The disclosure relates to a shutter device for a lithography apparatus and a lithography apparatus including such a shutter device.
The industrial production of integrated electrical circuits and also other micro- or nanostructured components is generally achieved using lithographic methods. In such methods, a plurality of structured layers are applied to a suitable substrate, for example a semiconductor wafer. The layers are covered with a photoresist that is sensitive to radiation in a specific wavelength range. It is expedient to use light having a shortest possible wavelength for the exposure because the lateral resolution of the structures to be produced is directly dependent on the wavelength of the light. At the present time, it is common to use light or radiation in the deep ultraviolet (DUV) range or in the far, extreme ultraviolet (EUV) spectral range.
Customary light wavelengths for DUV systems are currently 248 nm, 193 nm and occasionally 157 nm. In order to obtain even higher lithographic resolutions, radiation through to soft X-ray radiation having a wavelength of a few nanometers is used and prototypes of optical systems are developed. For example, it is possible to provide a radiation source emitting light having a wavelength of 13.5 nm and corresponding optical units for lithographic purposes.
The wafer coated with photoresist is exposed by an exposure apparatus via a process in which a projection lens is used to image a pattern of structures on a mask or a reticle onto the photoresist. Because the EUV radiation is absorbed by matter to a great extent, reflective optical units and masks are increasingly being used.
After the photoresist has been developed, the wafer is subjected to chemical processes, so that the surface of the wafer is structured in accordance with the pattern on the mask. The residual photoresist that has not been processed is then rinsed away from the remaining parts of the layer. Further known methods for semiconductor production or processing, such as doping, etc., can follow. This process is repeated to form the semiconductor structure.
The performance of the lithographic apparatuses used is determined not only, for example, by the imaging properties of the projection lens but also, for example, by an illumination system that illuminates the mask. The illumination system usually contains light sources, which can include lasers operated in a pulsed fashion, or else plasma sources, and further optical elements, which generate light beams from the light generated by the light source, which converge on the mask or reticle at field points. It is often desirable to adjust and test the generation of the light beams and the resulting beam path in the respective lithographic apparatus prior to their use.
In order to test corresponding lithographic apparatuses, the individual functional units are usually examined. That is to say that, for example, the optical elements are measured with regard to their relative position, the position of the wafers are adjusted, and, in particular, the reticle or mask arrangements are examined microscopically. It is also desirable, however, to test the entire system or parts thereof prior to the actual start-up and the exposure of wafers with the original light for EUV lithography. Because EUV light sources, in general, cannot be switched off and switched on again in a cost effective fashion, controlled blocking of the light in the beam path within the lithography system is therefore desirable.
Known optical or photographic shutters include, for example, linearly extending slots which run at high speed past a window through which light can pass. Such slotted shutters can be constructed using a plurality of movable lamellae. Rotating crescent-shaped disks driven by an electric motor are also known. The high number of mechanical components or the vibrations that arise, for example, as a result of eccentric mounting of the movable components can be disadvantageous.
The disclosure provides an improved shutter device and a lithography apparatus improved thereby.
The lithography apparatus generally has a housing for maintaining an ultrahigh vacuum. A disk, capable of rotating about a rotation axis, is within the housing. The disk has at least one opening arranged on a circumferential line around the rotation axis. The opening transmits ultraviolet light.
The openings are designed in particular for transmission for extreme ultraviolet light. Extreme ultraviolet light (EUV) is generally understood to mean ultraviolet radiation in a spectral range of between 1 nm and 100 nm. In order to produce particularly fine nano- and microstructures lithographically, ultraviolet light or ultraviolet radiation at a wavelength of approximately 13.5 nm can be used. This is also referred to as EUV lithography.
Because EUV radiation is absorbed to a great extent in many materials, it is desirable to keep the beam path, that is to say the optical unit, masks, reticles, target surfaces such as wafers and the like, in a corresponding lithography apparatus, or in an EUV exposure apparatus under ultrahigh vacuum (UHV). A housing for a lithography apparatus or a shutter device can ensure, for example, a pressure of 10−7 to 10−12 mbar (hPa). This is also referred to as a vacuum chamber. That means that only a molecular density of 109 to 104 molecules/cm3 is present in the beam path.
The disk, which can be embodied as a circular disk, for example, in this case preferably includes a plurality of openings on a circumferential line. During the rotation of the disk about the rotation axis and in the case of a ray or light beam of ultraviolet light that is incident substantially parallel to the rotation axis, the openings or holes in the disk release the ray. If a continuous EUV light ray is present, a pulsed radiation arises as a result, wherein the respective light pulse are dependent on the size of the openings and the rotational speed of the disk. Given pulsed radiation from the light source, either blocking of the radiation can be effected or the radiation pulses can be passed on in a controlled manner by suitable synchronization of the shutter times with the radiation pulse duration and frequency.
