Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, via splitting approaches for integrated circuit structure fabrication and the resulting structures.
For the past several decades, the scaling of features in integrated circuits has been a driving force behind an ever-growing semiconductor industry. Scaling to smaller and smaller features enables increased densities of functional units on the limited real estate of semiconductor chips. For example, shrinking transistor size allows for the incorporation of an increased number of memory or logic devices on a chip, lending to the fabrication of products with increased capacity. The drive for ever-more capacity, however, is not without issue. The necessity to optimize the performance of each device becomes increasingly significant.
Variability in conventional and currently known fabrication processes may limit the possibility to further extend them into the 15 nanometer node or sub-15 nanometer node range. Consequently, fabrication of the functional components needed for future technology nodes may require the introduction of new methodologies or the integration of new technologies in current fabrication processes or in place of current fabrication processes.
Split via structures coupled to conductive lines are described. In the following description, numerous specific details are set forth, such as specific integration and material regimes, in order to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to one skilled in the art that embodiments of the present disclosure may be practiced without these specific details. In other instances, well-known features, such as integrated circuit design layouts, are not described in detail in order to not unnecessarily obscure embodiments of the present disclosure. Furthermore, it is to be appreciated that the various embodiments shown in the Figures are illustrative representations and are not necessarily drawn to scale.
The following detailed description is merely illustrative in nature and is not intended to limit the embodiments of the subject matter or the application and uses of such embodiments. As used herein, the word “exemplary” means “serving as an example, instance, or illustration.” Any implementation described herein as exemplary is not necessarily to be construed as preferred or advantageous over other implementations. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description.
This specification includes references to “one embodiment” or “an embodiment.” The appearances of the phrases “in one embodiment” or “in an embodiment” do not necessarily refer to the same embodiment. Particular features, structures, or characteristics may be combined in any suitable manner consistent with this disclosure.
Terminology. The following paragraphs provide definitions or context for terms found in this disclosure (including the appended claims):
“Comprising.” This term is open-ended. As used in the appended claims, this term does not foreclose additional structure or operations.
“Configured To.” Various units or components may be described or claimed as “configured to” perform a task or tasks. In such contexts, “configured to” is used to connote structure by indicating that the units or components include structure that performs those task or tasks during operation. As such, the unit or component can be said to be configured to perform the task even when the specified unit or component is not currently operational (e.g., is not on or active). Reciting that a unit or circuit or component is “configured to” perform one or more tasks is expressly intended not to invoke 35 U.S.C. § 112, sixth paragraph, for that unit or component.
“First,” “Second,” etc. As used herein, these terms are used as labels for nouns that they precede, and do not imply any type of ordering (e.g., spatial, temporal, logical, etc.).
“Coupled”—The following description refers to elements or nodes or features being “coupled” together. As used herein, unless expressly stated otherwise, “coupled” means that one element or node or feature is directly or indirectly joined to (or directly or indirectly communicates with) another element or node or feature, and not necessarily mechanically.
In addition, certain terminology may also be used in the following description for the purpose of reference only, and thus are not intended to be limiting. For example, terms such as “upper”, “lower”, “above”, and “below” refer to directions in the drawings to which reference is made. Terms such as “front”, “back”, “rear”, “side”, “outboard”, and “inboard” describe the orientation or location or both of portions of the component within a consistent but arbitrary frame of reference which is made clear by reference to the text and the associated drawings describing the component under discussion. Such terminology may include the words specifically mentioned above, derivatives thereof, and words of similar import.
“Inhibit”—As used herein, inhibit is used to describe a reducing or minimizing effect. When a component or feature is described as inhibiting an action, motion, or condition it may completely prevent the result or outcome or future state completely. Additionally, “inhibit” can also refer to a reduction or lessening of the outcome, performance, or effect which might otherwise occur. Accordingly, when a component, element, or feature is referred to as inhibiting a result or state, it need not completely prevent or eliminate the result or state.
Embodiments described herein may be directed to front-end-of-line (FEOL) semiconductor processing and structures. FEOL is the first portion of integrated circuit (IC) fabrication where the individual devices (e.g., transistors, capacitors, resistors, etc.) are patterned in the semiconductor substrate or layer. FEOL generally covers everything up to (but not including) the deposition of metal interconnect layers. Following the last FEOL operation, the result is typically a wafer with isolated transistors (e.g., without any wires).
Embodiments described herein may be directed to back-end-of-line (BEOL) semiconductor processing and structures. BEOL is the second portion of IC fabrication where the individual devices (e.g., transistors, capacitors, resistors, etc.) get interconnected with wiring on the wafer, e.g., the metallization layer or layers. BEOL includes contacts, insulating layers (dielectrics), metal levels, and bonding sites for chip-to-package connections. In the BEOL part of the fabrication stage contacts (pads), interconnect wires, vias and dielectric structures are formed. For modern IC processes, more than 10 metal layers may be added in the BEOL.
Embodiments described below may be applicable to FEOL processing and structures, BEOL processing and structures, or both FEOL and BEOL processing and structures. In particular, although an exemplary processing scheme may be illustrated using a FEOL processing scenario, such approaches may also be applicable to BEOL processing. Likewise, although an exemplary processing scheme may be illustrated using a BEOL processing scenario, such approaches may also be applicable to FEOL processing.
It is to be appreciated that FEOL is a technology driver for a given process. In other embodiment, FEOL considerations are driven by BEOL 10 nanometer or sub-10 nanometer processing requirements. For example, material selection and layouts for FEOL layers and devices may need to accommodate BEOL processing. In one such embodiment, material selection and gate stack architectures are selected to accommodate high density metallization of the BEOL layers, e.g., to reduce fringe capacitance in transistor structures formed in the FEOL layers but coupled together by high density metallization of the BEOL layers.
Back-end-of-line (BEOL) layers of integrated circuits commonly include electrically conductive microelectronic structures, which are known in the arts as vias, to electrically connect metal lines or other interconnects above the vias to metal lines or other interconnects below the vias. Vias may be formed by a lithographic process. Representatively, a photoresist layer may be spin coated over a dielectric layer, the photoresist layer may be exposed to patterned actinic radiation through a patterned mask, and then the exposed layer may be developed in order to form an opening in the photoresist layer. Next, an opening for the via may be etched in the dielectric layer by using the opening in the photoresist layer as an etch mask. This opening is referred to as a via opening. Finally, the via opening may be filled with one or more metals or other conductive materials to form the via.
Sizes and the spacing of vias has progressively decreased, and it is expected that in the future the sizes and the spacing of the vias will continue to progressively decrease, for at least some types of integrated circuits (e.g., advanced microprocessors, chipset components, graphics chips, etc.). When patterning extremely small vias with extremely small pitches by such lithographic processes, several challenges present themselves. One such challenge is that the overlay between the vias and the overlying interconnects, and the overlay between the vias and the underlying landing interconnects, generally need to be controlled to high tolerances on the order of a quarter of the via pitch. As via pitches scale ever smaller over time, the overlay tolerances tend to scale with them at an even greater rate than lithographic equipment is able to keep up.
