Semiconductor memory device

Information

  • Patent Grant
  • 6654314
  • Patent Number
    6,654,314
  • Date Filed
    Thursday, February 6, 2003
    21 years ago
  • Date Issued
    Tuesday, November 25, 2003
    21 years ago
Abstract
A method of accessing a semiconductor device that operates in synchronism with a clock signal, including fetching information indicating a memory cell location in a memory cell array in synchronism with the clock signal, determining first data of a plurality of data to be transferred sequentially, decoding the information indicating the memory cell location in the memory cell array and designating the memory cell, receiving data stored in the memory cell designated by the information indicating the memory cell location in the memory cell array in synchronism with the clock signal after a predetermined number of cycles of the clock signal, and outputting a plurality of data stored in the memory cells in synchronism with the clock signal and storing a plurality of input data in the memory cells in synchronism with the clock signal.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a semiconductor memory device comprising a plurality of easily-controllable memory cells which can be accessed at high speed.




2. Description of the Prior Art




A conventional standard, general-purpose DRAM has a page mode for access at a high speed cycle time. As is commonly known, in this page mode it is possible to access specified memory cells in a row of a memory cell array selected by means of a row address, by arbitrarily changing a column address in a string of simultaneously sensed memory cells.




High speed access is possible with this type of mode for the following reasons. Considerable time is required for sense amplification of the cell data in a DRAM, but once the data has been sensed, the read-out of this data proceeds very quickly. Once a column address has been changed in the page mode operation, the access to the sense amplifier which has sensed that cell is commenced and the data is output when a CAS signal is switched to “L.” Accordingly, the page mode is a random access mode.




Recently, the capacity of memory chips has been increasing, year after year. Accordingly, the number of chips used in a system has been more reduced. Therefore, when large volume chips are used in the prior art, namely when many chips are used in the system, these chips are divided into a number of groups which are interleaved, making it possible to construct and utilize a memory system in which the apparent cycle time is short, but this method cannot be used to a system having small volume chips.




On the other hand, the speed of an MPU has been increasing year after year, and even in a small scale system there is a strong necessity to achieve high speeds. For these reasons, it has become necessary for a memory to operate at even higher cycle speeds. Also, from these requirements it is not absolutely necessary for the access operation to be random; there are many cases in which all that is required is the ability to read or write a string of data at high speed.




A method for providing a high speed operation for RAM including SRAM and the like has been reported in the following literature.




Chikal Ohno, “Self-Timed RAM: STRAM”, FUJITSU Sci. tech. J., 24, 4, pp293-300, December 1988.




In the literature, the following method is disclosed. A RAM (STRAM) operates in synchronization with a system clock, namely in the RAM, an address signal and R/W signals for a read-out or for write-in are received in synchronization with the clock signal at a timing, then at the next timing a content of the memory cell addressed by the address signal is output.




However, in this method the address signal must be provided every cycle of the system clock. Therefore there is a disadvantage that the access operation to a memory cell in the RAM cannot be followed to the period of the system clock when the period becomes high.




When a conventional page mode is used an address change is absolutely necessary. Therefore, it is impossible to operate with a higher access cycle time which is more than the time determined by the address control of the system. Speed increases for the memory access operation are therefore limited.




Control signals such as RAS signals and CAS signals must be supplied to the memory chip. These control signals are produced by the system. Accordingly, the control for supplying the control signals to the memory chip is an obstacle to providing a high speed operation with a memory system which includes an access means. In this case, the operation control of the system becomes so complex that it is difficult to use the control of the system.




SUMMARY OF THE INVENTION




According to an aspect of the present invention, there is provided a method of accessing a semiconductor device that operates in synchronism with a clock signal, comprising fetching information indicating a memory cell location in a memory cell array in synchronism with the clock signal, determining first data of a plurality of data to be transferred sequentially, decoding the information indicating the memory cell location in the memory cell array and designating the memory cell, receiving data stored in the memory cell designated by the information indicating the memory cell location in the memory cell array in synchronism with the clock signal after a predetermined number of cycles of the clock signal, and outputting a plurality of data stored in the memory cells in synchronism with the clock signal and storing a plurality of input data in the memory cells in synchronism with the clock signal.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a block diagram of a semiconductor memory device as a first embodiment according to the present invention;





FIG. 2

is a timing chart showing an I/O operation of the semiconductor memory device shown in

FIG. 1

;





FIGS. 3

to


5


are timing charts showing I/O operations based on various I/O control methods for the semiconductor memory device shown in

FIG. 1

;





FIG. 6

is a block diagram of a semiconductor memory device as a second embodiment according to the present invention;





FIG. 7

is a diagram showing an arrangement of a cell array mat of memory cell groups as a part in the semiconductor memory device shown in

FIG. 6

;





FIG. 8

is a circuit diagram of a column decoder incorporated into the semiconductor device shown in

FIG. 6

;





FIG. 9

is a timing chart showing an I/O operation of the semiconductor memory device shown in

FIG. 6

;





FIGS. 10

to


14


are configuration diagrams showing circuits which produce various types of cycles of clock signals;





FIG. 15

is a configuration diagram showing a counter circuit for use in serial access;





FIG. 16

is a block diagram of a semiconductor memory device as a third embodiment according to the present invention;





FIG. 17

is a timing chart showing an I/O operation of the semiconductor memory device shown in

FIG. 16

;





FIG. 18

is a block diagram of a semiconductor memory device as a fourth embodiment according to the present invention;





FIG. 19

is a timing chart showing an I/O operation of the semiconductor memory device shown in

FIG. 18

; and





FIG. 20

is a block diagram of a semiconductor memory device as a fifth embodiment according to the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Other features of this invention will become apparent in the course of the following description of exemplary embodiments which are given for illustration of the invention and are not intended to be limiting thereof.





