Then, the metal layer 15 is used as a cathode electrode and a cathode potential is applied to the N-type diffusion layer 8 and the P-type diffusion layer 13.
The insulation layers 16 and 17 are formed on the upper portion of the epitaxial layer 3. The insulation layers 16 and 17 are formed by selectively layering, for example, a silicon oxide film, a silicon nitride film, a TEOS (Tetra-Ethyl-Orso-Silicate) film, a BPSG (Boron Phospho Silicate Glass) film, an SOG (Spin On Glass) film, and the like. A contact hole 22 is formed in the insulation film 16. The contact hole 22 is filled with the Schottky barrier metal layer 14 and the Schottky barrier metal layer 14 is used as an anode electrode.
The metal layer 18 is formed on a top surface of the insulation layer 17 to cover the region above the forming regions of the P-type diffusion layers 10 and 11. The metal layer 18 has a structure in which the aluminum alloy (for example the aluminum silicon (AlSi) layer, an aluminum copper (AlCu) layer or an aluminum silicon copper (AlSiCu) layer) is layered on the barrier metal layer. A contact hole 23 formed in the insulation layer 17 is filled with the metal layer 18, and the metal layer 18 is connected to the Schottky barrier metal layer 14. With this structure, at least a part of the region where the P-type diffusion layers 10 and 11 are overlapped is capacitively coupled with the metal layer 18 through the insulation layers 16, 17, a field oxide film 23, and the like. Then, a desired electric potential, which is, however, slightly higher than the anode potential, is applied to at least a part of the region where the P-type diffusion layers 10 and 11 are overlapped. At least a part of the region where the P-type diffusion layers 10 and 11 are overlapped and the N-type epitaxial layer 3 are reversely biased to improve the breakdown voltage characteristic of the protection diode 1.
Additionally, in the present embodiment, as illustrated in
An N-type epitaxial layer 33 is deposited on a top surface of a P-type monocrystalline silicon substrate 32. An N-type buried diffusion layer 34 is formed in both regions of the substrate 32 and the epitaxial layer 33. P-type diffusion layers 35, 36, and 37 are formed in the epitaxial layer 33. The P-type diffusion layers 35, 36 and the N-type epitaxial layer 33 form a PN junction region and the P-type diffusion layers 35, 36 and 37 are used as an anode region of the PN diode.
N-type diffusion layers 38 and 39 are formed in the epitaxial layer 33. The N-type diffusion layers 38 and 39 and the N-type epitaxial layer 33 are used as a cathode region of the PN diode. Then, P-type diffusion layers 40 and 41 are formed in the N-type diffusion layer 38.
An insulation layer 42 is formed on a top surface of the epitaxial layer 33 and contact holes 43 and 44 are formed in the insulation layer 42. A metal layer 45 is connected to the P-type diffusion layer 37 through the contact hole 43 and is used as an anode electrode. A metal layer 46 is connected to the N-type diffusion layer 39 and the P-type diffusion layer 41 through the contact hole 44 and is used as a cathode electrode.
An insulation layer 47 is formed on the insulation layer 42 and a contact hole 48 is formed in the insulation film 47. A metal layer 49 is connected to the metal layer 45 through the contact hole 48. Also, the metal layer 49 is formed to cover a region above a forming region of the P-type diffusion layer 36 and provides a field plate effect.
Additionally, in the present embodiment, as illustrated
Next, in
As described using
More specifically,
The following will explain a case where an overvoltage is applied to an output terminal of a circuit in which the protection diode 1 is not connected between the power supply line (Vcc) and the output terminal. A forward bias is applied by the overvoltage between the source and drain of the MOS transistor X where the reverse bias is applied. At this time, a current more than an allowed value flows between the source and the drain, accordingly, the PN junction region is destroyed and the MOS transistor X is destroyed.
However, in the present embodiment, the protection diode 1 and the MOS transistor X are connected in parallel between the power supply line (Vcc) and the output terminal. In this case, as explained using
Next,
As described using
Next, in
On the other hand, the end portion 20 of the Schottky barrier metal layer 14 where the electric field concentration is apt to occur is protected by the P-type diffusion layer 9. As mentioned above, the P-type diffusion layer 9 has the low impurity concentration, and the P-type diffusion layer 9 is filled with the depletion layer as illustrated in
In the P-type diffusion layers 10 and 11, the P-type diffusion layer 10 is extended to the cathode electrode. As mentioned above, the P-type diffusion layer 10 has the low impurity concentration and is filled with the depletion layer as illustrated in
Additionally, as illustrated by a hatched area A in
Next, in
First, as illustrated in
Next, as illustrated in
Finally, as illustrated in
Furthermore, in the protection diode 1, the P-type diffusion layers 12 and 13 to which the cathode potential is applied are formed in the N-type diffusion layer 7. Then, the free carriers (holes) reached the P-type diffusion layers 12 and 13 are discharged from the P-type diffusion layers 12 and 13 to the outside of the epitaxial layer 3 without being recombined. As a result, the concentration of the free carriers (holes) in the region close to the cathode region can be largely reduced and the concentration of the free carriers (holes) in the epitaxial layer 3 can be also reduced. On the other hand, as illustrated in
As mentioned above, in the protection diode 1, the Schottky barrier diode is formed, and the cathode region where the free carriers (holes) are apt to be discharged from the epitaxial layer 3 is formed. This structure can reduces the concentration of the free carriers (holes) stored in the vicinity of the PN junction region of the protection diode 1. As a result, when the protection diode 1 is turned off, an absolute value of a rate of a change of a reverse recovery current in time (di/dt) is reduced, and it is possible to obtain a soft recovery characteristic. This makes it possible to prevent the destruction of the protection diode 1 caused by the rate of the change of the reverse recovery current in time (di/dt).
