Embodiments of the present disclosure relate to semiconductor and silicon-on-insulator (SOI) technologies and semiconductor-based radio frequency (RF) switches, both of which may be used in RF communications circuits.
As technology progresses, wireless communications devices, such as smart phones, wireless capable computers, or the like, are becoming increasingly integrated, feature rich, and complex. Such wireless communications devices rely on semiconductor technologies, such as silicon based technologies, which are evolving toward smaller circuit geometries, lower power consumption, higher operating speeds, and increased complexity. Complementary metal oxide semiconductor (CMOS) technology is an example of a silicon based technology. Further, wireless communications devices may need to support multiple communications bands, multiple communications modes, multiple communications protocols, and the like. As such, wireless communications devices may need multiple RF switches to select between different RF circuits depending on which communications bands, modes, and protocols are in use. Such complex RF systems may place strict linearity, insertion loss, and isolation demands on the RF switches.
In general, RF switches having semiconductor-based switching elements may have a trade-off between insertion loss and isolation. RF switches that must handle high power levels may require low insertion losses. In order to achieve low insertion loss and high power handling capability, the size of circuit elements within an RF switch may be relatively large. However, such large circuit elements may be associated with relatively large capacitances, which may decrease isolation. Further, multiple large capacitances may have non-linearities, which may degrade linearity of the RF switch. Thus, there is a need for a silicon based RF switch that improves the trade-off between insertion loss and isolation, has good linearity performance, operates over multiple frequency bands, or any combination thereof.
The present disclosure relates to an RF switch that includes multiple body-contacted field effect transistor (FET) elements coupled in series. The FET elements may be formed using a thin-film semiconductor device layer, which is part of a thin-film semiconductor die. Conduction paths between the FET elements through the thin-film semiconductor device layer and through a substrate of the thin-film semiconductor die may be substantially eliminated by using insulating materials. Elimination of the conduction paths allows an RF signal across the RF switch to be divided across the series coupled FET elements, such that each FET element is subjected to only a portion of the RF signal. Further, each FET element is body-contacted and may receive reverse body biasing when the RF switch is in an OFF state, thereby reducing an OFF state drain-to-source capacitance of each FET element. The combination of dividing the RF signal and reverse body biasing each FET element when the RF switch is in an OFF state may improve the trade-off between insertion loss and isolation, may improve linearity performance, and may enable the RF switch to operate over multiple frequency bands.
Thin-film semiconductor dies may typically be used in conjunction with complementary metal oxide semiconductor (CMOS) processes, which may be used to fabricate high performance microprocessors due to comparatively low source-to-body and drain-to-body junction capacitances. However, low source-to-body and drain-to-body junction capacitances may be beneficial in certain RF circuits, such as RF switches. Low source-to-body and drain-to-body junction capacitances may provide a low OFF state drain-to-source capacitance of an FET element. Further, by using insulating materials to completely surround each FET element in the RF switch, a body, a source, and a drain of each FET element may be isolated from the substrate and may be isolated from other devices, including other FET elements, via the thin-film semiconductor device layer.
During the OFF state of the RF switch, a voltage may be applied between the body and the source of each FET element to reverse bias the body and the source, and a voltage may be applied between the body and the drain of each FET element to reverse bias the body and the drain to body-contact and reverse body bias the FET element. By reverse biasing the body and the source, the source-to-body junction capacitance may be further reduced, and by reverse biasing the body and the drain, the drain-to-body junction capacitance may be further reduced, thereby further reducing the OFF state drain-to-source capacitance of each FET element. Such junction capacitance reductions may further improve the trade-off between insertion loss and isolation, may further improve linearity performance, and may further enable the RF switch to operate over multiple frequency bands. The improved linearity performance of the RF switch may be based on reduced harmonic distortion of the RF switch or reduced intermodulation distortion.
