1. Field of the Invention
The invention relates to an energy monitoring device, and particularly for monitoring the energy of an extreme ultraviolet radiation source emitting around 11-15 nm.
2. Discussion of the Related Art
Semiconductor manufacturers are currently using deep ultraviolet (DUV) lithography tools based on KrF-excimer laser systems operating around 248 nm, as well as the following generation of ArF-excimer laser systems operating around 193 nm. Molecular fluorine (F2) lasers operating around 157 nm are being developed for use in Vacuum UV (VUV) lithographic processing systems. Extreme UV (EUV) or soft x-ray radiation sources for EUV lithography emitting 11 nm-15 nm photon beams are currently also being developed.
EUV radiation sources have an advantageous output emission beam including 11-15 nm wavelength photons having photon energies in a range around 90 eV. This short wavelength is advantageous for photolithography applications because the critical dimension (CD), which represents the smallest resolvable feature size producible using photolithography, is proportional to the wavelength. This permits smaller and faster microprocessors and larger capacity DRAMs in a smaller package.
A promising technique for producing EUV lithography beams uses a pair of plasma pinch electrodes for driving a preionized azimuthally symmetrical plasma shell to collapse to a central axis. A power supply circuit supplies a high energy, short duration pulse to the electrodes, wherein several kilovolts and up to at a hundred kA or more are applied over a pulse duration of less than a microsecond. A Z-pinch electrode arrangement generates a current through the plasma shell in an axial direction producing an azimuthal magnetic field that provides the radial force on the charged particles of the plasma responsible for the rapid collapse.
The excimer and molecular fluorine lithography lasers, mentioned above, emit laser beams using a gas discharge for creating a population inversion to a metastable state in the laser active gas, and a resonator for facilitating stimulated emission. It is not yet completely clear what radiative mechanism is responsible for the axial, high energy photon emission in plasma pinch EUV sources. The collapsing shell of charged particles of the plasma have a high kinetic energy due to their velocities in the radial direction. The rapid collapse of the shell results in collisions between all portions of the incoming shell at the central axis with radially opposed portions of the incoming shell.
The high kinetic energies of the particles are abruptly transformed into a hot, dense plasma which emits x-rays. A high recombination rate concentrated in the azimuthal direction due to the plasma being particularly optically dense in the azimuthal direction has been proposed (see, Malcolm McGeoch, Radio Frequency Preionized Xenon Z-Pinch Source for Extreme Ultraviolet Lithography, Applied Optics, Vol. 37, No. 9 (Mar. 20, 1998), which is hereby incorporated by reference), and population inversion resulting in spontaneous emission and predominantly azimuthal stimulated emission, and bremsstrahlung resulting from the rapid radially deceleration of the charged particles of the collapsing plasma, are other mechanisms of high energy photon emission.
In the past, i.e., prior to the investigations leading up to the present application, very little was known about the behavior of EUV-photodetectors under long-term 157 nm laser pulse radiation exposure. In addition, until now, no reliable energy monitor for detecting the pulse energy of an extreme ultraviolet beam having a wavelength around 11-15 nm has been available. For detecting 193 nm and 248 nm excimer laser radiation, UV-photodetectors such as the International Radiation Detectors, Inc. (IRD) UVG 100 (Si photodiode with oxinitride cover) or the Hamamatsu S 5226 or S1226 have been used typically as energy monitor detectors. However, these detectors may strongly degrade under exposure to EUV photon radiation.
It is therefore desired to have a reliable photodetector for monitoring pulse energies and/or another parameter of an extreme ultraviolet radiation source.
In view of the above, Si based photodiodes with special structure for long lifetime under EUV irradiation are provided for use as a detector for EUV radiation, preferably in combination with other optical components. These detectors preferably can be Si pn diodes with doped dead region and zero surface recombination (Si dead region diode). Another preferred detector is the Si pn diode with PtSi barrier (PtSi photodiode). The PtSi photodiode can also be of Schottky type. Both the Si dead region diode and the PtSi photodiode detector exhibits advantageous long-term stability under EUV exposure compared to detectors including conventional photodiodes.