Another such challenge is that the critical dimensions of the via openings generally tend to scale faster than the resolution capabilities of the lithographic scanners. Shrink technologies exist to shrink the critical dimensions of the via openings. However, the shrink amount tends to be limited by the minimum via pitch, as well as by the ability of the shrink process to be sufficiently optical proximity correction (OPC) neutral, and to not significantly compromise line width roughness (LWR) or critical dimension uniformity (CDU), or both. Yet another such challenge is that the LWR or CDU, or both, characteristics of photoresists generally need to improve as the critical dimensions of the via openings decrease in order to maintain the same overall fraction of the critical dimension budget.
The above factors are also relevant for considering placement and scaling of non-conductive spaces or interruptions between metal lines (referred to as “plugs,” “dielectric plugs” or “metal line ends” among the metal lines of back-end-of-line (BEOL) metal interconnect structures. Thus, improvements are needed in the area of back end metallization manufacturing technologies for fabricating metal lines, metal vias, and dielectric plugs.
One or more embodiments described herein are directed to BEOL structures fabricated using a via splitter process.
To provide context, printing or proximate vias at borders or boundaries if different circuit structure locations can be limited by lithographic rules. Grating approaches have been implemented to encroach the lithography limits and design rules. However, such grating based patterning can be expensive.
In accordance with one or more embodiments of the present disclosure, a large via is created, and a grating mask is used to split the large via.
As an exemplary processing scheme,
Referring to
In an embodiment, in the case that the lower layer 104 is a FEOL layer, features that can be exposed at the perspective shown can include sub-fins 124 protruding from a substrate 122, such as silicon sub-fins protruding from a silicon substrate. Epitaxial source or drain structures 128, such as epitaxial silicon or silicon germanium source or drain structures, are over corresponding ones of the sub-fins 124. Conductive trench contacts 130 can be located over one or more corresponding ones of the epitaxial source or drain structures 128. In the example shown, a trench contact plug 132, which can include a dielectric liner 134 and dielectric fill 136, can separate FEOL structures along the border or boundary.
Referring to
With reference again to
In an embodiment, the straight edge of the first conductive via 118A is opposite a curved edge 119B of the first conductive via 118A, as is depicted. Similarly, the straight edge of the second conductive via 118B is opposite a curved edge of the second conductive via 118B, as is depicted.
In an embodiment, the integrated circuit structure 150 includes a dielectric plug 132A between and in contact with the straight edge of the first conductive via 118A and the straight edge of the second conductive via 118B, as is depicted. In one embodiment, the dielectric plug 132A is along a direction orthogonal to the direction of the plurality of conductive lines 106, as is depicted.
In an embodiment, the dielectric plug 132A has an uppermost surface co-planar with an uppermost surface of the second ILD layer, as is depicted. In an embodiment, the dielectric plug 132A tapers inwardly from a top of the dielectric plug to a bottom 153 of the dielectric plug 132A, as is depicted.
In an embodiment, the integrated circuit structure 150 includes a third conductive via 116 in the second ILD layer 112A and on a same side of the dielectric plug 132A as the first conductive via 118A, as is depicted. In one such embodiment, the third conductive via 116 does not have a straight edge, as is depicted. In an embodiment, the integrated circuit structure 150 includes a fourth conductive via 114 in the second ILD layer 112A and on a same side of the dielectric plug 132A as the second conductive via 118B, as is depicted. In one such embodiment, the fourth conductive via 114 does not have a straight edge, as is depicted.
In another aspect, one or more embodiments described herein are directed to structures, such as BEOL structures including hybrid metal layers.
To provide context, with every technology node, the need for finer features such as thinner metal lines and vias spaced at fine pitches continues. A combination of optics and self-aligned schemes have sustained the industry by providing the needed lithographic plus patterning solutions for lines. Extreme ultraviolet (EUV) technology has recently allowed a big change in printable via and pattern sizes. Even so, EUV printing may not be sufficient to meet the need for scaling of technology nodes. Deposition and/or etch based solutions may be needed that can complement the EUV printing and meet the technology gap.
To provide context, with metal layers containing multiple width metal lines, sometimes one metal may not provide optimal performance at both narrow and wide metal lines and it is beneficial to use two different metals to achieve optimal performance. For example a non-copper conductive line with no barrier layer may be optimal for narrower lines, while copper conductive line with a barrier layer may be optimal for wider lines.
In accordance with one or more embodiments of the present disclosure, Co, Ru, W or Mo is used for initial metallization of all metal lines narrow and wide. A patterning process is then used to recess the first metal deposition for wider lines, and the recesses are backfilled with another metal such as Cu.
As an exemplary process flow,
Referring to
Referring again to
In an embodiment, the first one 210 of the plurality of conductive lines 210/212 includes a first conductive fill with no conductive barrier. The second one 212 of the plurality of conductive lines 210/212 includes the first conductive fill with no conductive barrier. In one embodiment, the first conductive fill includes Co, Ru, W or Mo.
In an embodiment, the first one 210 of the plurality of conductive lines 210/212 has a break therein. A first dielectric plug 214A is in a location of the break in the first one 210 of the plurality of conductive lines 210/212. The second one 212 of the plurality of conductive lines 210/212 has a break therein. A second dielectric plug 214B is in a location of the break in the second one 212 of the plurality of conductive lines 210/212.
Referring to
Referring to
With reference again to
In an embodiment, the first one 210 of the plurality of conductive lines 210/302 includes a first conductive fill with no conductive barrier. The second one 302 of the plurality of conductive lines 210/302 includes a conductive barrier 304 and a second conductive fill 306. The second conductive fill 306 is different than the first conductive fill. In one embodiment, the conductive barrier 304 of the second one 302 of the plurality of conductive lines 210/302 is on conductive layer 212B having a same composition as the first conductive fill. In one embodiment, the first conductive fill includes Co, Ru, W or Mo, and the second conductive fill 306 includes Cu.
In an embodiment, the first one 210 of the plurality of conductive lines 210/302 has a break therein. A first dielectric plug 214A is in a location of the break in the first one 210 of the plurality of conductive lines 210/302. The second one 302 of the plurality of conductive lines 210/302 has a break therein. A second dielectric plug 214B is in a location of the break in the second one 302 of the plurality of conductive lines 210/302.
In an embodiment, the first one 210 of the plurality of conductive lines 210/302 has a break therein, and the ILD structure has a dielectric plug portion in a location of the break in the first one 210 of the plurality of conductive lines 210/302. The dielectric plug portion of the ILD structure is continuous with one or more of the portions of the ILD structure between adjacent ones of the plurality of conductive lines 210/302. An exemplary such structure is described below in association with
In another aspect, one or more embodiments described herein are directed to approaches to enable cut plugs for metal and inter-layer dielectric (ILD) last process flows for metal processes and process window applications.