In addition, for CMOS processes, maximum drain-to-source voltage ratings may be between about one volt and about five volts, depending on the technology. However, the RF signal across the RF switch when the RF switch is in the OFF state may be significantly larger than the maximum drain-to-source voltage ratings. Therefore, the RF switch may include multiple body-contacted FET elements coupled in series to divide the RF signal across the series-coupled FET elements. The division of the RF signal needs to be reasonably balanced during the OFF state and during transitions between the OFF state and an ON state to avoid exceeding maximum drain-to-source voltage ratings. As mentioned above, conduction paths between the FET elements through the thin-film semiconductor device layer and through the substrate of the thin-film semiconductor die may be substantially eliminated by using insulating materials, thereby helping to avoid exceeding maximum drain-to-source voltage ratings.
Those skilled in the art will appreciate the scope of the present disclosure and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.
The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.
The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the disclosure and illustrate the best mode of practicing the disclosure. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
The present disclosure relates to an RF switch that includes multiple body-contacted field effect transistor (FET) elements coupled in series. The FET elements may be formed using a thin-film semiconductor device layer, which is part of a thin-film semiconductor die. Conduction paths between the FET elements through the thin-film semiconductor device layer and through a substrate of the thin-film semiconductor die may be substantially eliminated by using insulating materials. Elimination of the conduction paths allows an RF signal across the RF switch to be divided across the series coupled FET elements, such that each FET element is subjected to only a portion of the RF signal. Further, each FET element is body-contacted and may receive reverse body biasing when the RF switch is in an OFF state, thereby reducing an OFF state drain-to-source capacitance of each FET element. The combination of dividing the RF signal and reverse body biasing each FET element when the RF switch is in an OFF state may improve the trade-off between insertion loss and isolation, may improve linearity performance, and may enable the RF switch to operate over multiple frequency bands.
Thin-film semiconductor dies may typically be used in conjunction with complementary metal oxide semiconductor (CMOS) processes, which may be used to fabricate high performance microprocessors due to comparatively low source-to-body and drain-to-body junction capacitances. However, low source-to-body and drain-to-body junction capacitances may be beneficial in certain RF circuits, such as RF switches. Low source-to-body and drain-to-body junction capacitances may provide a low OFF state drain-to-source capacitance of an FET element. Further, by using insulating materials to completely surround each FET element in the RF switch, a body, a source, and a drain of each FET element may be isolated from the substrate and may be isolated from other devices, including other FET elements, via the thin-film semiconductor device layer.
Reverse bias of a PN junction occurs when a positive voltage is applied to the N-type material relative to the P-type material and a magnitude of the positive voltage is greater than zero. During the OFF state of the RF switch, a voltage may be applied between the body and the source of each FET element to reverse bias the body and the source, and a voltage may be applied between the body and the drain of each FET element to reverse bias the body and the drain to body-contact and reverse body bias the FET element. By reverse biasing the body and the source, the source-to-body junction capacitance may be further reduced, and by reverse biasing the body and the drain, the drain-to-body junction capacitance may be further reduced, thereby further reducing the OFF state drain-to-source capacitance of each FET element. Such junction capacitance reductions may further improve the trade-off between insertion loss and isolation, may further improve linearity performance, and may further enable the RF switch to operate over multiple frequency bands. The improved linearity performance of the RF switch may be based on reduced harmonic distortion of the RF switch.
In addition, for CMOS processes, maximum drain-to-source voltage ratings may be between about one volt and about five volts, depending on the technology. However, the RF signal across the RF switch when the RF switch is in the OFF state may be significantly larger than the maximum drain-to-source voltage ratings. Therefore, the RF switch may include multiple body-contacted FET elements coupled in series to divide the RF signal across the series-coupled FET elements. The division of the RF signal needs to be reasonably balanced during the OFF state and during transitions between the OFF state and an ON state to avoid exceeding maximum drain-to-source voltage ratings. As mentioned above, conduction paths between the FET elements through the thin-film semiconductor device layer and through the substrate of the thin-film semiconductor die may be substantially eliminated by using insulating materials, thereby helping to avoid exceeding maximum drain-to-source voltage ratings.
