Semiconductor structure exhibiting reduced leakage current and method of fabricating same

Information

  • Patent Grant
  • 7045815
  • Patent Number
    7,045,815
  • Date Filed
    Tuesday, July 30, 2002
    21 years ago
  • Date Issued
    Tuesday, May 16, 2006
    18 years ago
Abstract
A semiconductor structure exhibiting reduced leakage current is formed of a monocrystalline substrate (101) and a strained-layer heterostructure (105). The strained-layer heterostructure has a first layer (102) formed of a first monocrystalline oxide material having a first lattice constant and a second layer (104) formed of a second monocrystalline oxide material overlying the first layer and having a second lattice constant. The second lattice constant is different from the first lattice constant. The second layer creates strain within the oxide material layers, at the interface between the first and second oxide material layers of the heterostructure, and at the interface of the substrate and the first layer, which changes the energy band offset at the interface of the substrate and the first layer.
Description
FIELD OF THE INVENTION

This invention relates generally to semiconductor structures and devices and to a method for their fabrication, and more specifically to fabrication of semiconductor structures, devices, and integrated circuits that include an epitaxially grown, high dielectric constant strained-layer heterostructure to reduce leakage current.


BACKGROUND OF THE INVENTION

The search for alternative gate oxide materials has become more vigorous as complementary metal-oxide-semiconductor (CMOS) technology using SiO2 as the gate oxide approaches its fundamental limits. Currently, it is not possible to use SiO2 layers on Si at the thickness required to achieve the next desired level of performance (approximately 10 angstroms) without unacceptably high gate leakage current. Utilizing oxides with dielectric constants greater than that of SiO2 permits larger gate oxide thickness with the same capacitance. However, in addition to a high dielectric constant, the high dielectric constant oxide should exhibit sufficiently large energy band offsets at the interface with Si so that Schottky leakage current is negligible.


Several oxides have been investigated as potential candidates to replace SiO2. One of the most promising thus far is perovskite oxides, such as SrTiO3 (“STO”). These oxides have a high bulk dielectric constant and exhibit a high degree of structural compatibility with Si, making epitaxy possible. It has been demonstrated that single-crystal SrTiO3 thin films can be grown on Si(001) substrates by molecular beam epitaxy (MBE) with interface state densities as low as 6×1010 states/cm2. See, e.g., R. A. McKee et al, Phys. Rev. Lett. 81, p. 3014 (1998) and K. Eisenbeiser et al., Appl. Phys. Lett. 76, p. 1324 (2000). The equivalent dielectric layer thickness of SrTiO3 may be more than ten times less than that of SiO2. Thus, the gate oxide layer thickness can be ten times larger when SiO2 is replaced with SrTiO3, and yet the capacitance can be approximately the same.


Although the SrTiO3/Si structure demonstrates these promising properties, theoretical and experimental evidence indicates that the structure may exhibit significant Schottky electron leakage current. See, e.g., J. Robertson and C. W. Chen, Appl. Phys. Lett. 74, p 1168 (1999) and S. A. Chambers et al., Appl Phys. Lett. 77, p. 1662 (2000), herein incorporated by reference. Referring to FIGS. 1 and 2, the SrTiO3/Si structure exhibits a much smaller conduction band offset (ΔEc1) compared to the valence band offset (ΔEv1) for both n-Si and p-Si structures and, hence, almost the entire band discontinuity resides at the valance band edge. Accordingly, Schottky leakage current may result. It would be desirable to engineer the energy band offset such that appropriate height Schottky barriers exist at both conduction and valence band edges.


Accordingly, a need exists for a semiconductor structure having a gate oxide formed of a high dielectric constant which exhibits low Schottky electron leakage current.


In addition, a need exists for a method of changing the energy band offset at the interface of two crystalline materials to reduce Schottky leakage current.


A need further exists for a method of changing the energy band offset at the interface of two crystalline materials to accommodate specific device applications.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and not limitation in the accompanying figures, in which like references indicate similar elements, and in which:



FIG. 1 is a graphical representation of an energy band diagram of a SrTiO3/n-Si structure;



FIG. 2 is a graphical representation of an energy band diagram of a SrTiO3/p-Si structure;



FIGS. 3 and 4 illustrate schematically, in cross section, device structures in accordance with various embodiments of the invention;



FIG. 5 is a graphical representation of an energy band diagram of a device structure in accordance with an embodiment of the invention; and



FIG. 6 illustrates schematically, in cross section, a device structure in accordance with another embodiment of the invention.





Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.


DETAILED DESCRIPTION OF THE DRAWINGS

The present invention provides a method of fabricating a high dielectric constant crystalline oxide layer on a semiconductor substrate using a crystalline high dielectric constant strained-layer heterostructure. In one aspect of the invention, the strained-layer heterostructure is formed of a first high dielectric constant crystalline oxide layer underlying a second crystalline oxide layer which has a lattice constant different from the first. The difference in lattice constants between the two layers may create strain within the oxide layers of the heterostructure, at the interface between the oxide layers of the heterostructure and at the interface of the substrate and the heterostructure which result in creation of a suitable Schottky barrier at the semiconductor substrate/heterostructure interface.



FIG. 3 illustrates schematically, in cross section, a structure 100 in accordance with an exemplary embodiment of the present invention. Structure 100 may be a device such as, for example, a component of a MOS device or any high dielectric constant device. Structure 100 includes a substrate 101, which may be formed of a monocrystalline semiconductor material, such as, for example, silicon (Si), strontium-passivated Si, germanium (Ge), silicon germanium (Si—Ge), indium phosphide (InP), or gallium arsenide (GaAs). Substrate 101 may also comprise a suitable compound semiconductor material, such as, for example, indium gallium arsenide (InGaAs), indium aluminum arsenide (InAlAs), aluminum gallium arsenide (AlGaAs), indium gallium phosphide (InGaP), and other compound semiconductor materials known to those skilled in the art to be suitable for particular semiconductor device applications. In one embodiment, substrate 101 comprises a monocrystalline n-type silicon substrate. Substrate 101 may optionally include a plurality of material layers such that the composite substrate may be tailored to the quality, performance, and manufacturing requirements of a variety of semiconductor device applications.


In another embodiment of the invention, substrate 101 may comprise a (001) Group IV material that has been off-cut towards a (110) direction. The growth of materials on a miscut Si (001) substrate is known in the art. For example, U.S. Pat. No. 6,039,803, issued to Fitzgerald et al. on Mar. 21, 2000, which patent is herein incorporated by reference, is directed to growth of silicon-germanium and germanium layers on miscut Si (001) substrates. Substrate 101 may be off-cut in the range of from about 2 degrees to about 6 degrees towards the (110) direction. A miscut Group IV substrate reduces dislocations and results in improved quality of a subsequently grown monocrystalline material layers.


A monocrystalline oxide interface layer 102 is formed overlying substrate 101. Monocrystalline oxide interface layer 102 may comprise a monocrystalline oxide material selected for its crystalline (i.e., lattice) compatibility with the underlying substrate. For example, the material could be an oxide or nitride having a lattice structure closely matched to the substrate. Materials that are suitable for the monocrystalline oxide interface layer 102 include metal oxides such as the alkaline earth metal titanates, alkaline earth metal zirconates, alkaline earth metal hafnates, alkaline earth metal tantalates, alkaline earth metal ruthenates, alkaline earth metal niobates, alkaline earth metal vanadates, perovskite oxides such as alkaline earth metal tin-based perovskites, lanthanum aluminate, lanthanum scandium oxide and gadolinium oxide. In an exemplary embodiment, layer 102 may comprise an alkaline earth metal titanate, such as, for example, barium titanate (BaTiO3), strontium titanate (SrTiO3), or barium strontium titanate (SrzBa1-zTiO3), or another suitable oxide material having a thickness of up to about 100 angstroms. Preferably, monocrystalline oxide interface layer 102 is formed of SrTiO3 having a thickness in the range of approximately 1–5 nm.