Si dead region diodes and PtSi photodiodes may be used as photon detectors for exposure wavelengths from 0.5 nm to 10,000 nm. For example, they have been described for use as detectors for molecular fluorine laser radiation around a wavelength of 157 nm (see U.S. patent application Ser. No. 09/771,013, which is assigned to the same assignee as the present application and is hereby incorporated by reference). Long-term tests using this wavelength show much better stability compared to other investigated detectors (e.g. Si n-p, Si p-n or GaAsP Schottky photodiodes). In accordance with the present invention, a Si dead region diode or a PtSi photodiode is provided for use as a detector for EUV radiation with wavelengths around 11-15 nm, such as around 13.4 nm, 13.0 nm or 11.5 nm, for EUV lithography and other applications.
In combination with multilayer mirrors and free-standing filters, the spectral range of the detected radiation is advantageously reduced, according to a preferred embodiment, to a small region of interest in the EUV wavelength region. The filter may alternatively be directly deposited on the surface of the diode itself. This increases the stability of the filter and makes the handling of the detector unit less complex.
What follows is a cite list of references each of which is, in addition to those references cited above and below herein, including that which is described as background, and the above invention summary, are hereby incorporated by reference into the detailed description of the preferred embodiment below, as disclosing alternative embodiments of elements or features of the preferred embodiments not otherwise set forth in detail below. A single one or a combination of two or more of these references may be consulted to obtain a variation of the preferred embodiments described in the detailed description below. Further patent, patent application and non-patent references are cited in the written description and are also incorporated by reference into the detailed description of the preferred embodiment with the same effect as just described with respect to the following references:
K. Solt, et al., PtSi-n-Si Schottky-barrier photodetctors with stable spectral responsitivity in the 120-250 nm spectral range, Appl. Phys. Lett 69, 3662 (1996);
P. S. Shaw, et al. Ultraviolet radiometry with synchrotron radiation and cryogenic radiometry, Appl. Optics 38, 18 (1999);
P. S. Shaw, et al., New ultraviolet radiometry beamline at the Synchrotron Ultraviolet Facility at NIST, Metrologia 35, 301 (1998);
P. Kuschnerus, et al., Characterization of photodiodes as transfer detector standards in the 120 nm to 600 nm spectral range, Metrologla 35, 355 (1998);
IRD datasheet, SXUV Series Photodiodes, September 1999 (www.ird-inc.com);
R. Korde, et al., One Gigarad passivating Nitride Oxide for 100% Internal Quantum Efficiency Silicon Photodiodes, IEEE Transactions on Nuclear Science 40, 1655 (1993);
L. R. Canfield, et al., Absolute Silicon photodiodes for 160 nm to 254 nm Photons Metrologia 35, 329 (1998);
R. Korde, et al., Stable silicon photodiodes with platinium Silicide front window for the ultraviolet, presented at the VUV-XII conference;
Malcolm McGeoch, Radio Frequency Preionized Xzenon Z-Pinch Source for Extreme Ultraviolet Lithography, Applied Optics, Vol. 37, No. 9 (Mar. 20, 1998);
Proceedings of the SPIE3997, 162 (2000);
Proceedings SEMATECH-workshop Octobner 2000, San Francisco;
U.S. Pat. Nos. 6,219,368 6,051,841, 5,763,930, 6,031,241, 5,963,616, 5,504,795, 6,075,838, 6,154,470;
German patent document no. 197 53 696; and
U.S. patent application Ser. Nos. 60/281,446, 09/512,417, 09/598,552, 09/712,877, 09/594,892, 09/131,580, 09/317,695, 09/738,849, 09/718,809, 09/771,013, 09/693,490 and 09/588,561, each U.S. application of which is assigned to the same assignee as the present application.
The preferred embodiment includes a device for the extreme ultraviolet (EUV) radiation detection. The detected radiation is preferably limited to a spectral range which can pass an optical system containing several multilayer mirrors as under discussion for an extreme ultraviolet lithography (EUVL) device.
The presented device can be used to measure the in-band power of a pulsed or continuous wave extreme ultraviolet (EUV) source. In-band describes a wavelength region of about 2% bandwidth like it is reflected by several multilayer mirrors at a wavelength between 11 and 15 nm.
The detector itself may be sensitive for infrared light, visible light, ultraviolet and EUV radiation as well as for harder x-rays. The infrared, visible and ultraviolet light is preferably filtered by one or more opaque filters, e.g. beryllium, niobium, zirconium, yttrium, and/or silicon, among others. These filters can be either free standing foils or directly deposited layers on the surface of the photodiode. The filter or filters reduce the out-band light at the long wavelength side by several orders of magnitude. The x-ray flux to the detector is reduced several orders of magnitude by the multilayer mirror itself. Using a combination of filter and multilayer mirror, the spectral region of radiation reaching the detector without attenuation is in the EUV wavelength range and depends on the reflection characteristic of the multilayer mirror. The intensity of the radiation on the detector can be varied by varying the filter thickness as well as by geometrical absorbers (e.g. mesh filter or apertures).