In one embodiment of the thin-film semiconductor device layer 40, the thin-film semiconductor device layer 40 is partially-depleted SOI and not fully-depleted SOI. As the insulating layer thickness 44 increases, RF coupling to adjacent devices through the substrate 36 may be reduced, thereby improving isolation. Additionally, as resistivity of the substrate 36 increases, RF coupling to adjacent devices may be reduced, thereby improving RF performance of active RF devices and passive RF devices, such as inductors and transmission lines.
In a first exemplary embodiment of the substrate 36, the resistivity of the substrate 36 is greater than about 100 ohm-centimeters. In a second exemplary embodiment of the substrate 36, the resistivity of the substrate 36 is greater than about 500 ohm-centimeters. In a third exemplary embodiment of the substrate 36, the resistivity of the substrate 36 is greater than about 1000 ohm-centimeters. In one embodiment of the thin-film semiconductor die 34, the insulating layer thickness 44 is greater than the semiconductor device layer thickness 42. In a first exemplary embodiment of the thin-film semiconductor device layer 40, the semiconductor device layer thickness 42 is between about 100 nanometers and about 300 nanometers. In a second exemplary embodiment of the thin-film semiconductor device layer 40, the semiconductor device layer thickness 42 is less than about 900 nanometers. In a third exemplary embodiment of the thin-film semiconductor device layer 40, the semiconductor device layer thickness 42 is less than about 700 nanometers. In a fourth exemplary embodiment of the thin-film semiconductor device layer 40, the semiconductor device layer thickness 42 is less than about 500 nanometers. In a fifth exemplary embodiment of the thin-film semiconductor device layer 40, the semiconductor device layer thickness 42 is less than about 300 nanometers. In a sixth exemplary embodiment of the thin-film semiconductor device layer 40, the semiconductor device layer thickness 42 is less than about 200 nanometers. In a seventh exemplary embodiment of the thin-film semiconductor device layer 40, the semiconductor device layer thickness 42 is less than about 100 nanometers.
In a first exemplary embodiment of the insulating layer 38, the insulating layer thickness 44 is between about 200 nanometers and about 1000 nanometers. In a second exemplary embodiment of the insulating layer 38, the insulating layer thickness 44 is greater than about 200 nanometers. In a third exemplary embodiment of the insulating layer 38, the insulating layer thickness 44 is greater than about 600 nanometers. In a fourth exemplary embodiment of the insulating layer 38, the insulating layer thickness 44 is greater than about 1000 nanometers. In a fifth exemplary embodiment of the insulating layer 38, the insulating layer thickness 44 is greater than about 1500 nanometers. In a sixth exemplary embodiment of the insulating layer 38, the insulating layer thickness 44 is greater than about 2000 nanometers.
In a first exemplary embodiment of the first body-contacted FET element 46, the first source 50 and the first drain 54 include N-type semiconductor material, and the first body 52 includes P-type semiconductor material. In a second exemplary embodiment of the first body-contacted FET element 46, the first source 50 and the first drain 54 include heavily doped N-type semiconductor material, and the first body 52 includes P-type semiconductor material. In a third exemplary embodiment of the first body-contacted FET element 46, the first source 50 and the first drain 54 include P-type semiconductor material, and the first body 52 includes N-type semiconductor material. In a fourth exemplary embodiment of the first body-contacted FET element 46, the first source 50 and the first drain 54 include heavily doped P-type semiconductor material, and the first body 52 includes N-type semiconductor material.
