Information
-
Patent Application
-
20030214835
-
Publication Number
20030214835
-
Date Filed
May 16, 200222 years ago
-
Date Published
November 20, 200321 years ago
-
CPC
-
US Classifications
-
International Classifications
Abstract
This invention relates to MRAM technology and new variations on MRAM array architecture to incorporate certain advantages from both cross-point and 1T-1M architectures. The fast read-time and higher signal-to-noise ratio of the 1T-1MTJ architecture and the higher packing density of the cross-point architecture are both exploited by combining certain characteristics of these layouts. A single access transis is used to read multiple MRAM cells, which can be stacked vertically above one anot a plurality of MRAM array layers arranged in a “Z” axis direction.
Description
FIELD OF THE INVETION
[0001] The present invention relates to magnetoresistive random access memo (MRAM) devices and, more particularly, to read circuitry for such devices.
BACKGROUND OF THE INVENTION
[0002] Integrated circuit designers have always sought the ideal semiconducto memory: a device that is randomly accessible, can be written or read very quickly, is n volatile, but indefinitely alterable, and consumes little power. Magnetoresistive rand access memory (MRAM) technology has been increasingly viewed as offering all thes advantages.
[0003] A magnetic memory element has a structure which includes ferromagn layers separated by a non-magnetic barrier layer that forms a tunnel junction. Inform can be stored as a digital “1” or a “0” as directions of magnetization vectors in these ferromagnetic layers. Magnetic vectors in one ferromagnetic layer are magnetically fi pinned, while the magnetic vectors of the other ferromagnetic layer are not fixed so t the magnetization direction is free to switch between “parallel” and “antiparallel” sta relative to the pinned layer. In response to parallel and antiparallel states, the magnet memory element represents two different resistance states, which are read by the men circuit as either a “1” or a “0.” It is the detection of these resistance states for the di magnetic orientations that allows the MRAM to read information.
[0004] There are different array architectures that are used within MRAM technology to read memory cells. For instance, one architecture used is the so-called transistor—one magnetic tunnel junction per cell (“1T-1MTJ”) architecture. This structure is based on a single access transistor for controlling read access to a single magnetic memory element. Another architecture is the cross-point architecture, wher read operation is performed without using an access transistor to control individual memory cells. This type of system uses row and column lines set to predetermined vo levels to read a selected cell. Each system has its advantages and disadvantages. The point system is somewhat slower in reading than the 1T-1MTJ system, as well as bein “noisy” during a read operation; however, the cross-point array has the advantage in t can be easily stacked for higher density. Additionally, a 1T-1MTJ array is faster, but necessarily less densely integrated than a cross-point array because additional space is needed to supply the 1-to-1 access transistor to memory cell ratio.
[0005] It would be desirable to have an MRAM read architecture that could ut advantages from both the 1T-1MTJ and cross-point architectures while minimizing t disadvantages of each.
SUMMARY
[0006] This invention provides an MRAM array read architecture which incorp certain advantages from both cross-point and 1T-1MTJ architectures. The fast read and high signal-to-noise ratio of the 1T-1MTJ architecture and the higher packing d of the cross-point architecture are both exploited in the invention by uniquely combi certain characteristics of each. A single access transistor can be used to operate the re of multiple MRAM cells, which can be stacked vertically above one another in a plural MRAM array layers. In this architecture, the plurality of standard MRAM cells essent share a common sense line, though each MRAM cell can be read individually.
BRIEF DESCRIPTION OF THE DRAWINGS
[0007]
FIG. 1 is a two-dimensional cross-sectional view of a portion of an MR array, constructed in accordance with an exemplary embodiment of the invention;
[0008]
FIG. 2 is a perspective cross-sectional illustration of a portion of an MR array, constructed in accordance with the embodiment shown in FIG. 1;
[0009]
FIG. 3 is a block diagram and representational illustration of an MRAM memory cell showing the interaction between the layers of the cell and other circuitry
[0010]
FIG. 4 is a block diagram representation of a processor-based system incorporating an MRAM device in accordance with the invention.
