The disclosure of Japanese Patent Application No. 2014-113487 filed on May 30, 2014 including the specification, drawings and abstract is incorporated herein by reference in its entirety.
The present invention relates to a semiconductor integrated circuit (IC) device and a method of manufacturing the same and relates to, for example, DRAM having a capacitive element (capacitor) or eDRAM containing DRAM having a capacitive element and a logic circuit.
For example, DRAM in eDRAM (Embedded Dynamic Random Access Memory) has a plurality of DRAM cells, each including a select MISFET (Metal Insulator Semiconductor Field Effect Transistor) and a capacitive element coupled in series with the select MISFET. The select MISFET includes a gate electrode and a semiconductor region including a source region and a drain region. The capacitive element is coupled to the source region or the drain region of the select MISFET.
In the eDRAM, the source region and the drain region of the select MISFET are formed in a semiconductor substrate and a silicide film is formed on the surfaces of the source region and the drain region. The silicide film is formed at a distance from the side wall of the gate electrode, the distance being equivalent to the width of a side wall insulating film. In other words, the silicide film is separated from a channel region (channel forming region) according to the width of the side wall insulating film.
Japanese Unexamined Patent Application Publication No. Hei 10(1998)-294457 discloses a technique for preventing short circuits between a gate electrode and a source region or between the gate electrode and a drain region when a silicon film is selectively grown on the surfaces of the gate electrode and the source and drain regions of a MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
For example, in eDRAM, size reduction of select MISFETs needs to reduce the width of a side wall insulating film and the sizes of a source region and a drain region. Thus, a silicide film formed on the surfaces of a source region and a drain region may come close to a channel region or the silicide film may come close to a boundary between the source region or the drain region and a well region, unfortunately increasing a leak current between the source region or the drain region and the well region so as to deteriorate the charge retention characteristics of DRAM cells.
Hence, a technique is necessary for improving charge retention characteristics in a semiconductor integrated circuit (IC) device including DRAM cells.
Other problems and novel features of the present invention will be clarified by the description herein and the accompanying drawings.
According to an embodiment, a semiconductor integrated circuit (IC) device including a MISFET has a first semiconductor region formed on an end of a gate electrode so as to extend into a semiconductor substrate, a second semiconductor region that is provided on the main side of the semiconductor substrate and is formed on a silicon film having a top surface, and a side wall insulating film partially covering the side wall of the gate electrode and the top surface of the silicon film. The semiconductor integrated circuit (IC) device further includes a silicide film formed on the top surface of the silicon film exposed from the side wall insulating film. The second semiconductor region has the same conductivity type as the first semiconductor region and has a higher concentration than the first semiconductor region. The first and second semiconductor regions include the source region or the drain region of the MISFET.
According to the embodiment, the charge retention characteristics of the semiconductor integrated circuit (IC) device can be improved.
An embodiment will be specifically described below in accordance with the accompanying drawings. In all the explanatory drawings of the present embodiment, members having the same functions are indicated by the same reference numerals and a repeated explanation thereof is omitted. Moreover, in the present embodiment, identical or similar parts will not be repeatedly explained in principle unless otherwise required.
In the drawings used in the present embodiment, hatching may be omitted for clarification even in the cross-sectional view. Alternatively, even the plan view may be hatched for clarification.
A semiconductor integrated circuit (IC) device according to the present embodiment includes eDRAM.
The semiconductor integrated circuit (IC) device SM is formed on a semiconductor substrate SB made of p-type silicon having a specific resistance of about 1 Ωcm to 10 Ωcm. The semiconductor substrate SB may be an SOI (Silicon On Insulator) substrate including a support substrate, an insulating layer, and a p-type silicon substrate that are stacked in this order. As a matter of course, the semiconductor substrate SB and the SOI substrate may be made of n-type silicon instead of p-type silicon.
A plurality of p-type well regions PW1 and PW2 are formed near the main side of the semiconductor substrate SB made of p-type silicon. The p-type well region PW1 contains the select MISFETs (TR1) while the p-type well region PW2 contains the n-channel MISFETs (TR2).