The second body-contacted FET element 70 may be similar to the first body-contacted FET element 46 and may include a second source 76, a second body 78, a second drain 80, the insulating material 58, the gate oxide 74 over the second body 78, and a second gate 82 over the gate oxide 74. The second body 78 is between the second source 76 and the second drain 80, and the second source 76, the second body 78, and the second drain 80 are surrounded by the insulating material 58. The gate oxide 74 electrically insulates the second gate 82 from the second body 78. The second body-contacted FET element 70 may include a second body contact region (not shown) and second body contacts (not shown). The second source 76, the second body 78, the second drain 80, or any combination thereof may completely traverse the semiconductor device layer thickness 42 (
The third body-contacted FET element 72 may be similar to the first body-contacted FET element 46 and may include a third source 84, a third body 86, a third drain 88, the insulating material 58, the gate oxide 74 over the third body 86, and a third gate 90 over the gate oxide 74. The third body 86 is between the third source 84 and the third drain 88, and the third source 84, the third body 86, and the third drain 88 are surrounded by the insulating material 58. The gate oxide 74 electrically insulates the third gate 90 from the third body 86. The third body-contacted FET element 72 may include a third body contact region (not shown) and third body contacts (not shown). The third source 84, the third body 86, the third drain 88, or any combination thereof may completely traverse the semiconductor device layer thickness 42 (
A first body-contacted RF switch 92 includes the first body-contacted FET element 46, the second body-contacted FET element 70, and the third body-contacted FET element 72 according to one embodiment of the first body-contacted RF switch 92. In an exemplary embodiment of the first body-contacted RF switch 92, the insulating material 58 extends completely though the thin-film semiconductor device layer 40 down to the insulating layer 38, such that the insulating material 58 completely surrounds each of the first body-contacted FET element 46, the second body-contacted FET element 70, and the third body-contacted FET element 72, thereby substantially eliminating conduction paths between the first, the second, and the third body-contacted FET elements 46, 70, 72 through the substrate 36, through the thin-film semiconductor device layer 40, or both.
The first source contact 64 is electrically connected to the first source 50; the first drain contact 66 is electrically connected to the first drain 54; the second source contact 94 is electrically connected to the second source 76; the second drain contact 96 is electrically connected to the second drain 80; the third source contact 98 is electrically connected to the third source 84; and the third drain contact 100 is electrically connected to the third drain 88. The first switch connection node 102 of the first body-contacted RF switch 92 is electrically connected to the third source 84 through the third source contact 98. The second switch connection node 104 of the first body-contacted RF switch 92 is electrically connected to the first drain 54 through the first drain contact 66. The first FET interconnect 106 electrically connects the first source 50 to the second drain 80 through the first source contact 64 and the second drain contact 96, respectively. The second FET interconnect 108 electrically connects the second source 76 to the third drain 88 through the second source contact 94 and the third drain contact 100, respectively. As such, the first body-contacted FET element 46, the second body-contacted FET element 70, and the third body-contacted FET element 72 are coupled in series between the first switch connection node 102 and the second switch connection node 104.
The resistor bias network 110 is coupled to the first source 50, the first body 52, the first drain 54, the first gate 60, the second source 76, the second body 78, the second drain 80, the second gate 82, the third source 84, the third body 86, the third drain 88, the third gate 90, the first body bias input FBBI, and the first switch control input FSCI. During operation of the first body-contacted RF switch 92, the resistor bias network 110 may provide appropriate bias behavior to the first source 50, the first body 52, the first drain 54, the first gate 60, the second source 76, the second body 78, the second drain 80, the second gate 82, the third source 84, the third body 86, the third drain 88, and the third gate 90 based on the first switch control signal 112, the first body bias control signal 114, signals between the first switch connection node 102 and the second switch connection node 104, or any combination thereof.
The first gate resistive element RG1 is coupled between the first gate 60 and a gate node (not shown) to provide a first gate signal 115 to the first gate 60. The second gate resistive element RG2 is coupled between the second gate 82 and the gate node to provide a second gate signal 116 to the second gate 82. The third gate resistive element RG3 is coupled between the third gate 90 and the gate node to provide a third gate signal 118 to the third gate 90. The common gate resistive element RGC is coupled between the gate node and the first switch control input FSCI. During operation of the first body-contacted RF switch 92, the first switch control input FSCI may receive the first switch control signal 112, such that the first, the second, and the third gate signals 115, 116, 118 are based on the first switch control signal 112. The first switch control signal 112 is used to select either the ON state or the OFF state of the first body-contacted RF switch 92. Selection between the ON state and the OFF state normally occurs at a much lower frequency than the frequency of RF signals between the first and the second switch connection nodes 102, 104. As such, the first switch control signal 112 may have direct current (DC)-like influences on the first body-contacted RF switch 92. To minimize the impact of such DC influences, the first, the second, and the third gate resistive elements RG1, RG2, RG3 may have large values of resistance to isolate the first, the second, and the third gates 60, 82, 90 from one another. Normally, the first body-contacted RF switch 92 will have one of the ON state, the OFF state, or a non-operating state.