DETAILED DESCRIPTION
[0011] In the following detailed description, reference is made to various speci embodiments in which the invention may be practiced. These embodiments are desc with sufficient detail to enable those skilled in the art to practice the invention, and it be understood that other embodiments may be employed, and that structural and ele changes may be made without departing from the spirit or scope of the present inven
[0012] The terms “substrate” and “wafer” can be used interchangeably in the following description and may include any semiconductor-based structure. The struc should be understood to include silicon, silicon-on insulator (SOI), silicon-on-sapphi (SOS), doped and undoped semiconductors, epitaxial layers of silicon supported by a semiconductor foundation, and other semiconductor structures. The semiconductor not be silicon-based. The semiconductor could be silicon-germanium, germanium, o gallium arsenide. When reference is made to the substrate in the following descriptio previous process steps may have been utilized to form regions or junctions in or over base semiconductor or foundation.
[0013] The term “metal” is intended to include not only elemental metal, but include metal with other trace metals or in various alloyed combinations with other m as known in the semiconductor art, as long as such alloy retains the physical and chem properties of a metal. The term “metal” is also intended to include conductive oxide such metals.
[0014] This invention relates to MRAM technology and new variations on MR array architecture to incorporate certain advantages from both cross-point and 1T-1M architectures. The fast read-time and high signal-to-noise ratio of the 1T-1MTJ architecture and the higher packing density of the cross-point architecture are both exploited by combining certain characteristics of each layout. FIG. 1 and FIG. 2 illus an exemplary embodiment of the invention. In the invention an access transistor 16 i to control the reading of multiple MRAM cells 38, which are stacked substantially ab one another in a plurality of MRAM array layers 34 that are arranged in the “Z” axis direction. In this architecture, each access transistor 16 in a two-dimensional array in access transistor layer 12 can be connected to a substantially vertical stack of a pluralit MRAM cells 38 fabricated substantially over each single access transistor 16 so that th plurality of MRAM cells 38 in this “Z” direction will essentially share a sense line 33 t virtue of a sense line interconnect 32 (explained below). This architecture is represen a two-dimensional cross-section in FIG. 1 and in a three-dimensional cross-section in 2. The “X,” “Y,” and “Z” axes are shown in both figures.
[0015] Now referring to the figures, where like reference numbers designate lik elements, FIG. 1 shows that the structure of the MRAM device of the invention inclu an access transistor layer 12 over a semiconductor substrate 10. The access transistor 12 includes at least a two-dimensional array (in the “X,Y” plane) of access transistors As shown in FIG. 1, the access transistors 16 are arranged over the substrate 10 along “X” axis direction. However, what is shown is merely a small cross-section of the MR device of the invention for explicative purposes and there can be other access transisto over the substrate in both the “X” and “Y” axis directions.
[0016] As shown in FIG. 1, the access transistors 16 can be typical N-channel MOSFET (metal oxide semiconductor field effect transistor), though the specific stru of the access transistors 16 is not crucial to the invention. The transistors 16 include source/drain 14 active areas in the substrate 10. Over the substrate 10, the transistor includes a gate oxide 18, and over this there is typically a polysilicon layer 20 with an overlying silicide layer 22, all topped by a nitride cap 24. The polysilicon layer 20 an silicide layer 22 together form a wordline 23 (that continues in the “Y” axis direction The sides of the access transistor 16 wordline 23 are insulated and protected by insul sidewalls 26, typically made of an oxide or nitride material. The wordline 23 of the a transistor 16 can be connected to peripheral circuitry 48 (depicted in FIG. 3), such as decoding devices and logic circuitry. Access transistors 16 for use in this invention ca fabricated by any techniques well known to those of skill in the art.