FIG. 1

is a configuration drawing showing the essential parts of a first embodiment of the semiconductor memory device of the present invention. The memory device illustrated in the drawing uses a dynamic memory cell, a static memory cell, or a non-volatile memory cell. In this memory device, the control of internal circuit operations is based on the number of cycles of a continuous external clock signal, to perform the memory access operation.




As shown in

FIG. 1

, a memory device


1


comprises a memory cell group


2


provided with a normal memory device, a specification section


3


, and a data I/O section


4


, to which are added a counting section


5


and a control section


6


, which are the main structural element for performing the operation which is the special feature of the present invention.




The dynamic memory cell, the static memory cell, or the non-volatile memory cell of the memory cell group


2


is arranged in the form of a matrix. The data which is written in and read out is stored in this memory cell. The specification section


3


allots consecutive addresses in the memory cell group


2


according to a series of externally-provided address signals, and designates, in order, the memory cells which are to be accessed. The specification section


3


, for example, fetches a row address signal, then fetches a series of column address signals for a string of memory cells designated by the row address signal. The specification section


3


designates a series of memory cells consecutively by means of the column address signal.




The data I/O section


4


performs a read or write operation on a memory cell designated by the specification section


3


based on a read/write signal obtained externally. The read-out data is output to an external destination through the data I/O section


4


. The data to be stored is provided to the designated memory cell from an external source through the data I/O section


4


by the specification section


3


.




The counting section


5


is a counter for counting the number of cycles of a basic clock signal CLK continuously input at an almost fixed frequency from an external source.




The counter


5


is capable of counting a fixed number of clock cycles of the basic signal CLK and discriminating some clock cycles from other cycles. A circuit essentially having the function can be considered as the counter


5


. Therefore a circuit having the function described above can be used instead of the counter


5


when there is the circuit in the semiconductor memory device.




The external basic clock signal CLK used in this embodiment is a clock signal with a cycle time of, for example, less than the 30 ns access time of the memory device. The counting section


5


provides the control section


6


with the count of the number of cycles of the clock signal CLK.




The control section


6


receives a specification signal which is provided from an external source and stipulates the conditions for the memory device, for example, a {overscore (CE)} (chip enable) signal or an {overscore (OE)} (output enable) signal, for specifying a particular cycle of the clock signal CLK by means of a level transition, designates the particular cycle of the clock signal CLK for each signal, and, in addition, initiates the count of the clock signals CLK in the counting section


5


. The control section


6


, based on the number of cycles of the clock signal CLK counted by the counting section


5


, controls the fetching of the address signal in the specification section


3


and the internal I/O operation of the data in the data I/O section


4


, and the like.




Next, the operation of the device shown in

FIG. 1

will be explained using timing charts shown in

FIG. 2

to FIG.


5


.





FIG. 2

is a diagram showing one example of the timing chart of an operation I/O signal for the memory device shown in FIG.


1


. In

FIG. 2

, a signal CLK is a clock signal with a cycle time of 30 ns or less for continuous input and output, which is provided into the counting section


5


.




A signal {overscore (CE)} is a signal which indicates the active period of the memory device


1


. The operation of the memory device


1


is controlled by means of the value of the signal CLK during the period when a signal {overscore (CE)} is at the “L” level. In

FIG. 2

, the signal {overscore (CE)} enters the “L” level, and the value of an address signal Add is fetched as a row address R to the specification section


3


at the rise of the initial clock signal CLK (CYCLE


1


). Following this, the value of the address signal Add at the rise of the clock signal CLK of the fifth CLK cycle (CYCLE


5


) is fetched to the specification section


3


as a column address CN. The data of the column address CN is output to the data I/O section


4


from the eighth active clock cycle (CYCLE


8


) which is the third clock signal after the column address CN has been fetched.




According to the progress of the clock signals


9


,


10


,


11


, . . . , the data from a previously decided order of addresses CN+1, CN+2, CN+3, . . . , is output serially to the data I/O section


4


. When the {overscore (CE)} signal is switched to the “H” level, a fixed number of clock cycles is ignored after the signal {overscore (CE)} enters the “H” cycle on the rise of the clock signal CLK, and the memory enters the inactive state. In

FIG. 2

, the rise of the clock signal CLK occurs following the 14th clock cycle (CYCLE


14


).




Several variations have been considered in a control method for this type of memory, therefore examples of these variations will be illustrated. From

FIG. 3

to

FIG. 5

, specific examples of timing waveforms are shown. In addition, representative values of stipulated timing times are also shown simultaneously in

FIG. 3

to FIG.


5


.




A CE/RL signal in

FIG. 3

to

FIG. 5

corresponds to the {overscore (CE)} signal on FIG.


2


. However, the {overscore (CE)} signal is based on the negative logic and the CE/RL signal on the positive logic. The logic of the {overscore (CE)} signal differ from the logic of the CE/RL signal.




An R/W signal provides instructions as to whether or not the memory operates for a read-out or for a write-in. A


0


to A


9


(shown in

FIGS. 3 and 4

) and A


0


to A


19


(shown in

FIG. 5

) are address signals. A signal CM indicates that the memory does not receiving a clock signal while the CM signal is “H”.




D


OUT/IN


indicates data read out of an accessed memory cell or data written into that memory cell.




