Nano-fabrication includes the fabrication of very small structures that have features on the order of 100 nanometers or smaller. One application in which nano-fabrication has had a sizeable impact is in the processing of integrated circuits. The semiconductor processing industry continues to strive for larger production yields while increasing the circuits per unit area formed on a substrate, therefore nano-fabrication becomes increasingly important. Nano-fabrication provides greater process control while allowing continued reduction of the minimum feature dimensions of the structures formed. Other areas of development in which nano-fabrication has been employed include biotechnology, optical technology, mechanical systems, and the like.
An exemplary nano-fabrication technique in use today is commonly referred to as imprint lithography. Exemplary imprint lithography processes are described in detail in numerous publications, such as U.S. Patent Publication No. 2004/0065976, U.S. Patent Publication No. 2004/0065252, and U.S. Pat. No. 6,936,194, all of which are hereby incorporated by reference.
An imprint lithography technique disclosed in each of the aforementioned U.S. patent publications and patent includes formation of a relief pattern in a formable layer (polymerizable) and transferring a pattern corresponding to the relief pattern into an underlying substrate. The substrate may be coupled to a motion stage to obtain a desired positioning to facilitate the patterning process. The patterning process uses a template spaced apart from the substrate and a formable liquid applied between the template and the substrate. The formable liquid is solidified to form a rigid layer that has a pattern conforming to a shape of the surface of the template that contacts the formable liquid. After solidification, the template is separated from the rigid layer such that the template and the substrate are spaced apart. The substrate and the solidified layer are then subjected to additional processes to transfer a relief image into the substrate that corresponds to the pattern in the solidified layer.
So that the present invention may be understood in more detail, a description of embodiments of the invention is provided with reference to the embodiments illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of the invention, and are therefore not to be considered limiting of the scope.
Referring to the figures, and particularly to
Substrate 12 and substrate chuck 14 may be further supported by stage 16. Stage 16 may provide motion along the x-, y-, and z-axes. Stage 16, substrate 12, and substrate chuck 14 may also be positioned on a base (not shown).
Spaced-apart from substrate 12 is a template 18. Template 18 may include a mesa 20 extending therefrom towards substrate 12, mesa 20 having a patterning surface 22 thereon. Further, mesa 20 may be referred to as mold 20. Alternatively, template 18 may be formed without mesa 20.
Template 18 and/or mold 20 may be formed from such materials including, but not limited to, fused-silica, quartz, silicon, organic polymers, siloxane polymers, borosilicate glass, fluorocarbon polymers, metal, hardened sapphire, and/or the like. As illustrated, patterning surface 22 comprises features defined by a plurality of spaced-apart recesses 24 and/or protrusions 26, though embodiments of the present invention are not limited to such configurations. Patterning surface 22 may define any original pattern that forms the basis of a pattern to be formed on substrate 12.
Template 18 may be coupled to chuck 28. Chuck 28 may be configured as, but not limited to, vacuum, pin-type, groove-type, electrostatic, electromagnetic, and/or other similar chuck types. Exemplary chucks are further described in U.S. Pat. No. 6,873,087, which is hereby incorporated by reference. Further, chuck 28 may be coupled to imprint head 30 such that chuck 28 and/or imprint head 30 may be configured to facilitate movement of template 18.
System 10 may further comprise a fluid dispense system 32. Fluid dispense system 32 may be used to deposit polymerizable material 34 on substrate 12. Polymerizable material 34 may be positioned upon substrate 12 using techniques such as drop dispense, spin-coating, dip coating, chemical vapor deposition (CVD), physical vapor deposition (PVD), thin film deposition, thick film deposition, and/or the like. Polymerizable material 34 may be disposed upon substrate 12 before and/or after a desired volume is defined between mold 20 and substrate 12 depending on design considerations. Polymerizable material 34 may comprise a monomer mixture as described in U.S. Pat. No. 7,157,036 and U.S. Patent Publication No. 2005/0187339, all of which are hereby incorporated by reference.
Referring to
Either imprint head 30, stage 16, or both vary a distance between mold 20 and substrate 12 to define a desired volume therebetween that is filled by polymerizable material 34. For example, imprint head 30 may apply a force to template 18 such that mold 20 contacts polymerizable material 34. After the desired volume is filled with polymerizable material 34, source 38 produces energy 40, e.g., ultraviolet radiation, causing polymerizable material 34 to solidify and/or cross-link conforming to shape of a surface 44 of substrate 12 and patterning surface 22, defining a patterned layer 46 on substrate 12. Patterned layer 46 may comprise a residual layer 48 and a plurality of features shown as protrusions 50 and recessions 52, with protrusions 50 having thickness t1 and residual layer having a thickness t2.
The above-mentioned system and process may be further employed in imprint lithography processes and systems referred to in U.S. Pat. No. 6,932,934, U.S. Patent Publication No. 2004/0124566, U.S. Patent Publication No. 2004/0188381, and U.S. Patent Publication No. 2004/0211754, each of which is hereby incorporated by reference.
Ascertaining a desired alignment between template 18 and substrate 12 may aid in the facilitation of pattern transfer between template 18 and substrate 12. Referring to
Referring to
The alignment system 60 may be used for a field-by-field alignment process. As illustrated in
Generally within the present art, the optimal location of the region of interest for moiré fringes is determined manually. Additionally, a lack of a single coordinate system makes alignment complicated as multiple offsets are generally required to align coordinate systems of one camera system to another camera system. Furthermore, these offsets may be sensitive to mechanical drift (e.g., thermal).
