Spectrometer provided with pulsed ion source and transmission device to damp ion motion and method of use

Information

  • Patent Grant
  • 6833543
  • Patent Number
    6,833,543
  • Date Filed
    Thursday, January 15, 2004
    21 years ago
  • Date Issued
    Tuesday, December 21, 2004
    20 years ago
Abstract
A method and apparatus are provided for providing an ion transmission device or interface between an ion source and a spectrometer. The ion transmission device can include a multipole rod set and includes a damping gas, to damp spatial and energy spreads of ions generated by a pulsed ion source. The multipole rod set has the effect of guiding the ions along an ion path, so that they can be directed into the inlet of a mass spectrometer. The invention has particular application to MALDI (matrix-assisted laser desorption/ionization) ion sources, which produce a small supersonic jet of matrix molecules and ions, which is substantially non-directional, and can have ions travelling in all available directions from the source and having a wide range of energy spreads. The ion transmission device can have a number of effects, including: substantially spreading out the generated ions along an ion axis to generate a quasi-continuous beam; reducing the energy spread of ions emitted from the source; and at least partially suppressing unwanted fragmentation of analyte ions. Consequently, a number of pulses of ions can be delivered to the time-of-flight or other spectrometer, for each cycle of the ion generation.
Description




FIELD OF THE INVENTION




This invention relates to mass spectrometers and ion sources therefor. More particularly, this invention is concerned with pulsed ion sources and the provision of a transmission device which gives a pulse ion source many of the characteristics of a continuous source, such that it extends and improves the application of Time of Flight Mass Spectrometry (TOFMS) and that it additionally can be used with a wide variety of other spectrometers, in addition to an orthogonal injection time-of-flight mass spectrometer.




BACKGROUND OF THE INVENTION




Ion sources for mass spectrometry may be either continuous, such as ESI (electrospray ionization) sources or SIMS (secondary ion mass spectrometry) sources, or pulsed, such as MALDI (matrix-assisted laser desorption/ionization sources). Continuous sources have normally been used to inject ions into most types of mass spectrometer, such as sector instruments, quadrupoles, ion traps and ion cyclotron resonance spectrometers. Recently it has also become possible to inject ions from continuous sources into time-of-flight (TOF) mass spectrometers through the use of “orthogonal injection”, whereby the continuous beam is injected orthogonally to the main TOF axis and is converted to the pulsed beam required in the TOF technique. This is most efficiently carried out with the addition of a collisional damping interface between the source and the spectrometer, and this is described in the following paper, having four authors in common with the present invention (Krutchinsky A. N., Chernushevich I. V., Spicer V. L., Ens W., Standing K. G.,


Journal of the American Society for Mass Spectrometry


, 1998, 9, 569-579).




On the other hand, pulsed sources, MALDI sources for example, have usually been coupled directly to TOF mass spectrometers, to take advantage of the discrete or pulse nature of the source. TOF mass spectrometers have several advantages over conventional quadrupole or ion trap mass spectrometers. One advantage is that TOF mass spectrometers can analyze a wider mass-to-charge range than do quadrupole and ion trap mass spectrometers. Another advantage is that TOF mass spectrometers can record all ions simultaneously without scanning, with higher sensitivity than quadrupole and ion trap mass spectrometers. In a quadrupole or other scanning mass spectrometer, only one mass can be transmitted at a time, leading to a duty cycle which may typically be 0.1%, which is low (leading to low sensitivity). A TOP mass spectrometer therefore has a large inherent advantage in sensitivity.




However, TOF mass spectrometers encounter problems with many widely used sources which produce ions with a range of energies and directions. The problems are particularly acute when ions produced by the popular MALDI (matrix-assisted laser desorption/ionization) technique are used. In this method, photon pulses from a laser strike a target and desorb ions whose masses are measured in the mass spectrometer. The target material is composed of a low concentration of analyte molecules, which usually exhibit only moderate photon absorption per molecule, embedded in a solid or liquid matrix consisting of small, highly-absorbing species. The sudden influx of energy is absorbed by the matrix molecules, causing them to vaporize and to produce a small supersonic jet of matrix molecules and ions in which the analyte molecules are entrained. During this ejection process, some of the energy absorbed by the matrix is transferred to the analyte molecules. The analyte molecules are thereby ionized, but without excessive fragmentation, at least in the ideal case.




Because a pulsed laser is normally used, the ions also appear as pulses, facilitating their convenient measurement in a time-of-flight spectrometer. However, the ions acquire a considerable amount of energy in the supersonic jet, with velocities of the order of 700 m/s, and they also may lose energy through collisions with the matrix molecules during acceleration, particularly in high accelerating fields. These and similar effects lead to considerable peak broadening and consequent loss of resolution in a simple linear time-of-flight instrument, where the ions are extracted from the target nearly parallel to the spectrometer axis. A partial solution to the problem is provided by a reflecting spectrometer, which partially corrects for the velocity dispersion, but a more effective technique is the use of delayed extraction, either by itself or in combination with a reflector. In delayed extraction, the ions are allowed to drift for a short period before the accelerating voltage is applied. This technique partially decouples the ion production process from the measurement, making the measurement less sensitive to the detailed pattern of ion desorption and acceleration in any particular case. Even so, successful operation requires careful control of the laser fluence (i.e. the amount of power supplied per unit area) and usually some hunting on the target for a favorable spot. Moreover, the extraction conditions required for optimum performance have some mass dependence; this complicates the calibration procedure and means that the complete range of masses can not be observed with optimum resolution at any given setting. Also, the technique has had limited success in improving the resolution for ions of masses greater than about 20,000 Da. Moreover, it is difficult to obtain high performance MS-MS data in conventional MALDI instruments because ion selection and fragmentation tend to broaden the fragment peak width. The present inventors have realized that these problems can be overcome by abandoning the attempt to maintain the original pulse width, producing instead a quasi-continuous beam with superior characteristics, and then pulsing the injection voltage of the TOF device at an independent repetition rate.