An {overscore (OE)} signal is a control signal. When the {overscore (OE)} signal is “L”. data is output in D


OUT/IN


, and when “H”, the memory output related to D


OUT/IN


is in a high impedance state.





FIG. 3

is a diagram showing the specific fetch timing of an R/W signal for a read out instruction, in addition to the case in FIG.


2


. In

FIG. 3

, the column address is fetched to the specification section


3


at the clock signal designated by the CLK {circle around (3)}, and the memory cell data begins to be output to the data I/O section


4


at the clock signal denoted by the CLK {circle around (6)}.





FIG. 4

is a timing chart in the case where a clock cycle in which the column address is fetched can be indicated by a clock signal independent of the timing for fetching the row address. In

FIG. 4

, after the row address is fetched to the specification section


3


, if a CL signal enters the “H” level when the clock signal rises, the column address is fetched to the specification section


3


during that clock cycle, and access to the cell commences. During this fetch cycle, the data following the column addresses CN, CN+1, CN+2, CN+3, CN+4 from the clock cycle (CLK


3


) shown in

FIG. 4

, which is a fixed number of cycles, is output in serial order.





FIG. 5

is a timing chart of I/O operations for the memory device in which the R/W signal is controlled based on level change of a RWL signal. This figure shows the timing chart in the case where the clock signal which fetches the address can be independently and freely set. This is the case where the address is fetched without being divided into row and column parts (specifically, the address is not multiplexed). In

FIG. 5

, if the RWL signal is at the “H” level at the rise of the clock signal CLK, the R/W signal, which determines whether there is a read out or a write in from the clock cycle, is fetched. The output of data starts at the CLK


3


which follows the above-mentioned cycle by a fixed number of cycles. Read-outs are shown in the above three timing examples in

FIG. 3

to

FIG. 5

, but it is also possible to perform a write operation by setting the R/W signal. In such a case, external data is input to the memory from D


OUT/IN


.




In addition, many combinations of control operation methods are also possible in the above examples. For example, it is possible to combine the RWL signal and the CL signal as one signal. It is also possible to fetch the column address and the R/W signal simultaneously, fetch the row address, column address, and the R/W signal independently, and to commence the read/write operation at the cycle following a fixed number of clock signals which has become the final fetch cycle.




In addition, instead of the method mentioned above, it is possible to fetch the external signals such as the R/W signal and the like during a fixed period between cycles, for example between the M-th cycle and the N-th cycle. It goes without saying that the same data read/write operation can be continued during a fixed period between cycles also.




In

FIG. 6

, the control method in the first embodiment described above is applied to an interleaved type of memory device according to a second embodiment of the present invention. This diagram shows the main configuration of a memory device for which the above-mentioned control method functions effectively.




In

FIG. 6

, a memory device


10


comprises a memory cell group


11


, a selection section


12


, a specification section


13


, and a control section


4


.




The functions of components in

FIG. 6

which bear the same reference numbers as components in

FIG. 1

have the same functions as those components. Further explanation is therefore omitted here. In the memory cell group


11


, for example, a dynamic type memory cell is formed as a block and arranged in matrix form. This memory cell also includes a column decoder. An example of a specific configuration of the memory cell group


11


will be later described. The selection section


12


is based on one part of an external basic clock signal and an address signal. The respective blocks of the memory cell in the memory cell group


11


are interleaved, and consecutive selection is activated.




The selection section


12


provides a series of selection activation signals ΦA, ΦB, ΦC, and ΦD to the memory cell group


11


. The specification section


13


specifies the row address based on an address signal, and specifies the column address of the selectively activated block, based on a signal which is one part of the address signal and one part of selection activation signals.




Specific examples of the configuration of the selection section


12


and the specification section


13


will be later described. The control section


14


controls the operations of the selection section


12


and the specification section


13


based on the number of cycles of an external basic clock signal.





FIG. 7

is a diagram showing the arrangement of a memory cell array mat (a memory cell array) of the memory cell group


11


. In

FIG. 7

, the memory cell comprises a total of 16 memory cell array mats. A plurality of column decoders takes up eight columns, each column decoder being interposed between two memory cell array mats. This memory system performs four separate operations. When a certain row address is selected, for example, the cell array mats


1


,


2


,


9


, and


10


enclosed in the heavy lines in

FIG. 7

are activated. Specifically, one fourth of the memory cell group


11


corresponding to row addresses are activated. In

FIG. 7

there are four combinations of parts of the memory cell array mats, (


1


,


2


,


9


,


10


) (


3


,


4


,


11


,


12


) (


5


,


6


,


13


,


14


) and (


7


,


8


,


15


,


16


).





FIG. 7

shows the conditions under which the first combination (


1


,


2


,


9


,


10


) is activated. Part of the memory cells which are activated simultaneously, as shown in the example in

FIG. 7

, are divided into equal part cell array blocks, and serial access is carried out in the order predetermined for this array.




The example of

FIG. 7

is divided into four cell blocks, and this selection is performed by means of the selection activation signals ΦA, ΦB, ΦC, ΦD.




In the example shown in

FIG. 7

, the sell array mat corresponds to the cell array block with one to one.




In addition, the, column direction access is serial. Accordingly, the input to the column decoder is the output from the serial counter. Because the memory arrays


1


,


2


,


9


,


10


are interleaved in serial order and accessed, the counter output from the serial counter, which is input to the column decoders


1


and


5


, is also interleaved. This interleaving operation will be later explained.





FIG. 8

shows a specific example of one configuration of a column decoder used in the semiconductor memory device shown in FIG.