The first body bias resistive element RB1 is coupled between the first body 52 and a body bias node (not shown) to provide a first body bias signal 120 to the first body 52. The second body bias resistive element RB2 is coupled between the second body 78 and the body bias node to provide a second body bias signal 122 to the second body 78. The third body bias resistive element RB3 is coupled between the third body 86 and the body bias node to provide a third body bias signal 124 to the third body 86. The common body bias resistive element RBC is coupled between the body bias node and the first body bias input FBBI. During operation of the first body-contacted RF switch 92, the first body bias input FBBI may receive the first body bias control signal 114, such that the first, the second, and the third body bias signals 120, 122, 124 are based on the first body bias control signal 114. The first body bias control signal 114 may be used to provide an appropriate body bias to the first, the second, and the third bodies 52, 78, 86, depending on whether the ON state or the OFF state of the first body-contacted RF switch 92 is selected. As mentioned above, selection between the ON state and the OFF state normally occurs at a much lower frequency than the frequency of RF signals between the first and the second switch connection nodes 102, 104. Since the first body bias control signal 114 is based on OFF state or ON state selection, the frequency of the first body bias control signal 114 normally occurs at a much lower frequency than the frequency of RF signals between the first and the second switch connection nodes 102, 104. As such, the first body bias control signal 114 may have DC like influences on the first body-contacted RF switch 92. To minimize the impact of such DC influences, the first, the second, and the third body bias resistive elements RB1, RB2, RB3 may have large values of resistance to isolate the first, the second, and the third bodies 52, 78, 86 from one another.
The first drain-to-source resistive element RDS1 is coupled between the first drain 54 and the first source 50, the second drain-to-source resistive element RDS2 is coupled between the second drain 80 and the second source 76, and the third drain-to-source resistive element RDS3 is coupled between the third drain 88 and the third source 84. During the OFF state, the first, the second, and the third drain-to-source resistive elements RDS1, RDS2, RDS3 may provide about equal voltage division across the first, the second, and the third body-contacted FET elements 46, 70, 72.
In a first exemplary embodiment of the first body-contacted RF switch 92, during the OFF state of the first body-contacted RF switch 92, a magnitude of the first body bias control signal 114 is about equal to a magnitude of the first switch control signal 112, and during the ON state of the first body-contacted RF switch 92, the magnitude of the first body bias control signal 114 is not equal to the magnitude of the first switch control signal 112.
In a second exemplary embodiment of the first body-contacted RF switch 92, during the OFF state of the first body-contacted RF switch 92, the magnitude of the first body bias control signal 114 is about equal to the magnitude of the first switch control signal 112, the magnitude of the first switch control signal 112 is negative relative to a DC voltage at the first switch connection node 102, and the magnitude of the first switch control signal 112 is negative relative to a DC voltage at the second switch connection node 104. During the ON state of the first body-contacted RF switch 92, the magnitude of the first switch control signal 112 is positive relative to the magnitude of the first body bias control signal 114.
In a third exemplary embodiment of the first body-contacted RF switch 92, during the OFF state of the first body-contacted RF switch 92, the magnitude of the first body bias control signal 114 is about equal to the magnitude of the first switch control signal 112, the magnitude of the first switch control signal 112 is positive relative to the DC voltage at the first switch connection node 102, and the magnitude of the first switch control signal 112 is positive relative to the DC voltage at the second switch connection node 104. During the ON state of the first body-contacted RF switch 92, the magnitude of the first switch control signal 112 is negative relative to the magnitude of the first body bias control signal 114.