Although coupling to a TOF instrument is used as an example above, problems also arise in coupling MALDI and other pulsed sources to other types of mass spectrometer, such as quadrupole (or other multipole), ion trap, magnetic sector and FTICRMS (Fourier Transform Ion Cyclotron Resonance Mass Spectrometer). Further, it is also desirable to be able to couple MALDI or other pulsed sources to tandem mass spectrometers, e.g. a triple quadrupole or a quadrupole TOF hybrid instrument, which allows MS-MS of MALDI ions to be obtained. Standard MALDI instruments cannot be configured to carry out high performance MS-MS. The dispersion in energy and angle of ions produced by a MALDI source, or similar source, accentuates the difficulty of ion injection. Also, because the residence times of ions in most other types of mass spectrometer are considerably longer than in TOF instruments, the large space charge in the pulse can introduce additional problems. These instruments are all designed to operate with continuous sources, so conversion of the pulsed source to a quasi-continuous one solves most of the problems.




BRIEF SUMMARY OF THE PRESENT INVENTION




Accordingly, it is desirable to provide an apparatus and method enabling a pulse source, such as a MALDI source, to be coupled to a variety of spectrometer instruments, in a manner which more completely decouples the spectrometer from the source and provides a more continuous ion beam with smaller angular and velocity spreads.




More particularly, it is desirable to provide an improved TOF mass spectrometer with a pulsed ion source, in which the energy spread in the ion beam is reduced, in which the source is more completely decoupled from the spectrometer than in existing instruments, in which problems resulting from ion fragmentation are reduced, enabling new types of measurement, and in which the results obtained from the mass spectrometer and its ease of operation are consequently improved.




It is also desirable to provide a TOF mass spectrometer with both continuous and pulsed sources, for example both ESI and MALDI sources, so either source can be selected.




In accordance with the present invention, there is provided a mass spectrometer system comprising:




a pulsed ion source, for providing pulses of analyte ions




a mass spectrometer;




an ion path extending between the ion source and the mass spectrometer; and




an ion transmission device located in said ion path and having a damping gas in at least a portion of the ion path, whereby there is effected at least one of: a reduction in the energy spread of ions emitted from said ion source; conversion of pulses of ions from the ion source into a quasi-continuous beam of ions; and at least partial suppression of unwanted fragmentation of analyte ions.




The invention has particular applicability to time of flight mass spectrometers. As these require a pulsed beam, conventional teaching is that a pulsed source should be coupled maintaining the pulsed characteristics. However, the present inventors have now realised that there are advantages to, in effect converting a pulsed beam into a continuous, or at least quasi-continuous, beam, and than back into a pulsed beam. The advantages are: improvement in beam quality through collisional damping; decoupling of the ion production from the mass measurement; ability to measure the beam current by single-ion counting because it is converted from a few large pulses to many small pulses, for example from about 1 Hz. to about 4 kHz., or a factor of 4,000; compatibility with a continuous source, such as ESI, offering the possibility of running both sources on one instrument.




The invention also has applicability to mass spectrometers that work with or require a continuous beam. Then, the advantage is that a pulsed source can indeed be used with such spectrometers.




Preferably, the ion source provides the analyte for ionization by radiation, and there is provided a source of electromagnetic radiation, more preferably a pulsed laser, directed at the ion source, for generating radiation pulses to cause desorption and ionization of analyte molecules.




Advantageously, the ion source comprises a target material composed of a matrix and analyte molecules in the matrix, the matrix comprising a species adapted to absorb radiation from the radiation source, to promote desorption and ionization of the analyte molecules.




Preferably, the transmission device comprises a multipole rod set. There can be two or more multipole rod sets and means for supplying different RF and DC voltages to the rod sets.




Collisional damping can also be accomplished in a chamber where no RF field is present providing there is enough buffer gas pressure. In this case ions with reduced velocities can be moved to the exit of the chamber by gas flow drag or a DC electrostatic field. Combinations of electrostatic fields, RF fields and gas flow can also be implemented in a collisional damping chamber.




Another advantage of the invention is that the collisional cooling of the ions helps to reduce the amount of fragmentation of the molecular ions. It is usually desirable to produce a simple mass spectrum containing only ions representative of molecular species. In typical MALDI ion sources, therefore, the laser power must be carefully optimized so that it is dose to the threshold of ionization in order to reduce fragmentation. The inventors have observed, however, that the presence of a gas around the sample surface greatly assists in reducing fragmentation, even at relatively high laser power. Presumably this is due to the effect of collisions with gas molecules which remove internal energy-from the desorbed species before they can fragment. This means that the laser power can be increased in order to improve the ion signal strength, without causing excessive decomposition. The inventors have observed that the amount of fragmentation is decreased as the pressure is increased up to at least approximately 1 torr. Higher pressures may be even more advantageous, but electric fields may be required to avoid clustering reactions at higher pressure.




The mass spectrometer system can include a continuous ion source, and means for selecting one of the pulsed ion source and the continuous ion source, and this then provides the characteristics of two separate instruments in one instrument. The two ion sources can comprise a MALDI source and an ESI source.




Another aspect of the present invention provides a method of generating ions and delivering ions to a mass spectrometer, the method comprising the steps of




(1) providing an ion source;




(2) causing the ion source to produce pulses of ions;




(3) providing an ion transmission device along an ion path extending from the ion source and providing the ion transmission device with a damping gas in at least a portion of the ion path, to effect at least one of a reduction in the energy spread of ions emitted from said ion source; conversion of pulses of ions from the ion source into a quasi-continuous beam of ions; and at least partial suppression of unwanted fragmentation of analyte ions; and




(4) passing ions from the ion transmission device into the mass spectrometer for mass analysis.