6


. The configuration of the column decoder shown in

FIG. 8

, shows parts of the column decoders


1


,


5


from

FIG. 7

combined. In addition, the D


OUT/IN


shown in

FIG. 2

to

FIG. 5

is assumed to be an I/O of four bits, and the data transmission routes linked to this input/output circuit are shown as I/O


1


to I/O


4


. In addition, a bit line constructed from a complementary signal pair, and the above-mentioned I/O line are shown as one line for simplicity.




In

FIG. 8

, a column decoder C/Dn formed from a NAND gate is selected by means of serial counter output. Subsequently, when the decoder output is at “L” level and the signal ΦA rises, the bit lines B


1


to B


4


are connected to the I/O lines, and data access begins. This is a latch circuit so this selection state is maintained even when the signal ΦA enters the “L” level and is maintained until the signal ΦA next rises.




Next, when the signal ΦB rises, the bit lines B


1


′ to B


4


′ are connected to the I/O lines I/O


1


′ to′ I/O


4


′. In this manner, data items are transmitted consecutively from the memory arrays


1


,


2


,


9


,


10


by the consecutive rising of the signals ΦA, ΦB, ΦC, ΦD. In addition, the data can be written in through the I/O lines in the reverse manner.




Accordingly, if the signals ΦA, ΦB, ΦC, ΦD are interleaved, the clock signal can utilize three cycles from the initiation of access until the output of the data, as illustrated in the lower portion of the timing waveforms of FIG.


9


. Accordingly, the data can be output at three times the speed set by the circuit operation. In addition, because three cycles elapse until the same memory cell array can be accessed once again, the data received from an external source can be transmitted at a high speed cycle for a write-in, in the same manner as for a read-out.





FIG. 9

shows the timing chart for the internal signals with interleaving operation. Illustrating the case where interleaving based on four phases of the clock signals is adopted. In

FIG. 9

, an external clock signal CLK is divided into four times the number of cycles, and the internal basic clock signals Φ


1


, Φ


2


, Φ


3


, Φ


4


which are out of phase with the external clock signal by one cycle are generated by the selection section


12


. These clock signals are suitably selected and the signals ΦA, ΦB, ΦC, ΦD are generated. The method of selection will be later explained.




A signal CNT


1


and a signal CNT


2


show the output from the serial counter which is input to the column decoders


1


and


5


shown in FIG.


7


. CNT


1


is carried out first by a count up operation using a four cycle clock signal. A two-cycle delay signal CNT


2


is then counted up in the same manner. This state is indicated in

FIG. 9

by numbers attached to the waveforms of the signal CNT


1


and the signal CNT


2


. Next, the method of selecting the array will be explained in chronological order.




In

FIG. 9

, in a certain cycle of the clock signal


1


, for example CLK


1


, the output of the signal CNT


1


changes, and the C/Dn of the column decoder


1


is selected. In a next cycle CLK


2


, the memory cell array


1


side shown in

FIG. 7

is connected to the I/O line from the rise of the signal ΦA. With a next cycle CLK


3


, the memory cell array


2


side is connected to the I/O′ line from the rise of the signal ΦB. In this cycle, the output of the signal CNT


2


simultaneously changes, and becomes the same as the output of the signal CNT


1


. As a result, the C/Dn of the column decoder


5


is selected.




In the following cycle CLK


4


, the selection state of the memory cell array


1


is latched by the latch circuit at the drop in the signal ΦA. This state is maintained even if the state of the column decoder C/Dn changes. Also, the memory cell array


9


side is connected to the I/O line at the rise of the signal ΦC. This I/O line is, of course, a different line than that to which the column decoder


1


is connected. The signal ΦB drops in the next cycle CLK


5


, the signal ΦD rises, and the count-up state of the output of the signal CNT


1


is changed. As a result, the C/Dn of the column decoder


1


is in the non-selected state. However, the signal ΦA drops and the signal ΦB also drops so that no change occurs in the connection states of the I/O line and the I/O′ line of the memory cell arrays


1


,


2


. Also, the memory array


10


side is connected to the I/O′ line at the rise of the signal ΦD. This I/O′ line is, of course, a different line than that to which the column decoder


1


is connected.




Then, in this cycle, the data transmitted to the I/O line of the column decoder


1


is output from the memory through the data I/O section


4


. In the next cycle CLK


6


, once again the signal ΦA rises and the signal ΦC drops. The bit lines B


1


to B


4


are disconnected from the I/O lines on the rise of the signal ΦA. This is because the output of the column decoder C/Dn is at the “H” level and the transmission transistors of the bit lines and the I/O lines enter the OFF state. Simultaneously, the output of the C/D of the other column decoders enters the “L” level, the bit lines on the memory cell array


1


side belonging to the column decoder C/D are connected to the I/O lines. In this cycle, the data transmitted to the I/O′ line of the column decoder system


1


is output from the memory through the data I/O section


4


. Further, the operation produced consecutively by the column decoder system


1


is also carried out in the column decoder system


5


by the fall of the signal ΦC. An explanation is therefore omitted. Next, the reasons why the system connecting the internal basic clock signals Φ


1


to Φ


4


with the clock signals ΦA to ΦD which actually drive the memory device cannot be a fixed connection will be explained, as will the connection logic.




Because the time at which the memory is activated is optional, the state of the internal basic clock signal is not fixed each time access is commenced. On the other hand, in the selection of the respective bit lines and of the column decoder C/D, it is necessary for the signals CNT


1


, CNT


2


, and the signals ΦA, ΦB, ΦC, ΦD to be fixed signals.