In the case of such an apparatus, reference can also be made to a rotational shutter or a rotating shutter disk as shutter device. This has the advantage over slotted shutter devices or rotating disks having an irregular contour that a particularly high rotational speed can be realized and particularly high pulse frequencies of up to 1 to 2 kHz, for example, can be achieved. Preferably, even pulse frequencies of up to 5 kHz are obtained. Preferably, this rotational speed is constant. Vibrations as a result of such a regular rotation or constant rotational speed are kept low as a result.
The disk preferably has a plurality of openings arranged on a common circumferential line of a circle around the rotation axis.
The disk can be embodied in circular fashion.
Given a circular embodiment and, in particular, regular arrangement of the openings on a common circumferential line, vibrations as a result of the rotation about the rotation axis can be kept low. By way of example, four openings can be provided in a manner respectively separated by a distance of 90° on a circumferential line. A different number of openings, such as six openings, for example, is also conceivable. Preferably, the openings are provided symmetrically with respect to the rotation axis. Preferably, the center of mass of the disk lies on the rotation axis.
In accordance with one embodiment of the shutter device, at least one opening has a larger extent along the circumferential line than an extent perpendicular to the circumferential line. The opening or openings can be embodied in the manner of an oval opening, for example.
In certain operating situations it is desired to synchronize the points in time at which light is transmitted by an opening with light pulses from a pulsed ultraviolet light source. If the pulsed light source has jitter the inaccuracy of the light pulse can be at least partly compensated for by a larger extent of the openings along the circumferential line.
In a further embodiment of the shutter device, a plurality of magnets are fitted to the disk along a further circumferential line. The further circumferential line can, for example, be at a greater distance from the rotational axis than the first circumferential line, on which the openings are arranged.
The magnets can preferably be encapsulated, such that no evaporations or contaminants can pass into the UHV region of the housing. The magnets can be arranged in pairs at opposite angular positions with respect to the circle center or the rotation axis. By way of example, neodymium magnets that are adhesively bonded onto the disk via suitable adhesives or are introduced into the material of the disk are suitable.
Preferably, the shutter device furthermore includes a magnet coil arrangement provided outside the housing and serving for interacting with the magnets on the disk.
By way of example, the magnets on the circumferential line on the disk in the ultrahigh vacuum with suitably fitted magnet coils outside the ultrahigh vacuum act as a type of linear motor along the circumferential line.
The shutter device has, in particular, no rotary leadthrough through the housing wall. Since magnet coils, in particular, can entail disturbing evaporations or contaminants, it is advantageous to embody the resulting electric motor composed of magnet coil arrangement and magnets on the disk in two parts. Rotor and stator are thus obtained in different regions of the shutter device or the lithography apparatus, namely firstly within the ultrahigh vacuum region and secondly outside the latter.
In one embodiment of the shutter device the magnets and the magnet coil arrangement form an electric motor suitable for rotating at a rotational speed of between 28,000 revolutions per minute and 29,000 revolutions per minute. Different rotational speeds are also conceivable. In this case, the number of openings in the rotational shutter disk can be adapted to the possible rotational speeds. A conceivable diameter for the disk is between 12 and 20 cm.
The combination of a specific number of openings and the rotational speed of the disk is preferably coordinated in such a way that pulse frequencies for radiation that has passed through the opening are between 100 Hz and 5 kHz. The pulse frequency results from the rotational speed divided by the number of openings on the circumferential line of the disk.
Appropriate material for the disk includes, by way of example, aluminum or beryllium, but also high-grade steel. The disk has, for example, a thickness of 2 to 10 mm and preferably a thickness of between 3.5 and 5.5 mm. In one embodiment of the shutter device, the disk can be mounted in the region of the rotation axis with the aid of a magnetic mount. In the case of a magnetic mount, in an advantageous manner, practically no abrasion is produced which might bring about contaminants in the ultrahigh vacuum region of the housing. On the other hand, mounts on the basis of ceramics are also conceivable.
The disk can also be mounted and driven exclusively by the interaction of the magnets with the coils, without a disk-carrying element having to be provided in the UHV region of the housing. For the case without energization of the corresponding magnetic bearing arrangement, it is possible to provide a depositing bearing, on which the disk can rest or run up.
In a further embodiment of the shutter device, the openings in the disk are formed with the aid of apertures. The apertures are then arranged on cutouts in the disk.
By virtue of the proposed shutter device with the aid of a rotational shutter within the ultrahigh vacuum region, the number of possible wearing parts is reduced compared with known measures for optical shutters. In this respect, the service lives of debris filters can be prolonged with the use of the proposed shutter device.
