This application claims the priority benefit of Taiwan Patent Application Serial Number 094106298, filed on Mar. 2, 2005, the full disclosure of which is incorporated herein by reference.
1. Field of the Invention
This invention generally relates to a semiconductor package structure and a method for manufacturing the same, and more particularly to a wafer level semiconductor package structure and a method for manufacturing the same.
2. Description of the Related Art
The semiconductor package mainly serves four functions, i.e. signal distribution, power distribution, heat dissipation and element protection. In general, a semiconductor chip is packaged into an enclosure, and then disposed on a printed circuit board, together with other components, such as capacitors, resistors, inductors, filters, switches, and optical and RF components.
The complementary metal-oxide semiconductor (CMOS) technology for making optical components is similar to that for making semiconductor chips. CMOS is typically formed from silicon (Si) and germanium (Ge) and generally includes N-type metal-oxide semiconductor (NMOS) transistors with negative charged carriers and P-type metal-oxide semiconductor (PMOS) transistors with positive charged carriers. Such NMOS and PMOS may generate currents after sensing light, and the currents may be then recorded and read as image.
Further, as the demands for lighter and more complex electronic devices gradually increase, the operating speed and the complexity of IC chips have become higher and higher. Accordingly, a higher packaging efficiency is required. In the prior art, various semiconductor packages and manufacturing methods have been provided for improving the packaging efficiency and reliability. For example, U.S. Pat. No. 6,040,235 entitled “Methods And Apparatus For Producing Integrated Circuit Devices” issued to Badehi on May 21, 2000, and U.S. Pat. No. 6,117,707 entitled “Methods Of Producing Integrated Circuit Devices” issued to Badehi on Sep. 12, 2000 disclose methods for manufacturing the semiconductor package structures. However, these semiconductor package structures and the manufacturing methods in the prior art still have many limitations and drawbacks, and therefore can not entirely meet the requirements for the semiconductor package structures.
Accordingly, there exists a need for providing a wafer level semiconductor package to further meet the requirement for the semiconductor package structures.
It is an object of the present invention to provide a semiconductor package structure and a method for manufacturing the same, which can offer higher packaging efficiency and eliminate many limitations and drawbacks in the prior art.
In order to achieve the object, the present invention provides a semiconductor package structure comprising a chip, a plurality of via holes, a lid, a adhesive ring and a plurality of metal traces, wherein the chip has an optical component and a plurality of pads disposed on its active surfaces; the via holes penetrate the chip and are electrically connected to the bonding pads; the lid is adhered onto the active surface of the chip by the adhesive ring so that the adhesive ring surrounds the optical component; and the plurality of metal traces is disposed on the back surface of the chip, electrically connected to the plurality of via holes, and used to define a plurality of solder pads thereon.
The semiconductor package structure according to the present invention can be massively produced at the wafer level, thus reducing the cost for the package process and increasing the packaging reliability.
On the other hand, the present invention provides a method for manufacturing a semiconductor package structure, wherein the method comprises the following steps: providing a wafer, which defines an active surface and a back surface, and has a plurality of chips and a plurality of scribe lines positioned among the chips, wherein each chip has a plurality of bonding pads and an optical component disposed on the active surface thereof with the optical component being electrically connected to the chip; then forming a plurality of holes on the active surface of the wafer; subsequently forming conducting material within the plurality of holes, so as to form a plurality of via holes electrically connected to the plurality of bonding pads; subsequently forming on the active surface of the wafer a plurality of adhesive rings, which respectively surround the optical component of each chip; then providing a lid to be adhered to the wafer by the adhesive ring; and forming on the back surface of the wafer a plurality of metal traces, which are electrically connected to the plurality of via holes and define a plurality of soldering pads; and finally, cutting the wafer so as to form the respective semiconductor package structures.
In the method for manufacturing a semiconductor package structure of an alternative embodiment of the present invention, the plurality of adhesive rings may form on the lid so that the lid may be as well adhered onto the active surface of the wafer by the plurality of adhesive rings, thus achieving the same purpose.
The adhesive rings according to the present are formed from an adhesive material that has been mixed with a plurality of supporting units, wherein the plurality of supporting units has substantially the same height, for supporting the lid on the active surface of the wafer (chip).