Accordingly, when the column address has been set and access started, the connection state of the basic clock signals and the signals ΦA, ΦB, ΦC, ΦD must be determined according to the state of the basic clock signals Φ


1


to Φ


4


and the address, and the signals ΦA, ΦB, ΦC, ΦD must start from the correct state. Specifically, it is necessary that the operation normally be carried out with a fixed inner operation phase relationship. In the section on the right side of

FIG. 9

, a connection which differs from the section on the left side is shown. In

FIG. 9

, the left side connection, as shown in the drawing, is Φ


4


-ΦA, Φ


1


-ΦB, Φ


2


-ΦC, Φ


3


-ΦD; on the right side Φ


2


-ΦA, Φ


3


-ΦB, Φ


4


-ΦC, Φ


1


-ΦD; and connection relationships exist for another two routes. In addtion, in

FIG. 9

, there are consecutive rising in the signal ΦA, but consecutive risings are also acceptable in those signals ΦB, ΦC, ΦD. These connection states are determined according to the states of the basic clock signals Φ


1


to Φ


4


at the clock cycle which starts the access to the column address.




Next an explanation will be given for specific configurations of the circuits which produce the above-described clock signals and the like.





FIG. 10

is a configuration diagram showing a circuit which produces a double cycle of a clock signal Φ


2


from the external basic clock signal CLK.




In

FIG. 10

, a pair of clock inverters


20


,


21


are illustrated. The clock inverter


21


, for example, functions as an inverter when the clock signal is at the “H” level, and a high impeadance output occurs at the “L” level. With the circuit configuration shown in

FIG. 10

, the state of the signal Φ


2


can be changed by switching the clock signal twice between “H” and “L”.





FIG. 11

is a configuration diagram showing a circuit which produces the basic clock signals Φ


1


, Φ


2


, Φ


3


, Φ


4


. The operation of the circuit shown in

FIG. 11

is basically the same as that of the circuit shown in FIG.


10


. However, in this circuit, the signal Φ


2


and the inverted signal Φ


2


are used in place of the clock signal and the inverted clock signal. Therefore, seen from the clock signals, a four-cycle clock signal is produced. The phase relationship of the signals Φ


1


, Φ


2


, Φ


3


, Φ


4


is clear from the circuit configuration.




FIG.


12


(


a


) is a configuration diagram showing a circuit which produces the actual circuit control clock signals Φ


1


, Φ


2


, Φ


3


, Φ


4


from the internal basic clock signals.




In FIG.


12


(


a


). the manner how to connect the four signals Φ


1


, Φ


2


, Φ


3


, Φ


4


to the signals ΦA, ΦB, ΦC, ΦD is shown according to the values of a plurality of selection signals, X


1


to X


4


. In this circuit, four output Ys actually exist, depending on the signals ΦA, ΦB, ΦC, ΦD.




FIG.


12


(


b


) shows the relationship between the selection signals A, B, C, D, which are the signals X


1


to X


4


, and the signals ΦA, ΦB, ΦC, ΦD which are the outputs Y. For example, when Y=ΦA, the circuits correspond to X


1


=A, X


2


=B, X


3


=C, and X


4


=D. If the signal A is at the “H” level an the signals B to D are at the “L” level it can be understood from the combinations shown in FIG.


12


(


b


) and the circuit configuration that the corresponding relationships become Φ


1


-ΦA, Φ


2


-ΦB, Φ


3


-ΦC, Φ


4


-ΦD.




FIG.


13


(


a


) is a circuit which produces the signals A, B, C, D from the state of the basic clock signal Φ


1


, Φ


2


, Φ


3


, Φ


4


. As can be understood from

FIG. 9

, the signal Φ


3


is the inverted phase of the signal Φ


1


, and the signal Φ


4


is the inverted phase of the signal Φ


2


.




Therefore, the input of the circuit shown in FIG.


13


(


a


) becomes the signals Φ


1


, Φ


2


, the invert signal Φ


1


, and the invert signal Φ


2


. All the sates of the basic clock signal are determined by four combinations of the states of the signals Φ


1





2


. Four such circuits actually exist with the output X


1


depending on the signal A, B, C, and D. FIG.


13


(


b


) shows the relationship between the selection signals α, β, γ, δ determined from the access head addresses which are the signals x


1


to x


4


, and the signals A, B, C, and D which are the output X


1


. For example, the output X


1


=A corresponds to the circuits for which x


1


=α, x


2


=β x


3


=γ, and x


4


=δ. From the state of the head addresses, when β is “H”, α, γ, and δ are “L”. If the state of the basic clock signal at this time is such that the signal Φ


1


is at the “H” level and the signal Φ


2


is at the “L” level, only the signal A becomes “H”. from the combinations and circuit configuration show in FIG.


13


(


b


).





FIG. 14

shows a circuit configuration which produces the signals α, β, γ, δ from the two lower order bits A


0




c


and A


1




c


of the head address.




In

FIG. 14

the two lower order bits correspond to the memory array which is accessed consecutively in a serial manner in

FIG. 7

, specifically, to the signals ΦA, ΦB, ΦC, ΦD. The memory cell array from which the serial access is commenced and the state of the basic clock signals at that time determine the method of connecting the signals ΦA, ΦB, ΦC, ΦD and the basic clock signals Φ


1


, Φ


2


, Φ


3


, Φ


4


. Accordingly, the circuit which produces the selection signals in

FIG. 14

from the head addresses is essential. This has been discussed previously.




In the circuit shown in

FIG. 14

, when the address signal for the head address is fetched, a control signal S is temporarily at the “H” level, and, according to the state of the address, one of the signals α, β, γ, δ temporarily enters the “H” level. Any of the signals A to D can enter the “H” level, depending on this signal. From the circuit configuration shown in FIG.