In accordance with another embodiment of the invention, as shown in FIG. 4, structure 100 may also include an amorphous intermediate layer 103 positioned between substrate 101 and monocrystalline oxide interface layer 102. In accordance with one embodiment of the invention, amorphous intermediate layer 103 is grown on substrate 101 at the interface between substrate 101 and the growing monocrystalline oxide interface layer 102 by the controlled oxidation of substrate 101 during the growth of layer 102. The amorphous intermediate layer typically does not affect the band discontinuity at the interface of the substrate 101 layer and the monocrystalline oxide interface layer 102.


Referring again to FIG. 3, a monocrystalline oxide straining layer 104 is formed overlying monocrystalline oxide interface layer 102 to form a strained-layer heterostructure 105. Layer 104 may have a thickness of from approximately one monolayer up to about 100 angstroms. Monocrystalline oxide straining layer 104 may be formed of any of those compounds previously described with reference to layer 102 in FIGS. 3 and 4 and having a crystalline lattice constant that is different than the lattice constant of layer 102. As used herein, lattice constant refers to the distance between atoms of a unit cell measured in the plane of a surface. For example, if monocrystalline oxide interface layer 102 is formed of SrxBa1-xTiO3 where 0≦x≦1, monocrystalline oxide straining layer 104 may comprise SryBa1-yTiO3, where y does not equal x, which has a different lattice constant than SrxBa1-xTiO3. The difference in lattice constants results in strain within layers 102 and 104, at the interface between layers 102 and 104, and at the interface of substrate 101 and heterostructure 105. The strain results in an increase of the conduction band offset at the interface of substrate 101 and monocrystalline oxide interface layer 102, effecting an increase of the Schottky barrier at the interface. The strain also results in a change of the valence band offset at the interface. Preferably, if layer 102 is formed of SrTiO3, layer 104 is formed of BaTiO3 having a thickness in the range of from 1 to 5 nm.


The following example illustrates a process, in accordance with one embodiment of the invention, for fabricating a semiconductor structure having a low leakage current density.


The process starts by providing a monocrystalline semiconductor substrate comprising, for example, silicon and/or germanium. In accordance with one embodiment of the invention, the semiconductor substrate is a Sr-passivated silicon wafer having a (001) orientation. The substrate is preferably oriented on axis or, at most, about 2° to about 6° off axis. At least a portion of the semiconductor substrate has a bare surface although other portions of the substrate may encompass other structures. The term “bare” in this context means that the surface in the portion of the substrate has been cleaned to remove any oxides, contaminants, or other foreign material. As is well known, bare silicon is highly reactive and readily forms a native oxide. The term “bare” is intended to encompass such a native oxide. A thin silicon oxide may also be intentionally grown on the semiconductor substrate, although such a grown oxide is not essential to the process in accordance with the invention. To epitaxially grow a monocrystalline oxide layer overlying the monocrystalline substrate, the native oxide layer must first be removed to expose the crystalline structure of the underlying substrate. The following process is preferably carried out by molecular beam epitaxy (MBE), although other epitaxial processes may also be used in accordance with the present invention. The native oxide can be removed by first thermally depositing a thin layer of strontium, barium, or combination of strontium and barium or other alkali earth metals or combinations of alkali earth metals in an MBE apparatus. In the case where strontium is used, the substrate is then heated to a temperature of about 750° C. to cause the strontium to react with the native silicon oxide layer. The strontium serves to reduce the silicon oxide to leave a silicon oxide-free surface. The resultant surface exhibits an ordered 2×1 structure. If an ordered 2×1 structure has not been achieved at this stage of the process, the structure may be exposed to additional strontium until an ordered 2×1 structure is obtained. The ordered 2×1 structure forms a template for the ordered growth of an overlying layer of a monocrystalline oxide. The template provides the necessary chemical and physical properties to nucleate the crystalline growth of an overlying layer.


In accordance with an alternate embodiment of the invention, the native silicon oxide can be converted and the substrate surface can be prepared for the growth of a monocrystalline oxide layer by depositing an alkaline earth metal oxide, such a strontium oxide, strontium barium oxide, or barium oxide, onto the substrate surface by MBE at a low temperature and by subsequently heating the structure to a temperature of about 750° C. At this temperature a solid state reaction takes place between the strontium oxide and the native silicon oxide causing the reduction of the native silicon oxide and leaving an ordered 2×1 structure with strontium, oxygen, and silicon remaining on the substrate surface. Again, this forms a template for the subsequent growth of an ordered monocrystalline oxide layer.


Following the removal of the silicon oxide from the surface of the substrate, in accordance with one embodiment of the invention, the substrate is cooled to a temperature in the range of about 200–800° C. and a thin layer of strontium titanate is grown on the template layer by molecular beam epitaxy. The MBE process is initiated by opening shutters in the MBE apparatus to expose strontium, titanium and oxygen sources. The ratio of strontium and titanium is approximately 1:1. The partial pressure of oxygen is initially set a minimum value to grow stoichiometric strontium titanate at a growth rate of about 0.3–0.5 nm per minute. After initiating growth of the strontium titanate, the partial pressure of oxygen is increased above the initial minimum value. The partial pressure of oxygen may cause the growth of an amorphous silicon oxide layer at the interface between the underlying substrate and the growing strontium titanate layer. The growth of the silicon oxide layer results from the diffusion of oxygen through the growing strontium titanate layer to the interface where the oxygen reacts with silicon at the surface of the underlying substrate. The thickness of the amorphous silicon oxide layer can be controlled by varying the temperature of the process and the oxygen partial pressure. The thickness of the amorphous silicon oxide layer may be as thick as 1 nm but is preferably within the range of about 0.2 nm to about 0.7 nm. The strontium titanate grows as an ordered monocrystal with the crystalline orientation rotated by 45° with respect to the unit cell of the underlying substrate.


After the strontium titanate layer has been grown to the desired thickness, preferably from a few monolayers up to approximately 100 angstroms, a thin layer of barium titanate is grown overlying the strontium titanate layer by molecular beam epitaxy. The barium titanate layer is preferably grown to a thickness of from about a few monolayers to about 100 angstroms.


The process described above illustrates a process for forming a semiconductor structure including a silicon substrate and an overlying strained-layer heterostructure by the process of molecular beam epitaxy. The process can also be carried out by the process of chemical vapor deposition (CVD), metal organic chemical vapor deposition (MOCVD), migration enhanced epitaxy (MEE), atomic layer epitaxy (ALE), physical vapor deposition (PVD), chemical solution deposition (CSD), pulsed laser deposition (PLD), or the like. Further, by a similar process, other monocrystalline layers such as alkaline earth metal titanates, zirconates, hafnates, tantalates, vanadates, ruthenates, and niobates, perovskite oxides such as alkaline earth metal tin-based perovskite, lanthanum aluminate, lanthanum scandium oxide, and gadolinium oxide can also be grown.