An element isolation film ST composed of an insulator, e.g., a silicon oxide film is formed from the main side of the semiconductor substrate SB in the depth direction of the semiconductor substrate SB. The element isolation film ST in the DRAM region DR is provided to electrically isolate the select MISFETs (TR1) formed in the p-type well region PW1. The element isolation film ST is formed around the forming region (will be called an active region) of the select MISFETs (TR1) in plan view. The element isolation film ST in cross section is continuously extended from the main side of the semiconductor substrate SB in the depth direction of the semiconductor substrate SB and is terminated at a smaller depth than the p-type well region PW1. The element isolation film ST in the logic circuit region LGC has the same configuration as the element isolation film ST in the DRAM region DR, electrically isolating the n-channel MISFETs (TR2) in the p-type well region PW2.
The select MISFET (TR1) includes a gate electrode G1, a source region, and a drain region. The gate electrode G1 is formed on the main side of the semiconductor substrate SB via a gate insulating film GI1, and a silicide film SL is formed on the gate electrode G1. The gate electrode G1 has a bottom in contact with the gate insulating film GI1 and a top surface located higher than the bottom according to the thickness of the gate electrode G1. The gate electrode G1 further includes side walls near the source and drain regions, respectively. In this configuration, the top surface of the gate electrode G1 means an interface between the gate electrode G1 and the silicide film SL.
The source region and the drain region have identical structures, each including n−-type semiconductor regions EX1 and an n+-type semiconductor region SD1 having a higher impurity concentration than the n−-type semiconductor region EX1. The two n−-type semiconductor regions EX1 including the source region and the drain region are formed inward with a predetermined depth from the main side of the semiconductor substrate SB so as to hold the gate electrode G1. A channel region (channel forming region) is a region between the two n−-type semiconductor regions EX1, that is, a region under the gate insulating film GI1. In the cross-sectional view, the n+-type semiconductor region SD1 including the source region and the drain region is formed on the main side of the semiconductor substrate SB and a silicon film EP formed on the main side of the semiconductor substrate SB, in a region between the n−-type semiconductor region EX1 and the element isolation film ST. In other words, the n+-type semiconductor region SD1 includes a portion formed in the semiconductor substrate SB and a part formed on the silicon film EP in the thickness direction of the silicon film EP. The overall silicon film EP includes a part of the n+-type semiconductor region SD1. The portion of the n+-type semiconductor region SD1 in the semiconductor substrate SB is equivalent to the depth of the n−-type semiconductor region EX1 and reduces the resistances of the source region and the drain region. The n+-type semiconductor region SD1 may have a smaller depth than the n−-type semiconductor region EX1 as long as the n+-type semiconductor region SD1 is partially formed in the semiconductor substrate SB.
The silicon film EP has a bottom in contact with the main side of the semiconductor substrate SB and a top surface located higher than the bottom according to the thickness of the silicon film EP. The silicon film EP further includes side walls coupling the bottom and the top surface. The main side of the semiconductor substrate SB is eroded during the manufacturing process and thus may vary depending on the location. Since an interface between the silicon film EP and the semiconductor substrate SB may not be clarified, the main side of the semiconductor substrate SB in the region of the gate insulating film GI1 (in other words, an interface between the gate insulating film GI1 and the main side of the semiconductor substrate SB) serves as a reference plane. In short, the reference plane serves as the main side of the semiconductor substrate SB in all the regions.
The silicide film SL having a desired thickness is formed on the top surface of the silicon film EP, that is, the surface of the n+-type semiconductor region SD1. The silicide film SL has a bottom near the reference plane and a top surface separated from the bottom according to the thickness of the silicide film SL. The bottom of the silicide film SL is located higher than the bottom of the silicon film EP (higher than the bottom of the gate electrode G1), thereby separating the silicide film EP from the channel region so as to reduce a leak current. Moreover, the top surface of the silicon film EP and the top surface of the silicide film SL are located lower than the top surface of the gate electrode G1, thereby reducing the resistances of the source region and the drain region. In other words, this configuration can reduce an increase in the thickness of the silicon film EP from preventing an increase in resistance in the source region and the drain region.