The setup also allows to use a CCD camera as detector combined with a free standing transmission filter. For example, backside illuminated CCD cameras may be used as sensitive detectors for EUV radiation.
The working principle is shown in FIG. 4.
In the experimental setup the EUV source was a laser produced plasma. The two signals show the laser pulses detected by a photodiode (top signal) and the EUV signal detected with a device shown in FIG. 1.
Another advantageous feature of the proposed device is the use of a focussing multilayer mirror with a curved surface. This can increase the photon flux on the detector and the sensitivity of the monitor setup.
Also provided according to a preferred embodiment herein, a beam parameter monitoring unit for coupling with an EUV source that produces an output beam having a wavelength around 11-15 nm is provided. The monitoring unit schematically illustrated at
The detector 3 shown includes a platinum silicide (PtSi) window 38 for reducing EUV radiation exposure induced instability of the detector 3. More than one PtSi layer may be included in the detector design. The platinum silicide layer may be located in another location, such as beneath one or more other material layers of the device. The detector 3 also may include a defect free n-type region 40 beneath the PtSi window 38 and above an epitaxial p-type region which itself lies above a p+ substrate 44 over a chromium gold base layer 46. The detector 3 shown also may have four aluminum contacts 48 and four insulating field oxide regions 50. A pair of p+ regions and a pair of n+ regions are also shown implanted into the epitaxial layer 42.
It is recognized herein that the presence of the PtSi reduces EUV radiation exposure induced instability of the detector 3. The PtSi may be used in combination with other materials to form a hybrid layer. The PtSi may have substitutional or inter-dispersed species doped therein, or PtSi itself may be doped into another material-type layer. Several PtSi layers may be included, wherein the PtSi layers may have other material layers therebetween. It is recognized herein that PtSi may be used in a detector that is protected within an enclosure for delivering EUV radiation, particularly around 11-15 nm, as is preferably emitted by an extreme ultraviolet radiation source, and that although an embodiment is shown at
The invention provides a detector for a monitoring an output beam parameter of an extreme ultraviolet radiation source emitting radiation around 11-15 nm. Preferred embodiments preferably exhibit little or no degradation of spectral sensitivity even after high exposure dosage. The preferred embodiments include EUV-photodetectors which are very stable under strong 11-15 nm exposure preferably under inert gas purged or evacuated illumination conditions.
The preferred embodiments include an evacuatable or purgeable vacuum tight energy monitor housing which contains an advantageously stable EUV-photodiode detector. Radiation attenuators, apertures, EUV-light scattering plates, electrical pass through means, purge gas inlet and/or means of flowing purging gas through the exposed detector housing or for evacuating the housing may also be included.
The incoming beam 7a is preferably coming from an EUV radiation source (not shown in FIG. 6). The enclosure 1 is either connected directly to the output of the EUV source, or at least a beam path from the output to a window 9 of the enclosure is substantially free of EUV absorbing species such as having a flow of inert gas or substantial vacuum continuously present in the path of the beam 7a.
The beam 7b is shown passing through the beam splitter 4a and exiting from the enclosure 1. Another enclosure of a beam path that leads to an application process may be connected directly to the enclosure, or at least the beam path is free of EUV absorbing species, such as described above with respect to the incoming beam. The beam 7a may alternatively be previously split off from a beam that is transmitted to an application process, or the beam that is used at the application process may be the output from the EUV source, or vice-versa with respect to these two beams.
The beam 7a is shown incident at a beam splitter 4a. In this embodiment, the beam splitter 4a is preferably an uncoated EUV transmissive plate such as of a material known to those skilled in the art. The beam 7c is then reflected from an EUV mirror 4b through optics 5 and into the detector enclosure 2 and is incident on the detector 3.