Embodiments described herein can involve a process initiated by creating a grating where a metal line will ultimately be fabricated. The process involves cutting a grating which will generate metal plugs, adding a shrink liner to increase the metal line CD to desired dimensions, backfilling with dielectric and removal of a dummy grating and replacement with final metal. Embodiments can be implemented to enable very small plug CDs that are not possible with other approaches.
Embodiments described herein can be implemented to fabricate plug processes that are more scalable (e.g., a much smaller plug CD can be achieved with a flow described herein). Embodiments described herein can be implemented to provide much greater plug to metal edge placement error (EPE) margin (process robustness and yield).
As an exemplary processing scheme and as exemplary resulting structures,
A grating may be created in a location where metal lines will ultimately be formed. The grating critical dimension (CD) can be sized down to allow more margin for grating cut. Referring to
Referring to
Subsequent to the cut process, the grating size can be increased with a same or similar material as the original grating material to achieve a grating CD that is equal to a final metal width. The grating CD increase can also decrease the final plug CD. Referring to
Subsequent to the growth process, the grating can be back-filled with a dielectric material, such as an inter-layer dielectric material, and polished to expose the sacrificial grating. Referring to
Subsequently, the sacrificial grating can be replaced by final metal material. Referring to
Referring to
In another aspect, a pitch quartering approach is implemented for patterning trenches in a dielectric layer for forming BEOL interconnect structures. In accordance with an embodiment of the present disclosure, pitch division is applied for fabricating metal lines in a BEOL fabrication scheme. Embodiments may enable continued scaling of the pitch of metal layers beyond the resolution capability of state-of-the art lithography equipment.
Referring to
At operation (b), the backbone features 602 are removed to leave only the first spacer features 604 remaining. At this stage, the first spacer features 604 are effectively a half pitch mask, e.g., representing a pitch halving process. The first spacer features 604 can either be used directly for a pitch quartering process, or the pattern of the first spacer features 604 may first be transferred into a new hardmask material, where the latter approach is depicted.
At operation (c), the pattern of the first spacer features 604 transferred into a new hardmask material to form first spacer features 604′. Second spacer features 606 are then formed adjacent the sidewalls of the first spacer features 604′.
At operation (d), the first spacer features 604′ are removed to leave only the second spacer features 606 remaining. At this stage, the second spacer features 606 are effectively a quarter pitch mask, e.g., representing a pitch quartering process.
At operation (e), the second spacer features 606 are used as a mask to pattern a plurality of trenches 608 in a dielectric or hardmask layer. The trenches may ultimately be filled with conductive material to form conductive interconnects in metallization layers of an integrated circuit. Trenches 608 having the label “B” correspond to backbone features 602. Trenches 608 having the label “S” correspond to first spacer features 604 or 604′. Trenches 608 having the label “C” correspond to a complementary region 607 between backbone features 602.
It is to be appreciated that since individual ones of the trenches 608 of
Referring to
With reference to both
Referring again to
In an embodiment, the width (W3) of the third interconnect line 706C is different than the width (W1) of the first interconnect line 706B. In one such embodiment, the width (W3) of the third interconnect line 706C is different than the width (W2) of the second interconnect line 706S. In another such embodiment, the width (W3) of the third interconnect line 706C is the same as the width (W2) of the second interconnect line 706S. In another embodiment, the width (W3) of the third interconnect line 706C is the same as the width (W1) of the first interconnect line 706B.
In an embodiment, a pitch (P1) between the first interconnect line 706B and the third interconnect line 706C is the same as a pitch (P2) between the second interconnect 706S line and the fourth interconnect line (second 706S). In another embodiment, a pitch (P1) between the first interconnect line 706B and the third interconnect line 706C is different than a pitch (P2) between the second interconnect line 706S and the fourth interconnect line (second 706S).
Referring again to
In an embodiment, the width (W2) of the second interconnect line 706S is different than the width (W1) of the first interconnect line 706B. In one such embodiment, the width (W3) of the third interconnect line 706C is different than the width (W2) of the second interconnect line 706S. In another such embodiment, the width (W3) of the third interconnect line 706C is the same as the width (W2) of the second interconnect line 706S.
In an embodiment, the width (W2) of the second interconnect line 706S is the same as the width (W1) of the first interconnect line 706B. In an embodiment, a pitch (P1) between the first interconnect line 706B and the third interconnect line 706C is the same as a pitch (P2) between the second interconnect line 706S and the fourth interconnect line (second 706S). In an embodiment, a pitch (P1) between the first interconnect line 706B and the third interconnect line 706C is different than a pitch (P2) between the second interconnect line 706S and the fourth interconnect line (second 706S).
Referring to
In accordance with an embodiment of the present disclosure, with reference again to
In an embodiment, first plurality of conductive interconnect lines 756 has a pitch (P1) between immediately adjacent lines of than 40 nanometers. The second plurality of conductive interconnect lines 776 has a pitch (P2) between immediately adjacent lines of 44 nanometers or greater. In an embodiment, the spacer-based pitch quartering process and the spacer-based pitch halving process are based on an immersion 193 nm lithography process.
In an embodiment, individual ones of the first plurality of conductive interconnect lines 754 include a first conductive barrier liner 758 and a first conductive fill material 760. Individual ones of the second plurality of conductive interconnect lines 756 include a second conductive barrier liner 778 and a second conductive fill material 780. In one such embodiment, the first conductive fill material 760 is different in composition from the second conductive fill material 780. In another embodiment, the first conductive fill material 760 is the same in composition as the second conductive fill material 780.
Although not depicted, in an embodiment, the method further includes forming a third plurality of conductive interconnect lines in and spaced apart by a third ILD layer above the second ILD layer 774. The third plurality of conductive interconnect lines is formed without using pitch division.
Although not depicted, in an embodiment, the method further includes, prior to forming the second plurality of conductive interconnect lines 776, forming a third plurality of conductive interconnect lines in and spaced apart by a third ILD layer above the first ILD layer 754. The third plurality of conductive interconnect lines is formed using a spacer-based pitch quartering process. In one such embodiment, subsequent to forming the second plurality of conductive interconnect lines 776, a fourth plurality of conductive interconnect lines is formed in and is spaced apart by a fourth ILD layer above the second ILD layer 774. The fourth plurality of conductive interconnect lines is formed using a spacer-based pitch halving process. In an embodiment, such a method further includes forming a fifth plurality of conductive interconnect lines in and spaced apart by a fifth ILD layer above the fourth ILD layer, the fifth plurality of conductive interconnect lines formed using a spacer-based pitch halving process. A sixth plurality of conductive interconnect lines is then formed in and spaced apart by a sixth ILD layer above the fifth ILD layer, the sixth plurality of conductive interconnect lines formed using a spacer-based pitch halving process. A seventh plurality of conductive interconnect lines is then formed in and spaced apart by a seventh ILD layer above the sixth ILD layer. The seventh plurality of conductive interconnect lines is formed without using pitch division.