A side wall insulating film SW3 electrically isolates the gate electrode G1 and the silicon film EP. The side wall insulating film SW3 has a laminated structure including an insulating film SWL1, an insulating film SWL4, and an insulating film SWL5. The insulating film SWL1 is formed like a letter L along the side wall of the gate electrode G1 and the main side of the semiconductor substrate SB. The insulating film SWL4 and the insulating film SW5 are sequentially stacked on the insulating film SWL1. The insulating film SWL4 and the insulating film SWL5 partially cover the top surface of the silicon film EP. In the cross section of
The side wall remote from the gate electrode G1 of the silicon film EP is covered with the side wall insulating film SW4 and the silicide film SL is not formed on the side wall of the silicon film EP. In other words, the silicide film SL is formed only on the top surface of the silicon film EP but is not formed on the side walls, thereby preventing the silicide film SL approaching the boundary between the n+-type semiconductor region SD1 and the p-type well PW1 from increasing a leak current.
Since the silicon film EP is not formed on the top surface of the gate electrode G1, an electrical short circuit can be prevented between the gate electrode G1 and the source region or the drain region.
The n-channel MISFET (TR2) includes a gate electrode G2, a source region, and a drain region. The gate electrode G2 is formed on the main side of the semiconductor substrate SB via a gate insulating film GI2, and the silicide film SL is formed on the gate electrode G2. The gate electrode G2 has a bottom in contact with the gate insulating film GI2 and a top surface located higher than the bottom according to the thickness of the gate electrode G2. The gate electrode G2 further includes side walls near the source and drain regions, respectively.
The source region and the drain region have identical structures, each including n−-type semiconductor regions EX2 and an n+-type semiconductor region SD2 having a higher impurity concentration than the n−-type semiconductor region EX2. The two n−-type semiconductor regions EX2 including the source region and the drain region are formed on the main side of the semiconductor substrate SB so as to hold the gate electrode G2. A channel region (channel forming region) is a region between the two n−-type semiconductor regions EX2 on the main side of the semiconductor substrate SB, that is, a region under the gate insulating film GI1. The n+-type semiconductor region SD2 including the source region and the drain region is a region between the n−-type semiconductor region EX2 and the element isolation film ST, and is formed on the main side of the semiconductor substrate SB. The silicide film SL having a desired thickness is formed on the surface of the n+-type semiconductor region SD2 that is extended inward from the main surface of the semiconductor substrate SB. Thus, the top surface or bottom of the silicide film SL is located lower than the bottom of the gate electrode G2.
The side wall insulating film SW3 is formed on the side wall of the gate electrode G2. The side wall insulating film SW3 has a laminated structure including the insulating film SWL1, the insulating film SWL4, and the insulating film SWL5.
A comparison between the select MISFET (TR1) of the DRAM region DR and the n-channel MISFET (TR2) of the logic circuit region LGC will be described below.
The source region and the drain region of the select MISFET (TR1) are formed on the silicon film EP that is formed on the main side of the semiconductor substrate SB, whereas the source region and the drain region of the n-channel MISFET (TR2) are formed inward from the main side of the semiconductor substrate SB without the silicon film EP formed on the main side of the semiconductor substrate SB.
The gate length of the select MISFET (TR1) is longer than that of the gate electrode G2 of the n-channel MISFET (TR2). The gate electrode G1 of the select MISFET (TR1) has an extended gate length to reduce a leak current while the gate electrode G2 of the n-channel MISFET (TR2) is reduced in gate length to perform high-speed operations.
The side wall insulating film SW3 of the select MISFET (TR1) and the side wall insulating film SW3 of the n-channel MISFET (TR2) are identical in width.