As a whole the energy monitor unit includes a beam separation box containing beam splitting optics 4a, 4b and the EUV detector housing 2 which contains a preferred EUV-photodetector 3, as described in more detail elsewhere herein. Preferably, the EUV detector housing 2 is directly connected to the beam path enclosure 1 by a suitable vacuum fitting, preferably a DN40 flange (not shown in
In a preferred embodiment, the beam separation box including the enclosure 1 contains suitable optics to split a certain beam portion 7c (about 1% to 15%) of the main beam 7a, and redirect the beam portion 7c into the detector housing 2, and those optics may be alternatively to those described above, such as are described at the '552 and/or '952 applications, mentioned above. Such means may include an aperture disposed at or near position 8 of FIG. 6. As mentioned above, in a preferred embodiment, the beam splitting optics 4a, 4b within the enclosure 1 of the beam separation box may include a blank uncoated beam splitter 4a disposed in the path of the main beam line 7a and a highly reflective (HR) mirror for EUV radiation 4b as an additional beam steering mirror. This configuration is advantageously inexpensive to manufacture and prevents problems associated with coating damage due to exposure to the high power main beam 7a. The beam splitter 4a may, however, include one or more coatings.
In an alternative embodiment, a beam splitter is not used. Instead, a first beam is output from an EUV source and a second beam is output from the EUV source already separate from each other. The second beam may be output from another location of the EUV source, such that the first beam is output at one end of the EUV source chamber and the second beam is output at the other end of the EUV source chamber. In an alternative example, the output location of the EUV source may be configured to separate the two beam components. Therefore, including a beam splitter 4a, or other optic having a partially reflecting surface for separating a single output beam into two components such that one component is used to process a workpiece and the other incident at an EUV detector 3 is merely preferred and not necessary, as understood from the above. Any additional optics such as mirror 4b are also merely preferred. Preferably, the component measured at the detector 3 has at least one parameter such as energy, wavelength, bandwidth, spatial or temporal beam profile, divergence, spatial or temporal coherence, etc. that it is desired to be measured that has a known relationship to the same parameter in the other component that is used for processing the workpiece.
The detector housing 2 may be advantageously quickly evacuated and backfilled or purged with an inert gas without accumulation of contaminants or EUV photoabsorptive species of gas which could otherwise produce errors in monitoring a beam parameter by detecting the small amount of EUV radiation 7c which is received at the detector 3 (typically about 1% to 0.001% of the radiation density of the main part of the beam 7a).
As seen in
A gas supply inlet 20 and an outlet 22 controllably supply active and diluent gases to the pinch region 12. The outlet 22 is connected to a vacuum pump 23. Other gas supply systems are possible such as may be borrowed and/or modified from excimer laser technology (see U.S. Pat. Nos. 4,977,573 and 6,212,214, and U.S. patent application Ser. Nos. 09/447,882 and 09/453,670, each of which is assigned to the same assignee as the present application, and U.S. Pat. Nos. 5,978,406 and 5,377,215, all of which are hereby incorporated by reference). The gas may be circulated and electrostatic and/or cryogenic purification filters may be inserted into the gas loop (see U.S. Pat. Nos. 4,534,034, 5,136,605 and 5,430,752, each of which is hereby incorporated by reference). A heat exchanger may also be provided in the gas loop (see the '670 application, mentioned above and U.S. Pat. No. 5,763,930, which is hereby incorporated by reference).
The gas mixture includes an x-radiating gas such as xenon, krypton, argon, neon, oxygen or lithium. The gas mixture also preferably includes a low atomic number diluent gas such as helium, hydrogen, deuterium, and possibly nitrogen. Preferably xenon (11-15 nm), lithium (13.4 nm) and/or oxygen (13.0 nm), and preferably a buffer gas such as helium, are used.
A preionization electrode 26 is connected to a preionization unit 27 for preionizing the gas in the pinch region 12. Many preionization unit types are possible such as e-beam, conical pinch discharge and RF preionization (see the '795 patent, mentioned above, U.S. patent application Ser. No. 09/693,490, which is assigned to the same assignee as the present application, and C. Stallings, et al., Imploding Argon Plasma Experiments, Appl. Phys. Lett. 35 (7), Oct. 1, 1979, which are hereby incorporated by reference). Some known laser preionization systems may be modified to provide preionization for the EUV source, as well (see U.S. Pat. Nos. 5,247,535, 5,347,532 and U.S. patent application Ser. Nos. 09/247,887, 09/692,265, 09/532,276, 60/228,186, each of which is assigned to the same assignee as the present application and is hereby incorporated by reference. The preionization unit 27 and electrode 26 preionizes the pinch plasma in a symmetrical shell around the central axis 14, as shown, prior to the application of the main pulse to the main electrodes 30 and 32.