[0017] Still referring to FIG. 1, the access transistor layer 12 also includes an insulating dielectric layer 28 over and around the access transistors 16. Through this insulating dielectric layer 28 conductive plugs 30 can be fabricated to connect to the source/drain regions 14 of the access transistors 16. The insulating dielectric 28 can any material known in the art, such as an oxide or BPSG, and can be formed accordin methods well known in the art. The conductive plugs 30 similarly can be any materia known in the art, but preferably are tungsten-based, and can be formed by known methods. These conductive plugs 30 can serve as terminals or connections for electri connecting the underlying access transistors 16 to the overlying MRAM cells 38 of th MRAM array layers 34 as well as for connection to peripheral circuitry 48, such as bit 31 leading to sense amplifiers 50 used during the reading of the MRAM cells 38. Th connections between the access transistors 16 and the MRAM array layers 34 and the lines 31 are typically formed as metal interconnects 36, insulated as is known in the ar a dielectric material (not shown). The metal interconnects 36 and bit lines 31 can be copper, aluminum, or any other metal known as suitable in the art, and can be forme known methods.
[0018] As mentioned in the preceding paragraph, the bit line 31, which is con to the sense amplifier 50, is coupled to the access transistors 16 by the metal intercon 36 and a metal plug 30. As shown in FIG. 1, arranged in “stacked” MRAM array lay are MRAM cells 38. These cells 38 are arranged in two-dimensional arrays (in the plane) in each layer 34, where each cell 38 is defined at the intersection of a common 44 and a sense line 33, which can be, and generally are, orthogonal to each other. Th also be seen in a three-dimensional perspective in FIG. 2. The sense line 33 for each layer 34 for a given vertical stack of memory cells 38 are interconnected by a metal interconnect 32. FIGS. 1 and 2 also show write only lines 40, which may be provided assist in writing a memory cell 38. Referring to FIG. 3, each MRAM cell 38 would include, at its most basic configuration, the common line 44 used for both the readin writing functions, a magnetic bit 42, a sense line 33 used for the reading function, an write-only line 40 used for the writing function, which is separated from the sense lin by the providing of a dielectric layer 46. The magnetic bit 42 includes a free ferroma layer 43, a tunnel junction layer 45, and a pinned ferromagnetic layer 41. In the pref embodiment, the free ferromagnetic layer 43 is above the pinned ferromagnetic layer which is adjacent the sense line 33; however, it is possible to alter the arrangement of layers as is known in the art. In the preferred embodiment, MRAM cells 38 sharing a line interconnect 32 are in a “column” that is vertical relative to the access transistor However, other configurations are possible, such as, for instance, offsetting the cells 3 sharing the sense line interconnect 32 from one another, so long as it is practical to c a sense line 33 of one cell 38 per layer 34 to the same sense line interconnect 32.
[0019] The write-only line 40 of the MRAM cell 38 can be composed of cond materials as known in the art; the particular combination of materials making up the v only line is not a critical element of the invention; however, as an example this line 40 be copper or aluminum, for instance. The write-only line 40 is insulated from its surroundings by a dielectric layer 46, which also insulates other elements of the MRA 38 and the MRAM array layer 34. Though shown in segments associated with the M cells 38 in FIG. 1 and FIG. 2, the write-only lines 40 actually are continuous and trav around the sense line interconnects 32 as shown by the dashed arrows in FIG. 1.
[0020] Shown most clearly in FIG. 3, above the write-only line 40 is the sense 33, which will be further described below, and the magnetic bit 42, which is in conta with the common line 44. The pinned ferromagnetic layer 41 includes an associated antiferromagnetic layer (not shown), such as iron manganese, which keeps the magne orientation of this layer 41 fixed, i.e., “pinned.” The magnetic material of the pinned ferromagnetic layer 41 can be selected from many various materials or alloys with goo magnetic properties, such as nickel iron cobalt or nickel iron, for instance. The tunne junction 45 is a region separating the two ferromagnetic layers 41 and 43 and enables storage of memory as a magnetic orientation (or combination of magnetic vectors) an resulting resistance. The tunnel junction 45 can be made of many materials, as is kno the art, but the preferred material is aluminum oxide. The tunnel junction 45 layer sl be thin, smooth and consistent throughput the various MRAM cells 38, as is known i art. Over the tunnel junction 45 is the free ferromagnetic layer 43, which can be mad the same materials having magnetic properties as the pinned ferromagnetic layer 41. opposed to the pinned ferromagnetic layer 41, the free ferromagnetic layer 43 is free shift it magnetic orientation for the writing of the MRAM cell 38 and has no associat antiferromagnetic layer. The free ferromagnetic layer 43 is in electrical contact with a common line 44 (read/write), substantially completing the MRAM cell 38.