In another aspect, metal line compositions vary between metallization layers. Such an arrangement may be referred to as heterogeneous metallization layers. In an embodiment, copper is used as a conductive fill material for relatively larger interconnect lines, while cobalt is used as a conductive fill material for relatively smaller interconnect lines. The smaller lines having cobalt as a fill material may provide reduced electromigration while maintaining low resistivity. The use of cobalt in place of copper for smaller interconnect lines may address issues with scaling copper lines, where a conductive barrier layer consumes a greater amount of an interconnect volume and copper is reduced, essentially hindering advantages normally associated with a copper interconnect line.
In a first example,
Referring to
A second plurality of conductive interconnect lines 816 is in and spaced apart by a second ILD layer 814 above the first ILD layer 804. One of the conductive interconnect lines 816A is shown as having an underlying via 817. Individual ones of the second plurality of conductive interconnect lines 816 include a second conductive barrier material 818 along sidewalls and a bottom of a second conductive fill material 820. The second conductive fill material 820 is different in composition from the first conductive fill material 810. In an embodiment, a differentiated conductive line approach and/or a via splitting approach (e.g., as described above) is used to form or may be used in conjunction with the interconnect lines.
In an embodiment, the second conductive fill material 820 consists essentially of copper, and the first conductive fill material 810 consists essentially of cobalt. In one such embodiment, the first conductive barrier material 808 is different in composition from the second conductive barrier material 818. In another such embodiment, the first conductive barrier material 808 is the same in composition as the second conductive barrier material 818.
In an embodiment, the first conductive fill material 810 includes copper having a first concentration of a dopant impurity atom, and the second conductive fill material 820 includes copper having a second concentration of the dopant impurity atom. The second concentration of the dopant impurity atom is less than the first concentration of the dopant impurity atom. In one such embodiment, the dopant impurity atom is selected from the group consisting of aluminum (Al) and manganese (Mn). In an embodiment, the first conductive barrier material 808 and the second conductive barrier material 818 have the same composition. In an embodiment, the first conductive barrier material 808 and the second conductive barrier material 818 have a different composition.
Referring again to
In a second example,
Referring to
A second plurality of conductive interconnect lines 866 is in and spaced apart by a second ILD layer 864 above the first ILD layer 854. One of the conductive interconnect lines 866A is shown as having an underlying via 867. Individual ones of the second plurality of conductive interconnect lines 866 include a second conductive barrier material 868 along sidewalls and a bottom of a second conductive fill material 870. The second conductive fill material 870 is different in composition from the first conductive fill material 860. In an embodiment, a differentiated conductive line approach and/or a via splitting approach (e.g., as described above) is used to form or may be used in conjunction with the interconnect lines.
In an embodiment, the conductive via 867 is on and electrically coupled to an individual one 856B of the first plurality of conductive interconnect lines 856, electrically coupling the individual one 866A of the second plurality of conductive interconnect lines 866 to the individual one 856B of the first plurality of conductive interconnect lines 856. In an embodiment, individual ones of the first plurality of conductive interconnect lines 856 are along a first direction 898 (e.g., into and out of the page), and individual ones of the second plurality of conductive interconnect lines 866 are along a second direction 899 orthogonal to the first direction 898, as is depicted. In an embodiment, the conductive via 867 includes the second conductive barrier material 868 along sidewalls and a bottom of the second conductive fill material 870, as is depicted.
In an embodiment, the second ILD layer 864 is on an etch-stop layer 872 on the first ILD layer 854. The conductive via 867 is in the second ILD layer 864 and in an opening of the etch-stop layer 872. In an embodiment, the first and second ILD layers 854 and 864 include silicon, carbon and oxygen, and the etch-stop layer 872 includes silicon and nitrogen. In an embodiment, individual ones of the first plurality of conductive interconnect lines 856 have a first width (W1), and individual ones of the second plurality of conductive interconnect lines 866 have a second width (W2) greater than the first width (W1).
In an embodiment, the second conductive fill material 870 consists essentially of copper, and the first conductive fill material 860 consists essentially of cobalt. In one such embodiment, the first conductive barrier material 858 is different in composition from the second conductive barrier material 868. In another such embodiment, the first conductive barrier material 858 is the same in composition as the second conductive barrier material 868.
In an embodiment, the first conductive fill material 860 includes copper having a first concentration of a dopant impurity atom, and the second conductive fill material 870 includes copper having a second concentration of the dopant impurity atom. The second concentration of the dopant impurity atom is less than the first concentration of the dopant impurity atom. In one such embodiment, the dopant impurity atom is selected from the group consisting of aluminum (Al) and manganese (Mn). In an embodiment, the first conductive barrier material 858 and the second conductive barrier material 860 have the same composition. In an embodiment, the first conductive barrier material 858 and the second conductive barrier material 868 have a different composition.
Referring to
Referring to
Referring to
In an embodiment, with reference to
In one embodiment, treating the top of the conductive fill material 924 or 944 with the gas including oxygen and carbon includes treating the top of the conductive fill material 924 or 944 with carbon monoxide (CO). In one embodiment, the conductive fill material 924 or 944 includes copper, and forming the conductive cap layer 930 or 950 on the top of the conductive fill material 924 or 944 includes forming a layer including cobalt using chemical vapor deposition (CVD). In one embodiment, the conductive cap layer 930 or 950 is formed on the top of the conductive fill material 924 or 944, but not on a top of the conductive barrier material 922 or 942.
In one embodiment, forming the conductive barrier material 922 or 942 includes forming a first conductive layer on the bottoms and sidewalls of the trenches, the first conductive layer including tantalum. A first portion of the first conductive layer is first formed using atomic layer deposition (ALD) and then a second portion of the first conductive layer is then formed using physical vapor deposition (PVD). In one such embodiment, forming the conductive barrier material further includes forming a second conductive layer on the first conductive layer on the bottoms and sidewalls of the trenches, the second conductive layer including ruthenium, and the conductive fill material including copper. In one embodiment, the first conductive layer further includes nitrogen.
Referring to
A second plurality of conductive interconnect lines 1014 is in and spaced apart by a second ILD layer 1012 above the first ILD layer 1002. Individual ones of the second plurality of conductive interconnect lines 1014 include the first conductive barrier material 1006 along sidewalls and a bottom of the first conductive fill material 1008. Individual ones of the second plurality of conductive interconnect lines 1014 are along a second direction 1099 orthogonal to the first direction 1098.
A third plurality of conductive interconnect lines 1024 is in and spaced apart by a third ILD layer 1022 above the second ILD layer 1012. Individual ones of the third plurality of conductive interconnect lines 1024 include a second conductive barrier material 1026 along sidewalls and a bottom of a second conductive fill material 1028. The second conductive fill material 1028 is different in composition from the first conductive fill material 1008. Individual ones of the third plurality of conductive interconnect lines 1024 are along the first direction 1098.
A fourth plurality of conductive interconnect lines 1034 is in and spaced apart by a fourth ILD layer 1032 above the third ILD layer 1022. Individual ones of the fourth plurality of conductive interconnect lines 1034 include the second conductive barrier material 1026 along sidewalls and a bottom of the second conductive fill material 1028. Individual ones of the fourth plurality of conductive interconnect lines 1034 are along the second direction 1099.