13


(


a


), the reason for the latching of the output X


1


is because the signals α, β, γ, δ corresponding to the signals x


1


to x


4


, only enter the “H” level temporarily, so even when this cycle has elapsed the state of the signals A to D is maintained.




As explained above, if the signals ΦA, ΦB, ΦC, ΦD are produced from the basic clock signals, the phase relationship of the internal control becomes fixed without any relation to the head address.




Next, an example of the configuration of a counter circuit included in the specification section


13


for use in serial access, is shown in

FIG. 15






The counter of

FIG. 15

comprises a half-adder circuit


21


and a latch circuit


22


. In addition to these components, a control circuit


23


for setting the head address in the counter, and a latch circuit


24


for the signal CNT


2


which is the input to the column decoder


5


shown in

FIG. 7

are also provided. The half-adder circuit


21


and the latch circuits


22


,


24


contain only the number of its required for the column address.




The address which hold the output of the half-adder circuit


21


in the form of bits is the input address (the address holding IAis in the form of bits) +1.




This is apparent from the fact that the carry input T


−1


for the lowest order bit i=0 is at “H” level for V


DD


. The latch circuit


22


and the control circuit


23


latch and output this incremented output in a suitable time period.




When the signal D rises, the output from the half adder circuit


21


is output to the latch circuit


22


as IAis, which is the address bit of the signal CNT


1


. Next, the address remains latched in this state until the signal D rises once again.




The control circuit


23


controls so that the column address is output from the latch circuit


22


as the signal CNT


1


without the signal D being transmitted to the latch circuit


22


when the head address is set in the counter.




The address bit IAis of the signal CNT


1


is delayed and is output to the latch circuit


24


as the address bit of the signal CNT


2


at the rise of the signal ΦB. The address remains latched in this state until the signal ΦB rises once gain. The signals CNT


1


, CNT


2


shown in

FIG. 9

, are obtained with this type of circuit configuration.




Next, a semiconductor memory device as a third embodiment of the present invention will be explained. The semiconductor memory device is a package transfer type memory device which is capable of transferring data into or from a fixed number of memory cells at a time by using a serial register.





FIG. 16

shows a block diagram of the semiconductor memory device of the package transfer type as the third embodiment to which the memory I/O operation control method according to the present invention is applied. Between memory cell groups


162


and a data I/O (input/output) section


164


, a serial register section


167


comprising a plurality of serial registers (the number of the serial registers is eight in the memory device shown in

FIG. 16

) is incorporated in a memory device


161


. A data transfer operation between the memory cell groups


162


and the data I/O section


164


is performed through the eight serial registers at a time.




A data transfer operation between the serial register section


167


and the data I/O section


164


is performed per serial register based on the period of the external basic clock signal. A data transfer control section


168


controls two types of the data transfer operations mentioned above. In the configuration of the memory device


161


shown in

FIG. 16

, eight bit data is transferred at once between the memory cell groups


162


and the serial register section


167


. The eight bit data is seriously transferred by one bit between the data I/O section


164


and the serial register section


167


.





FIG. 17

is a timing chart showing an operation of the semiconductor memory device of the package transfer type shown in FIG.


16


. In the same diagram, after the {overscore (CE)} signal becomes L level, the counting operation of the basic clock signal CLK starts from a particular cycle which is determined by a control signal provided from an external section.




In this embodiment, the particular cycle is designated by the CLK


1


at which a row address is fetched, then a. column address is fetched at the CLK


3


, CLK


11


, and CLK


19


. The column address means a head address of the target memory cells of 8 bits as a package memory cell to be fetched at once.




The difference between the prescribed interleave type memory device and the memory device of this embodiment is explained followings:




In the latter, the setting of head addresses in target package memory cells to be fetched, each of which comprises a fixed number of memory cells to be fetched at once, cannot be determined freely and a head cycle in clock cycles required for transferring all bits in one package memory cell to be transferred at once is determined previously in the cycles at intervals of cycles determined by the number of bits in one package memory cell. Further, in the latter, in order to continue the serial access operation, a next column address must be provided after the number of clock cycles required for transferring the bits as the package data is passed. This next column head address may be generated by a counter in chip automatically to continue the serial access operation. In

FIG. 17

Dout designates a serial access operation for data output. In this case, the data output operation starts at the CLK


8


.




On the other hand. Din denotes the serial access operation for data input to the memory cell groups


162


. In this case, the data input operation starts at the CLK


1


. Namely, in this embodiment, a memory cell group to be stored data can be determined during the data input operation to the serial register section


167


, then all data in the serial register section


167


can be transferred as a packaged data to the memory cell group at once.





FIG. 18

is a block diagram of a construction circuit of a memory device as a fourth embodiment according to the present invention, which is required to perform a consecutive serial access operation by counting the number of cycles of the basic clock signal through a serial register section comprising a predetermined number of bits. In the same diagram, a specification section, for specifying a memory cell group


182


, comprises a row specification section


183


and a column specification section


181


. A plurality of column are selected at once as a package memory cell section by the column specification section


181


. For example, each character {circle around (1)}, {circle around (2)}, or {circle around (3)} in the memory cell group


182


designates a memory cell section comprising a constant number of memory cells having a consecutive address. All of the contents of memory, cells in each memory cell section {circle around (1)}, {circle around (2)}, or {circle around (3)} are transferred at a time to the serial register sections


187


or


188


.