[0021] Referring again to FIG. 1 and FIG. 2, multiple MRAM array layers 34 stacked over one another in the “Z” axis direction, thereby increasing the density of t MRAM device. Over the uppermost MRAM array layer 34 a nitride passivation layer shown) will typically protect the MRAM device. There is no restrictive limit to the n of MRAM array layers 34 of the MRAM device of the invention, other than the pract of physical size of the ultimate device. In general, ten or more layers 34 are feasible. course, a lesser number of layers 34 can also be used.
[0022] Each MRAM cell 38 of each layer 34 has its own sense line 33, which i connected to the sense line interconnect 32, which is itself electrically connected to t access transistor 16, as shown in FIG. 1 and FIG. 2. The sense line 33 can be made conductive material, but is preferably tungsten-based. As shown in FIG. 1 (and FIG. the sense line 33 runs above the write-only line 40, separated therefrom by the dielec 46, and below and in contact with the magnetic bit 45 (specifically, the pinned ferromagnetic layer 41 in the preferred embodiment). In this architecture a single ac transistor 16 would be shared by each of the MRAM cells 38 in the “Z” axis directio substantially above the access transistor 16, as shown in FIG. 2. That is, each access transistor 16 is serves a respective cell 38 in each of the array layers 34. FIG. shows additional sense line interconnects 32 extending from the uppermost-shown s of the MRAM array layers 34. These sense line interconnects 32 are in contact with MRAM cells 38 and other access transistors 16 below.
[0023]
FIG. 3 shows a block-diagram and a representation of an MRAM cell 3 depicts the interactions of the cell 38 elements with associated circuitry during readin writing of the cell 38. During the write operation an MRAM cell 38 is addressed by coinciding stimulation of the common line 44 and a write-only line 40 of that cell 38 peripheral circuitry, and the actual writing of memory is performed as is known in th a function of magnetic orientations of the ferromagnetic layers 41 and 43, the later of which should be based on the interactions of the magnetic fields of the two lines 44 a caused by the electric currents in these lines 44 and 40. To read stored information i MRAM cell 38, the cell 38 is addressed by the coinciding stimulation of a bit line 31 i contact with a sense amplifier 50, an associated access transistor 16, and the common 44 associated with that MRAM cell 38. The cell 38 in the three-dimensional array (a shown in FIG. 2) is addressed for reading in the “X” axis direction by an access transi 16, in the “Y” axis direction by the bit line 31 (in electrical connection with a periphe sense amplifier 50), and in the “Z” axis direction by the common line 44 of one of th planar layers 34.
[0024] As is illustrated in FIG. 3, peripheral circuitry 48 will stimulate the wor 23, thereby turning on the access transistor 16. When turned on, the access transisto serves to connect a sense amplifier 50 (connected to the source/drain 14 of the transi 16 by the bit line 31) to a sense line interconnect 32 (connected to the other source/ 14 of the access transistor 16) associated with the sense lines 33 of a plurality MRAM 38 in the associated “Z” axis direction over that transistor 16. There can be a separat access transistor 16 (in electrical connection with a bit line 31) for each “column” of MRAM cells 38 in the “Z” axis direction through each of the MRAM array layers 34. Each of the “columns” of MRAM cells 34 can be represented by its association with line interconnect 32 (FIGS. 2 and 3). When the appropriate access transistor is turne the cell is read when the peripheral circuitry 48 stimulates the common line 44 and a amplifier 50 connected to that same access transistor 16 senses the memory stored in cell as a resistance by any method well known in the art.