The semiconductor package structure and the method for manufacturing the same according to the present invention may facilitate the transmission characteristic of the light in the semiconductor package structure owing to the fact that the lid is fixed and supported on the active surface of the chip by the adhesive ring thus rendering the optical component covered by no adhesive.
Other objects, features and advantages of the present invention as well as what have been set forth above will become more apparent from the following detailed description taking embodiments of the prevention in conjunction with the accompanying drawings.
Now referring to
The chip 12 further has a plurality of via holes 28 penetrating the chip 12 and a plurality of pad extension traces 18 for electrically connecting the bonding pads 16 to the via holes 28. The semiconductor package structure 10 further comprises a lid 22 adhered onto the active surface 14 of the chip 12 by an adhesive ring 26, and covering the active surface 14 and the plurality of pad extension traces 18.
The semiconductor package structure 10 further comprises a plurality of compliant pads 32, a plurality of metal traces 38, a solder mask 44 and a plurality of solder balls 30. The compliant pads 32 are formed on the back surface 13 of the chip 12. The metal traces 38 are formed on the back surface 13 of the chip 12 and on the compliant pads 32. The solder mask 44 is coated on the back surface 13 of the chip 12 with parts of the metal traces 38 exposed therefrom, wherein the parts are defined as a plurality of solder pads 42. The solder balls 30 are disposed on the solder pads 42 for being connected to an external circuit, e.g. a printed circuit board. The compliant pads 32 may be formed substantially from a photosensitive benzocyclobutene polymer for reducing the internal stress or thermal stress of the semiconductor package structure 10. Further, the solder mask 44 may be formed substantially from the photosensitive benzocyclobutene polymer. The via holes 28 are electrically connected to the pad extension traces 18 and the metal traces 38, respectively, and have parts of their internal surface coated with an insulating layer 37.
Now refer to
The lid 22 may be made of transparent material, such as glass, acrylic resin or sapphire, so that light can be transmitted through the lid 22 and interact with the optical component 24 of the semiconductor chip 12. Also, due to the fact that the lid 22 is fixed and supported on the active surface 14 of the chip 12 by the adhesive ring 26, the optical component 24 is not covered by any adhesive, thus facilitating promotion of the transmission characteristic of the light in the semiconductor package structure. Further, contamination form the environment outside can be prevented owing that the optical component 24 is located in the hermetical chamber 27.
Now refer to
As shown in
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
In one embodiment of the present invention, the plurality of adhesive rings 26 may pre-formed on the lid 22 so as to correspond to each chip 12 on the wafer 52, and then be adhered onto the active surface 14 of the each chip 12 so as to form a structure as shown in
Referring to
In one alternative embodiment of the present invention, the plurality of holes 36 may directly penetrate the chip 12 such that the subsequently formed via holes 28 are directly exposed out of the back surface 13. It could be understood by those skilled in the art that the wafer 52 may be formed to have a predetermined height without further grinding, or alternatively be ground to a predetermined thickness after forming the via holes 28.
Referring to
Referring to
Referring to
Referring to
Referring to
Now referring to
In the semiconductor package structure and the method for manufacturing the same according to the present invention, due to the fact that the lid 22 is fixed and supported on the active surface 14 of the chip 12 by the adhesive ring 26, the optical component 24 is not covered by any adhesive, thus facilitating promotion of the transmission characteristic of the light in the semiconductor package structure 10. Further, contamination form the environment outside can be prevented owing that the optical component 24 is located in the hermetical chamber 27 defined among the lid 22, the chip 12 and the adhesive ring 25.
On the other hand, the semiconductor package structure 10, 90 are capable of being applied to the package of optical components and massively produced at the wafer level, thus reducing the cost for the package process and increasing the packaging reliability.
Although the invention has been explained in relation to its preferred embodiment, it is not used to limit the invention. It is to be understood that many other possible modifications and variations can be made by those skilled in the art without departing from the spirit and scope of the invention as hereinafter claimed.
| Number | Date | Country | Kind |
|---|---|---|---|
| 094106298 | Mar 2005 | TW | national |