In order to provide a suitable location for the region of interest for the moiré fringes, the location of alignment marks 72 and/or 74 on substrate 12 and template 18 respectively may be determined by one or more locator marks 76. For example, by providing the spatial phase location of the locator mark 76 adjacent to alignment mark 72 and/or 74, the relative location of alignment mark 72 and/or 74 may be determined. Generally, the location of locator mark 76 may be determined without the use of a reference image and may be robust to mechanical vibrations that may cause equipment to move with respect to template 18 and/or substrate 12. Additionally, by identifying locator mark 76 on template 18, induced image noise interference, as seen when gases (e.g., helium) alters the index of refraction in the environment of template 18 and substrate 12 may be reduced.
Locator marks 76 may be formed of substantially similar material and in a similar fashion to alignment marks 72 and/or 74. Locator marks 76 are generally located adjacent to alignment marks 72 and 74, may provide for registration of location of alignment marks 72 and/or 74, and further may promote registration of location of alignment marks 72 and/or 74 in situ and in substantially real time. For example, moiré fringes are generally unable to be determined with only the template 18, and not the substrate 12, loaded within lithographic system 10. However, the location of the locator mark 76 on the template 18 may be determined without loading the substrate 12 within the lithographic system 10. As such, the locator mark 76 may be able to provide a relative location of where the moiré fringes may be prior to loading of the substrate 12.
It should be noted one or more locator marks 76 on substrate 12 and/or template 18 may be used to identify any region of interest on substrate 12 and/or template 18, and thus locator marks 76 may not be limited in use to location and registration of alignment marks 72 and/or 74. For simplicity of description, however, use of locator marks 76 with alignment mark 72 is described in further detail below.
In general, locator mark 76 may be used with alignment system 60 to provide a locator signal (e.g., sine wave). For example, locator signal may provide a 4 Hz sine wave when processed by alignment system 60. The frequency, phase, and/or amplitude of the locator signal provided by locator mark 76 may be pre-determined. Using the pre-determined locator signal, position of locator marks 76 may be identified within an image frame. Generally, the image frame may be searched to identify the locator signal and thus provide the location of locator mark 76.
strip=avg(r:r+w,c:c+h) (EQ. 1)
wherein:
c=1 to W−w (EQ. 2)
r=1 to H−h (EQ. 3)
as the image frame is W pixels wide and H pixels tall and the locator marks 76 are w pixel wide and h pixels tall.
In a step 108, the Nth discrete Fourier transform (dft) may be determined by:
fc=dft(strip,N) (EQ. 4)
In a step 110, the magnitude of the Fourier coefficient may be determined by:
m(r,c)=abs(fc) (EQ. 5)
Generally, the maximum value of the magnitude of the Fourier coefficient mmax is initially zero. In a step 112, this value may be continuously updated by determining if m(r,c) is greater than mmax. If m(r,c) is greater than mmax then mmax=m(r,c).
In a step 114, the phase of the Fourier coefficient may be determined by:
p(r,c)=angle(fc) (EQ. 6)
In a step 116, magnitudes (e.g., c=1 to W−w, r=1 to H−h, and m(r,c)) may be normalized to be between 0 and 1. In a step 118, phase values (e.g., c=1 to W−w, r=1 to H−h, p(r,c)) may be normalized to be between 0 and 1. In a step 120, an objective function may be used to identify the locator mark 76 based on normalized magnitude and phase values. For example, locator mark 76 may be identified by determining:
(m(r,c)+p(r,c))>mmax (EQ. 7)
such that the pixel location (mr, mc) is generally the location of the locator mark 76 and mr=r and mc=c.
The method 100 shown in
In a step 202, characteristics of locator marks 76 and characteristics of the locator signal may be determined. For example, the number of periods, the width w of the locator mark 76, and/or the height h of the locator mark 76 may be determined. In a step 204, an image frame of a region of interest of the substrate 12 having locator mark 76 may be acquired. The image frame may be defined by a width W and a height H. For example, the image frame may be W pixels wide and H pixels tall. In a step 206, a column c may be identified from the image frame. In a step 208, the mth dft coefficient of column c may be determined by:
col=column c from image (EQ. 8)
fc=dft(col,m) (EQ. 9)
strip(c)+=abs(fc) (EQ. 10)
wherein:
binMax=round(H/Np)+1 (EQ. 11)
strip(1:W)=0 (EQ. 12)
for m=binMax−4 to binMax+4
wherein Np is the number of pixels period of locator mark 76 along its periodicity direction (e.g. vertical direction in
In a step 210, strip data may be filtered. For example, strip data may be filtered by a moving average window with uniform unity weights and length. In a step 212, the maximum value (mv) of filtered strip data and the corresponding index (cmax) may be determined. In a step 214, the horizontal position of the locator mark 76 may be determined as:
mc=cmax (EQ. 13)
In a step 216, geometry of the locator mark 76 may be used to create a vector T(1:h) with the similar intensity map of the locator mark 76 along the periodicity direction. In a step 218, columns within the region of interest may be collapsed to a one dimensional vector. In a step 220, the one-dimensional normalized cross correlation between the intensity map and the collapsed columns may be determined. In a step 222, the maximum value of cross correlation and the corresponding index may be determined. In a step 224, the vertical position of the locator mark 76 may be determined from the maximum value occurrence index.
This application claims the benefit under 35 U.S.C. §119(e)(1) of U.S. Provisional No. 60/992,416, filed on Dec. 5, 2007, which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60992416 | Dec 2007 | US |