A fifth plurality of conductive interconnect lines 1044 is in and spaced apart by a fifth ILD layer 1042 above the fourth ILD layer 1032. Individual ones of the fifth plurality of conductive interconnect lines 1044 include the second conductive barrier material 1026 along sidewalls and a bottom of the second conductive fill material 1028. Individual ones of the fifth plurality of conductive interconnect lines 1044 are along the first direction 1098.
A sixth plurality of conductive interconnect lines 1054 is in and spaced apart by a sixth ILD layer 1052 above the fifth ILD layer 1042. Individual ones of the sixth plurality of conductive interconnect lines 1054 include the second conductive barrier material 1026 along sidewalls and a bottom of the second conductive fill material 1028. Individual ones of the sixth plurality of conductive interconnect lines 1054 are along the second direction 1099.
In an embodiment, the second conductive fill material 1028 consists essentially of copper, and the first conductive fill material 1008 consists essentially of cobalt. In an embodiment, the first conductive fill material 1008 includes copper having a first concentration of a dopant impurity atom, and the second conductive fill material 1028 includes copper having a second concentration of the dopant impurity atom, the second concentration of the dopant impurity atom less than the first concentration of the dopant impurity atom.
In an embodiment, the first conductive barrier material 1006 is different in composition from the second conductive barrier material 1026. In another embodiment, the first conductive barrier material 1006 and the second conductive barrier material 1026 have the same composition.
In an embodiment, a first conductive via 1019 is on and electrically coupled to an individual one 1004A of the first plurality of conductive interconnect lines 1004. An individual one 1014A of the second plurality of conductive interconnect lines 1014 is on and electrically coupled to the first conductive via 1019.
A second conductive via 1029 is on and electrically coupled to an individual one 1014B of the second plurality of conductive interconnect lines 1014. An individual one 1024A of the third plurality of conductive interconnect lines 1024 is on and electrically coupled to the second conductive via 1029.
A third conductive via 1039 is on and electrically coupled to an individual one 1024B of the third plurality of conductive interconnect lines 1024. An individual one 1034A of the fourth plurality of conductive interconnect lines 1034 is on and electrically coupled to the third conductive via 1039.
A fourth conductive via 1049 is on and electrically coupled to an individual one 1034B of the fourth plurality of conductive interconnect lines 1034. An individual one 1044A of the fifth plurality of conductive interconnect lines 1044 is on and electrically coupled to the fourth conductive via 1049.
A fifth conductive via 1059 is on and electrically coupled to an individual one 1044B of the fifth plurality of conductive interconnect lines 1044. An individual one 1054A of the sixth plurality of conductive interconnect lines 1054 is on and electrically coupled to the fifth conductive via 1059.
In one embodiment, the first conductive via 1019 includes the first conductive barrier material 1006 along sidewalls and a bottom of the first conductive fill material 1008. The second 1029, third 1039, fourth 1049 and fifth 1059 conductive vias include the second conductive barrier material 1026 along sidewalls and a bottom of the second conductive fill material 1028.
In an embodiment, the first 1002, second 1012, third 1022, fourth 1032, fifth 1042 and sixth 1052 ILD layers are separated from one another by a corresponding etch-stop layer 1090 between adjacent ILD layers. In an embodiment, the first 1002, second 1012, third 1022, fourth 1032, fifth 1042 and sixth 1052 ILD layers include silicon, carbon and oxygen.
In an embodiment, individual ones of the first 1004 and second 1014 pluralities of conductive interconnect lines have a first width (W1). Individual ones of the third 1024, fourth 1034, fifth 1044 and sixth 1054 pluralities of conductive interconnect lines have a second width (W2) greater than the first width (W1).
In another aspect, techniques for patterning metal line ends are described. To provide context, in the advanced nodes of semiconductor manufacturing, lower level interconnects may be created by separate patterning processes of the line grating, line ends, and vias. However, the fidelity of the composite pattern may tend to degrade as the vias encroach upon the line ends and vice-versa. Embodiments described herein provide for a line end process also known as a plug process that eliminates associated proximity rules. Embodiments may allow for a via to be placed at the line end and a large via to strap across a line end.
To provide further context,
Referring to
However, referring again to
In an aspect, then, one or more embodiments described herein are directed to approaches for building non-conductive spaces or interruptions between metals lines (referred to as “line ends,” “plugs” or “cuts”) and, in some embodiments, associated conductive vias. Conductive vias, by definition, are used to land on a previous layer metal pattern. In this vein, embodiments described herein enable a more robust interconnect fabrication scheme since alignment by lithography equipment is relied on to a lesser extent. Such an interconnect fabrication scheme can be used to relax constraints on alignment/exposures, can be used to improve electrical contact (e.g., by reducing via resistance), and can be used to reduce total process operations and processing time otherwise required for patterning such features using conventional approaches.
Referring to
Referring to
Referring to
Referring to
In an embodiment, filling the opening 1216 of the sacrificial material 1214 with the dielectric material includes filling with a metal oxide material. In one such embodiment, the metal oxide material is aluminum oxide. In an embodiment, filling the opening 1216 of the sacrificial material 1214 with the dielectric material includes filling using atomic layer deposition (ALD).
Referring to
Referring to
Referring again to
In an embodiment, the dielectric plug 1218′ includes a metal oxide material. In one such embodiment, the metal oxide material is aluminum oxide. In an embodiment, the dielectric plug 1218′ is in direct contact with the first 1224A and second 1224B portions of the conductive interconnect line 1224.
In an embodiment, the dielectric plug 1218′ has a bottom 1218A substantially co-planar with a bottom 1224C of the conductive interconnect line 1224. In an embodiment, a first conductive via 1226 is in a trench 1208 in the ILD layer 1202. In one such embodiment, the first conductive via 1226 is below the bottom 1224C of the interconnect line 1224, and the first conductive via 1226 is electrically coupled to the first portion 1224A of the conductive interconnect line 1224.
In an embodiment, a second conductive via 1228 is in a third trench 1230 in the ILD layer 1202. The second conductive via 1228 is below the bottom 1224C of the interconnect line 1224, and the second conductive via 1228 is electrically coupled to the second portion 1224B of the conductive interconnect line 1224.
A dielectric plug may be formed using a fill process such as a chemical vapor deposition process. Artifacts may remain in the fabricated dielectric plug. As an example,
Referring to
It is to be appreciated that dielectric plugs differing in composition from an ILD material in which they are housed may be included on only select metallization layers, such as in lower metallization layers. As an example,
Referring to
In one embodiment, the one or more dielectric plugs 1358 include a metal oxide material. In one such embodiment, the metal oxide material is aluminum oxide. In one embodiment, the first ILD layer 1354 and the second ILD layer 1364 (and, hence, the one or more portions 1368 of the second ILD layer 1364) include a carbon-doped silicon oxide material.