In a fourth exemplary embodiment of the first body-contacted RF switch 92, during the OFF state of the first body-contacted RF switch 92, the first body bias control signal 114 is equal to between about −1 volt DC (VDC) and about −5 VDC, the first switch control signal 112 is equal to between about −1 VDC and about −5 VDC, the DC voltage at the first switch connection node 102 is equal to about zero volts, and the DC voltage at the second switch connection node 104 is equal to about zero volts. During the ON state of the first body-contacted RF switch 92, the first body bias control signal 114 is equal to about zero VDC, the first switch control signal 112 is equal to between about 1 VDC and about 5 VDC, the DC voltage at the first switch connection node 102 is equal to about zero volts, and the DC voltage at the second switch connection node 104 is equal to about zero volts.
During the OFF state of the first body-contacted RF switch 92, the first body-contacted RF switch 92 has an OFF state impedance between the first and the second switch connection nodes 102, 104. During the ON state of the first body-contacted RF switch 92, the first body-contacted RF switch 92 has an ON state impedance between the first and the second switch connection nodes 102, 104. In the illustrated embodiment of the first body-contacted RF switch 92, the first, the second, and the third body-contacted FET elements 46, 70, 72 are coupled in series between the first and the second switch connection nodes 102, 104. As such, three body-contacted FET elements are coupled in series. In an alternate embodiment of the first body-contacted RF switch 92, the second body-contacted FET element 70 is omitted, such that the third drain 88 is directly coupled to the first source 50. As such, two body-contacted FET elements are coupled in series. In additional embodiments of the first body-contacted RF switch 92, any number of body-contacted FET elements may be coupled in series.
The first body-contacted FET element 46, the second body-contacted FET element 70, and up to and including the NTH body-contacted FET element 126 are coupled in series between the first switch connection node 102 and the second switch connection node 104, such that the NTH source 128 is coupled to the first switch connection node 102, the NTH drain 132 is coupled to the second source 76 through any intervening body-contacted FET elements (not shown), the second drain 80 is coupled to the first source 50, and the first drain 54 is coupled to the second switch connection node 104. The resistor bias network 110 provides the first gate signal 115 to the first gate 60, the second gate signal 116 to the second gate 82, and an NTH gate signal 136 to the NTH gate 134. During operation of the first body-contacted RF switch 92, the first switch control input FSCI may receive the first switch control signal 112, such that the first, the second, and up to and including the NTH gate signals 115, 116, 136 are based on the first switch control signal 112. The first switch control signal 112 is used to select either the ON state or the OFF state of the first body-contacted RF switch 92.
The resistive bias network 110 provides the first body bias signal 120 to the first body 52, the second body bias signal 122 to the second body 78, and an NTH body bias signal 138 to the NTH body 130. During operation of the first body-contacted RF switch 92, the first body bias input FBBI may receive the first body bias control signal 114, such that the first, the second, and up to and including the NTH body bias signals 120, 122, 138 are based on the first body bias control signal 114. The first body bias control signal 114 may be used to provide an appropriate body bias to the first, the second, and up to and including the NTH bodies 52, 78, 130, depending on whether the ON state or the OFF state of the first body-contacted RF switch 92 is selected.
The first body-contacted RF switch 92 includes a quantity of series coupled body-contacted FET elements equal to N, such that N is any positive whole number greater than one. An RF signal 140 between the first and the second switch connection nodes 102, 104 may be present due to the first body-contacted RF switch 92 interacting with other circuit elements (not shown). In one embodiment of the first body-contacted RF switch 92, a frequency of the RF signal 140 is greater than about 100 megahertz. During the OFF state of the first body-contacted RF switch 92, the RF signal 140 may be distributed across the first body-contacted FET element 46, the second body-contacted FET element 70, and up to and including the NTH body-contacted FET element 126. In an exemplary embodiment of the first body-contacted RF switch 92, during the OFF state of the first body-contacted RF switch 92, the RF signal 140 is distributed about equally across the first body-contacted FET element 46, the second body-contacted FET element 70, and up to and including the NTH body-contacted FET element 126.