The gas pressure of the damping gas can be in the range from about 10


−4


Torr up to at least 760 Torr. Preferably, step (3) comprises providing an RF rod set within the transmission device. Further, a DC field can be provided between the ion source and the spectrometer to promote movement of ions towards the spectrometer.




The method can include providing two or more rod sets in the ion transmission device, and operating at least one rod set with a DC offset to enable selection of ions with a desired mass-to-charge ratio. A potential difference can be provided between two adjacent rod sets sufficient to accelerate ions into the downstream rod set, to cause collisionally induced dissociation in the downstream rod set.




When a pulsed laser is used, for each laser pulse, a plurality of pulses of ions are delivered into the time-of-flight mass spectrometer.




The ions can first pass through one or more differentially pumped regions that provide a transition from the pressure at the ion source to pressure in the spectrometer. The ion source may be at atmospheric pressure or at least at a pressure substantially higher than that in downstream quadrupole stages and in the mass spectrometer. At least one of these regions can be without any rod set and ion motion towards the mass spectrometer is then driven by gas flow and/or an electrostatic potential.











BRIEF DESCRIPTION OF THE DRAWING FIGURES




For a better understanding of the present invention and to show more clearly how it may be carried into effect, reference will now be made, by way of example, to the accompanying drawings, which show preferred embodiments of the present invention and in which:





FIG. 1

shows a block diagram of a mass spectrometer system;





FIG. 2

is a schematic diagram showing a MALDI-TOF mass spectrometer with orthogonal injection of the MALDI ions into the spectrometer through a collisional damping interface (quadrupole ion guide) according to the present invention;





FIG. 3

shows a mass spectrum of a mixture of several peptides and proteins leucine-enkephalin-Arg (Le-R), substance P (Sub P), melittin (ME), CD4 fragment


25


-


58


(CD4), and insulin (INS) ) produced in the spectrometer of

FIG. 2

;





FIG. 4

shows plots of transit times through the interface for different ions;





FIG. 5

shows a mass spectrum of substance P;





FIG. 6

shows a mass spectrum of a tryptic digestion of citrate synthase;





FIG. 7A

shows a schematic of part of spectrometer of

FIG. 2

, showing the collisional interface and indicating applied voltages;





FIGS. 7B and 7C

show different operating regimes of the mass spectrometer of

FIG. 2

;





FIGS. 8A

,


8


B,


8


C, and BD are mass spectra obtained from substance P recorded in the different operation regimes, according to

FIGS. 7B and 7C

;





FIG. 9

shows the behaviour of the ion current from a single target spot as a function of time; and





FIG. 10

shows schematically combined ESI and MALDI sources for a mass spectrometer.





FIG. 11

shows a MALDI-QqTOF mass spectrometer utilizing a collisional damping interface including extra ion manipulation stages which are added between the interface and the time-of-flight mass spectrometer;





FIG. 12

shows mass spectra obtained on a MALDI-QqTOF of

FIG. 11

in a single MS and MS-MS modes;





FIG. 13

shows an alternative collisional damping setup for the MALDI-QqTOF mass spectrometer of

FIG. 11

, where ion velocities are partially damped in a region without RF fields;





FIG. 14

shows an experimental apparatus which was used to investigate the effect of pressure and electric field strength on the MALDI ion current, and





FIG. 15

is a graph showing the total ion current produced by MALDI source shown in

FIG. 14

as a function of voltage difference applied at different pressures in the chamber.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




The first embodiment shown in

FIG. 1

is a block diagram of a general mass spectrometer system. Here


1


represents any sort of pulsed ion source (for instance MALDI),


2


is a collisional focusing chamber or region filled with a buffer gas and with a multipole


3


driven at some RF voltage. This is followed by an optional manipulation stage


4


and then a mass analyzer


5


. The collisional ion guide


3


, in accordance with the present invention, spreads the pulsed ion beam in time, and improves its beam quality (i.e. space and velocity distributions) by damping the initial velocity and focusing the ions toward the central axis. The beam is then quasi-continuous and may enter an optional manipulation stage


4


, where ions can be subjected to any sort of further manipulation. Finally the resultant ions are analyzed in the mass analyzer


5


.




A simple example of further manipulation in stage


4


is dissociation of the ions by collisions in a gas cell, so that the resulting daughter ions can be examined in the mass analyzer. This may be adequate to determine the molecular structure of a pure analyte. If the analyte is a complex mixture, stage


4


needs to be more corn plicated. In a triple quadrupole or a QqTOF instrument (as disclosed in A. Shevchenko et al, Rapid Commun. Mass Spectrom. 11, 1015, (1997)), stage


4


would include a quadrupole mass filter for selection of a parent ion of interest and a quadrupole collision cell for decomposition of that ion by collision-induced dissociation (CID). Both parent and daughter ions are then analyzed in section


5


, which is a quadrupole mass filter in the triple quadrupole, or a TOF spectrometer with orthogonal injection in the QqTOF instrument. In both cases stages


1


and


2


would consist of a pulsed source and a collisional damping ion guide.




It will be appreciated that the collisional focusing chamber


2


is shown with a multipole rod set


3


, which could be any suitable rod set, e.g. a quadrupole, hexapole or octopole. The particular rod set selected will depend upon the function to be provided.




Alternatively, a radio frequency ring guide could be used for the collisional focusing device, and ion creation could be performed within the volume defined by the radio frequency field in order to contain the ions.