Furthermore, a lithography apparatus including a shutter device mentioned above is proposed, which includes a light source for ultraviolet light, in particular for extreme ultraviolet light, arranged within the housing, an optical unit for imaging a pattern onto a target surface, and a camera device for detecting the imaged pattern.
A lithography apparatus thus includes a housing for maintaining an ultrahigh vacuum, wherein a shutter device including a disk that is rotatable about a rotation axis is provided in the housing. The disk has at least one opening arranged on a circumferential line around the rotation axis and serving for transmitting extreme ultraviolet light. A light source for extreme ultraviolet light, an optical unit for imaging a pattern onto a target surface, and a camera device for detecting the imaged pattern are arranged within the housing.
In this case, the optical unit used can have a demagnifying imaging scale; by way of example, the optical unit can be embodied with an imaging scale of 1 to 4, and can be used for a microlithographic method.
The pattern to be imaged corresponds, for example, to a mask arrangement or a reticle for producing ultrafine micro- or nanostructures on semiconductor wafers as target surface. The camera device serves, for example, for testing the imaging performance of the (mirror) imaging optical unit. The lithography apparatus thus makes it possible to test the lithography apparatus with original light, for example 13.5 nm EUV. As a result, it is possible to test in particular masks or reticles in the lithography apparatus, without the need to scan the masks or reticles with the aid of microscopy. In this case the shutter device allows the generation of well-defined EUV pulses for detection by the camera.
Alternatively, the lithography apparatus can also be configured in such a way that a test optical unit is provided instead of an imaging optical unit which images the structures of the masks or reticles onto a wafer surface in a demagnified fashion. By way of example, a lithography test apparatus in which an optical unit creates a magnifying imaging scale can be formed. In this respect, in one embodiment of the lithography apparatus, the optical unit is a magnifying optical unit. This can then also be referred to as a mask test apparatus in which masks or reticles can be measured and examined with original exposure light with the aid of a camera provided.
The lithography apparatus can furthermore be equipped with a sensor device for detecting a movement of at least one opening of the disk and for generating a trigger signal. By way of example, a light barrier which detects the movement of the openings at a reference position is appropriate as a sensor device.
By way of example, the trigger signal can be used for activating or driving the light source.
Therefore, a control device for driving the light source in a manner dependent on the trigger signal is preferably provided.
In one embodiment of the lithography apparatus the control device is designed in such a way that the light source is activated in such a way that the openings transmit a predetermined number of light pulses from the light source during the rotation of the disk. It is possible, for example, to define an exposure window for the camera, such that, for example, 200 EUV pulses pass through the beam path of the lithography apparatus and are then detected by the camera.
Preferably, in one embodiment of the lithography apparatus, the disk is arranged in a beam path between the light source and a debris filter.
In a further embodiment of the lithography apparatus, the disk is arranged in such a way that the rotation axis has an angle with gravitational acceleration. The magnet coil arrangement then has a plurality of differently driven electromagnets for compensating for an effect of gravitational acceleration on the rotating disk. If the rotational axis is provided horizontally, for example, it may be desirable, in order to obtain as uniform as possible rotation and hence light pulse generation, for the magnet coils or electromagnets which are arranged above the rotation axis to be energized differently than those which are present below the rotation axis. The magnet coil units are provided in a manner situated opposite one another, for example.
Further possible implementations or variants of the shutter device or of the lithography apparatus also encompass combinations not explicitly mentioned of features described above or below with regard to the exemplary embodiments.
In this case, the person skilled in the art will also add individual aspects as an improvement or supplementations to the respective basic form.
Further configurations of the disclosure are described in the exemplary embodiments of the disclosure described below and in the claims.
The disclosure is explained in greater detail below on the basis of exemplary embodiments with reference to the accompanying figures, in which:
The lithography apparatus 100 includes a radiation source 2 for generating EUV light. Gas-discharge-excited plasmas are appropriate as radiation sources. Xenon, for example, is deemed to be a suitable target material. Laser-excited plasmas as radiation sources for EUV light are also conceivable. Pulses of EUV light can be used. The EUV light has a wavelength of 13.5 nm, for example. In principle, it is possible to use a spectral range between ultraviolet and soft X-ray radiation with a wavelength of approximately 1 nm to 100 nm. Particularly efficient optical units can be produced for EUV radiation or EUV light around a wavelength of 13.5 nm.
The EUV light L1 generated by the radiation source 2 passes through a shutter device 1, which transmits the light in a pulsed fashion and thus provides EUV light L2 having a predetermined pulse frequency and pulse width. The light or radiation pulses L2 pass through a debris filter 3. The debris filter 3 serves for retaining particles of any form which can originate for example from electrode fragments, vaporized material or electrons, ions or atoms emitted by the plasma of the radiation source.