An illustration of an energy band diagram of an exemplary embodiment of structure 100 wherein substrate 101 is formed of n-Si, monocrystalline oxide transition layer 102 is formed of SrTiO3 (STO) and monocrystalline oxide straining layer 104 is formed BaTiO3 (BTO) is shown in FIG. 5. As illustrated, the conduction band offset at the Si/STO interface (ΔEc2) of structure 100 is greater than the conduction band offset at the Si/STO interface of the structure illustrated in FIG. 1, that is, ΔEc2>ΔEc1. Similarly, the valence band (ΔEv2) offset at the Si/STO interface of structure 100 is smaller than the valence band offset at the Si/STO interface of the structure illustrated in FIG. 1, that is, ΔEv2<ΔEv1.


EXAMPLE

In this example, a monocrystalline semiconductor substrate of n-silicon having a (001) orientation was provided. Native oxide was removed by first thermally depositing a thin layer of strontium in an MBE apparatus. The substrate was heated to a temperature of about 750° C. to cause the strontium to react with the native silicon oxide layer. The resultant surface exhibited an ordered 2×1 structure.


Following the removal of the silicon oxide from the surface of the substrate, the substrate was cooled to a temperature in the range of about 200–800° C. and a thin layer of approximately 2 nm of strontium titanate was grown on the template layer by MBE. The MBE process was initiated by opening shutters in the MBE apparatus to expose strontium, titanium and oxygen sources. The ratio of strontium and titanium was approximately 1:1.


After the strontium titanate layer was grown on the substrate, a thin layer of approximately 2 nm of barium titanate was deposited on the strontium titanate layer using MBE at a temperature in the range of 200–800° C. Deposition of the barium titanate layer formed a BTO/STO strained-layer heterostructure on Si.


The BTO/STO/Si structure was then measured using x-ray photoemission spectroscopy (XPS). XPS results from the BTO/STO/Si structure were compared to those of an STO/Si structure. The results showed an expansion of the conduction band offset at the Si/STO interface (ΔEc) from approximately 0.01 eV for the STO/Si structure to 0.9 eV for the BTO/STO/Si structure. The valence band offset at the Si/STO interface (ΔEv) showed a shift from −2.12 eV for the STO/Si structure to −1.27 eV for the BTO/STO/Si structure. The more balanced bandgap of the BTO/STO/Si indicates that this structure would exhibit decreased Schottky leakage current compared to the STO/Si structure.


In yet a further embodiment of the invention, heterostructure 105 may include a second monocrystalline oxide straining layer (not shown) overlying monocrystalline oxide straining layer 104. This second monocrystalline oxide straining layer may be formed of any of those compounds previously described with reference to layers 102 and 104 in FIGS. 3 and 4. The second monocrystalline oxide straining layer has a crystalline lattice constant which is different from the lattice constant of layer 104 and which may be the same as, or alternatively different from, layer 102. By the addition of the second monocrystalline oxide straining layer, the offset of the conduction band and valence band at the interface of the substrate and layer 102 may be tailored to the Schottky barrier requirements of a variety of semiconductor device applications. In a similar manner, a third monocrystalline oxide straining layer or more monocrystalline oxide straining layers may be formed overlying the second monocrystalline oxide straining layer to further tailor the conduction band and valence band offsets.



FIG. 6 illustrates schematically, in cross section, a semiconductor device structure 200 fabricated in accordance with a further alternative embodiment of the present invention, wherein semiconductor device structure 200 comprises a component of an MOS device. Structure 200 includes a monocrystalline semiconductor substrate 201. Monocrystalline semiconductor substrate 201 may be formed of a monocrystalline material such as that comprising layer 101 with reference to FIG. 3. Structure 200 also has a plurality of first monocrystalline oxide straining layers 202 alternating between a plurality of second monocrystalline oxide straining layers 204 which form a strained-layer heterostructure 205. First monocrystalline oxide straining layers 202 may comprise a monocrystalline oxide material selected for its crystalline (i.e., lattice) compatibility with the underlying substrate and having a first lattice constant. First monocrystalline oxide straining layers 202 may be formed of any of those compounds previously described with reference to layer 102 in FIGS. 3 and 4. In an exemplary embodiment, layer 202 may comprise an alkaline earth metal titanate, such as, for example, barium titanate (BaTiO3), strontium titanate (SrTiO3), barium strontium titanate (SrzBa1-zTiO3), or another suitable oxide material. Second monocrystalline oxide straining layers 204 may be formed of any of those compounds previously described with reference to layer 104 in FIGS. 3 and 4 with a lattice constant that is different from first monocrystalline oxide straining layers 202. For example, if first monocrystalline oxide straining layers 202 are formed of SrTiO3, second monocrystalline oxide straining layers may be formed of BaTiO3, which has a larger crystalline lattice constant that SrTiO3. In one embodiment, layers 202 are layers of SrTiO3 having a thickness of up to about 20 angstroms and layers 204 are layers of BaTiO3 having a thickness of up to 20 angstroms.


It will be appreciated that the materials of first monocrystalline oxide straining layers 202 and second monocrystalline oxide straining layers 204 may be selected to tailor the conductive and valence energy band offsets at the interface of strained-layer heterostructure 205 and the underlying substrate to achieve the quality and performance requirements of a variety of semiconductor device applications. For example, second monocrystalline oxide straining layers 204 may be formed of material having a crystalline lattice constant that is less than the crystalline lattice constant of first monocrystalline oxide straining layers 202.


Alternatively, it will be appreciated that the strained heterostructure overlying the substrate may be formed of any number of layers, wherein each layer has a lattice constant which differs from and/or corresponds to the lattice constants of any of the other layers. The materials of the layers may be selected to produce a desired amount of strain at the interface of the heterostructure and the substrate to engineer the conductive and valence energy band offsets so that Schottky leakage current may be increased or decreased according to the requirements of desired semiconductor device application.


In the foregoing specification, the invention has been described with reference to specific embodiments. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the present invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of the present invention.


Benefits, other advantages, and solutions to problems have been described above with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, solution to occur or become more pronounced are not to be constructed as critical, required, or essential features or elements of any or all of the claims. As used, herein, the terms “comprises,” “comprising” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.