[0025] The access transistors 16 can be connected to read-circuitry in various w For instance, each access transistor 16 can be in electrical contact with a single respect bit line 31 and that bit line 31 can be in electrical contact with a single respective sens amplifier 50 or, alternatively, multiple bit lines 31 in such an arrangement with associ respective access transistors 16 can be in electrical contact with and share a single sens amplifier 50. As another example, a plurality of access transistors 16 having different wordlines 23 can share a single bit line 31 and be in electrical contact therewith along length. Each bit line 31 in this type of arrangement can be in electrical contact with it respective sense amplifier 50 or, alternatively, multiple such bit lines 31 can be in elect contact with and share a single sense amplifier 50. Additionally, regardless of the arrangement of access transistors 16, bit lines 31, and sense amplifiers 50, there can b intermediate devices (such as decoding devices) along the electrical connection betwe access transistors 16 and ultimate read-circuitry, as is well known in the art.
[0026] The architecture of this invention provides for a transistor driver (the ac transistor 16) for the reading function much closer to both the MRAM cell 38 and th sense amplifier 50 (or other reading device) enabling a faster read function. This pro a higher signal-to-noise ratio during the read function than would a conventional cro point architecture. In this arrangement, the MRAM three-dimensional array essential consists of an 1T-nMTJ architecture, where n is equal to the number of MRAM array layers 34 or cells 38 in the “Z” axis direction. Accordingly, fewer access transistors 1required than is needed in the 1T-1MTJ architecture known in the art.
[0027]
FIG. 4 illustrates an exemplary processing system 900 which may utiliz memory device 100 of the present invention. The processing system 900 includes on more processors 901 coupled to a local bus 904. A memory controller 902 and a pri bus bridge 903 are also coupled the local bus 904. The processing system 900 may i multiple memory controllers 902 and/or multiple primary bus bridges 903. The mer controller 902 and the primary bus bridge 903 may be integrated as a single device 9
[0028] The memory controller 902 is also coupled to one or more memory bu 907. Each memory bus accepts memory components 908 which include at least one memory device 100 of the present invention. The memory components 908 may be memory card or a memory module. Examples of memory modules include single inli memory modules (SIMMs) and dual inline memory modules (DIMMs). The memor components 908 may include one or more additional devices 909. For example, in a SIMM or DIMM, the additional device 909 might be a configuration memory, such serial presence detect (SPD) memory. The memory controller 902 may also be coupl a cache memory 905. The cache memory 905 may be the only cache memory in the processing system. Alternatively, other devices, for example, processors 901 may also include cache memories, which may form a cache hierarchy with cache memory 905. processing system 900 include peripherals or controllers which are bus masters or whi support direct memory access (DMA), the memory controller 902 may implement a coherency protocol. If the memory controller 902 is coupled to a plurality of memor buses 907, each memory bus 907 may be operated in parallel, or different address ran may be mapped to different memory buses 907.
[0029] The primary bus bridge 903 is coupled to at least one peripheral bus 9 Various devices, such as peripherals or additional bus bridges may be coupled to the peripheral bus 910. These devices may include a storage controller 911, an miscellan I/O device 914, a secondary bus bridge 915, a multimedia processor 918, and an leg device interface 920. The primary bus bridge 903 may also coupled to one or more s purpose high speed ports 922. In a personal computer, for example, the special purp port might be the Accelerated Graphics Port (AGP), used to couple a high performan video card to the processing system 900.