In order to increase the on current of the n-channel MISFET (TR2), the n−-type semiconductor region EX2 desirably has a higher impurity concentration than the n−-type semiconductor region EX1. If the n−-type semiconductor region EX2 has a higher impurity concentration than the n−-type semiconductor region EX1, a halo (pocket) region that is a p-type region having a higher impurity concentration than the p-type well PW2 may be provided between the channel region and the n−-type semiconductor region EX2 of the n-channel MISFET (TR2). Even if the gate length of the gate electrode G2 of the n-channel MISFET (TR2) and the width of the side wall insulating film SW3 are reduced according to a size reduction of the device, the provision of the halo region can reduce a leak current called GIDL (Gate Induced Drain Leakage). However, the halo region is not formed on the select MISFET (TR1) of the DRAM region DR. The impurity concentration of the n−-type semiconductor region EX2 of the n-channel MISFET (TR2) may be equal to that of the n−-type semiconductor region EX1 of the select MISFET (TR1).
The select MISFET (TR1) and the n-channel MISFET (TR2) are covered with an interlayer insulating film IL1 having a plurality of contact holes CT. The contact hole CT contains a plug electrode PG composed of a conductive film. In the DRAM region DR, the plug electrode PG is electrically coupled in contact with the silicide film SL that is formed on the surfaces of the source region and the drain region of the select MISFET (TR1). In the logic circuit region LGC, the plug electrode PG is electrically coupled in contact with the silicide film SL that is formed on the surfaces of the source region and the drain region of the n-channel MISFET (TR2).
An interlayer insulating film IL2 is formed on the interlayer insulating film IL1. The interlayer insulating film IL2 contains a plurality of wires M1. In the DRAM region DR, the wires M1 are electrically coupled to the plug electrodes PG coupled to the source region and the drain region of the select MISFET (TR1). Moreover, in the logic circuit region LGC, the wires M1 are electrically coupled to the plug electrodes PG that are coupled to the source electrode or the drain region of the n-channel MISFET (TR2).
The silicon film EP serving as the source region or the drain region is provided on the main side of the semiconductor substrate SB, and the silicide film SL is provided on the top surface of the silicon film EP. Furthermore, the side wall insulating film SW3 formed on the side wall of the gate electrode G1 is placed on the top surface of the silicon film EP while the silicide film SL is formed on the top surface of the silicon film EP exposed from the side wall insulating film SW3. This configuration can separate the bottom of the silicide film SL from the channel region according to the thickness of the silicide film SL and the width of the side wall insulating film SW3 placed on the top surface of the silicon film EP, thereby reducing a leak current between the source region or the drain region and the p-type well region PW1. Moreover, the side wall insulating film SW3 of the select MISFET (TR1) can be reduced in width like the side wall insulating film SW3 of the n-channel MIFET (TR1), thereby simultaneously reducing the size of the select MISFET (TR1).
The silicon film EP serving as the source region or the drain region is formed on the main side of the semiconductor substrate SB, and the n+-type semiconductor region SD1 is provided inward from the top surface of the silicon film EP. The silicide film SL is formed only on the top surface of the silicon film EP while the side walls of the silicon film EP are covered with the side wall insulating films SW3 and SW4 but are not covered with the silicide film SL. This configuration increases a distance from the bottom of the silicide film SL to a boundary between the source region or the drain region and the p-type well region PW1 according to the thickness of the silicide film SL, thereby reducing a leak current between the source region or the drain region and the p-type well region PW1.
The bottom of the silicide film SL formed on the top surface of the silicon film EP is located higher than the bottom of the gate electrode G1, thereby further separating the bottom of the silicide film SL from the channel region. Moreover, the bottom of the silicide film SL can be separated from the boundary between the n+-type semiconductor region SD1 and the p-type well region PW1.
The top surface of the silicon film EP and the top surface of the silicide film SL are located lower than the top surface of the gate electrode G1, thereby reducing the resistances of the source region and the drain region.