Claims
  • 1. A semiconductor structure exhibiting reduced leakage current comprising: a monocrystalline silicon substrate;an amorphous oxide material in contact with the monocrystalline silicon substrate; anda strained-layer heterostructure overlying said substrate, said heterostructure having: a first layer comprising a first monocrystalline oxide material having a first lattice constant selected from the group consisting of alkaline earth metal titanates, alkaline earth metal zirconates, alkaline earth metal hafnates, alkaline earth metal tantalates, alkaline earth metal ruthenates, alkaline earth metal niobates, alkaline earth metal vanadates, alkaline earth metal tin-based perovskites, lanthanum aluminate, lanthanum scandium oxide, gadolinium oxide and mixtures thereof contacting the amorphous oxide material; anda second layer comprising a second monocrystalline oxide material overlying said first layer and having a second lattice constant, wherein said second lattice constant is different from said first lattice constant,wherein a strain is effected at least at one of an interface of said strained layer heterostructure and said substrate, an interface between said first layer and said second layer, and within said first layer and said second layer, andwherein said substrate comprises a (001) semiconductor material having an orientation from about 2 degrees to about 6 degrees offset toward the (110) direction.
  • 2. The semiconductor structure of claim 1, wherein said strained-layer heterostructure further comprises alternating first strained layers and second strained layers, wherein said alternating first and second strained layers overlie said second layer, and wherein said first strained layers comprise said first monocrystalline oxide material and said second strained layers comprise said second monocrystalline oxide material.
  • 3. The semiconductor structure of claim 1, wherein said first layer has a thickness ranging from approximately one monolayer to approximately 100 angstroms.
  • 4. The semiconductor structure of claim 1, wherein said second layer has a thickness ranging from approximately one monolayer to approximately 100 angstroms.
  • 5. The semiconductor structure of claim 1, wherein said second lattice constant is greater than said first lattice constant.
  • 6. The semiconductor structure of claim 1, wherein said first layer comprises SrxBa1-xTiO3, wherein x ranges from 0 to 1.
  • 7. The semiconductor structure of claim 6, wherein said second layer comprises SryBa1-yTiO3, where y is not equal to x.
  • 8. The semiconductor structure of claim 1, wherein said second layer comprises a monocrystalline oxide material selected from the group consisting of alkaline earth metal titanates, alkaline earth metal zirconates, alkaline earth metal haihates, alkaline earth metal tantalates, alkaline earth metal ruthenates, alkaline earth metal niobates, alkaline earth metal vanadates, perovskite oxides such as alkaline earth metal tin-based perovskites, lanthanum aluminate, lanthanum scandium oxide, and gadolinium oxide.
  • 9. The semiconductor structure of 1, wherein said strained-layer heterostructure further comprises a third layer formed of monocrystalline oxide material overlying said second layer and having a third lattice constant, wherein said third lattice constant is different from said second lattice constant.
  • 10. The semiconductor structure of claim 9, wherein said third lattice constant is approximately equal to said first lattice constant.
  • 11. The semiconductor structure of claim 9, wherein said third lattice constant is greater than said second lattice constant.
US Referenced Citations (585)
Number Name Date Kind
3617951 Anderson Nov 1971 A
3670213 Nakawaga et al. Jun 1972 A
3758199 Thaxter Sep 1973 A
3766370 Walther Oct 1973 A
3802967 Ladany et al. Apr 1974 A
3818451 Coleman Jun 1974 A
3914137 Huffman et al. Oct 1975 A
3935031 Adler Jan 1976 A
4006989 Andringa Feb 1977 A
4084130 Holton Apr 1978 A
4120588 Chaum Oct 1978 A
4146297 Alferness et al. Mar 1979 A
4174422 Matthews et al. Nov 1979 A
4174504 Chenausky et al. Nov 1979 A
4177094 Kroon Dec 1979 A
4242595 Lehovec Dec 1980 A
4284329 Smith et al. Aug 1981 A
4289920 Hovel Sep 1981 A
4297656 Pan Oct 1981 A
4298247 Michelet et al. Nov 1981 A
4378259 Hasegawa et al. Mar 1983 A
4392297 Little Jul 1983 A
4398342 Pitt et al. Aug 1983 A
4404265 Manasevit Sep 1983 A
4424589 Thomas et al. Jan 1984 A
4439014 Stacy et al. Mar 1984 A
4442590 Stockton et al. Apr 1984 A
4447116 King et al. May 1984 A
4452720 Harada et al. Jun 1984 A
4459325 Nozawa et al. Jul 1984 A
4482422 McGinn et al. Nov 1984 A
4482906 Hovel et al. Nov 1984 A
4484332 Hawrylo Nov 1984 A
4503540 Nakashima et al. Mar 1985 A
4523211 Morimoto et al. Jun 1985 A
4525871 Foyt et al. Jun 1985 A
4594000 Falk et al. Jun 1986 A
4626878 Kuwano et al. Dec 1986 A
4629821 Bronstein-Bonte et al. Dec 1986 A
4661176 Manasevit Apr 1987 A
4667088 Kramer May 1987 A
4667212 Nakamura May 1987 A
4681982 Yoshida Jul 1987 A
4695120 Holder Sep 1987 A
4723321 Saleh Feb 1988 A
4748485 Vasudev May 1988 A
4756007 Qureshi et al. Jul 1988 A
4772929 Manchester et al. Sep 1988 A