The preferred main electrodes 30, 32 are as shown in FIG. 9. The anode 30 and the cathode 32 are shown located at opposite ends of the pinch region 12. Many other anode-cathode configurations are possible (see U.S. Pat. Nos. 3,961,197, 5,763,930, 4,504,964 and 4,635,282, each of which is hereby incorporated by reference). A power supply circuit 36 including a voltage source 37, a switch 38 and capacitor 39 connected to electrodes 30, 32 generates electrical pulses that produce high electric fields in the pinch region which in turn create azimuthal magnetic fields causing the preionized plasma to rapidly collapse to the central axis 14 to produce an EUV beam output along the central axis 14. Many power supply circuits are possible (see U.S. Pat. No. 5,142,166 which is hereby incorporated by reference). The anode 30 and cathode 32 are separated by an insulator 40.
A prepulse may be generated, as well. The prepulse occurs just prior to the main pulse and after the plasma is substantially preionized by the preionization unit 27 and electrode 26. The prepulse is a relatively low energy discharge provided by the main electrodes 30, 32. The prepulse creates more homogeneous conditions in the already preionized plasma preventing electrode burnout at hotspots from arcing due to the high voltage, fast rise time of the main pulse. A prepulse circuit is described at Giordano et al., referred to and incorporated by reference, below, and may be modified to suit the EUV source of the preferred embodiment.
Many other configurations of the above elements of the preferred embodiment are possible. For this reason, the following are hereby incorporated by reference: Weinberg et al., A Small Scale Z-Pinch Device as an Intense Soft X-ray Source, Nuclear Instruments and Methods in Physics Research A242 (1986) 535-538; Hartmann, et al., Homogeneous Cylindrical Plasma Source for Short-Wavelength laser, Appl. Phys. Lett. 58 (23), Jun. 10, 1991; Shiloh et al., Z Pinch of a Gas Jet, Phys. Rev. Lett. 40 (8), Feb. 20, 1978; Choi et al., Temporal Development of Hard and Soft X-ray Emission from a Gas-Puff Z Pinch, 2162 Rev. Sci. Instrum. 57 (8) August 1986; McGeoch, Appl. Optics, see above; Pearlman, et al., X-ray Lithography Using a Pulsed Plasma Source, 1190 J. Vac. Sci. Technol. 19 (4) November/December 1981; Matthews et al., Plasma Sources for X-ray Lithography, 136 SPIE Vol. 333 Submicron Lithography (1982); Mather, Formation of a High Density Deuterium Plasma Focus, Physics of Fluids, 8 (3) February 1965; Giordano et al. Magnetic Pulse Compressor for Prepulse Discharge in Spiker Sustainer Technique for XeCI Lasers, Rev. Sci. Instrum. 65 (8), August 1994; Bailey et al., Evaluation of the Gas Puff Z Pinch as an X-ray Lithography and Microscopy Source; U.S. Pat. Nos. 3,150,483, 3,232,046, 3,279,176, 3,969,628, 4,143,275, 4,203,393, 4,364,342, 4,369,758, 4,507,588, 4,536,884, 4,538,291, 4,561,406, 4,618,971, 4,633,492, 4,752,946, 4,774,914, 4,837,794, 5,023,897, 5,175,755, 5,241,244, 5,442,910, 5,499,282, 5,502,356, 5,577,092, 5,637,962; and the sources previously referred to above.
Between the pinch region 12 and the EUV transmitting window 18 are several advantageous features. A first is a clipping aperture 300 which is spaced a proximate distance from the pinch region 12. The clipping aperture 300 may be formed as shown or may be offset at an angle such as is described at U.S. Pat. No. 5,161,238 which is assigned to the same assignee as the present application and is hereby incorporated by reference. The clipping aperture 300 comprises a material exhibiting a high thermal stability. That is, the clipping aperture preferably has a high thermal conductivity and a low coefficient of thermal expansion. The clipping aperture preferably comprises a ceramic material such as Al2O3, sapphire or alumina.
The clipping aperture is positioned close to the pinch region, but not too close to the pinch region 12 that thermal effects degrade its performance. The clipping aperture 300 blocks acoustic waves and particulates travelling with the acoustic waves from following the beam on the remainder of its journey through the pinch chamber 10. The aperture is further preferably configured to reflect and/or absorb the acoustic waves so that they do not reflect back into the pinch region 12. The size of the clipping aperture 300 is selected to match the divergence of the beam.