The reason why there are two register sections


187


and


188


as the serial register section is that as shown in

FIG. 17

, a serial access operation for bit data having the number of bits more than that of bit data for the package transfer operation. In this case, when the read-out operation is performed, cell data according to a column address CA which is read out at the CLK


3


under the control of a counting section


185


and a control section


186


, for example a package data comprising all of the cell data stored in the memory cell section {circle around (1)} is transferred at a time to the serial register section


187


.




A column address is fetched, and then, for example a package data corresponding this column address comprising all of the cell data stored in the memory cell section {circle around (3)} is transferred to the serial register section


188


during the package data of the memory cell section {circle around (1)} is accessed. Next, output of the last data in the serial register section


187


is completed, data in the serial register section


188


is accessed serially. Thus, the control section


186


controls the data I/O operations between the memory cell group


182


and the serial register sections


187


,


188


, and the serial register section


187


,


188


and the data I/O section


184


. By repeating the operations described above, the serial access operation can be carried out.




On the other hand, in the case of the write-in operation, for example, sequential data is written into the serial register section


187


in accordance with the basic clock signal. In the case of the clock timing shown in

FIG. 17

, first the counting of the number of the clock signal CLK


1


and the data write-in operation start.




The head address CA in the memory cells in the memory cell section to be stored is fetched during the data is provided into the serial register section


187


(at CLK


3


).




After the cycle of the clock signal CLK of the number of the registers constituting the serial register section


187


has elapsed, data is fetched into the serial register section


188


, then the package data in the serial register section


187


is transferred into the memory cell section {circle around (1)}, which is addressed by the column address CA, in the memory cell group


182


. Next, the package data in the serial register section


188


is also transferred into the memory cell section. Thereby, the consecutive serial operation progresses.




As shown by the character Din in

FIG. 17

, there, is a case that the data in one serial register section must be transferred into one memory cell section before data transfer operation for all of the registers in the serial register section is completed. In addition, as shown in

FIG. 19

, there is also a case that data must not transferred in one register on a serial register section under the control of an input enable signal.




As shown in a timing chart of

FIG. 19

, data cannot be transferred into a register in the clock signal CLK when {overscore (WE)} is in H-level. In these case, the content of the register is indefinite. When a package data including the indefinite data is transferred into a memory cell section, a data transfer operation cannot be completed correctly. This problem is solved by a circuit of a serial register section in the semiconductor memory device as a fifth embodiment according to the present invention shown in FIG.


20


.





FIG. 20

is a block diagram showing a construction of the serial register section in a semiconductor memory device of the fifth embodiment according to the present invention.




As shown in

FIG. 20

, a register gate section


205


is incorporated between a serial register section


206


and a data bus


201


. The register gate section


205


comprises many gates which are corresponding to the registers in the serial register section


206


with one-to-one.




The register gate section


205


is activated when a write signal


209


is applied, then each register gate in the register gate section


205


enter ON state by a write enable signal


207


provided from the control section


203


. Each register gate in ON state is corresponding to the serial register having an effective data to be transferred into a memory cell in a memory cell group. Thereby, a data transfer path between the serial register having the effective data and the data bus


201


is open. On the other hand, a data transfer path between a serial register having uneffective data and the data bus


201


is closed.




The write enable signal is, for example, produced based on a state of the {overscore (WE)} signal by a control section


203


Thus, the content of a memory cell can be kept correctly because disabling the transfer of the data in a register having uneffective data the memory cell can be protected by a register gate when a package transfer operation is performed.




On the other hand, in the read-out operation, a package data stored in a memory cell section is transferred to a serial register section


206


through the data bus


202


. In this case, the register gate section


205


is not activated.




With a control system of this type and memory device with this configuration, access can be made without the necessity for critical timing and without using a large number of control signals by using the high speed mode state. Because of this fact, it can be clearly understood that all operations can be controlled with a high speed serial clock signal CLK, and this controls easily performed. In addition, because interleaving can be carried out with any of these clock signals in the internal operation, the internal operations can be perform by doubling the number of high speed access cycles. No special circuit technology is required to convert to high speed.




In addition, the phase of the access of the internal circuit section operation is fixed without depending on accessing the head address. Accordingly, restrictions relating to the head address disappear.




Furthermore, no special circuit is required to convert high speed because by the present invention the package transfer method, by which an internal operation in a semiconductor memory device can be performed every plural cycles of a clock signal, can be applied to the semiconductor memory device.




Various modification will become possible for those skilled in the art after receiving the teachings of the present disclosure without departing from the scope thereof.



Claims
  • 1. A method of accessing a semiconductor device that operates in synchronism with a clock signal, comprising:fetching information indicating a memory cell location in a memory cell array in synchronism with the clock signal; determining first data of a plurality of data to be transferred sequentially; decoding the information indicating the memory cell location in the memory cell array and designating the memory cell; receiving data stored in the memory cell designated by the information indicating the memory cell location in the memory cell array in synchronism with the clock signal after a predetermined number of cycles of the clock signal; and outputting a plurality of data stored in the memory cells in synchronism with the clock signal and storing a plurality of input data in the memory cells in synchronism with the clock signal.
  • 2. A method of accessing a semiconductor device according to claim 1, wherein said information indicating the memory cell location in the memory cell array includes address signals and is fetched without being divided into rows and columns.
  • 3. A method of accessing a semiconductor device according to claim 1, wherein a first signal, which determines whether data are read or written, and a second signal, which determines whether the first signal is latched or not, are input additionally, andinput and output of data are carried out independently of a timing at which the information indicating the memory cell location in the memory cell array is fetched in.
  • 4. A method of accessing a semiconductor device according to claim 3, wherein input and output of data from said data input/output section are carried out following a predetermined number of cycles of the clock signal after latching of the first signal is instructed by the second signal.
  • 5. A method of accessing a semiconductor device according to claim 1, wherein whether said plurality of data stored in the memory cells are externally output in synchronism with said clock signal or not is determined by an output enable signal.
Priority Claims (2)
Number Date Country Kind
2-273170 Oct 1990 JP
3-255354 Oct 1991 JP
Parent Case Info