4773063 Hunsperger et al. Sep 1988 A
4774205 Choi et al. Sep 1988 A
4777613 Shahan et al. Oct 1988 A
4793872 Meunier et al. Dec 1988 A
4801184 Revelli Jan 1989 A
4802182 Thornton et al. Jan 1989 A
4804866 Akiyama Feb 1989 A
4815084 Scifres et al. Mar 1989 A
4841775 Ikeda et al. Jun 1989 A
4843609 Ohya et al. Jun 1989 A
4845044 Ariyoshi et al. Jul 1989 A
4846926 Kay et al. Jul 1989 A
4855249 Akasaki et al. Aug 1989 A
4866489 Yokogawa et al. Sep 1989 A
4868376 Lessin et al. Sep 1989 A
4872046 Morkoc et al. Oct 1989 A
4876208 Gustafson et al. Oct 1989 A
4876218 Pessa et al. Oct 1989 A
4876219 Eshita et al. Oct 1989 A
4882300 Inoue et al. Nov 1989 A
4885376 Verkade Dec 1989 A
4888202 Murakami et al. Dec 1989 A
4889402 Reinhart Dec 1989 A
4891091 Shastry Jan 1990 A
4896194 Suzuki Jan 1990 A
4901133 Curran et al. Feb 1990 A
4910164 Shichijo Mar 1990 A
4912087 Aslam et al. Mar 1990 A
4928154 Umeno et al. May 1990 A
4934777 Jou et al. Jun 1990 A
4952420 Walters Aug 1990 A
4959702 Moyer et al. Sep 1990 A
4963508 Umeno et al. Oct 1990 A
4963949 Wanlass et al. Oct 1990 A
4965649 Zanio et al. Oct 1990 A
4981714 Ohno et al. Jan 1991 A
4984043 Vinal Jan 1991 A
4999842 Huang et al. Mar 1991 A
5018816 Murray et al. May 1991 A
5028563 Feit et al. Jul 1991 A
5028976 Ozaki et al. Jul 1991 A
5051790 Hammer Sep 1991 A
5053835 Horikawa et al. Oct 1991 A
5055445 Belt et al. Oct 1991 A
5055835 Sutton Oct 1991 A
5057694 Idaka et al. Oct 1991 A
5060031 Abrokwah et al. Oct 1991 A
5063081 Cozzette et al. Nov 1991 A
5063166 Mooney et al. Nov 1991 A
5064781 Cambou et al. Nov 1991 A
5067809 Tsubota Nov 1991 A
5073981 Giles et al. Dec 1991 A
5075743 Behfar-Rad Dec 1991 A
5081062 Vasudev et al. Jan 1992 A
5081519 Nishimura et al. Jan 1992 A
5087829 Ishibashi et al. Feb 1992 A
5103494 Mozer Apr 1992 A
5116461 Lebby et al. May 1992 A
5119448 Schaefer et al. Jun 1992 A
5122679 Ishii et al. Jun 1992 A
5122852 Chan et al. Jun 1992 A
5127067 Delcoco et al. Jun 1992 A
5130762 Kulick Jul 1992 A
5132648 Trinh et al. Jul 1992 A
5140387 Okazaki et al. Aug 1992 A
5140651 Soref et al. Aug 1992 A
5141894 Bisaro et al. Aug 1992 A
5143854 Pirrung et al. Sep 1992 A
5144409 Ma Sep 1992 A
5148504 Levi et al. Sep 1992 A
5155658 Inam et al. Oct 1992 A
5159413 Calviello et al. Oct 1992 A
5163118 Lorenzo et al. Nov 1992 A
5166761 Olson et al. Nov 1992 A
5173474 Connell et al. Dec 1992 A
5173835 Cornett et al. Dec 1992 A
5181085 Moon et al. Jan 1993 A
5185589 Krishnaswamy et al. Feb 1993 A
5188976 Kume et al. Feb 1993 A
5191625 Gustavsson Mar 1993 A
5194397 Cook et al. Mar 1993 A
5194917 Regener Mar 1993 A
5198269 Swartz et al. Mar 1993 A
5208182 Narayan et al. May 1993 A
5210763 Lewis et al. May 1993 A
5216359 Makki et al. Jun 1993 A
5216729 Berger et al. Jun 1993 A
5221367 Chisholm et al. Jun 1993 A
5225031 McKee et al. Jul 1993 A
5227196 Itoh Jul 1993 A
5238877 Russell Aug 1993 A
5244818 Jokers et al. Sep 1993 A
5248564 Ramesh Sep 1993 A
5260394 Tazaki et al. Nov 1993 A
5262659 Grudkowski et al. Nov 1993 A
5266355 Wernberg et al. Nov 1993 A
5268327 Vernon Dec 1993 A
5270298 Ramesh Dec 1993 A
5280013 Newman et al. Jan 1994 A
5281834 Cambou et al. Jan 1994 A
5283462 Stengel Feb 1994 A
5286985 Taddiken Feb 1994 A
5293050 Chapple-Sokol et al. Mar 1994 A
5306649 Hebert Apr 1994 A
5310707 Oishi et al. May 1994 A
5312765 Kanber May 1994 A
5313058 Friederich et al. May 1994 A
5314547 Heremans et al. May 1994 A
5315128 Hunt et al. May 1994 A
5323023 Fork Jun 1994 A
5326721 Summerfelt Jul 1994 A
5334556 Guldi Aug 1994 A
5352926 Andrews Oct 1994 A
5356509 Terranova et al. Oct 1994 A
5356831 Calviello et al. Oct 1994 A
5357122 Okubora et al. Oct 1994 A
5358925 Neville Connell et al. Oct 1994 A
5362972 Yazawa et al. Nov 1994 A
5362998 Iwamura et al. Nov 1994 A
5365477 Cooper, Jr. et al. Nov 1994 A
5371621 Stevens Dec 1994 A
5371734 Fischer Dec 1994 A
5372992 Itozaki et al. Dec 1994 A
5373166 Buchan et al. Dec 1994 A
5387811 Saigoh Feb 1995 A
5391515 Kao et al. Feb 1995 A
5393352 Summerfelt Feb 1995 A
5394489 Koch Feb 1995 A
5395663 Tabata et al. Mar 1995 A
5397428 Stoner et al. Mar 1995 A
5399898 Rostoker Mar 1995 A
5404581 Honjo Apr 1995 A
5405802 Yamagata et al. Apr 1995 A
5406202 Mehrgardt et al. Apr 1995 A
5410622 Okada et al. Apr 1995 A
5418216 Fork May 1995 A
5418389 Watanabe May 1995 A
5420102 Harshavardhan et al. May 1995 A
5427988 Sengupta et al. Jun 1995 A
5430397 Itoh et al. Jul 1995 A
5436759 Dijaii et al. Jul 1995 A
5438584 Paoli et al. Aug 1995 A
5441577 Sasaki et al. Aug 1995 A
5442191 Ma Aug 1995 A
5442561 Yoshizawa et al. Aug 1995 A
5444016 Abrokwah et al. Aug 1995 A
5446719 Yoshida et al. Aug 1995 A
5450812 McKee et al. Sep 1995 A
5452118 Maruska Sep 1995 A
5453727 Shibasaki et al. Sep 1995 A
5466631 Ichikawa et al. Nov 1995 A
5473047 Shi Dec 1995 A
5473171 Summerfelt Dec 1995 A
5477363 Matsuda Dec 1995 A
5478653 Guenzer Dec 1995 A
5479033 Baca et al. Dec 1995 A
5479317 Ramesh Dec 1995 A
5480829 Abrokwah et al. Jan 1996 A
5481102 Hazelrigg, Jr. Jan 1996 A
5482003 McKee et al. Jan 1996 A
5484664 Kitahara et al. Jan 1996 A
5486406 Shi Jan 1996 A
5491461 Partin et al. Feb 1996 A
5492859 Sakaguchi et al. Feb 1996 A