A set of baffles 400 is provided after the clipping aperture. The baffles 400 may be configured similar to those described at U.S. Pat. No. 5,027,366, which is hereby incorporated by reference. The baffles 400 serve to diffuse the effect of acoustic waves emanating from the pinch region such as the flow of gases and contaminant particulates travelling with the acoustic waves, as well as to prevent reflections back into the pinch region. The baffles 400 preferably absorb such disturbances.
An ionizing unit 500 is shown located after the baffles 400. The ionizing unit 500 may be located before the baffles 400 or between two sets of baffles 400. The ionizing unit preferably emits UV radiation. As such, the ionizing unit 500 is preferably corona type, such as corona wires or electrodes. Some corona designs are described at U.S. Pat. Nos. 4,718,072, 5,337,330 and 5,719,896, and U.S. patent application Ser. Nos. 09/247,887 and 09/692,265, each application being assigned to the same assignee as the present application, all of which are hereby incorporated by reference.
The UV light from the ionizer unit 500 ionizes dust particles that tend to travel along with the beam. An electrostatic particle filter 600a, 600b is provided for collecting the charged dust particles resulting in a cleaner beam path. Fewer of these contaminants are deposited on the window 18 and elsewhere in the chamber 14. Also, the ionizer/precipitator arrangement reduces reflections from the particulates by the EUV beam, as well as other disturbances to the beam.
An EUV source has been described with reference to
Advantageously, the output power of gas discharge based photon sources in the extreme ultraviolet and soft x-ray spectral range may be increased using a mirror according to these alternative embodiments. Another advantage is that this effect of increased power may be obtained while leaving other conditions unaltered.
The usable angle of a gas discharge based photon source is often limited by the electrodes of the discharge system itself. Furthermore, it is often difficult to increase the aperture.
Another way to raise the output power of gas discharge based photon sources, the electrical input power may be increased. Under the same discharge conditions, this leads to higher power in the electrode system correlated with higher temperatures. The preferred embodiments which include the multilayer mirrors increases the output power of such a source leaving other parameters such as input power unaltered.
Gas discharge based photon sources generate a hot dense plasma, which emits radiation into a solid angle of 4 π sr. Radiation emitted in an other direction than the open solid angle of the electrode system, which is defined by the aperture and its distance to the plasma, is absorbed within the source and cannot be used. The described mirror reflects parts of this radiation and guides it through the accessible aperture. The mirror is preferably a multilayer mirror, which is adapted to the wavelength of the radiation (preferably between 11 nm and 15 nm) and the angle of incidence. This angle can vary laterally on the surface of the mirror and gradient multilayers may be used.
In the gas discharges of the systems schematically illustrated at
A flat mirror will improve the output power of the source, and may be useful with some configurations. To improve the output power further, an elliptical mirror with adapted focal length will focus the radiation in front of the output aperture, and a hyperbolic mirror will generate almost parallel radiation. This degree of freedom of changing the mirror shape to adapt the emission properties of the source to the optical system of the application may be advantageously used.
The improvement of the output power of the sources, e.g., those illustrated at
The preferred mirrors are treated by heat and/or ion bombardement from the plasma of the devices shown in
Those skilled in the art will appreciate that the just-disclosed preferred embodiments are subject to numerous adaptations and modifications without departing from the scope and spirit of the invention. Therefore, it is to be understood that, within the scope and spirit of the invention, the invention may be practiced other than as specifically described above.
This application claims the benefit of priority to U.S. provisional patent application No. 60/312,277, filed Aug. 13, 2001.