This application is a divisional of application Ser. No. 10/093,935, filed on Mar. 11, 2002, now U.S. Pat. No. 6,535,456 which is in turn a continuation of application Ser. No. 09/916,578, filed on Jul. 30, 2001, now U.S. Pat. No. 6,373,785, which is in turn a continuation of application Ser. No. 09/812,820, filed on Mar. 21, 2001, now U.S. Pat. No. 6,317,382, which is in turn a divisional of application Ser. No. 09/433,338, filed Nov. 4, 1999, now U.S. Pat. No. 6,249,481, which in turn is a divisional of application Ser. No. 09/236,832, filed Jan. 25, 1999, now U.S. Pat. No. 5,995,442, which is in turn a divisional of application Ser. No. 09/017,948, filed Feb. 3, 1998, now U.S. Pat. No. 5,926,436, which is in turn a continuation of application Ser. No. 08/779,902, filed Jan. 7, 1997, now U.S. Pat. No. 5,740,122, which is in turn a continuation of application Ser. No. 08/463,394, filed Jun. 5, 1995, now U.S. Pat. No. 5,612,925, which is a continuation of application Ser. No. 08/223,222, filed Apr. 5, 1994, now U.S. Pat. No. 5,500,829, which is in turn a divisional of application Ser. No. 07/775,602, filed Oct. 15, 1991, now U.S. Pat. No. 5,313,437. The entire contents of each of the aforementioned applications is incorporated by reference herein.

US Referenced Citations (54)
Number Name Date Kind
4330852 Redwine et al. May 1982 A
4819213 Yamaguchi et al. Apr 1989 A
4849937 Yoshimoto Jul 1989 A
5036494 Wise et al. Jul 1991 A
5054000 Miyaji Oct 1991 A
5058074 Sakamoto Oct 1991 A
5179670 Farmwald et al. Jan 1993 A
5235545 McLaury Aug 1993 A
5243703 Farmwald et al. Sep 1993 A
5260905 Mori Nov 1993 A
5268865 Takasugi Dec 1993 A
5295115 Furuya et al. Mar 1994 A
5305277 Derwin et al. Apr 1994 A
5313437 Toda May 1994 A
5341341 Fukuzo Aug 1994 A
5416749 Lai May 1995 A
5708611 Iwamoto et al. Jan 1998 A
5737637 Toda et al. Apr 1998 A
5740122 Toda et al. Apr 1998 A
5751655 Yamazaki et al. May 1998 A
5784331 Lysinger Jul 1998 A
5796669 Araki et al. Aug 1998 A
5798979 Toda et al. Aug 1998 A
5809552 Kuroiwa et al. Sep 1998 A
5815462 Konishi et al. Sep 1998 A
5835448 Ohtani et al. Nov 1998 A
5875486 Toda et al. Feb 1999 A
5915105 Farmwald et al. Jun 1999 A
5926436 Toda et al. Jul 1999 A
5953263 Farmwald et al. Sep 1999 A
5954804 Farmwald et al. Sep 1999 A
5959930 Sakurai Sep 1999 A
5986969 Holder, Jr. Nov 1999 A
5995442 Toda et al. Nov 1999 A
5995443 Farmwald et al. Nov 1999 A
5999481 Cowless et al. Dec 1999 A
6026041 Suzuki et al. Feb 2000 A
6034918 Farmwald et al. Mar 2000 A
6038166 Wong Mar 2000 A
6038195 Farmwald et al. Mar 2000 A
6049508 Deflandre Apr 2000 A
6119200 George Sep 2000 A
6141280 Cho Oct 2000 A
6141290 Cowless et al. Oct 2000 A
6151236 Bondurant et al. Nov 2000 A
6229749 Cowless et al. May 2001 B1
6246614 Ooishi Jun 2001 B1
6249481 Toda et al. Jun 2001 B1
6317382 Toda et al. Nov 2001 B2
6373785 Toda et al. Apr 2002 B2
6535456 Toda et al. Mar 2003 B2
20010009532 Toda et al. Jul 2001 A1
20010046177 Toda et al. Nov 2001 A1
20020093873 Toda et al. Jul 2002 A1
Foreign Referenced Citations (7)
Number Date Country
0 211 565 Feb 1987 EP
0 260 897 Mar 1988 EP
0 284 985 Oct 1988 EP
0 315 194 May 1989 EP
2-250132 Oct 1990 JP
05-02873 Jan 1993 JP
62-223891 Oct 1997 JP
Non-Patent Literature Citations (2)
Entry
Ohno, “Self-Timed RAM: STRAM” Fujitsu Sci. Tech,. J., vol. 24:293-300, (1988).
Dunn et al., “Single Counter Controlled Buffer”, IBM Technical Disclosure Bulletin, vol. 20:1702-1703, (1977).
Continuations (5)
Number Date Country
Parent 09/916578 Jul 2001 US
Child 10/093935 US
Parent 09/812820 Mar 2001 US
Child 09/916578 US
Parent 08/779902 Jan 1997 US
Child 09/017948 US
Parent 08/463394 Jun 1995 US
Child 08/779902 US
Parent 08/223222 Apr 1994 US
Child 08/463394 US