FIG. 2

shows a preferred embodiment of a MALDI-TOF mass spectrometer


10


according to the present invention. The spectrometer


10


includes a conventional MALDI target probe


11


, a shaft seal chamber


12


, pumped in known manner, and a target installed in the target-holding electrode


13


. A mixture of the sample to be investigated and a suitable matrix is applied to the sample probe following the usual procedure for preparing MALDI targets. A pulsed laser


14


is focused on the target surface


15


by lens


16


, and passes through a window


17


. The laser beam is indicated at


20


, and the laser is run at a repetition rate of anywhere from below a few Hz to tens of kHz, more specifically in this embodiment tested at a rate of 13 Hz. An inlet


18


is provided for nitrogen or other neutral gas. Each laser shot produces a plume of neutral and charged molecules. Ions of the sample analyte are produced and entrained in the plume which expands into vacuum chamber


30


, which contains two quadrupole rod sets


31


and


32


. Chamber


30


is pumped by a pump (not shown) connected to port


34


to about 70 mTorr but the pressure can be varied over a substantial range by adjusting the flow of gas through a controlled leak valve


18


. Pressures of up to 1 atmosphere could also be used in the ion generation region, by putting the ionization region in a chamber which is upstream of chamber


30


, and providing a small aperture through which ions are pulled into chamber


30


. Lower pressures could be used, and an important characteristic is the product of pressure and rod length. Thus, a total length x pressure value of at least 10.0 mTorr-cm could be used, although a value of 22.5 mTorr-cm, as in U.S. Pat. No. 4,963,736, is preferred. The gas in chamber


30


(typically nitrogen or argon or other suitable gas, preferably an inert gas) will be referred to as a damping gas or cooling gas or buffer gas.




In the embodiment tested, the quadrupole rod sets


31


and


32


were made of rods 4.45 cm in length and 11 mm in diameter, and were separated by 3 mm, i.e. the spacing between rods on adjacent corners of the rod set. The quadrupoles


31


and


32


are driven by a power supply which provides operating sine wave frequencies from 50 kHz to 2 MHz, and output voltages from 0 to 1000 volts peak-to-peak. Typical frequencies are 200 kHz to 1 MHz, and typical voltage amplitudes are 100 to 1000 V peak-to-peak. Both quadrupoles are driven by the same power supply through a transformer with two secondary coils. Different amplitudes may be applied to the quadrupoles by using a different number of turns in the two secondary coils. D.C. Bias or offset potentials are applied to the rods of quadrupoles


31


and


32


and to the various other components by a multiple-output power supply. The RF quadrupoles


31


and


32


, with the damping gas between their rods can be run in an RF-only mode, in which case they serve to reduce the axial energy, the radial energy, and the energy spreads, of the ions which pass through it, as will be described. This process substantially spreads the plume of ions out along the ion path, changing the initial beam, pulsed at about 13 Hz, into a quasi-continuous beam as described in more detail below. The first quadrupole


31


, can also be run in a mass-filtering mode by the application of a suitable DC voltage. The second quadrupole


32


can then be used as a collision cell (and an RP-guide) in collision-induced dissociation experiments (see below).




From chamber


30


, the ions pass along an ion path


27


and through a focusing electrode


19


and then pass through orifice


38


, into a vacuum chamber


40


pumped by a pump (not shown) connected to a port


42


. There, the ions are focused by grids


44


through a slot


46


into an ion storage region


48


of a TOF spectrometer generally indicated at


50


.




In known manner, ions are extracted from the storage region


48


and are accelerated through a conventional accelerating column


51


which accelerates the ions to an energy of approximately 4000 electron volts per charge (4 keV). The ions travel in a direction generally orthogonal to the ion path


27


between the ion storage region, through a pair of deflection plates


52


. The deflection plates


52


can serve to adjust the ion trajectories, so that the ions are then directed toward a conventional electrostatic ion mirror


54


, which reflects the ions to a detector


56


at which the ions are detected. The ions are detected using single-ion counting and recorded with a time-to-digital converter (TDC). The accelerating column


51


, plates


52


, mirror


54


and detector


56


are contained in a main TOF chamber


58


pumped to about 2×10


7


Torr by a pump (not shown) connected to a port


60


.




The use of orthogonal-injection of MALDI ions from source


13


into the TOF spectrometer


50


has some potential advantages over the usual axial injection geometry. It serves to decouple the ion production process from the mass measurement to a greater extent than is possible in the usual delayed-extraction MALDL This means that there is greater freedom to vary the target conditions without affecting the mass spectrum, and the plume of ions has more time to expand and cool before the electric field is applied to inject them into the spectrometer. Some improvement in performance might also be expected because the largest spread in velocities is along the ejection axis, i.e. the ion path


27


, normal to the target, which in this case is orthogonal to the TOF axis. However, orthogonal injection of MAIDI ions into the TOF


50


without collisional cooling has several problems which appear to make the geometry impractical, namely:




(1) The radial energy distribution, while much smaller than the axial energy is still sufficient to cause substantial spreading and expansion of the beam as it leaves the quadrupole rod set


32


and travels toward the TOF axis. The spatial spread of the beam along the TOF axis limits the resolution. The effect can be reduced with collimation but only at a significant sacrifice in sensitivity; a collimating slit must be placed sufficiently far from the TOF axis to avoid distorting the extraction field, and so the target must be placed far enough from the collimation slit to produce a reasonably parallel beam;




(2) The axial velocity of the ions, i.e. velocity along the ion path


27


, in the plume is largely independent of mass which means the energy is mass dependent. Since the axial energy determines the direction of the trajectory after acceleration into the TOF spectrometer, instrumental acceptance (or acceptance by the TOF spectrometer) is mass dependent; i.e. there is mass disc mination. The same effect is observed when ESI ions are injected without collisional cooling as explained in detail in the prior publication mentioned above; and




(3) The width of the axial energy distribution is comparable in magnitude with the aial energy itself, so the beam spreads out along its axis by an amount comparable to the separation between the target and the TOF axis. The size of the aperture which admits ions from the storage region into the spectrometer must clearly be much smaller than this to maintain a uniform extraction field, particularly if a slit is placed between the target and the TOF axis. This further reduces the sensitivity.




In delayed extraction MALDI in the usual axial geometry, i.e. not the orthogonal configuration shown, acceptance is nearly complete, and while the largest velocity spread is along the TOF axis, the well-defined target-plane perpendicular to the TOF axis allows a combination of time-lag focusing (delayed extraction with optimized values of delay and applied voltage) and electrostatic focusing (optimized value of the reflector voltage) in an ion mirror to produce resolution well above 10,000 in some cases.