Number | Name | Date | Kind |
---|---|---|---|
4009933 | Firester | Mar 1977 | A |
4240044 | Fahlen et al. | Dec 1980 | A |
4380079 | Cohn et al. | Apr 1983 | A |
4393505 | Fahlen | Jul 1983 | A |
4399540 | Bücher | Aug 1983 | A |
4611270 | Klauminzer et al. | Sep 1986 | A |
4616908 | King | Oct 1986 | A |
4674099 | Turner | Jun 1987 | A |
4686682 | Haruta et al. | Aug 1987 | A |
4691322 | Nozue et al. | Sep 1987 | A |
4719637 | Cavaioli et al. | Jan 1988 | A |
4829536 | Kajiyama et al. | May 1989 | A |
4835580 | Havemann et al. | May 1989 | A |
4856018 | Nozue et al. | Aug 1989 | A |
4860300 | Bäumler et al. | Aug 1989 | A |
4891818 | Levatter | Jan 1990 | A |
4905243 | Lokai et al. | Feb 1990 | A |
4926428 | Kajiyama et al. | May 1990 | A |
4953174 | Eldridge et al. | Aug 1990 | A |
4975919 | Amada et al. | Dec 1990 | A |
5001721 | Ludewig et al. | Mar 1991 | A |
5005181 | Yoshioka et al. | Apr 1991 | A |
5025445 | Anderson et al. | Jun 1991 | A |
5051558 | Sukhman | Sep 1991 | A |
5081635 | Wakabayashi et al. | Jan 1992 | A |
5095492 | Sandstrom | Mar 1992 | A |
5099491 | Chaffee | Mar 1992 | A |
5111473 | Rebhan et al. | May 1992 | A |
5136605 | Basting et al. | Aug 1992 | A |
5140600 | Rebhan | Aug 1992 | A |
5142543 | Wakabayashi et al. | Aug 1992 | A |
5150370 | Furuya et al. | Sep 1992 | A |
5221823 | Usui | Jun 1993 | A |
5226050 | Burghardt | Jul 1993 | A |
5243614 | Wakata et al. | Sep 1993 | A |
5247531 | Müller-Horsche | Sep 1993 | A |
5247534 | Müller-Horsche | Sep 1993 | A |
5247535 | Müller-Horsche et al. | Sep 1993 | A |
5307364 | Turner | Apr 1994 | A |
5311565 | Horikawa | May 1994 | A |
5331456 | Horikawa | Jul 1994 | A |
5337330 | Larson | Aug 1994 | A |
5396514 | Voss | Mar 1995 | A |
5404366 | Wakabayashi et al. | Apr 1995 | A |
5405207 | Zubli | Apr 1995 | A |
5430752 | Basting et al. | Jul 1995 | A |
5434901 | Nagai et al. | Jul 1995 | A |
5440578 | Sandstrom | Aug 1995 | A |
5450463 | Iketaki | Sep 1995 | A |
5463650 | Ito et al. | Oct 1995 | A |
5504795 | McGeoch | Apr 1996 | A |
5533083 | Nagai et al. | Jul 1996 | A |
5534034 | Caspers | Jul 1996 | A |
5535233 | Mizoguchi et al. | Jul 1996 | A |
5557629 | Mizoguchi et al. | Sep 1996 | A |
5559584 | Miyaji et al. | Sep 1996 | A |
5559816 | Basting et al. | Sep 1996 | A |
5596596 | Wakabayashi et al. | Jan 1997 | A |
5598300 | Magnusson et al. | Jan 1997 | A |
5606586 | Amemiya et al. | Feb 1997 | A |
5652681 | Chen et al. | Jul 1997 | A |
5659419 | Lokai et al. | Aug 1997 | A |
5659531 | Ono et al. | Aug 1997 | A |
5663973 | Stamm et al. | Sep 1997 | A |
5684822 | Partlo | Nov 1997 | A |
5710787 | Amada et al. | Jan 1998 | A |
5729562 | Birx et al. | Mar 1998 | A |
5729565 | Meller et al. | Mar 1998 | A |
5748346 | David et al. | May 1998 | A |
5761236 | Kleinschmidt et al. | Jun 1998 | A |
5763855 | Shioji | Jun 1998 | A |
5763930 | Partlo | Jun 1998 | A |
5771258 | Morton et al. | Jun 1998 | A |
5802094 | Wakabayashi et al. | Sep 1998 | A |
5808312 | Fukuda | Sep 1998 | A |
5811753 | Weick et al. | Sep 1998 | A |
5818865 | Watson et al. | Oct 1998 | A |
5835520 | Das et al. | Nov 1998 | A |
5835560 | Amemiya et al. | Nov 1998 | A |