The third body-contacted RF switch 146 has a fifth switch connection node 156 and a sixth switch connection node 158, which may be similar to the first switch connection node 102 and the second switch connection node 104, respectively. Further, the third body-contacted RF switch 146 has a third body bias input TBBI and a third switch control input TSCI, which may be similar to the first body bias input FBBI and the first switch control input FSCI, respectively.
The fourth body-contacted RF switch 148 has a seventh switch connection node 160 and an eighth switch connection node 162, which may be similar to the first switch connection node 102 and the second switch connection node 104, respectively. Further, the fourth body-contacted RF switch 148 has a fourth body bias input FOBBI and a fourth switch control input FOSCI, which may be similar to the first body bias input FBBI and the first switch control input FSCI, respectively.
Each of the first, the second, the third, and the fourth body-contacted RF switches 92, 144, 146, 148 provides a switched port of the RF switch system 142. The second, the fourth, the sixth, and the eighth switch connection nodes 104, 154, 158, 162 are coupled to an RF antenna 164. The first, the third, the fifth, and the seventh switch connection nodes 102, 152, 156, 160 provide a first port 166, a second port 168, a third port 170, and a fourth port 172, respectively. Therefore, the first, the second, the third, and the fourth body-contacted RF switches 92, 144, 146, 148 allow the first, the second, the third, and the fourth ports 166, 168, 170, 172 to share the RF antenna 164. Any or all of the first, the second, the third, and the fourth ports 166, 168, 170, 172 may be coupled to RF transmit circuitry (not shown), RF receive circuitry (not shown), RF diplexers (not shown), RF duplexers (not shown), the like (not shown), or any combination thereof (not shown).
The control circuitry 150 provides the first switch control signal 112, a second switch control signal 174, a third switch control signal 176, and a fourth switch control signal 178 to the first switch control input FSCI, the second switch control input SSCI, the third switch control input TSCI, and the fourth switch control input FOSCI, respectively. The control circuitry 150 selects either the OFF state of the first body-contacted RF switch 92 or the ON state of the first body-contacted RF switch 92 and provides the first switch control signal 112 based on the selected one of the OFF state and the ON state to indicate which state was selected. The control circuitry 150 selects either an OFF state of the second body-contacted RF switch 144 or an ON state of the second body-contacted RF switch 144 and provides the second switch control signal 174 based on the selected one of the OFF state and the ON state to indicate which state was selected. The control circuitry 150 selects either an OFF state of the third body-contacted RF switch 146 or an ON state of the third body-contacted RF switch 146 and provides the third switch control signal 176 based on the selected one of the OFF state and the ON state to indicate which state was selected. The control circuitry 150 selects either an OFF state of the fourth body-contacted RF switch 148 or an ON state of the fourth body-contacted RF switch 148 and provides the fourth switch control signal 178 based on the selected one of the OFF state and the ON state to indicate which state was selected.
The control circuitry 150 provides the first body bias control signal 114, a second body bias control signal 180, a third body bias control signal 182, and a fourth body bias control signal 184 to the first body bias input FBBI, the second body bias input SBBI, the third body bias input TBBI, and the fourth body bias input FOBBI, respectively. The control circuitry 150 provides the first body bias control signal 114 based on the selected one of the OFF state and the ON state of the first body-contacted RF switch 92 to provide the appropriate body biasing to the body-contacted FET elements (not shown) in the first body-contacted RF switch 92. The control circuitry 150 provides the second body bias control signal 180 based on the selected one of the OFF state and the ON state of the second body-contacted RF switch 144 to provide the appropriate body biasing to the body-contacted FET elements (not shown) in the second body-contacted RF switch 144. The control circuitry 150 provides the third body bias control signal 182 based on the selected one of the OFF state and the ON state of the third body-contacted RF switch 146 to provide the appropriate body biasing to the body-contacted FET elements (not shown) in the third body-contacted RF switch 146. The control circuitry 150 provides the fourth body bias control signal 184 based on the selected one of the OFF state and the ON state of the fourth body-contacted RF switch 148 to provide the appropriate body biasing to the body-contacted FET elements (not shown) in the fourth body-contacted RF switch 148.
