1. Field of the Invention
The present invention relates to a semiconductor module including a switching element formed of a wide bandgap semiconductor.
2. Description of the Background Art
As a next-generation switching element capable of realizing high withstand voltage, a low loss, and high heat resistance, a semiconductor device using silicon carbide (SiC) has been considered promising and expected to be applied to a power semiconductor module such as an inverter.
For example, Japanese Patent Application Laid-Open No. 2008-61404 proposes a current converter using a switching element formed of a wide bandgap semiconductor such as SiC.
Each switching element is connected in antiparallel with a free wheel diode in order to prevent destruction due to a surge current. In Japanese Patent Application Laid-Open No. 2010-252568, a Schottky barrier diode as a free wheel diode is formed of a wide bandgap semiconductor such as SiC, to reduce a recovery current of the free wheel diode, thus seeking reduction in switching loss.
However, when the SiC Schottky barrier diode (SiC-SBD) is used as the free wheel diode of the SiC switching element as in Japanese Patent Application Laid-Open No. 2010-252568, there has been a problem that a generated loss with respect to an inrush current is large. Since the SiC-SBD has positive temperature characteristics, when a large current flows and its temperature gets high, a forward voltage VF increases. This leads to an increase in generated loss (IF×VF) with respect to the inrush current. When the temperature of the device rises due to the increase in generated loss, the voltage VF increases, and the generated loss further increases due to the increase in VF. The device thus enters the state of such a positive feedback.
Thus, with the semiconductor module fully made of SiC which uses the free wheel diode being the SiC-SBD for the SiC switching element, there has been a problem in that the module needs to be actually used with a loss not higher than an allowable loss, and hence an operation temperature range and an inrush current value are restricted in practical use.
It is an object of the present invention to provide a semiconductor module having high inrush-current tolerance.
A semiconductor module of the present invention includes a switching element and a free wheel diode. The switching element is formed of a wide bandgap semiconductor. The free wheel diode is connected in antiparallel with the switching element and made of silicon, and has negative temperature characteristics.
In the semiconductor module of the present invention, since the free wheel diode is made of silicon and has negative temperature characteristics, the diode does not enter the state of a positive feedback versus an inrush current, and thereby has high resistance.
These and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.
In order to solve the above problems, a semiconductor module of the present invention has a configuration to use a device having negative temperature characteristics as a free wheel diode.
<B-1. Configuration, Operation>
It is therefore possible to improve inrush-current tolerance of the semiconductor module 10 as compared with the case of using a SiC diode having positive temperature characteristics as the free wheel diode of the SiC MOSFET 11.
<B-2. Modified Example>
It is to be noted that, although the Si PN diode 12 has been used as the free wheel diode, another diode may be used as the free wheel diode so long as it has negative temperature characteristics and, for example, a Si PiN diode may be used. In the PiN diode, providing a carrier accumulation layer in a PN junction causes occurrence of conductivity modulation, to allow a further decrease in VF than in the PN diode. It is thus possible to further improve the inrush-current tolerance of the semiconductor module than in the case of using the PN diode. Moreover, it is possible to suppress a generated loss at the time of operation, to realize a low loss.
Furthermore, a material for the MOSFET 11 as the switching element is not limited to SiC, but may be another wide bandgap semiconductor such as a gallium nitride-based material or diamond.
<B-3. Effect>
According to the semiconductor module of the present invention, the following effect is obtained. That is, the semiconductor module 10 according to the present invention includes the MOSFET 11 (switching element) formed of a wide bandgap semiconductor, and the PN diode 12 (free wheel diode) connected in antiparallel with the switching element. Since the free wheel diode is made of silicon and has negative temperature characteristics, the diode does not enter the state of the positive feedback versus the inrush current, and thereby has high resistance.
Further, since the PN diode or the PiN diode made of silicon having negative temperature characteristics is used as the free wheel diode, the diode does not enter the state of the positive feedback versus the inrush current, and thereby has high resistance.
Moreover, since the wide bandgap semiconductor constituting the MOSFET 11 contains a gallium nitride-based material or diamond other than SiC, it is possible to improve resistance to the inrush current in the semiconductor module including the switching element formed of these wide bandgap semiconductors.
<C-1. Configuration, Operation>
<C-2. Effect>
The semiconductor module of the present preferred embodiment includes in one package a plurality of pairs of the switching element 11 and the free wheel diode 12 of the first preferred embodiment, whereby reduction in size of the semiconductor module can be achieved.
While the invention has been shown and described in detail, the foregoing description is in all aspects illustrative and not restrictive. It is therefore understood that numerous modifications and variations can be devised without departing from the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2011-280836 | Dec 2011 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20080258252 | Shimizu et al. | Oct 2008 | A1 |
20100265746 | Ishikawa et al. | Oct 2010 | A1 |
Number | Date | Country |
---|---|---|
2008-61404 | Mar 2008 | JP |
2008061404 | Mar 2008 | JP |
2010-200401 | Sep 2010 | JP |
2010-252568 | Nov 2010 | JP |
2011-30424 | Feb 2011 | JP |
2011-36020 | Feb 2011 | JP |
Entry |
---|
Office Action issued Jul. 8, 2014 to Japanese Patent Application No. 2011-280836, with partial English translation. |
Number | Date | Country | |
---|---|---|---|
20130161644 A1 | Jun 2013 | US |