In one embodiment, individual ones of the first plurality of conductive interconnect lines 1356 include a first conductive barrier liner 1356A and a first conductive fill material 1356B. Individual ones of the second plurality of conductive interconnect lines 1366 include a second conductive barrier liner 1366A and a second conductive fill material 1366B. In one such embodiment, the first conductive fill material 1356B is different in composition from the second conductive fill material 1366B. In a particular such embodiment, the first conductive fill material 1356B includes cobalt, and the second conductive fill material 1366B includes copper.
In one embodiment, the first plurality of conductive interconnect lines 1356 has a first pitch (P1, as shown in like-layer 1370). The second plurality of conductive interconnect lines 1366 has a second pitch (P2, as shown in like-layer 1380). The second pitch (P2) is greater than the first pitch (P1). In one embodiment, individual ones of the first plurality of conductive interconnect lines 1356 have a first width (W1, as shown in like-layer 1370). Individual ones of the second plurality of conductive interconnect lines 1366 have a second width (W2, as shown in like-layer 1380). The second width (W2) is greater than the first width (W1).
It is to be appreciated that the layers and materials described above in association with back-end-of-line (BEOL) structures and processing may be formed on or above an underlying semiconductor substrate or structure, such as underlying device layer(s) of an integrated circuit. In an embodiment, an underlying semiconductor substrate represents a general workpiece object used to manufacture integrated circuits. The semiconductor substrate often includes a wafer or other piece of silicon or another semiconductor material. Suitable semiconductor substrates include, but are not limited to, single crystal silicon, polycrystalline silicon and silicon on insulator (SOI), as well as similar substrates formed of other semiconductor materials, such as substrates including germanium, carbon, or group III-V materials. The semiconductor substrate, depending on the stage of manufacture, often includes transistors, integrated circuitry, and the like. The substrate may also include semiconductor materials, metals, dielectrics, dopants, and other materials commonly found in semiconductor substrates. Furthermore, the structures depicted may be fabricated on underlying lower level interconnect layers.
Although the preceding methods of fabricating a metallization layer, or portions of a metallization layer, of a BEOL metallization layer are described in detail with respect to select operations, it is to be appreciated that additional or intermediate operations for fabrication may include standard microelectronic fabrication processes such as lithography, etch, thin films deposition, planarization (such as chemical mechanical polishing (CMP)), diffusion, metrology, the use of sacrificial layers, the use of etch stop layers, the use of planarization stop layers, or any other associated action with microelectronic component fabrication. Also, it is to be appreciated that the process operations described for the preceding process flows may be practiced in alternative sequences, not every operation need be performed or additional process operations may be performed or both.
In an embodiment, as used throughout the present description, interlayer dielectric (ILD) material is composed of or includes a layer of a dielectric or insulating material. Examples of suitable dielectric materials include, but are not limited to, oxides of silicon (e.g., silicon dioxide (SiO2)), doped oxides of silicon, fluorinated oxides of silicon, carbon doped oxides of silicon, various low-k dielectric materials known in the arts, and combinations thereof. The interlayer dielectric material may be formed by techniques, such as, for example, chemical vapor deposition (CVD), physical vapor deposition (PVD), or by other deposition methods.
In an embodiment, as is also used throughout the present description, metal lines or interconnect line material (and via material) is composed of one or more metal or other conductive structures. A common example is the use of copper lines and structures that may or may not include barrier layers between the copper and surrounding ILD material. As used herein, the term metal includes alloys, stacks, and other combinations of multiple metals. For example, the metal interconnect lines may include barrier layers (e.g., layers including one or more of Ta, TaN, Ti or TiN), stacks of different metals or alloys, etc. Thus, the interconnect lines may be a single material layer, or may be formed from several layers, including conductive liner layers and fill layers. Any suitable deposition process, such as electroplating, chemical vapor deposition or physical vapor deposition, may be used to form interconnect lines. In an embodiment, the interconnect lines are composed of a conductive material such as, but not limited to, Cu, Al, Ti, Zr, Hf, V, Ru, Co, Ni, Pd, Pt, W, Ag, Au or alloys thereof. The interconnect lines are also sometimes referred to in the art as traces, wires, lines, metal, or simply interconnect.
In an embodiment, as is also used throughout the present description, hardmask materials are composed of dielectric materials different from the interlayer dielectric material. In one embodiment, different hardmask materials may be used in different regions so as to provide different growth or etch selectivity to each other and to the underlying dielectric and metal layers. In some embodiments, a hardmask layer includes a layer of a nitride of silicon (e.g., silicon nitride) or a layer of an oxide of silicon, or both, or a combination thereof. Other suitable materials may include carbon-based materials. In another embodiment, a hardmask material includes a metal species. For example, a hardmask or other overlying material may include a layer of a nitride of titanium or another metal (e.g., titanium nitride). Potentially lesser amounts of other materials, such as oxygen, may be included in one or more of these layers. Alternatively, other hardmask layers known in the arts may be used depending upon the particular implementation. The hardmask layers may be formed by CVD, PVD, or by other deposition methods.
In an embodiment, as is also used throughout the present description, lithographic operations are performed using 193 nm immersion lithography (i193), extreme ultra-violet (EUV) lithography or electron beam direct write (EBDW) lithography, or the like. A positive tone or a negative tone resist may be used. In one embodiment, a lithographic mask is a trilayer mask composed of a topographic masking portion, an anti-reflective coating (ARC) layer, and a photoresist layer. In a particular such embodiment, the topographic masking portion is a carbon hardmask (CHM) layer and the anti-reflective coating layer is a silicon ARC layer.
Embodiments disclosed herein may be used to manufacture a wide variety of different types of integrated circuits or microelectronic devices. Examples of such integrated circuits include, but are not limited to, processors, chipset components, graphics processors, digital signal processors, micro-controllers, and the like. In other embodiments, semiconductor memory may be manufactured. Moreover, the integrated circuits or other microelectronic devices may be used in a wide variety of electronic devices known in the arts. For example, in computer systems (e.g., desktop, laptop, server), cellular phones, personal electronics, etc. The integrated circuits may be coupled with a bus and other components in the systems. For example, a processor may be coupled by one or more buses to a memory, a chipset, etc. Each of the processor, the memory, and the chipset, may potentially be manufactured using the approaches disclosed herein.
Depending on its applications, computing device 1400 may include other components that may or may not be physically and electrically coupled to the board 1402. These other components include, but are not limited to, volatile memory (e.g., DRAM), non-volatile memory (e.g., ROM), flash memory, a graphics processor, a digital signal processor, a crypto processor, a chipset, an antenna, a display, a touchscreen display, a touchscreen controller, a battery, an audio codec, a video codec, a power amplifier, a global positioning system (GPS) device, a compass, an accelerometer, a gyroscope, a speaker, a camera, and a mass storage device (such as hard disk drive, compact disk (CD), digital versatile disk (DVD), and so forth).