5848119 | Miyake et al. | Dec 1998 | A |
5852627 | Ershov | Dec 1998 | A |
5856991 | Ershov | Jan 1999 | A |
5898725 | Fomenkov et al. | Apr 1999 | A |
5901163 | Ershov | May 1999 | A |
5914974 | Partlo et al. | Jun 1999 | A |
5917849 | Ershov | Jun 1999 | A |
5923693 | Ohmi et al. | Jul 1999 | A |
5936988 | Partlo et al. | Aug 1999 | A |
5940421 | Partlo et al. | Aug 1999 | A |
5946337 | Govorkov et al. | Aug 1999 | A |
5949806 | Ness et al. | Sep 1999 | A |
5963616 | Silfvast et al. | Oct 1999 | A |
5970082 | Ershov | Oct 1999 | A |
5978391 | Das et al. | Nov 1999 | A |
5978394 | Newman et al. | Nov 1999 | A |
5978405 | Juhasz et al. | Nov 1999 | A |
5978409 | Das et al. | Nov 1999 | A |
5982795 | Rothweil et al. | Nov 1999 | A |
5982800 | Ishihara et al. | Nov 1999 | A |
5991324 | Knowles et al. | Nov 1999 | A |
5999318 | Morton et al. | Dec 1999 | A |
6005880 | Basting et al. | Dec 1999 | A |
6020723 | Desor et al. | Feb 2000 | A |
6028872 | Partlo et al. | Feb 2000 | A |
6028880 | Carlesi et al. | Feb 2000 | A |
6031241 | Silfvast et al. | Feb 2000 | A |
6051841 | Partlo | Apr 2000 | A |
6061382 | Govorkov et al. | May 2000 | A |
6075838 | McGeoch | Jun 2000 | A |
6081542 | Scaggs | Jun 2000 | A |
6084897 | Wakabayashi et al. | Jul 2000 | A |
6130431 | Berger | Oct 2000 | A |
6142641 | Cohen et al. | Nov 2000 | A |
6151346 | Partlo et al. | Nov 2000 | A |
6154470 | Basting et al. | Nov 2000 | A |
6157662 | Scaggs et al. | Dec 2000 | A |
6160831 | Kleinschmidt et al. | Dec 2000 | A |
6160832 | Kleinschmidt et al. | Dec 2000 | A |
6188710 | Besaucele et al. | Feb 2001 | B1 |
6219368 | Govorkov | Apr 2001 | B1 |
6256371 | Hasegawa et al. | Jul 2001 | B1 |
6285743 | Kondo et al. | Sep 2001 | B1 |
6327290 | Govorkov et al. | Dec 2001 | B1 |
6339634 | Kandaka et al. | Jan 2002 | B1 |
6345065 | Kleinschmidt et al. | Feb 2002 | B1 |
6396900 | Barbee et al. | May 2002 | B1 |
6399916 | Gortler et al. | Jun 2002 | B1 |
6414438 | Borisov et al. | Jul 2002 | B1 |
6442182 | Govorkov et al. | Aug 2002 | B1 |
6504900 | Kondo et al. | Jan 2003 | B1 |
6504903 | Kondo et al. | Jan 2003 | B1 |
6522716 | Murakami et al. | Feb 2003 | B1 |
6522717 | Murakami et al. | Feb 2003 | B1 |
6526118 | Komatsuda et al. | Feb 2003 | B1 |
6529533 | Voss | Mar 2003 | B1 |
6590959 | Kandaka et al. | Jul 2003 | B1 |
6594334 | Ota | Jul 2003 | B1 |
6690764 | Kondo | Feb 2004 | B1 |
6781135 | Berger | Aug 2004 | B1 |
Number | Date | Country |
---|---|---|
295202 80 | Dec 1995 | DE |
298 22 090 | Dec 1998 | DE |
0 236 137 | Mar 1987 | EP |
0 532 751 | Feb 1991 | EP |
0 532 751 | Feb 1991 | EP |
0 459 503 | May 1991 | EP |
0 459 503 | May 1991 | EP |
0 790 681 | Jan 1997 | EP |
0 867 774 | Mar 1998 | EP |
0 867 774 | Mar 1998 | EP |
0 987 601 | Mar 2000 | EP |
63-86593 | Apr 1988 | JP |
HEI 1-115182 | May 1989 | JP |
HEI 3-166784 | Jul 1991 | JP |
HEI 3-265180 | Nov 1991 | JP |
HEI 4-17380 | Jan 1992 | JP |
WO 9919952 | Apr 1999 | WO |
WO 0101532 | Jan 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20030058429 A1 | Mar 2003 | US |
Number | Date | Country | |
---|---|---|---|
60312277 | Aug 2001 | US |