5494711 Takeda et al. Feb 1996 A
5504035 Rostoker et al. Apr 1996 A
5504183 Shi Apr 1996 A
5508554 Takatani et al. Apr 1996 A
5510665 Conley Apr 1996 A
5511238 Bayraktaroglu Apr 1996 A
5512773 Wolf et al. Apr 1996 A
5514484 Nashimoto May 1996 A
5514904 Onga et al. May 1996 A
5515047 Yamakido et al. May 1996 A
5515810 Yamashita et al. May 1996 A
5516725 Chang et al. May 1996 A
5519235 Ramesh May 1996 A
5523602 Horiuchi et al. Jun 1996 A
5528057 Yanagase et al. Jun 1996 A
5528067 Farb et al. Jun 1996 A
5528209 Macdonald et al. Jun 1996 A
5528414 Oakley Jun 1996 A
5530235 Stefik et al. Jun 1996 A
5538941 Findikoglu et al. Jul 1996 A
5540785 Dennard et al. Jul 1996 A
5541422 Wolf et al. Jul 1996 A
5548141 Morris et al. Aug 1996 A
5549977 Jin et al. Aug 1996 A
5551238 Prueitt Sep 1996 A
5552547 Shi Sep 1996 A
5553089 Seki et al. Sep 1996 A
5556463 Guenzer Sep 1996 A
5559368 Hu et al. Sep 1996 A
5561305 Smith Oct 1996 A
5569953 Kikkawa et al. Oct 1996 A
5570226 Ota Oct 1996 A
5572052 Kashihara et al. Nov 1996 A
5574296 Park et al. Nov 1996 A
5574589 Feuer et al. Nov 1996 A
5574744 Gaw et al. Nov 1996 A
5576879 Nashimoto Nov 1996 A
5578162 D'Asaro et al. Nov 1996 A
5585167 Satoh et al. Dec 1996 A
5585288 Davis et al. Dec 1996 A
5588995 Sheldon Dec 1996 A
5589284 Summerfelt et al. Dec 1996 A
5596205 Reedy et al. Jan 1997 A
5596214 Endo Jan 1997 A
5602418 Imai et al. Feb 1997 A
5603764 Matsuda et al. Feb 1997 A
5606184 Abrokwah et al. Feb 1997 A
5608046 Cook et al. Mar 1997 A
5610744 Ho et al. Mar 1997 A
5614739 Abrokwah et al. Mar 1997 A
5619051 Endo Apr 1997 A
5621227 Joshi Apr 1997 A
5623439 Gotoh et al. Apr 1997 A
5623552 Lane Apr 1997 A
5629534 Inuzuka et al. May 1997 A
5633724 King et al. May 1997 A
5635433 Sengupta Jun 1997 A
5635453 Pique et al. Jun 1997 A
5640267 May et al. Jun 1997 A
5642371 Tohyama et al. Jun 1997 A
5650646 Summerfelt Jul 1997 A
5656382 Nashimoto Aug 1997 A
5659180 Shen et al. Aug 1997 A
5661112 Hatta et al. Aug 1997 A
5666376 Cheng Sep 1997 A
5667586 Ek et al. Sep 1997 A
5668048 Kondo et al. Sep 1997 A
5670798 Schetzina Sep 1997 A
5670800 Nakao et al. Sep 1997 A
5674366 Hayashi et al. Oct 1997 A
5674813 Nakamura et al. Oct 1997 A
5679947 Doi et al. Oct 1997 A
5679965 Schetzina Oct 1997 A
5682046 Takahashi et al. Oct 1997 A
5684302 Wersing et al. Nov 1997 A
5686741 Ohori et al. Nov 1997 A
5689123 Major et al. Nov 1997 A
5693140 McKee et al. Dec 1997 A
5696392 Char et al. Dec 1997 A
5719417 Roeder et al. Feb 1998 A
5725641 MacLeod Mar 1998 A
5729394 Sevier et al. Mar 1998 A
5729641 Chandonnet et al. Mar 1998 A
5731220 Tsu et al. Mar 1998 A
5733641 Fork et al. Mar 1998 A
5734672 McMinn et al. Mar 1998 A
5735949 Mantl et al. Apr 1998 A
5741724 Ramdani et al. Apr 1998 A
5745631 Reinker Apr 1998 A
5753300 Wessels et al. May 1998 A
5753928 Krause May 1998 A
5753934 Yano et al. May 1998 A
5754319 Van De Voorde et al. May 1998 A
5754714 Suzuki et al. May 1998 A
5760426 Marx et al. Jun 1998 A
5760427 Onda Jun 1998 A
5760740 Blodgett Jun 1998 A
5764676 Paoli et al. Jun 1998 A
5767543 Ooms et al. Jun 1998 A
5770887 Tadatomo et al. Jun 1998 A
5772758 Collins et al. Jun 1998 A
5776359 Schultz et al. Jul 1998 A
5776621 Nashimoto Jul 1998 A
5777350 Nakamura et al. Jul 1998 A
5777762 Yamamoto Jul 1998 A
5778018 Yoshikawa et al. Jul 1998 A
5778116 Tomich Jul 1998 A
5780311 Beasom et al. Jul 1998 A
5789733 Jachimowicz et al. Aug 1998 A
5789845 Wadaka et al. Aug 1998 A
5790583 Ho Aug 1998 A
5792569 Sun et al. Aug 1998 A
5792679 Nakato Aug 1998 A
5796648 Kawakubo et al. Aug 1998 A
5801072 Barber Sep 1998 A
5801105 Yano et al. Sep 1998 A
5807440 Kubota et al. Sep 1998 A
5810923 Yano et al. Sep 1998 A
5812272 King et al. Sep 1998 A
5814583 Itozaki et al. Sep 1998 A
5825055 Summerfelt Oct 1998 A
5825799 Ho et al. Oct 1998 A
5827755 Yonchara et al. Oct 1998 A
5828080 Yano et al. Oct 1998 A
5830270 McKee et al. Nov 1998 A
5831960 Jiang et al. Nov 1998 A
5833603 Kovacs et al. Nov 1998 A
5834362 Miyagaki et al. Nov 1998 A
5838035 Ramesh Nov 1998 A
5838053 Bevan et al. Nov 1998 A
5844260 Ohori Dec 1998 A
5846846 Suh et al. Dec 1998 A
5852687 Wickham Dec 1998 A
5857049 Beranek et al. Jan 1999 A
5858814 Goossen et al. Jan 1999 A
5861966 Ortel Jan 1999 A
5863326 Nause et al. Jan 1999 A
5864171 Yamamoto et al. Jan 1999 A
5869845 Vander Wagt et al. Feb 1999 A
5872493 Ella Feb 1999 A
5873977 Desu et al. Feb 1999 A
5874860 Brunel et al. Feb 1999 A
5878175 Sonoda et al. Mar 1999 A
5879956 Seon et al. Mar 1999 A
5880452 Plesko Mar 1999 A
5882948 Jewell Mar 1999 A
5883564 Partin Mar 1999 A
5883996 Knapp et al. Mar 1999 A
5886867 Chivukula et al. Mar 1999 A
5888296 Ooms et al. Mar 1999 A
5889296 Imamura et al. Mar 1999 A
5896476 Wisseman et al. Apr 1999 A
5905571 Butler et al. May 1999 A
5907792 Droopad et al. May 1999 A
5912068 Jia Jun 1999 A
5919515 Yano et al. Jul 1999 A
5919522 Baum et al. Jul 1999 A
5926493 O'Brien et al. Jul 1999 A
5926496 Ho et al. Jul 1999 A
5937115 Domash Aug 1999 A
5937274 Kondow et al. Aug 1999 A
5937285 Abrokwah et al. Aug 1999 A
5948161 Kizuki Sep 1999 A
5953468 Finnila et al. Sep 1999 A
5955591 Imbach et al. Sep 1999 A
5959308 Shichijo et al. Sep 1999 A
5959879 Koo Sep 1999 A