The communication chip 1406 enables wireless communications for the transfer of data to and from the computing device 1400. The term “wireless” and its derivatives may be used to describe circuits, devices, systems, methods, techniques, communications channels, etc., that may communicate data through the use of modulated electromagnetic radiation through a non-solid medium. The term does not imply that the associated devices do not contain any wires, although in some embodiments they might not. The communication chip 1406 may implement any of a number of wireless standards or protocols, including but not limited to Wi-Fi (IEEE 802.11 family), WiMAX (IEEE 802.16 family), IEEE 802.20, long term evolution (LTE), Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, Bluetooth, derivatives thereof, as well as any other wireless protocols that are designated as 3G, 4G, 5G, and beyond. The computing device 1400 may include a plurality of communication chips 1406. For instance, a first communication chip 1406 may be dedicated to shorter range wireless communications such as Wi-Fi and Bluetooth and a second communication chip 1406 may be dedicated to longer range wireless communications such as GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, and others.
The processor 1404 of the computing device 1400 includes an integrated circuit die packaged within the processor 1404. In some implementations of embodiments of the disclosure, the integrated circuit die of the processor includes one or more structures, such as integrated circuit structures built in accordance with implementations of the disclosure. The term “processor” may refer to any device or portion of a device that processes electronic data from registers or memory to transform that electronic data, or both, into other electronic data that may be stored in registers or memory, or both.
The communication chip 1406 also includes an integrated circuit die packaged within the communication chip 1406. In accordance with another implementation of the disclosure, the integrated circuit die of the communication chip is built in accordance with implementations of the disclosure.
In further implementations, another component housed within the computing device 1400 may contain an integrated circuit die built in accordance with implementations of embodiments of the disclosure.
In various embodiments, the computing device 1400 may be a laptop, a netbook, a notebook, an ultrabook, a smartphone, a tablet, a personal digital assistant (PDA), an ultramobile PC, a mobile phone, a desktop computer, a server, a printer, a scanner, a monitor, a set-top box, an entertainment control unit, a digital camera, a portable music player, or a digital video recorder. In further implementations, the computing device 1400 may be any other electronic device that processes data.
The interposer 1500 may be formed of an epoxy resin, a fiberglass-reinforced epoxy resin, a ceramic material, or a polymer material such as polyimide. In further implementations, the interposer 1500 may be formed of alternate rigid or flexible materials that may include the same materials described above for use in a semiconductor substrate, such as silicon, germanium, and other group III-V and group IV materials.
The interposer 1500 may include metal interconnects 1508 and vias 1510, including but not limited to through-silicon vias (TSVs) 1512. The interposer 1500 may further include embedded devices 1514, including both passive and active devices. Such devices include, but are not limited to, capacitors, decoupling capacitors, resistors, inductors, fuses, diodes, transformers, sensors, and electrostatic discharge (ESD) devices. More complex devices such as radio-frequency (RF) devices, power amplifiers, power management devices, antennas, arrays, sensors, and MEMS devices may also be formed on the interposer 1500. In accordance with embodiments of the disclosure, apparatuses or processes disclosed herein may be used in the fabrication of interposer 1500 or in the fabrication of components included in the interposer 1500.
The mobile computing platform 1600 may be any portable device configured for each of electronic data display, electronic data processing, and wireless electronic data transmission. For example, mobile computing platform 1600 may be any of a tablet, a smart phone, laptop computer, etc. and includes a display screen 1605 which in the exemplary embodiment is a touchscreen (capacitive, inductive, resistive, etc.), a chip-level (SoC) or package-level integrated system 1610, and a battery 1613. As illustrated, the greater the level of integration in the system 1610 enabled by higher transistor packing density, the greater the portion of the mobile computing platform 1600 that may be occupied by the battery 1613 or non-volatile storage, such as a solid state drive, or the greater the transistor gate count for improved platform functionality. Similarly, the greater the carrier mobility of each transistor in the system 1610, the greater the functionality. As such, techniques described herein may enable performance and form factor improvements in the mobile computing platform 1600.
The integrated system 1610 is further illustrated in the expanded view 1620. In the exemplary embodiment, packaged device 1677 includes at least one memory chip (e.g., RAM), or at least one processor chip (e.g., a multi-core microprocessor and/or graphics processor) fabricated according to one or more processes described herein or including one or more features described herein. The packaged device 1677 is further coupled to the board 1660 along with one or more of a power management integrated circuit (PMIC) 1615, RF (wireless) integrated circuit (RFIC) 1625 including a wideband RF (wireless) transmitter and/or receiver (e.g., including a digital baseband and an analog front end module further includes a power amplifier on a transmit path and a low noise amplifier on a receive path), and a controller thereof 1611. Functionally, the PMIC 1615 performs battery power regulation, DC-to-DC conversion, etc., and so has an input coupled to the battery 1613 and with an output providing a current supply to all the other functional modules. As further illustrated, in the exemplary embodiment, the RFIC 1625 has an output coupled to an antenna to provide to implement any of a number of wireless standards or protocols, including but not limited to Wi-Fi (IEEE 802.11 family), WiMAX (IEEE 802.16 family), IEEE 802.20, long term evolution (LTE), Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, Bluetooth, derivatives thereof, as well as any other wireless protocols that are designated as 3G, 4G, 5G, and beyond. In alternative implementations, each of these board-level modules may be integrated onto separate ICs coupled to the package substrate of the packaged device 1677 or within a single IC (SoC) coupled to the package substrate of the packaged device 1677.
In another aspect, semiconductor packages are used for protecting an integrated circuit (IC) chip or die, and also to provide the die with an electrical interface to external circuitry. With the increasing demand for smaller electronic devices, semiconductor packages are designed to be even more compact and must support larger circuit density. Furthermore, the demand for higher performance devices results in a need for an improved semiconductor package that enables a thin packaging profile and low overall warpage compatible with subsequent assembly processing.
In an embodiment, wire bonding to a ceramic or organic package substrate is used. In another embodiment, a C4 process is used to mount a die to a ceramic or organic package substrate. In particular, C4 solder ball connections can be implemented to provide flip chip interconnections between semiconductor devices and substrates. A flip chip or Controlled Collapse Chip Connection (C4) is a type of mounting used for semiconductor devices, such as integrated circuit (IC) chips, MEMS or components, which utilizes solder bumps instead of wire bonds. The solder bumps are deposited on the C4 pads, located on the top side of the substrate package. In order to mount the semiconductor device to the substrate, it is flipped over with the active side facing down on the mounting area. The solder bumps are used to connect the semiconductor device directly to the substrate.
Referring to
Processing a flip chip may be similar to conventional IC fabrication, with a few additional operations. Near the end of the manufacturing process, the attachment pads are metalized to make them more receptive to solder. This typically consists of several treatments. A small dot of solder is then deposited on each metalized pad. The chips are then cut out of the wafer as normal. To attach the flip chip into a circuit, the chip is inverted to bring the solder dots down onto connectors on the underlying electronics or circuit board. The solder is then re-melted to produce an electrical connection, typically using an ultrasonic or alternatively reflow solder process. This also leaves a small space between the chip's circuitry and the underlying mounting. In most cases an electrically-insulating adhesive is then “underfilled” to provide a stronger mechanical connection, provide a heat bridge, and to ensure the solder joints are not stressed due to differential heating of the chip and the rest of the system.
