The present invention generally relates to the field of semiconductors, and more particularly relates to vertical field-effect-transistors having a silicided bottom source/drain.
Vertical transistors are a promising option for technology scaling for 5 nm and beyond. However, the contact has to land on the bottom source/drain to get the bottom source/drain connect to back end wiring. The distance to the bottom contact area to transistor will increase the resistance. A metal silicide on top of the source/drain can help mitigate this resistance penalty. However, the silicidation process is very difficult for the area between fins due to the tight fin pitch and results in metal sticking between fins, which causes defect or device variation.
In one embodiment, a method for fabricating a vertical fin field-effect-transistor is provided. The method includes forming a structure comprising a substrate, a source/drain layer, isolation regions, and a plurality of fins disposed on and in contact with first source/drain layer. Silicide is formed in a portion of the first source/drain layer. A first spacer layer is formed in contact with at least the silicide, the first source/drain layer and the plurality of fins. A gate structure is formed in contact with the plurality of fins and the first spacer layer. A second spacer layer is formed in contact with the gate structure and the plurality of fins. A second source/drain layer is formed in contact with second spacer layer and the plurality of fins.
In another embodiment, a vertical fin field-effect-transistor is provided. The vertical fin field-effect-transistor includes at least a substrate, a first source/drain layer, and a plurality of fins each disposed on and in contact with the first source/drain layer. Silicide regions are disposed within a portion of the first source/drain layer. A gate structure is in contact with the plurality of fins, and a second source/drain layer is disposed on the gate structure.
In yet another embodiment, an integrated circuit is provided. The integrated circuit includes a vertical fin field-effect-transistor. The vertical field-effect-transistor includes at least a substrate, a first source/drain layer, and a plurality of fins each disposed on and in contact with the first source/drain layer. Silicide regions are disposed within a portion of the first source/drain layer. A gate structure is in contact with the plurality of fins, and a second source/drain layer is disposed on the gate structure.
The accompanying figures where like reference numerals refer to identical or functionally similar elements throughout the separate views, and which together with the detailed description below are incorporated in and form part of the specification, serve to further illustrate various embodiments and to explain various principles and advantages all in accordance with the present invention, in which:
It is to be understood that the present invention will be described in terms of a given illustrative architecture; however, other architectures, structures, substrate materials and process features and steps can be varied within the scope of the present invention.
It will also be understood that when an element such as a layer, region or substrate is referred to as being “on” or “over” another element, it can be directly on the other element or intervening elements can also be present. In contrast, when an element is referred to as being “directly on” or “directly over” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements can be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.
The present embodiments can include a design for an integrated circuit chip, which can be created in a graphical computer programming language, and stored in a computer storage medium (such as a disk, tape, physical hard drive, or virtual hard drive such as in a storage access network). If the designer does not fabricate chips or the photolithographic masks used to fabricate chips, the designer can transmit the resulting design by physical means (e.g., by providing a copy of the storage medium storing the design) or electronically (e.g., through the Internet) to such entities, directly or indirectly. The stored design is then converted into the appropriate format (e.g., GDSII) for the fabrication of photolithographic masks, which typically include multiple copies of the chip design in question that are to be formed on a wafer. The photolithographic masks are utilized to define areas of the wafer (and/or the layers thereon) to be etched or otherwise processed.
Methods as described herein can be used in the fabrication of integrated circuit chips. The resulting integrated circuit chips can be distributed by the fabricator in raw wafer form (that is, as a single wafer that has multiple unpackaged chips), as a bare die, or in a packaged form. In the latter case the chip is mounted in a single chip package (such as a plastic carrier, with leads that are affixed to a motherboard or other higher-level carrier) or in a multichip package (such as a ceramic carrier that has either or both surface interconnections or buried interconnections). In any case the chip is then integrated with other chips, discrete circuit elements, and/or other signal processing devices as part of either (a) an intermediate product, such as a motherboard, or (b) an end product. The end product can be any product that includes integrated circuit chips, ranging from toys and other low-end applications to advanced computer products having a display, a keyboard or other input device, and a central processor.
Reference in the specification to “one embodiment” or “an embodiment” of the present principles, as well as other variations thereof, means that a particular feature, structure, characteristic, and so forth described in connection with the embodiment is included in at least one embodiment of the present principles. Thus, the appearances of the phrase “in one embodiment” or “in an embodiment”, as well any other variations, appearing in various places throughout the specification are not necessarily all referring to the same embodiment.