Experiments carried out by the present inventors suggest that competitive resolution could not be obtained with an acceptable signal using orthogonal injection, unless collisional cooling according to the present invention is employed. Moreover, some disadvantages of delayed-extraction MALDI—the dependence of optimum extraction conditions on mass, and the more complex calibration required—are still present in orthogonal injection MALDI without cooling although to a lesser extent than with axial injection.




The introduction of an RF quadrupole or other multipole with collisional cooling of the ions between the MALDI target and the orthogonal injection geometry avoids the problems described above while offering additional advantages. These are detailed below with reference to the remaining figures.




By reducing the radial energies of the ions, an approximately parallel beam can be produced, greatly reducing the losses that result from collimation before the ions enter the storage region. This allows the use of a larger entrance aperture to the TOF spectrometer


50


, further reducing losses. By reducing the axial energies of the ions, and then reaccelerating them to a uniform energy, the mass discrimination mentioned above is not present. The uniform energy distributions of the ions after cooling remove any mass dependence on the optimum extraction conditions and allow the simple quadratic relation between TOF and mass to be used for calibration with two calibrant peaks.

FIG. 3

shows a spectrum of an equimolar mixture of several peptides and proteins from mass 726 to 5734 Da in an α-cyano-4-hydroxy cinnamic acid matrix. The spectrum was acquired in a single run and shows uniform mass resolution (M/ΔM


FWHM


) of about 5000 throughout the mass range. Using a simple external calibration with substance P and melittin, the mass determination for each of the molecular ions is accurate within about 30 ppm. Here, the peaks for the various substances are identified as: peak


60


for Leucine-enkephalin; peak


61


for substance P; peak


62


for Melittin; peak


63


for CD4 fragment


25


-


28


; and peak


64


for insulin. All peaks are identified both on the overall spectrum and as an enlarged partial spectrum. The resolution demonstrated in

FIG. 3

is rather dose to the resolution obtainable with the same instrument using an ESI source. In the present embodiment, the entrance orifice was made slightly larger than normally used in ESI, approximately 1 mm diameter as compared to a normal diameter of around ⅓ mm, to make adjustments easier in the preliminary experiments. This does not appear to have been necessary so it is reasonable to expect improved resolution if a smaller orifice is used. Resolution up to 10,000 has been obtained with ESI ions in the same instrument and in the MALDI-QqTOF instrument described below.




The decreasing relative intensity of the molecular ions with mass is to some extent a reflection of the decreasing detection efficiency with increasing mass. Detection efficiency depends strongly on velocity, which decreases with mass for singly-charged ions at a given energy. In this embodiment the energy of singly charged ions is only about 5 keV (compared to 30 keV in typical MALDI experiments), so the detection efficiency limits the practical range of application to less than about 6000 Da. The relative intensities of the molecular ion peaks in

FIG. 3

is consistent with that observed from the same sample when analyzed in a conventional MALDI experiment using 5 kV acceleration. The detection efficiency in the present embodiment can be increased by increasing the voltage which accelerates the ions into the spectrometer, or by increasing the voltage on the detector.




As mentioned above, the collisional cooling spreads the ions out along the ion beam axis changing the initial beam pulsed at 13 Hz into a quasi-continuous beam. This is illustrated in

FIG. 4

which shows the count rate as a function of time after the laser pulse; i.e. the distribution of transit times through the ion guide. The width of the time distribution is on the order of 20 ms which represents an increase in the time spread by a factor of at least 10


7


as each laser pulse is about 2 ns long. It will be appreciated that it is not necessary to produce a time distribution of the order of 20 ms; for example the quasi-continuous pulse could be as short as 0.1 ms. Dispersion along the axis is a disadvantage in orthogonal-injection MALDI without cooling, but with the present invention, since optimum extraction conditions do not depend on the time delay after the laser shot, multiple injection pulses into the TOF storage region


48


can be used for each laser shot. In the present embodiment, 256 injection pulses into the TOF storage region


48


were used for every laser shot. The losses are then determined by the duty cycle of the instrument which in this case is about 20%. The duty cycle is the percentage of the time that ions can be injected from the storage region into the TOF spectrometer; here, it effectively means the fraction of the time, the TOF storage region


48


is available to accept ions. A quasi-continuous-beam is in fact an advantage in this mode of operation. Approximately 10


4


to 10


6


ions are ejected from the target probe with every laser shot at a repetition rate of 13 Hz, but as a result of spreading along the beam axis or ion path


27


(and some losses) approximately 2 to 5 ions are injected into the instrument with every injection pulse less than one ion on average of a particular species. This allows single-ion counting to be used with a TDC (Time to Digital Converter), which makes the combination of high timing resolution (0.5 ns) and high repetition rate (essential for maximum duty cycle) technically much simpler than using a transient recorder which is necessary in conventional MALDI experiments. In addition, the use of single-ion counting eliminates problems with detector shadowing from intense matrix peaks, and problems with peak saturation which require attention in conventional MALDI because of the strong dependence of the signal on laser fluence and the shot-to-shot variation. Finally, single-ion counting places much more modest demands on the detector and amplifier time resolution because the electronic reduction and digitization of the pulse is quite insensitive to the detector pulse shape.




In

FIG. 4

, four graphs are shown of the count rate against time, for leucine-enkephalin shown at


70


, substance P shown at


72


, Melittin shown at


74


and insulin shown at


76


. Additionally, for each of these substances, graphs or spectra


71


,


73


,


75


and


77


, are inserted showing normal TOF spectra, similar to FIG.


3


.