5962069 Schindler et al. Oct 1999 A
5963291 Wu et al. Oct 1999 A
5966323 Chen et al. Oct 1999 A
5976953 Zavracky et al. Nov 1999 A
5977567 Verdiell Nov 1999 A
5981400 Lo Nov 1999 A
5981976 Murasato Nov 1999 A
5981980 Miyajima et al. Nov 1999 A
5984190 Nevill Nov 1999 A
5985404 Yano et al. Nov 1999 A
5986301 Fukushima et al. Nov 1999 A
5987011 Toh Nov 1999 A
5987196 Noble Nov 1999 A
5990495 Ohba Nov 1999 A
5995359 Klee et al. Nov 1999 A
5995528 Fukunaga et al. Nov 1999 A
5997638 Copel et al. Dec 1999 A
5998781 Vawter et al. Dec 1999 A
5998819 Yokoyama et al. Dec 1999 A
6002375 Corman et al. Dec 1999 A
6008762 Nghiem Dec 1999 A
6011641 Shin et al. Jan 2000 A
6011646 Mirkarimi et al. Jan 2000 A
6013553 Wallace et al. Jan 2000 A
6020222 Wollesen Feb 2000 A
6022140 Fraden et al. Feb 2000 A
6022410 Yu et al. Feb 2000 A
6022671 Binkley et al. Feb 2000 A
6022963 McGall et al. Feb 2000 A
6023082 McKee et al. Feb 2000 A
6028853 Haartsen Feb 2000 A
6039803 Fitzgerald et al. Mar 2000 A
6045626 Yano et al. Apr 2000 A
6046464 Schetzina Apr 2000 A
6048751 D'Asaro et al. Apr 2000 A
6049110 Koh Apr 2000 A
6049702 Tham et al. Apr 2000 A
6051858 Uchida et al. Apr 2000 A
6051874 Masuda Apr 2000 A
6055179 Koganei et al. Apr 2000 A
6058131 Pan May 2000 A
6059895 Chu et al. May 2000 A
6064078 Northrup et al. May 2000 A
6064092 Park May 2000 A
6064783 Congdon et al. May 2000 A
6078717 Nashimoto et al. Jun 2000 A
6080378 Yokota et al. Jun 2000 A
6083697 Beecher et al. Jul 2000 A
6087681 Shakuda Jul 2000 A
6088216 Laibowitz et al. Jul 2000 A
6090659 Laibowitz et al. Jul 2000 A
6093302 Montgomery Jul 2000 A
6096584 Ellis-Monaghan et al. Aug 2000 A
6100578 Suzuki Aug 2000 A
6103008 McKee et al. Aug 2000 A
6103403 Grigorian et al. Aug 2000 A
6107653 Fitzgerald Aug 2000 A
6107721 Lakin Aug 2000 A
6108125 Yano Aug 2000 A
6110813 Ota et al. Aug 2000 A
6110840 Yu Aug 2000 A
6113225 Miyata et al. Sep 2000 A
6113690 Yu et al. Sep 2000 A
6114996 Nghiem Sep 2000 A
6121642 Newns Sep 2000 A
6121647 Yano et al. Sep 2000 A
6128178 Newns Oct 2000 A
6134114 Ungermann et al. Oct 2000 A
6136666 So Oct 2000 A
6137603 Henmi Oct 2000 A
6139483 Seabaugh et al. Oct 2000 A
6140746 Miyashita et al. Oct 2000 A
6143072 McKee et al. Nov 2000 A
6143366 Lu Nov 2000 A
6146906 Inoue et al. Nov 2000 A
6150239 Goesele et al. Nov 2000 A
6151240 Suzuki Nov 2000 A
6153010 Kiyoku et al. Nov 2000 A
6153454 Krivokapic Nov 2000 A
6156581 Vaudo et al. Dec 2000 A
6173474 Conrad Jan 2001 B1
6174755 Manning Jan 2001 B1
6175497 Tseng et al. Jan 2001 B1
6175555 Hoole Jan 2001 B1
6180252 Farrell et al. Jan 2001 B1
6180486 Leobandung et al. Jan 2001 B1
6181920 Dent et al. Jan 2001 B1
6184044 Sone et al. Feb 2001 B1
6184144 Lo Feb 2001 B1
6191011 Gilboa et al. Feb 2001 B1
6194753 Seon et al. Feb 2001 B1
6197503 Vo-Dinh et al. Mar 2001 B1
6198119 Nabatame et al. Mar 2001 B1
6204525 Sakurai et al. Mar 2001 B1
6204737 Ella Mar 2001 B1
6208453 Wessels et al. Mar 2001 B1
6210988 Howe et al. Apr 2001 B1
6211096 Allman et al. Apr 2001 B1
6222654 Frigo Apr 2001 B1
6224669 Yi et al. May 2001 B1
6225051 Sugiyama et al. May 2001 B1
6229159 Suzuki May 2001 B1
6232242 Hata et al. May 2001 B1
6232806 Woeste et al. May 2001 B1
6232910 Bell et al. May 2001 B1
6233435 Wong May 2001 B1
6235145 Li et al. May 2001 B1
6235649 Kawahara et al. May 2001 B1
6238946 Ziegler May 2001 B1
6239012 Kinsman May 2001 B1
6239449 Fafard et al. May 2001 B1
6241821 Yu et al. Jun 2001 B1
6242686 Kishimoto et al. Jun 2001 B1
6248459 Wang et al. Jun 2001 B1
6248621 Wilk et al. Jun 2001 B1
6252261 Usui et al. Jun 2001 B1
6255198 Linthicum et al. Jul 2001 B1
6256426 Duchet Jul 2001 B1
6265749 Gardner et al. Jul 2001 B1
6268269 Lee et al. Jul 2001 B1
6271619 Yamada et al. Aug 2001 B1
6275122 Speidell et al. Aug 2001 B1
6277436 Stauf et al. Aug 2001 B1
6278137 Shimoyama et al. Aug 2001 B1
6278138 Suzuki Aug 2001 B1
6278523 Gorecki Aug 2001 B1
6278541 Baker Aug 2001 B1
6291319 Yu et al. Sep 2001 B1
6291866 Wallace Sep 2001 B1
6297598 Wang et al. Oct 2001 B1
6297842 Koizumi et al. Oct 2001 B1
6300615 Shinohara et al. Oct 2001 B1
6306668 McKee et al. Oct 2001 B1
6307996 Nashimoto et al. Oct 2001 B1
6312819 Jia et al. Nov 2001 B1
6313486 Kencke et al. Nov 2001 B1
6316785 Nunoue et al. Nov 2001 B1
6316832 Tsuzuki et al. Nov 2001 B1
6319730 Ramdani et al. Nov 2001 B1
6320238 Kizilyalli et al. Nov 2001 B1
6326637 Parkin et al. Dec 2001 B1
6326645 Kadota Dec 2001 B1
6326667 Sugiyama et al. Dec 2001 B1
6329277 Liu et al. Dec 2001 B1
6338756 Dietze Jan 2002 B1
6339664 Farjady et al. Jan 2002 B1
6340788 King et al. Jan 2002 B1
6341851 Takayama et al. Jan 2002 B1
6343171 Yoshimura et al. Jan 2002 B1
6345424 Hasegawa et al. Feb 2002 B1
6348373 Ma et al. Feb 2002 B1
6355945 Kadota et al. Mar 2002 B1
6359330 Goudard Mar 2002 B1
6362017 Manabe et al. Mar 2002 B1
6362558 Fukui Mar 2002 B1
6367699 Ackley Apr 2002 B1
6372356 Thornton et al. Apr 2002 B1
6372813 Johnson et al. Apr 2002 B1
6376337 Wang et al. Apr 2002 B1
6389209 Suhir May 2002 B1
6391674 Ziegler May 2002 B1
6392253 Saxena May 2002 B1
6392257 Ramdani et al. May 2002 B1
6393167 Davis et al. May 2002 B1
6404027 Hong et al. Jun 2002 B1
6410941 Taylor et al. Jun 2002 B1