Referring now to the drawings in which like numerals represent the same of similar elements,
The substrate 102, in one embodiment, is appropriately doped either with p-type dopant atoms and/or with n-type dopant atoms, or the material can be substantially undoped (intrinsic). The dopant concentration of the substrate 102, in one example, is from 1.0×1015/cm3 to 1.0×1019/cm3, and in one embodiment, is from 1.0×1016 cm3 to 3.0×1018/cm3, although lesser and greater dopant concentrations are applicable as well. In one example, an optional counter-doped layer (not shown) is formed on and in contact with the substrate 102 (or buried insulator layer if formed). The counter-doped layer, in one embodiment, is formed by an epitaxial growth of a semiconductor material. The counter-doped layer can be implanted with dopants and annealed using, for example, rapid thermal anneal. Alternatively, the counter-doped layer is doped in-situ during the epitaxial growth. The purpose of the counter-doped layer is to provide isolation between one transistor and the next transistor.
The terms “epitaxial growth”, “epitaxial deposition”, “epitaxially formed”, epitaxially grown“, and their variants and/or grown” mean the growth of a semiconductor material on a deposition surface of a semiconductor material, in which the semiconductor material being grown has the same crystalline characteristics as the semiconductor material of the deposition surface. In an epitaxial deposition process, the chemical reactants provided by the source gases are controlled and the system parameters are set so that the depositing atoms arrive at the deposition surface of the semiconductor substrate with sufficient energy to move around on the surface and orient themselves to the crystal arrangement of the atoms of the deposition surface. Therefore, an epitaxial semiconductor material has the same crystalline characteristics as the deposition surface on which it is formed. For example, an epitaxial semiconductor material deposited on a {100} crystal surface will take on a {100} orientation. In some embodiments, epitaxial growth and/or deposition processes are selective to forming on semiconductor surface, and do not deposit material on dielectric surfaces, such as silicon dioxide or silicon nitride surfaces.
Examples of various epitaxial growth process apparatuses that are suitable for use in one or more embodiments 104 include, e.g., rapid thermal chemical vapor deposition (RTCVD), low-energy plasma deposition (LEPD), ultra-high vacuum chemical vapor deposition (UHVCVD), atmospheric pressure chemical vapor deposition (APCVD) and molecular beam epitaxy (MBE). A number of different sources can be used for the deposition of the various layers discussed herein. For example, the gas source for the deposition of epitaxial semiconductor material can include a silicon containing gas source, a germanium containing gas source, or a combination thereof. Examples of silicon containing gas sources are silane, disilane, trisilane, tetrasilane, hexachlorodisilane, tetrachlorosilane, dichlorosilane, trichlorosilane, methylsilane, dimethylsilane, ethylsilane, methyldisilane, dimethyldisilane, hexamethyldisilane, and combinations thereof. Examples of germanium containing gas sources are germane, digermane, halogermane, dichlorogermane, trichlorogermane, tetrachlorogermane and combinations thereof. While an epitaxial silicon germanium alloy fin can be formed utilizing a combination of such gas sources. Carrier gases like hydrogen, nitrogen, helium and argon can be used.
The fins 106, 108, 110 are formed, in one embodiment, by forming an etch-stop capping layer onto a channel material through, for example, deposition. The etch-stop capping layer, in one embodiment, is made of silicon-nitride although other material suitable in providing etch-stop function can be used as well. The fin structures 106, 108, 110 and their etch-stop caps 112, 114, 116, are subsequently formed or etched out of the channel material to be on top of and in contact with the bottom source/drain layer 104 through a process involving masking, using industry-standard lithographic techniques, and directionally etching the etch-stop capping layer and underneath channel material.
After the fins 106, 108, 110 are formed, a flowable oxide 202 is deposited over the structure 100 as shown in
An oxide film 502 is the deposited over the entire structure 100, as shown in
Silicide regions 702, 704 are then formed on the exposed portions of the bottom source/drain layer 104, as shown in
A high-k dielectric material is then blanket deposited over the entire structure 100, for example by CVD (chemical vapor deposition), PECVD (plasma enhanced chemical vapor deposition), or ALD (Atomic layer deposition). Excessive high-k gate dielectric material is removed, for example, by polishing such as chemically mechanical polishing (CMP) and/or etching to form high-k gate dielectric layers 1002, 1004, 1006 as shown in
In one embodiment, the high-k layers 1002, 1004, 1006 are part of a layer including a work function metal layer (not shown). In one embodiment, the work function metal layers are formed after and conformal to the high-k layers 1002, 1004, 1006 employing CVD, sputtering, or plating. The work function metal layers include one or more metals having a function suitable to tune the work function of nFETs or pFETs. Examples of first metals that can be employed in the work function metal layer include, but are not limited to La, Ti, and Ta. The thickness of the work function metal layers can be from 3 nm to 15 nm, although lesser and greater thicknesses can also be employed.