Assuming 10


4


ions of a single molecular ion species are produced with each laser shot, the transmission efficiency of the RF-quadrupole is in the range of 10%. Taking account of the duty cycle, about 2% of the ions produced at the target are detected in the mass spectrometer. This represents significant losses compared to the conventional axial MALDI experiment in which transmission is probably 50% or more. However, from the point of view of data rate, the losses can be compensated to a large extent by the higher repetition rate and higher fluence of the laser. In these experiments, the repetition rate was 13 Hz, but can easily be increased to 20 Hz with the current laser, or in principle up to at least 100 Hz before the counting system becomes saturated. In contrast, the usual MALDI experiment is run at about 1 or 2 Hz. The laser fluence in a conventional MALDI experiment must be kept close to threshold to achieve the best performance, the threshold being the minimum energy necessary to cause vaporization of the sample to produce a useful signal using a conventional transient recording with analog to digital conversion. In the present invention, the laser fluence can be increased to the fluence at which the ion production process saturates. As the quadrupole serves to smooth out the ion burst produced by the laser, a short intense burst of ions can be accepted. From the point of view of absolute sensitivity, it seems that the independence of the spectrum on laser conditions (see below) allows more efficient usage of the sample deposited on the target Using fluence several times higher than threshold produces ions until the matrix is completely removed from the target probe.

FIG. 5

shows that the practical sensitivity achieved with substance P is in the same range as that obtainable with conventional MALDI. Five femtomoles of substance P were applied to the target using 4HCCA as the matrix. The left hand side of the spectrum is indicated at


80


, and the right hand side is shown enlarged by a factor of


44


as indicated at


81


. A portion of this spectrum is shown enlarged at


82


showing the molecular ion (MH


+


).





FIG. 6

shows the spectrum


85


obtained from a tryptic digest of citrate synthase again showing the uniform mass resolution over the mass range; the inset


86


shows the spectrum obtained from 20 fmoles applied to the target.




These results indicate that the performance of the invention for peptides is comparable to conventional MALDI experiments but with the advantage of a mass-independent calibration, and a simple calibration procedure. However, the most important advantages result from the nearly complete decoupling of the ion production from the mass measurement. In a conventional MALDI experiment, the location of the laser spot on the target and the laser fluence and location must be carefully selected for optimum performance, and these conditions are typically different for different matrices and even for different target preparation methods. The situation was improved with the introduction of delayed extraction but even so, many commercial instruments have implemented software to adjust laser fluence, detector gain, and laser position, and to reject shots in which saturation occurs. None of these techniques are necessary with the present invention. The performance obtained shows no dependence on target or laser conditions. The laser is simply set to maximum fluence (several times the usual threshold) and left while the target is moved to a fresh position occasionally. This means that alternative targets can easily be tried (including insulating targets), and alternative lasers with different wavelengths or pulse widths can be used.




The decoupling of the ion production from the mass measurement also provides an opportunity to perform various manipulations of the ions after ejection but before mass measurement. One example is parent ion selection and subsequent fragmentation (MS/MS).





This is most suitably done with an additional quadrupole mass filter as described below, but even in the present embodiment of

FIG. 2

, some selectivity and fragmentation is possible.





FIGS. 7A

,


7


B and


7


C show three different modes of operation of the instrument shown in FIG.


2


. The reference numerals of

FIG. 2

are provided along the z axis to indicate correspondence between potential level and the different elements of the apparatus. Voltages for the quadrupole sections


31


,


32


are indicated respectively at U


1


(t) and U


2


(t).





FIG. 7A

shows the simple collisional ion guide mode that was used in obtaining the results shown in

FIGS. 4-6

. Here the same amplitudes of RF voltage and no DC offset voltages are applied to different sections of the quadrupole. Potential differences in the longitudinal direction are kept small to minimize fragmentation due to CID.





FIG. 7B

shows a mass filtering mode, which is analogous to the same filtering mode implemented in conventional quadrupole mass filters. Here a DC offset voltage V is added to the first section of the quadrupole to select an ion of interest, while the second section again acts as an ordinary ion guide since there is no CID because of the small potential difference between the sections. The amplitude of the voltage applied in the second quadrupole section


32


is only one third of the voltage applied in the first section


31


.





FIG. 7C

is an MS-MS mode which differs from the mode of

FIG. 7B

by a higher potential difference between the quadrupole sections


31


,


32


, so ions are accelerated in that region and enter the second section with high kinetic energy, the additional energy being indicated as Δ collision energy. In that case the second section acts as an collision cell and parent ions are decomposed there by collisions with the buffer gas (CID). Again, the amplitude of the RF voltage in the second section is only one third of the amplitude of the RF voltage in the first section, which allows daughter ions much lighter than the parent ions to have stable trajectories and to be transmitted through the second quadrupole.





FIG. 8

shows examples of the spectra obtained in the different modes illustrated in

FIG. 7

, and in particular gives an example of possible beam manipulation. All the spectra were acquired using the same initial sample.





FIG. 8A

is a mass spectrum where ions were cooled in a collisional focusing ion guide (the mode of FIG.


7


A).





FIG. 8B

is an example where ions of interest were selected in the first quadrupole


31


and cooled in the second quadrupole


32


section (the mode of FIG.


7


B). Once ions of interest have been selected, they can be used for fragmentation in CID to obtain detailed information on composition and structure.





FIG. 8C

presents an MS/MS spectrum of substance P obtained in this way. Molecular ions of substance P are selected in the first quadrupole section and fragmented by collisions in the second quadrupole section (according to the mode of FIG.


7


C). The potential difference, A collision energy, between the first and second quadrupoles was 100V. The intensities of the fragment ions were small in comparison with intensity of the primary ion so the region inside dotted lines is expanded by a factor of


56


.

FIG. 8D

shows the spectrum obtained in the same mode but where the potential difference between the quadrupoles


31


,


32


was 150 V. In this case, more fragment ions are observed and the parent ion peak is substantially reduced.