Alternate embodiments of the RF switch system 142 may omit any or all of the second, the third, and the fourth body-contacted RF switches 144, 146, 148, or may include additional body-contacted RF switches (not shown). Further, the body-contacted RF switches may be arranged in any manner.
Normally, when the first body-contacted RF switch 92 is in the OFF state, the second body-contacted RF switch 144 is in the ON state and vice versa. By coupling the first switch connection node 102 to ground when the first body-contacted RF switch 92 is in the OFF state and the second body-contacted RF switch 144 is in the ON state may improve isolation characteristics of the first body-contacted RF switch 92. Similarly, normally, when the third body-contacted RF switch 146 is in the OFF state, the fourth body-contacted RF switch 148 is in the ON state and vice versa. By coupling the fifth switch connection node 156 to ground when the third body-contacted RF switch 146 is in the OFF state and the fourth body-contacted RF switch 148 is in the ON state may improve isolation characteristics of the third body-contacted RF switch 146. Alternate embodiments of the RF switch system 142 may omit any or all of the second, the third, and the fourth body-contacted RF switches 144, 146, 148, or may include additional body-contacted RF switches (not shown). Further, the body-contacted RF switches may be arranged in any manner.
An application example of the RF switch system 142 is its use in a mobile terminal 186, the basic architecture of which is represented in
On the transmit side, the baseband processor 194 receives digitized data, which may represent voice, data, or control information, from the control system 196, which it encodes for transmission. The encoded data is output to the transmitter 190, where it is used by a modulator 208 to modulate a carrier signal that is at a desired transmit frequency. Power amplifier circuitry 210 amplifies the modulated carrier signal to a level appropriate for transmission, and delivers the amplified and modulated carrier signal to the antenna 192 through the RF switch system 142.
A user may interact with the mobile terminal 186 via the interface 200, which may include interface circuitry 212 associated with a microphone 214, a speaker 216, a keypad 218, and a display 220. The interface circuitry 212 typically includes analog-to-digital converters, digital-to-analog converters, amplifiers, and the like. Additionally, it may include a voice encoder/decoder, in which case it may communicate directly with the baseband processor 194. The microphone 214 will typically convert audio input, such as the user's voice, into an electrical signal, which is then digitized and passed directly or indirectly to the baseband processor 194. Audio information encoded in the received signal is recovered by the baseband processor 194, and converted by the interface circuitry 212 into an analog signal suitable for driving the speaker 216. The keypad 218 and display 220 enable the user to interact with the mobile terminal 186, input numbers to be dialed, address book information, or the like, as well as monitor call progress information.
Additionally, reverse body biasing may improve the linearity of the first body-contacted RF switch 92 by operating where the slope of the capacitance versus the reverse body biasing curve illustrated in
Some of the circuitry previously described may use discrete circuitry, integrated circuitry, programmable circuitry, non-volatile circuitry, volatile circuitry, software executing instructions on computing hardware, firmware executing instructions on computing hardware, the like, or any combination thereof. The computing hardware may include mainframes, micro-processors, micro-controllers, DSPs, the like, or any combination thereof.
None of the embodiments of the present disclosure are intended to limit the scope of any other embodiment of the present disclosure. Any or all of any embodiment of the present disclosure may be combined with any or all of any other embodiment of the present disclosure to create new embodiments of the present disclosure.
Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.
This application is a divisional of U.S. patent application Ser. No. 12/723,257, filed Mar. 12, 2010, the disclosure of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 12723257 | Mar 2010 | US |
Child | 14276370 | US |