In other embodiments, newer packaging and die-to-die interconnect approaches, such as through silicon via (TSV) and silicon interposer, are implemented to fabricate high performance Multi-Chip Module (MCM) and System in Package (SiP) incorporating an integrated circuit (IC) fabricated according to one or more processes described herein or including one or more features described herein, in accordance with an embodiment of the present disclosure.
Thus, embodiments of the present disclosure include advanced integrated circuit structure fabrication, including conductive via splitting approaches for integrated circuit structure fabrication and the resulting structures.
Although specific embodiments have been described above, these embodiments are not intended to limit the scope of the present disclosure, even where only a single embodiment is described with respect to a particular feature. Examples of features provided in the disclosure are intended to be illustrative rather than restrictive unless stated otherwise. The above description is intended to cover such alternatives, modifications, and equivalents as would be apparent to a person skilled in the art having the benefit of the present disclosure.
The scope of the present disclosure includes any feature or combination of features disclosed herein (either explicitly or implicitly), or any generalization thereof, whether or not it mitigates any or all of the problems addressed herein. Accordingly, new claims may be formulated during prosecution of the present application (or an application claiming priority thereto) to any such combination of features. In particular, with reference to the appended claims, features from dependent claims may be combined with those of the independent claims and features from respective independent claims may be combined in any appropriate manner and not merely in the specific combinations enumerated in the appended claims.
The following examples pertain to further embodiments. The various features of the different embodiments may be variously combined with some features included and others excluded to suit a variety of different applications.
Example embodiment 1: An integrated circuit structure includes a plurality of conductive lines in a first inter-layer dielectric (ILD) layer, the plurality of conductive lines on a same level and along a same direction. A second ILD layer is over the plurality of conductive lines and over the first ILD layer. A first conductive via is in a first opening in the second ILD layer, the first conductive via in contact with a first one of the plurality of conductive lines, the first conductive via having a straight edge. A second conductive via is in a second opening in the second ILD layer, the second conductive via in contact with a second one of the plurality of conductive lines, the second one of the plurality of conductive lines laterally spaced apart from the first one of the plurality of conductive lines, and the second conductive via having a straight edge, the straight edge of the second conductive via facing the straight edge of the first conductive via.
Example embodiment 2: The integrated circuit structure of example embodiment 1, wherein the straight edge of the first conductive via is opposite a curved edge of the first conductive via, and the straight edge of the second conductive via is opposite a curved edge of the second conductive via.
Example embodiment 3: The integrated circuit structure of example embodiment 1 or 2, further including a dielectric plug between and in contact with the straight edge of the first conductive via and the straight edge of the second conductive via, the dielectric plug along a direction orthogonal to the direction of the plurality of conductive lines.
Example embodiment 4: The integrated circuit structure of example embodiment 3, wherein the dielectric plug has an uppermost surface co-planar with an uppermost surface of the second ILD layer.
Example embodiment 5: The integrated circuit structure of example embodiment 3 or 4, wherein the dielectric plug tapers inwardly from a top of the dielectric plug to a bottom of the dielectric plug.
Example embodiment 6: The integrated circuit structure of example embodiment 3, 4 or 5, further including a third conductive via in the second ILD layer and on a same side of the dielectric plug as the first conductive via, wherein the third conductive does not have a straight edge.
Example embodiment 7: The integrated circuit structure of example embodiment 6, further including a fourth conductive via in the second ILD layer and on a same side of the dielectric plug as the second conductive via, wherein the fourth conductive does not have a straight edge.
Example embodiment 8: A method of fabricating an integrated circuit structure, the method including forming a plurality of conductive lines in a first inter-layer dielectric (ILD) layer, the plurality of conductive lines on a same level and along a same direction. The method also includes forming a second ILD layer over the plurality of conductive lines and over the first ILD layer. The method also includes forming a conductive structure in the second ILD layer. The method also includes cutting the conductive structure to form a first conductive via in a first opening in the second ILD layer, the first conductive via in contact with a first one of the plurality of conductive lines, the first conductive via having a straight edge, and to form a second conductive via in a second opening in the second ILD layer, the second conductive via in contact with a second one of the plurality of conductive lines, the second one of the plurality of conductive lines laterally spaced apart from the first one of the plurality of conductive lines, and the second conductive via having a straight edge, the straight edge of the second conductive via facing the straight edge of the first conductive via.
Example embodiment 9: The method of example embodiment 8, wherein the straight edge of the first conductive via is opposite a curved edge of the first conductive via, and the straight edge of the second conductive via is opposite a curved edge of the second conductive via.
Example embodiment 10: The method of example embodiment 8 or 9, further including forming a dielectric plug between and in contact with the straight edge of the first conductive via and the straight edge of the second conductive via, the dielectric plug along a direction orthogonal to the direction of the plurality of conductive lines.
Example embodiment 11: The method of example embodiment 10, wherein the dielectric plug has an uppermost surface co-planar with an uppermost surface of the second ILD layer.
Example embodiment 12: The method of example embodiment 10 or 11, wherein the dielectric plug tapers inwardly from a top of the dielectric plug to a bottom of the dielectric plug.
Example embodiment 13: The method of example embodiment 10, 11 or 12, further including forming a third conductive via in the second ILD layer and on a same side of the dielectric plug as the first conductive via, wherein the third conductive does not have a straight edge.
Example embodiment 14: The method of example embodiment 13, further including forming a fourth conductive via in the second ILD layer and on a same side of the dielectric plug as the second conductive via, wherein the fourth conductive does not have a straight edge.
Example embodiment 15: A computing device includes a board, and a component coupled to the board. The component includes an integrated circuit structure including a plurality of conductive lines in a first inter-layer dielectric (ILD) layer, the plurality of conductive lines on a same level and along a same direction. A second ILD layer is over the plurality of conductive lines and over the first ILD layer. A first conductive via is in a first opening in the second ILD layer, the first conductive via in contact with a first one of the plurality of conductive lines, the first conductive via having a straight edge. A second conductive via is in a second opening in the second ILD layer, the second conductive via in contact with a second one of the plurality of conductive lines, the second one of the plurality of conductive lines laterally spaced apart from the first one of the plurality of conductive lines, and the second conductive via having a straight edge, the straight edge of the second conductive via facing the straight edge of the first conductive via.
Example embodiment 16: The computing device of example embodiment 15, further including a memory coupled to the board.
Example embodiment 17: The computing device of example embodiment 15 or 16, further including a communication chip coupled to the board.
Example embodiment 18: The computing device of example embodiment 15, 16 or 17, further including a camera coupled to the board.
Example embodiment 19: The computing device of example embodiment 15, 16, 17 or 18, further including a battery coupled to the board.
Example embodiment 20: The computing device of example embodiment 15, 16, 17, 18 or 19, wherein the component is a packaged integrated circuit die.