6410947 Wada Jun 2002 B1
6411756 Sadot et al. Jun 2002 B1
6415140 Benjamin et al. Jul 2002 B1
6417059 Huang Jul 2002 B1
6419849 Qiu et al. Jul 2002 B1
6427066 Grube Jul 2002 B1
6432546 Ramesh et al. Aug 2002 B1
6438281 Tsukamoto et al. Aug 2002 B1
6445724 Abeles Sep 2002 B1
6452232 Adan Sep 2002 B1
6461927 Mochizuki et al. Oct 2002 B1
6462360 Higgins, Jr. et al. Oct 2002 B1
6477285 Shanley Nov 2002 B1
6496469 Uchizaki Dec 2002 B1
6498358 Lach et al. Dec 2002 B1
6501121 Yu et al. Dec 2002 B1
6504189 Matsuda et al. Jan 2003 B1
6524651 Gan et al. Feb 2003 B1
6528374 Bojarczuk, Jr. et al. Mar 2003 B1
6538359 Hiraku et al. Mar 2003 B1
6589887 Dalton et al. Jul 2003 B1
20010013313 Droopad et al. Aug 2001 A1
20010020278 Saito Sep 2001 A1
20010036142 Kadowaki et al. Nov 2001 A1
20010055820 Sakurai et al. Dec 2001 A1
20020006245 Kubota et al. Jan 2002 A1
20020008234 Emrick Jan 2002 A1
20020021855 Kim Feb 2002 A1
20020030246 Eisenbeiser et al. Mar 2002 A1
20020047123 Ramdani et al. Apr 2002 A1
20020047143 Ramdani et al. Apr 2002 A1
20020052061 Fitzgerald May 2002 A1
20020072245 Ooms et al. Jun 2002 A1
20020076878 Wasa et al. Jun 2002 A1
20020079576 Seshan Jun 2002 A1
20020131675 Litvin Sep 2002 A1
20020140012 Droopad Oct 2002 A1
20020145168 Bojarczuk, Jr. et al. Oct 2002 A1
20020179000 Lee et al. Dec 2002 A1
20020195610 Klosowiak Dec 2002 A1
Foreign Referenced Citations (163)
Number Date Country
196 07 107 Aug 1997 DE
197 12 496 Oct 1997 DE
198 29 609 Jan 2000 DE
100 17 137 Oct 2000 DE
0 247 722 Dec 1987 EP
0 250 171 Dec 1987 EP
0 300 499 Jan 1989 EP
0 309 270 Mar 1989 EP
0 331 338 Sep 1989 EP
0 331 467 Sep 1989 EP
0 342 937 Nov 1989 EP
0 392 714 Oct 1990 EP
0 412 002 Feb 1991 EP
0 455 526 Jun 1991 EP
0 483 993 May 1992 EP
0 494 514 Jul 1992 EP
0 514 018 Nov 1992 EP
0 538 611 Apr 1993 EP
0 581 239 Feb 1994 EP
0 600 658 Jun 1994 EP
0 602 568 Jun 1994 EP
0 607 435 Jul 1994 EP
0 614 256 Sep 1994 EP
0 619 283 Oct 1994 EP
0 630 057 Dec 1994 EP
0 661 561 Jul 1995 EP
0 860 913 Aug 1995 EP
0 682 266 Nov 1995 EP
0 711 853 May 1996 EP
0 766 292 Apr 1997 EP
0 777 379 Jun 1997 EP
0 810 666 Dec 1997 EP
0 828 287 Mar 1998 EP
0 852 416 Jul 1998 EP
0 875 922 Nov 1998 EP
0 881 669 Dec 1998 EP
0 884 767 Dec 1998 EP
0 926 739 Jun 1999 EP
0 957 522 Nov 1999 EP
0 964 259 Dec 1999 EP
0 964 453 Dec 1999 EP
0 993 027 Apr 2000 EP
0 999 600 May 2000 EP
1 001 468 May 2000 EP
1 035 759 Sep 2000 EP
1 037 272 Sep 2000 EP
1 043 426 Oct 2000 EP
1 043 427 Oct 2000 EP
1 043 765 Oct 2000 EP
1 054 442 Nov 2000 EP
1 069 605 Jan 2001 EP
1 069 606 Jan 2001 EP
1 085 319 Mar 2001 EP
1 089 338 Apr 2001 EP
1 109 212 Jun 2001 EP
1 176 230 Jan 2002 EP
2 779 843 Dec 1999 FR
1 319 311 Jun 1970 GB
2 152 315 Jul 1985 GB
2 335 792 Sep 1999 GB
52-88354 Jul 1977 JP
52-89070 Jul 1977 JP
52-135684 Nov 1977 JP
54-134554 Oct 1979 JP
55-87424 Jul 1980 JP
58-075868 May 1983 JP
58-213412 Dec 1983 JP
59-044004 Mar 1984 JP
59-073498 Apr 1984 JP
59066183 Apr 1984 JP
60-161635 Aug 1985 JP
60-210018 Oct 1985 JP
60-212018 Oct 1985 JP
61-36981 Feb 1986 JP
61-63015 Apr 1986 JP
61-108187 May 1986 JP
62-245205 Oct 1987 JP
63-34994 Feb 1988 JP
63-131104 Jun 1988 JP
63-198365 Aug 1988 JP
63-289812 Nov 1988 JP
64-50575 Feb 1989 JP
64-52329 Feb 1989 JP
1-102435 Apr 1989 JP
1-179411 Jul 1989 JP
01-196809 Aug 1989 JP
03-149882 Nov 1989 JP
HEI 2-391 Jan 1990 JP
02051220 Feb 1990 JP
3-41783 Feb 1991 JP
03046384 Feb 1991 JP
3-171617 Jul 1991 JP
03-188619 Aug 1991 JP
5-48072 Feb 1993 JP
5-086477 Apr 1993 JP
5-152529 Jun 1993 JP
05150143 Jun 1993 JP
05 221800 Aug 1993 JP
5-232307 Sep 1993 JP
5-238894 Sep 1993 JP
5-243525 Sep 1993 JP
5-291299 Nov 1993 JP
06-069490 Mar 1994 JP
6-232126 Aug 1994 JP
6-291299 Oct 1994 JP
6-334168 Dec 1994 JP
0812494 Jan 1996 JP
9-67193 Mar 1997 JP
9-82913 Mar 1997 JP
10-256154 Sep 1998 JP
10-269842 Oct 1998 JP
10-303396 Nov 1998 JP
10-321943 Dec 1998 JP
11135614 May 1999 JP
11-238683 Aug 1999 JP
11-260835 Sep 1999 JP
01 294594 Nov 1999 JP
11340542 Dec 1999 JP
2000-068466 Mar 2000 JP
2 000 1645 Jun 2000 JP
2000-278085 Oct 2000 JP
2000-349278 Dec 2000 JP
2000-351692 Dec 2000 JP
2001-196892 Jul 2001 JP
2002-9366 Jan 2002 JP
WO 9210875 Jun 1992 WO
WO 9307647 Apr 1993 WO
WO 9403908 Feb 1994 WO
WO 9502904 Jan 1995 WO
WO 9745827 Dec 1997 WO
WO 9805807 Jan 1998 WO
WO 9820606 May 1998 WO
WO 9914797 Mar 1999 WO
WO 9914804 Mar 1999 WO
WO 9919546 Apr 1999 WO
WO 9963580 Dec 1999 WO
WO 9967882 Dec 1999 WO
0006812 Feb 2000 WO
WO 0006812 Feb 2000 WO
WO 0016378 Mar 2000 WO
WO 0033363 Jun 2000 WO
WO 0048239 Aug 2000 WO
WO 0104943 Jan 2001 WO
WO 0116395 Mar 2001 WO
WO 0133585 May 2001 WO
WO 0137330 May 2001 WO
WO 0159814 Aug 2001 WO
WO 0159820 Aug 2001 WO
WO 0159821 Aug 2001 WO
WO 0159837 Aug 2001 WO
WO 02 01648 Jan 2002 WO
WO 0203113 Jan 2002 WO
WO 0203467 Jan 2002 WO
WO 0203480 Jan 2002 WO
WO 0208806 Jan 2002 WO
WO 02009150 Jan 2002 WO
WO 0209160 Jan 2002 WO
WO 0211254 Feb 2002 WO
WO 0233385 Apr 2002 WO
WO 0247127 Jun 2002 WO
WO 0250879 Jun 2002 WO
WO 02099885 Dec 2002 WO
WO 03012874 Feb 2003 WO
Related Publications (1)
Number Date Country
20020187600 A1 Dec 2002 US
Continuations (1)
Number Date Country
Parent 09824259 Apr 2001 US
Child 10207210 US