Next, as illustrated in
In the linear region L and the round region R of the elliptical shape, the P-type diffusion layers 10 (region surrounded by a dashed-dotted line) and 11 (region surrounded by a two-dot chain line) are formed to surround the P-type diffusion layer 9 annularly. As mentioned above, the P-type diffusion layers 10 and 11 are used as the floating diffusion layers.
Also, in the linear region L and the round region R of the elliptical shape, the N-type diffusion layers 7 (region surrounded by a three-dot chain line) is formed to surround the P-type diffusion layer 10 annularly. Then, in the region where the N-type diffusion layer 7 is formed, the P-type diffusion layer 12 (region surrounded by a four-dot chain line) is formed in an annular shape and the forming region thereof is overlapped on the N-type diffusion layer 7. Additionally, although not illustrated, on the P-type diffusion region 5, the P-type diffusion layer 6 (
With this structure, the protection diode 1 can cause a current to flow in the linear region L and the round region R of the elliptical shape, and improve the current capability. Further, in the round region R of the elliptical shape, the round shape and the P-type diffusion layer 9 relax the electric field concentration, thereby making it possible to improve the breakdown voltage characteristic of the protection diode 1. Furthermore, the elliptical shape of the protection diode 1 allows a device size to be reduced.
Still moreover, as illustrated in
Finally, in the round region R of the elliptical shape, an electric field shielding film 51 is formed in a region which is placed at a lower portion of a wiring layer (not shown) to which an anode potential is applied, the region in which the wiring layer to which at least the anode potential is applied and the N-type cathode diffusion layer 7 cross each other. The electric field shielding film 51 is formed in a process shared with a process for forming a gate electrode of a MOS transistor (not shown) and made of a polysilicon film. Then, through contact holes 52 and 53 formed on an insulation layer between the epitaxial layer 3 and the electric field shielding film 51, the electric field shielding film 51 is connected to the diffusion layers which serves as the cathode region. Namely, an electric potential substantially equal to the cathode potential is applied to the electric field shielding film 51. With this structure, the electric field shielding film 51 has a shield effect to the wiring layer to which the anode potential is applied. Then, the cathode region is reversed by an electric potential difference between the cathode potential and the anode potential, thereby making it possible to prevent the anode region and the isolation region 19 (
It is noted that the case has been explained in which the silicide layer 21 is formed between the P-type diffusion layer 5 serving as the anode region, and the P type diffusion layer 9 serving as the anode region. According to this structure, the P-type diffusion layer 5 is diffused deeper than the P-type diffusion layer 9, so that a bottom surface of the P-type diffusion layer 5 is largely separated away in a vertical direction from the surface of the epitaxial layer 3. Then, the depletion layer expanding from the boundary of the P-type diffusion layer 5 and the epitaxial layer 3, expands to a wide region in a horizontal direction. As a result, the spaced distance between the P-type diffusion layer 5 and the P-type diffusion layer 9 can be increased, thereby making it possible to expand the forming region of the silicide layer 21. This allows an improvement of the current capability of the Schottky diode without increasing the P-type diffusion layer connected to the anode electrode. Moreover, by suppressing an increase of the PN junction region, an increase of the parasitic capacitance and deterioration in the high frequency characteristic can be prevented. However, the present embodiment is not limited to this structure. In order to improve the forward voltage (Vf) characteristic of the Schottky barrier diode in the protection diode, the space between the P-type diffusion layer 5 and the P-type diffusion layer 9 is increased, and the silicide layer 21 is formed over a wide region. New P-type diffusion layers to which the anode potential is applied may be arranged between the P-type diffusion layer 5 and the P-type diffusion layer 9 at substantially constant intervals. In this case, by forming a plurality of multiple P-type diffusion layers, it is possible to reduce the change in the curvature of the depletion layer in the forming region of the silicide layer 21, and to retain the breakdown voltage characteristic of the protection diode. In addition, various modifications can be made without departing from the scope of the embodiment of the invention.
Next, with reference to
Here, the semiconductor device of the embodiment and a semiconductor device of the another embodiment are different from each other in the configuration of the P-type diffusion layer 9A on the anode side and in the configurations of the N-type diffusion layers 7A and 8A on the cathode side.
Specifically, in the semiconductor device of the embodiment, the P-type diffusion layer 9 (
This means a case where, in the characteristic diagram shown in
In such a case, by forming a P-type diffusion layer 9A so as to surround the P-type diffusion layer 5 as shown in
Moreover, as to the N-type diffusion layers 7 and 8 (
Specifically, although there is no problem in the operation at room temperature, it is possible to avoid a risk that the presence of the P-type diffusion layers 12 and 13 (
According to the present invention, the low forward voltage (Vf) characteristic of the Schottky barrier diode is used to allow the protection diode to operate before the circuit element operates when the overvoltage is applied to the circuit element, thereby making it possible to prevent the circuit element from being destroyed.
The second anode diffusion layer having the impurity concentration lower than that of the first anode diffusion layer of opposite conductivity type formed in the semiconductor layer of one conductivity type is formed so as to surround the first anode diffusion layer. Thus, the forward voltage (Vf) characteristic of the Schottky barrier diode is prevented from becoming too low, thereby preventing the reverse off-leak current from becoming too large.
Moreover, the cathode diffusion layer is formed of the two diffusion layers of one conductivity type having different impurity concentrations. Thus, a higher withstand voltage can be achieved.
Number | Date | Country | Kind |
---|---|---|---|
2006-265384 | Sep 2006 | JP | national |