The n+-type semiconductor region SD1 including the source region or the drain region is formed into the semiconductor substrate SB from the silicon film EP, thereby reducing the resistance of the source region or the drain region.
The source region and the drain region of the select MISFET (TR1) including the DRAM cell are formed on the silicon film EP that is formed on the main side of the semiconductor substrate SB while the source region and the drain region of the n-channel MISFET (TR2) of the logic circuit region LGC are formed in the semiconductor substrate SB. With this configuration, in the select MISFET (TR1), the silicide film SL formed on the surfaces of the source region and the drain region can be separated from the channel region, thereby reducing a leak current (in other words, the charge retention characteristics of the DRAM cell can be improved). Furthermore, the n-channel MISFET (TR2) includes the source region and the drain region without the silicon film EP. This can reduce the resistances of the source region and the drain region and achieve high-speed operations for the n-channel MISFET (TR2).
In addition to the configuration, the gate length of the select MISFET (TR1) is longer than that of the n-channel MISFET (TR2) while the n-channel MISFET (TR2) has a minimum gate length. This can perform the high-speed operations of the n-channel MISFET (TR2) (in other words, a logic circuit) while keeping the charge retention characteristics of the DRAM cell.
The source region and the drain region of the select MISFET (TR1) including the DRAM cell are formed in the silicon film EP that is formed on the main side of the semiconductor substrate SB while the source region and the drain region of the n-channel MISFET (TR2) of the logic circuit region LGC are formed in the semiconductor substrate SB. Moreover, the width of the side wall insulating film SW3 covering the side wall of the gate electrode G1 is equal to that of the side wall insulating film SW3 covering the side wall of the gate electrode G2. The side wall insulating film SW3 covering the side wall of the gate electrode G1 is placed on the top surface of the silicon film EP. Moreover, the silicide film SL is formed on the top surface of the silicon film EP exposed from the side wall insulating film SW3 placed on the top surface of the silicon film EP. This can reduce the size of the select MISFET (TR1) including the DRAM cell and the size of the n-channel MISFET (TR2) of the logic circuit region LGC, improve the charge retention characteristics of the DRAM cell, and achieve high-speed operations for the n-channel MISFET (TR2).
A method of manufacturing the semiconductor integrated circuit (IC) device according to the present embodiment will be described below.
First, the semiconductor substrate SB having the DRAM region DR and the logic circuit region LGC is prepared. The DRAM region DR of the semiconductor substrate SB contains the p-type well region PW1 that forms the select MISFET (TR1) and the element isolation film ST that determines a planar active region for forming the select MISFET (TR1). The logic circuit region LGC of the semiconductor substrate SB contains the p-type well region PW2 that forms the n-channel MISFET (TR2) and the element isolation film ST that determines a planar n-channel MISFET (TR2).
Subsequently, the logic circuit region LGC is covered with, for example, a resist film PR (mask film), and the insulating film SWL3 and the insulating film SWL2 of the DRAM region DR are sequentially subjected to anisotropic dry etching while the DRAM region DR is exposed. This forms the side wall insulating film SW1 on the side wall of the gate electrode G1. In the anisotropic dry etching process, the insulating film SWL3 is first subjected to anisotropic dry etching with CF4 gas and so on. Subsequently, the gas is changed to, for example, CH2F2 gas to perform anisotropic dry etching on the insulating film SWL2. In the anisotropic dry etching process of the insulating film SWL2, the insulating film SWL1 under the insulating film SWL2 is slightly etched but is not fully exposed. Thus, the main side of the semiconductor substrate SB is not exposed. Specifically, the insulating film SWL2 is subjected to anisotropic dry etching on condition that the insulating film SWL2 has a larger etching rate than the insulating film SWL1. After the completion of processing on the insulating film SWL2, anisotropic dry etching on the insulating film SWL2 is completed with the insulating film SWL1 remaining on the main side of the semiconductor substrate SB. For example, the side wall insulating film SW1 has a width of about 15 nm. A distance between the silicon film EP and the gate electrode G1, which will be described later, is determined by the width of the side wall insulating film SW1.