FIG. 9

shows how long a signal from the same spot on a MALDI target can last. In this experiment, a given spot was irradiated by a series of shots from the laser, running at 13 Hz. The laser intensity was two or three times the “threshold” intensity. On average the sample lasted for about one minute. The shape of the curve suggests that the laser shots dig deeper and deeper into the sample until it is exhausted. At that point the laser irradiates the metallic substate, so no signal is observed.




In the past it has not been possible to use both continuous sources, such as electrospray ionization (ESI), and pulsed sources, such as MALDI, in the same instrument, which would have significant advantages. To the inventors' knowledge, the only successful ESI-TOF instruments to date have been the orthogonal injection spectrometers (by the present inventors, Dodonov, and now the commercial machines by PerSeptive and others), so it appears that orthogonal injection is necessary for ESI-TOF, with or without collisional damping, although the former improves the situation, as detailed in Krutchinsky AN., Chernushevich I. V., Spicer V. L., Ens W., Standing K. G.,


Journal of the American Society for Mass Spectrometry


, 1998, 9, 569-579. Up to now, attempts to put MALDI on an orthogonal injection instrument have been without collisional damping (for example by the present inventors and by Guilhaus' and both gave unpromising results). The present invention enables two such sources to be available in one instrument. Here, the MALDI probe


11


in

FIG. 2

can be replaced by an ESI source to enable measurement of ESI spectra in the instrument. The instrument would then be essentially the same as the one illustrated in the paper Krutchinsky A. N., Loboda A. V., Spicer V. L., Dworschak R., Ens W., Standing K. G.,


Rapid Commun. Mass Spectrom


. 1998, 12, 508-518. This change could of course be carried out by actually taking off one source and replacing it by the other, but a number of more convenient arrangements can be provided.




For instance

FIG. 10

shows a further embodiment where the electrospray ion source


94


is attached to the input of a collisional damping interface


92


, including a quadrupole, or other multipole, rod set


93


. A MALDI ion source


94


is introduced on a probe


95


that enters from the side, and can be displaced in and out; for this purpose, a shaft end


96


is slidingly and sealingly fitted into the housing of the collisional interface


92


. The MALDI ion source


94


is similar to the one shown in

FIG. 2

except in this case the sample is deposited onto a flat surface machined on the side of the probe shaft


95


, instead of onto the end of a cylindrical probe. The sample is irradiated by a laser with corresponding optics, generally indicated at


97


, and ions are transmitted to a spectrometer indicated at


98


. When the ESI source is operating, shaft


96


is pulled out far enough to clear the path of the ESI ions. When the MALDI ion source


94


is operating the shaft


96


is inserted back so the MALDI target


94


is in the central position.




Presently, MALDI and ESI techniques are often considered to be complementary methods for biochemical analysis, so many biochemical or pharmaceutical laboratories have two instruments in use. Obviously there are significant benefits of combining both ion sources in one instrument, as in the embodiments above. In particular, the cost of a combined instrument is expected to be little more than half the cost of two separate instruments. In addition similar procedures for ion manipulation, detection and mass calibration could be used, since the ion production is largely decoupled from the ion measurement. This would simplify the analysis and processing of the separate spectra and their comparison.




The ability the use both MALDI and ESI sources on a single instrument is not restricted to the spectrometer shown in

FIG. 1

, but is applicable to any mass spectrometer with a collisional damping interface. In particular it is applicable to the QqTOF instrument discussed above and described in more detail below.




While specific embodiments of the invention have been described, it will be appreciated that a number of variations are possible within the scope of the present invention. Thus, the apparatus could include a single multipole rod set as shown in

FIG. 1

, or two rod sets as shown in FIG.


2


. While quadrupole rod sets are preferred, other rod sets, such as hexapole and octopole are possible, and the rod set can be selected based on the known characteristics of the different rod sets. Additionally, it is possible that three or more rod sets could be provided. Further while

FIG. 2

shows the two rod sets,


31


and


32


provided in a common chamber, the rod sets could, in known manner, be provided in separate chambers operating at different pressures to enable different operations to be preformed. Thus, to perform conventional mass selection, there could be one chamber operating at a very low pressure so that there is little or no collisional activity between the ions and the damping gas. Further, the pressure of the gas could be varied, between different chambers, to meet the requirements for collisional damping, where a relatively large number of collisions are desired as opposed to collision induced fragmentation, where excessive collisions are not desirable.




Reference will now be made to FIG.


11


. For simplicity and brevity, components common with the apparatus or spectrometer of

FIG. 2

are given the same reference numeral, and a description of these components is not repeated.




Here, the MALDI target is provided at


100


and generates an ion beam indicated at


102


. The MALDI target


100


is located in a differentially pumped chamber


104


connected to a pump as indicated at


106


in known manner. A first rod set Q


1


is located in the chamber


104


. An aperture and an interquad aperture plate


108


provides communication through to a main chamber


110


. Again, in known manner a pump connection is provided at


112


.




Within the main chamber


110


, there is a short rod set


111


, sometimes referred to as “stubbies”, provided for the purpose collimating the beam. A first quadrupole rod set in the chamber


110


is indicated at Q


1


and a second rod set at Q


2


.




The rod set Q


2


is located in a collision cell


114


provided with a connection, indicated at


116


, for a collision gas.




On leaving the collision cell


114


, ions pass through a grid and then an aperture into the storage region


48


of the TOF instrument, again indicated at


50


. Here, a TOF instrument


50


is provided with a liner


118


around the flight region.




Here, the differentially pumped chamber


104


is maintained at pressure of around 10


−2


torr. The main chamber


110


is maintained at a pressure of around 10


−5


torr, while the collision cell


114


is maintained at a pressure of around 10


−2


torr. In known manner, the pressure in the collision cell


114


can be controlled by controlling the supply of nitrogen to it through connection


116


.




Here, collisional damping of ions generating from the MALDI target


100


is accomplished by the relatively high pressure in the differentially pumped chamber


104


. Ions then pass through into the quadrupole rod set Q


1


, which can be operated to mass select a desired ion.




