The present invention relates to an electrical connector assembly, and particularly to the electrical connector with the mechanism for reliably positioning a CPU (Central Processing Unit) in the socket of the connector assembly.
Chinese Patent No. CN205104653 discloses an electrical connector assembly discloses a discrete retainer holding the CPU to be griped by fingers to be loaded into the socket. Anyhow, there is a potential risk for the fingers to incautiously damage the terminals in the socket. U.S. Pat. Nos. 9,270,035, 9,214,754 and 8,979,565 disclose the rotational type retainer which may prevent the potential risk for not damaging the terminals to incautiously damage the terminals. However, the simplified structure is desired for such rotational type retainer.
An electrical connector assembly for connecting a CPU to a printed circuit board, includes an insulative housing, a fixing device and a retainer. The fixing device is located by one end side, and the retainer is used to load the CPU into the housing. The fixing device includes a stationary part and a moveable insertion part wherein the retainer with the CPU therein is retained to the insertion part to commonly rotate about the stationary part for positioning the retainer with the CPU therein within the housing.
Reference will now be made in detail to the preferred embodiment of the present invention.
Referring to
An electrical connector assembly 100 including the fixing device 1, is used to connect a CPU 200 to a printed circuit board 101. The electrical connector assembly 100 further includes an insulative housing 2, a securing station 4 with a pivotal lever 5 thereon, and a load plate/cover 3 pivotally mounted upon the pivotal lever 5, and a retainer 6 retaining the CPU 200 and located between the cover 3 and the housing 2 for positioning the CPU 200 in the housing 2. The securing station 4 and the fixing device 1 are respectively located by two opposite end sides of the housing 2 in the front-to-back/longitudinal direction. In this embodiment, the distance between the pair of side arms 13 is similar to the transverse dimension of the housing 2 for sandwiching the housing 2 therebetween. If necessary, the side arms 13 may abut against housing 2 in the vertical direction furthermore.
The insulative housing 2 received a plurality of terminals (not shown) therein and forms blocks 21 for retraining the CPU 200. The retainer 6 forms holes 61 to expose/receive the blocks 21 and the inserting plate 62. By cooperation of the holes 61 and the blocks 21 to guide the retainer 6 with the associated CPU 200 to be assembled into the housing 2, and the inserting plate 62 is inserted into the insertion part 12 to assembled the retainer 6 to the fixing device 1.
The cover 3 includes a frame 31 with a pair of pressing sections 32 thereon pivotally mounted upon the securing station 4 via the rotational lever 5 at one end, and a locking section 33 at the other end wherein the lever 5 rotatable with regard to the securing station 4, and the cover 3 is rotatable with regard to the lever 5. The pressing section 32 are used to press downward the CPU 200. A securing knob 7 not only fixes the fixing device 1 upon the printed circuit board 101 but also cooperates with the locking section 33 to secure the cover 3 in position. In this embodiment, the securing knob is a rivet. Notably, the securing station 4 can be of a frame structure to surround the housing 2, and the fixing device 1 may be secured to the securing station 4.
During operation, the insertion part 12 is in the upstanding position around one end side, and the cover 3 and the lever 5 are in the upstanding position around the other end side. The CPU 200 is assembled to the retainer 6 in a retained manner. The inserting plate 62 is inserted into the receiving slot 120. The inserting plate 62 of the retainer 6 is rotated from the upstanding position to the horizontal position due to existence of the V-shaped cut 15. Understandably, in another embodiment, the deformation of the linking portion 11 may replace the V-shaped cut 15. The cover 3 is downwardly rotated to the horizontal position to be positioned upon the CPU 200, and the lever 5 is successively rotated to the horizontal position to slightly move the cover 3 to move rearwardly so as to have the cover downwardly press the CPU 200 and optionally further downwardly press the retainer 6 wherein the locking section 33 is pressed downwardly by the securing knob 7. Notably, similar to what is disclosed in the aforementioned patens, the lever 5 is locked to the cover 3 in the horizontal position so as to reliably secure the cover 3 to the securing knob 7.
However, the disclosure is illustrative only, changes may be made in detail, especially in matter of shape, size, and arrangement of sections within the principles of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2016 2 1054491 U | Sep 2016 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
7338308 | Nakao | Mar 2008 | B2 |
7708580 | Yeh | May 2010 | B2 |
8123543 | Terhune, IV | Feb 2012 | B1 |
8142201 | Fan | Mar 2012 | B2 |
8597035 | Terhune, IV | Dec 2013 | B1 |
10116076 | Liao | Oct 2018 | B2 |
20090325404 | Lin | Dec 2009 | A1 |
20130183849 | Tsai | Jul 2013 | A1 |
20130322037 | Tan | Dec 2013 | A1 |
20130344713 | Yeh | Dec 2013 | A1 |
20140099816 | Hsieh | Apr 2014 | A1 |
20140329404 | Yeh | Nov 2014 | A1 |
Number | Date | Country |
---|---|---|
204947170 | Jan 2016 | CN |
M294139 | Mar 2016 | TW |
Number | Date | Country | |
---|---|---|---|
20180076544 A1 | Mar 2018 | US |