Subsequently, the insulating film SWL2 is removed by, for example, chemical dry etching so as to expose the insulating film SWL1 in the DRAM region DR and the logic circuit region LGC.
In the logic circuit region LGC, the n+-type semiconductor region SD2 is formed inward from the main side of the semiconductor substrate SB.
The n+-type semiconductor region SD1 of the DRAM region DR and the n+-type semiconductor region SD2 of the logic circuit region LGC may be formed in different steps.
Subsequently, the contact holes CT are formed on the interlayer insulating film IL1 so as to partially expose the silicide film SL formed in the source region and the drain region of the select MISFET (TR1) and the silicide film SL formed in the source region and the drain region of the n-channel MISFET (TR2), and then the plug electrodes PG are formed in the contact holes CT. The plug electrode PG has a laminated structure of a first barrier conductor film (e.g., a titanium film, a titanium nitride film, or a laminated film thereof) that is in contact with the silicide film SL and the interlayer insulating film IL1 and a first main conductor film (composed of, for example, a tungsten film) that is provided in the first barrier film.
After the step of forming the interlayer insulating film IL2 and the wires M1, the semiconductor integrated circuit (IC) device SM is completed as shown in
In order to form the silicon film EP on the main side of the semiconductor substrate SB, the side wall insulating film SW1 is first formed on the side wall of the gate electrode G1. In the formation of the side wall insulating film SW1, the insulating films SWL3 and SWL2 including the side wall insulating film SW1 are processed by anisotropic dry etching. The anisotropic dry etching is completed when the insulating film SWL1 covering the main side of the semiconductor substrate SB remains. Subsequently, the insulating film SWL1 covering the main side of the semiconductor substrate SB is removed by wet etching, and then the silicon film EP is formed on the main side of the exposed semiconductor substrate SB by an epitaxial method.
The effects of the manufacturing method will be described below.
First, Japanese Unexamined Patent Application Publication No. Hei 10(1998)-294457 as a related art document discloses a technique of selectively growing a Si film on source and drain regions and a gate electrode after a side wall is formed on the side wall of the gate electrode by anisotropic dry etching. The related art document also discloses cleaning of a growth substrate with a chemical solution before a Si film is selectively grown.
In this manufacturing method, anisotropic dry etching during the formation of the side walls may cause physical damage (defects or the like) to the substrate. In the anisotropic dry etching process, fluorine (F) or carbon (C) that is contained in etching gas or fluorine (F) or carbon (C) that is contained in deposits on the side wall of an etching chamber may be ionized and implanted into the substrate. It is found that a solution to this problem is long wet treatment, cleaning on a substrate surface according to high-temperature hydrogen bake, or high-temperature epitaxial growth. It is also found that impurities such as fluorine (F) and carbon (C) are deeply implanted into the substrate and thus cannot be removed by ordinary cleaning.
The method of manufacturing the semiconductor integrated circuit (IC) device according to the present embodiment does not cause physical damage to the substrate or implant impurities such as fluorine (F) and carbon (C) into the substrate, allowing epitaxial growth at low temperatures. The absence of high-temperature hydrogen bake and high-temperature epitaxial growth can prevent enhanced diffusion of ion-implanted impurities, thereby reducing a leak current between the source region and the drain region. Since wet treatment is not performed for long hours, a leak current caused by erosion of the element isolation film ST can be reduced between the source region or the drain region and the substrate (or a well region).
Furthermore, the side wall insulating film SW3 of the select MISFET (TR1) and the side wall insulating film SW3 of the n-channel MISFET (TR2) can be formed in the same process, thereby achieving a short manufacturing process and lower manufacturing cost.
The inventions made by the present inventors were specifically described according to the embodiment. The present invention is not limited to the embodiment and can be changed in various ways within the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2014-113487 | May 2014 | JP | national |