After the top spacer layer 1108 has been formed, an inter-layer dielectric (ILD) layer 1202 is deposited followed by chemical mechanical planarization (CMP) and etch-back, as shown in
The dielectric layer 1202 is then patterned and etched to form a first via/trench down to and exposing the top source/drain layer 1204. The dielectric layer 1202 is also patterned and etched to form a second via/trench through the bottom spacer layer 902 exposing a portion of the silicide region 704. Conductive material is then deposited into the trenches to form the first and second contacts 1302, 1304. The contacts 1302, 1304 can be formed using a process such as CVD, PVD, ALD, or electroplating processes or some combination of these processes. The conductive metal can include, but is not limited to, tungsten, copper, aluminum, silver, gold and alloys thereof.
Although specific embodiments of the invention have been disclosed, those having ordinary skill in the art will understand that changes can be made to the specific embodiments without departing from the spirit and scope of the invention. The scope of the invention is not to be restricted, therefore, to the specific embodiments, and it is intended that the appended claims cover any and all such applications, modifications, and embodiments within the scope of the present invention.
It should be noted that some features of the present invention can be used in one embodiment thereof without use of other features of the present invention. As such, the foregoing description should be considered as merely illustrative of the principles, teachings, examples, and exemplary embodiments of the present invention, and not a limitation thereof.
Also, these embodiments are only examples of the many advantageous uses of the innovative teachings herein. In general, statements made in the specification of the present application do not necessarily limit any of the various claimed inventions. Moreover, some statements can apply to some inventive features but not to others.
Number | Name | Date | Kind |
---|---|---|---|
5128272 | Ramde | Jul 1992 | A |
5326711 | Malhi | Jul 1994 | A |
6104061 | Forbes et al. | Aug 2000 | A |
6150210 | Arnold | Nov 2000 | A |
6194773 | Malhi | Feb 2001 | B1 |
7205609 | Lee et al. | Apr 2007 | B2 |
7300837 | Chen et al. | Nov 2007 | B2 |
7422950 | Curello et al. | Sep 2008 | B2 |
7560728 | Lin et al. | Jul 2009 | B2 |
7791068 | Meng et al. | Sep 2010 | B2 |
8383477 | Lee | Feb 2013 | B2 |
8471310 | Hynecek | Jun 2013 | B2 |
8524592 | Xie et al. | Sep 2013 | B1 |
8969965 | Chang et al. | Mar 2015 | B2 |
9048329 | Kim et al. | Jun 2015 | B2 |
9245885 | Xie | Jan 2016 | B1 |
20030015755 | Hagemeyer | Jan 2003 | A1 |
20070148836 | Cheng | Jun 2007 | A1 |
20080197397 | Parthasarathy et al. | Aug 2008 | A1 |
20110006360 | Ikebuchi | Jan 2011 | A1 |
20120161324 | Heinrich | Jun 2012 | A1 |
20120214285 | Guha et al. | Aug 2012 | A1 |
20130161744 | Basker | Jun 2013 | A1 |
20130221414 | Zhao et al. | Aug 2013 | A1 |
20140065775 | Chien et al. | Mar 2014 | A1 |
20150048460 | Lee et al. | Feb 2015 | A1 |
20150303272 | Bryant et al. | Oct 2015 | A1 |
20150357432 | Lin et al. | Dec 2015 | A1 |
20160111430 | Liaw | Apr 2016 | A1 |
Number | Date | Country |
---|---|---|
1271266 | Jul 1990 | CA |
2002086904 | Oct 2002 | WO |
2005091376 | Sep 2005 | WO |
2013123287 | Aug 2013 | WO |
Entry |
---|
Choi, Y., et al., “A Spacer Patterning Technology for Nanoscale CMOS”, IEEE Transactions on Electron Devices, Mar. 2002, pp. 1-6, vol. 49, No. 3. |
Disclosed Anonymously, “SOI FinFET Ge I/I for Contact Resistance Reduction”, IP.com No. IPCOM000211612D, Oct. 13, 2011, pp. 1-7. |
Disclosed Anonymously, “Segmented Stacked FinFET for Improved Contact Resistance”, IP.com No. IPCOM000242086D, Jun. 18, 2015, pp. 1-2. |
List of IBM Patents or Patent Applications Treated as Related. |
Number | Date | Country | |
---|---|---|---|
20180019323 A1 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15189073 | Jun 2016 | US |
Child | 15716719 | US |