The left UHV chamber 8B includes a mask station 4, which contains the masks or reticles having the patterns to be imaged for photolithography. The EUV light L3 then passes through an optical system 5, which generally includes reflective optical units for EUV radiation. From the optical system 5, the light L4 passes onto a target surface, that is to say the surface to be processed of a semiconductor wafer. In
In order to test for example the light source 2, the reticles 4 or the imaging performance of the optical unit 5, a camera 7 is provided instead of a wafer. Furthermore, a control device 9 which can be program-controlled, for example, is provided, which receives control and sensor signals from the camera 7, is communicatively coupled to the shutter device 1 and controls the radiation source 2. By way of example, the control device 9 can activate laser pulses for the plasma discharge. The control device 9 furthermore controls, for example, the shutter device 1 and radiation source 2 in such a way that well-defined EUV light pulses L2 are generated and can be detected by the camera 7 after passing through the optical unit 5.
During the exposure of coated semiconductor wafers, a generally demagnifying imaging of the mask or reticle structures in the mask station 4 is effected by the optical system 5. In a slightly modified embodiment of the lithography apparatus 100, expedient testing and measurement of the masks used in actual wafer production can be effected. In an implementation of the lithography apparatus as a measuring and test apparatus for a light source 2, a mask (station) 4 and/or optical elements used, an optical assembly 5 is used which creates a magnifying imaging of the mask structures toward the camera 7. In order to set a suitable exposure time for the camera 7, the shutter device 1, as indicated in the introduction, is driven correspondingly.
In the alternative configuration as a measuring and test apparatus, it is not necessary to image the entire mask structure onto the target surface in the region of the wafer station 6. It may suffice to use an optical unit 5 having a small field of view which images an excerpt from the mask respectively used, as it were microscopically, toward the camera 7.
It is furthermore indicated in
In this case, the disk 10 has openings 11 for transmitting light L1. By way of example, EUV light from a light source, such as is indicated in
A magnet coil arrangement 20 is provided in the housing wall 17, as is illustrated in
Since, as already indicated with regard to
The magnets 19 and the coils or electromagnets 21 together form an electric motor. An electric motor developed onto the circumference of the circular disk can be imagined. A linear electric motor arises, in principle, on the circumference of the circular disk along the magnets 19 provided in a manner spaced apart at regular intervals. Alternatively, the combination of magnets 19 and coil arrangement 20 can be embodied as a three-phase servomotor. The circular disk 10 can therefore be caused to rotate in a simple manner, as a result of which the openings 11 and 12, as illustrated in
In
During the operation of the shutter device 1 it is desirable to rotate the disk 10 in as constant a manner as possible at a high rotational speed. In order to synchronize the EUV light generation with the shutter times or transmission times for light of the shutter device 1, a sensor unit 22 is furthermore illustrated in
It is evident in
By way of example, the EUV source is operated with a pulse frequency of 1900 Hz. The combination of rotational speed and hole opening is likewise set such that the shutter opens at 1900 Hz. By setting and taking account of the trigger signal T, it is then possible to synchronize the pulse frequency of the EUV source or the light source and the opening frequency of the shutter with one another. This results in an exposure window E for the camera 7 in order to test for example the reticles, the imaging performance or radiation intensity at the target surface or the wafer station.
To avoid switching off the control source, after exposure has taken place in the exposure window E, the shutter and radiation source can be taken out of phase with regard to the rising edges in the signal diagrams, such that no EUV light passes through the EUV optical unit of the lithography apparatus and impinges on the camera. This can be discerned to the right and left of the exposure window E.
Although the present disclosure has been explained on the basis of exemplary embodiments, it is not restricted thereto, but rather can be modified in diverse ways. The proposed materials for the shutter disk should be understood merely by way of example. Moreover, different wavelengths can be used for the radiation. The pulse duration and pulse frequency of the EUV light can likewise be varied and adapted to the camera properties, for example. In addition, the number and geometry of the opening holes in the shutter disk can be modified in order to obtain the desired pulse lengths and frequencies.
Reference numbers and corresponding features:
Number | Date | Country | Kind |
---|---|---|---|
10 2010 063 884.6 | Dec 2010 | DE | national |
This application claims benefit under 35 USC 119(e) of U.S. Ser. No. 61/425,905, filed Dec. 22, 2010. This application also benefit under 35 U.S.C. §119 to German Application No. 10 2010 063 884.6, filed Dec. 22, 2010. The entire contents of both of these applications are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61425905 | Dec 2010 | US |