The mass selected ion is then passed to the collision cell


114


, and the rod set Q


2


; potentials are such that ions enter the rod set Q


2


with sufficient energy to effect collision induced dissociation. The fragment ions generated by this CID are then passed into the TOF instrument


50


for analysis.




Typical spectra obtained in a MALDI-QqTOF instrument are presented in FIG.


12


. The spectrum shown in

FIG. 12



a


was obtained when Q


1


was operated in a wide band mode, so all ions produced in the MALDI ion source were delivered to the TOF mass analyzer. Three peaks (


121


,


122


,


123


) in

FIG. 12



a


correspond to ions of leucine-enkephalin, substance P and mellitin respectively. When Q


1


is operated in selection mode, the spectrum shown in

FIG. 12



b


is observed. Here Q


1


was set to select only ions of substance P (peak


122


) located at m/z around 1347.7. Note that no other peaks or background were observed in the mass spectrum, as conditions in Q


1


prevented transmission of other ions.

FIG. 12



c


shows the result of selection at substance P (peak


122


) and collisional induced dissociation of the substance F ions. In this case Q


1


was set to selection mode as in

FIG. 12



b


but the potential difference between Q


0


and Q


2


was increased to promote CID. The peaks observed in the lower mass region are fragments of the substance P ions.




Referring now to

FIG. 13

, again, like components are given the same reference numerals as in

FIGS. 11 and 2

.




In

FIG. 13

, the MALDI source is indicated at


130


and the ion beam at


132


. Here, a sampling cone


134


was placed between the MALDI source


130


and the rod set Q


0


. This effectively separates the differentially pumped region into a first differentially pumped region


136


and a second differentially pumped region


138


. These differentially pumped regions


136


,


138


are provided with respective connections


137


and


139


to pumps.




As before, a short set of rods or stubbies


140


together with a rod set Q


1


are provided in a chamber here indicated at


142


.




The alternative collisional damping setup of

FIG. 13

has been implemented in MALDI-QqTOF instrument but can be used with any configuration of collisional RF ion guides such as the simpler geometry described earlier and shown in FIG.


2


. In the

FIG. 13

configuration, some collisional damping is accomplished in the first region or chamber


136


where almost no RF field is present. Nitrogen is supplied to this chamber


136


, as in

FIG. 2

, and is also supplied to the chamber


104


in

FIG. 11

; this is comparable to

FIG. 2

, although the nitrogen connection is not shown in these later figures. The pressure in this first differentially pumped region or chamber


136


is typically higher than in the second differentially pump chamber


138


and ions are dragged towards the entrance of Q


0


by the combination of a DC field and the gas flow. In spite of the higher pressure, no significant change in the spectrum was observed. The signal Intensity in this configuration was essentially the same as in the configuration shown in FIG.


11


, provided the diameter of the cone opening was larger than 1 mm. With a smaller diameter opening, the signal intensity drops down, presumably because the size of the opening becomes smaller than the diameter of the ion beam.





FIG. 14

shows an apparatus used to study the effect of pressure and electric field on the intensity of the signal produced by MALDI. MALDI ions are generated at a target


150


by a pulsed UV-laser beam


152


. The laser beam


152


passed through a lens


154


and a window


156


, as in the spectrometer configurations described above. The window


156


is provided in a chamber


158


, whose internal pressure can be varied in known manner (connections for pumps, etc. are not shown). A potential difference U between the target


150


and a collector electrode


162


is provided by a power supply


160


.




Thus, ions generated at the target


150


travel, as indicated at


164


, to the collector electrode


162


. An approximately homogeneous electric field is established in the region between the target


150


and the collector electrode


162


. The field strength is proportional to the applied potential difference U. The distance between the target and collector was about 3 mm. The laser was operated at 20 Hz and the total ion current was measured using an amplifier


166


.





FIG. 15

shows the dependence of the total ion current produced by MALDI at different pressures inside the chamber


158


as a function of the voltage applied between the target


150


and the collector electrode


162


shown in FIG.


14


. It is apparent that ion yield decreases with increasing pressure, and there is a significant drop in yield between 14 and 47 Torr. However, the drop in yield can be recovered by raising the electric field strength.




These results indicate that the MALDI technique can be used at any desirable pressure, even out of the range in which RF collisional multipoles can be implemented. Collisional damping of the ions can be accomplished at least partially in the region with no RF field adjacent to the sample taget. The inventors believe that similar dependence of pressure and electric field can be observed in some other pulsed ion sources and these ionization techniques can be also used with collisional damping at higher pressures.



Claims
  • 1. A mass spectrometer system comprising:a pulsed ion source, for providing pulses of analyte ions; a mass spectrometer; an ion path extending between the ion source and the mass spectrometer; and an ion transmission device located in said ion path and having a damping gas in at least a portion of the ion path, whereby there is effected at least one of: a reduction in the energy spread of ions emitted from said ion source; conversion of pulses of ions from the ion source into a quasi-continuous beam of ions; at least partial suppression of unwanted fragmentation of analyte ions; and spreading ions spatially and temporally along the ion path, whereby peak current and space charge effects are reduced.
Priority Claims (1)
Number Date Country Kind
2227806 Jan 1998 CA
REFERENCE TO RELATED APPLICATIONS

This application is a continuation of application Ser. No. 09/989,882 filed Nov. 21, 2001, now U.S. Pat. No. 6,680,475 which is a continuation of application Ser. No. 09/236,376 filed Jan. 25, 1999, now U.S. Pat. No. 6,331,702.

US Referenced Citations (2)
Number Name Date Kind
6504150 Verentchikov et al. Jan 2003 B1
6617577 Krutchinsky et al. Sep 2003 B2
Continuations (2)
Number Date Country
Parent 09/989882 Nov 2001 US
Child 10/758511 US
Parent 09/236376 Jan 1999 US
Child 09/989882 US