[0030] The storage controller 911 couples one or more storage devices 913, vi storage bus 912, to the peripheral bus 910. For example, the storage controller 911 be a SCSI controller and storage devices 913 may be SCSI discs. The I/O device 91 be any sort of peripheral. For example, the I/O device 914 may be an local area netv interface, such as an Ethernet card. The secondary bus bridge may be used to interfac additional devices via another bus to the processing system. For example, the second bus bridge may be an universal serial port (USB) controller used to couple USB devic 917 via to the processing system 900. The multimedia processor 918 may be a sounc a video capture card, or any other type of media interface, which may also be coupled one additional devices such as speakers 919. The legacy device interface 920 is used t couple legacy devices, for example, older styled keyboards and mice, to the processing system 900.
[0031] The processing system 900 illustrated in FIG. 4 is only an exemplary processing system with which the invention may be used. While FIG. 4 illustrates a processing architecture especially suitable for a general purpose computer, such as a personal computer or a workstation, it should be recognized that well known modific can be made to configure the processing system 900 to become more suitable for use variety of applications. For example, many electronic devices which require processin be implemented using a simpler architecture which relies on a CPU 901 coupled to memory components 908 and/or memory devices 100. These electronic devices may include, but are not limited to audio/video processors and recorders, gaming console digital television sets, wired or wireless telephones, navigation devices (including syst based on the global positioning system (GPS) and/or inertial navigation), and digital cameras and/or recorders. The modifications may include, for example, elimination c unnecessary components, addition of specialized devices or circuits, and/or integratio plurality of devices.
[0032] The above description and accompanying drawings are only illustrative exemplary embodiments, which can achieve the features and advantages of the presen, invention. It is not intended that the invention be limited to the embodiments shown described in detail herein. The invention can be modified to incorporate any number variations, alterations, substitutions or equivalent arrangements not heretofore descrit but which are commensurate with the spirit and scope of the invention. The inventio only limited by the scope of the following claims.
Claims
- 1. A semiconductor device, comprising:
a first access transistor; a plurality of first MRAM memory cells, each associated with a respectiv plane of memory cells; and a plurality of first sense lines, each respectively coupled to said plurality memory cells, said plurality of first sense lines being electrically coup through said first access transistor to the same bit line.
- 2. The semiconductor device of claim 1, wherein said planes of memory ce arranged in a vertical stack.
- 3. The semiconductor device of claim 1, wherein said first MRAM memor each comprise a sense line, a common line, a magnetic bit, and a wri only line, wherein said common line and said sense line are orthogoi each other.
- 4. The semiconductor device of claim 3, wherein said magnetic bit compri pinned ferromagnetic layer, a tunnel junction, and a free ferromagn layer.
- 5. The semiconductor device of claim 3, wherein one of said first MRAM memory cells is addressed during a reading function by said bit line, first access transistor, and said common line of said one of said first MRAM memory cells.
- 6. The semiconductor device of claim 5, wherein said bit line is in electric contact with a sense amplifier.
- 7. The semiconductor device of claim 1, wherein said first sense lines are electrical contact with said access transistor by a sense line interconn
- 8. The semiconductor device of claim 7, wherein said sense lines are form metal.
- 9. The semiconductor device of claim 8, wherein said metal comprises tun
- 10. The semiconductor device of claim 1, further comprising:
a second access transistor; a plurality of second MRAM memory cells, each associated with one sai respective plane of memory cells; and a plurality of second sense lines, each respectively coupled to said plural second MRAM memory cells, said plurality of second sense lines bei electrically coupled through said second access transistor to a same s bit line.
- 11. A semiconductor device, comprising:
an access transistor layer comprising a plurality of access transistors each electrical contact with a respective bit line; a plurality of memory array layers, each provided vertically over said acc transistor layer, said memory array layers comprising a plurality of memory cells and a respective a sense line for each of said plurality MRAM memory cells, said MRAM memory cells being arranged wi the array layers to define sets of MRAM memory cells in a direction perpendicular to a planar direction of said array layers; and a plurality of sense line interconnects, wherein each said sense line interconnect is in electrical contact with a respective access transisto said plurality of access transistors and with one said sense line of eac said memory array layers.
- 12. The semiconductor device of claim 11, wherein when said respective ac transistor of said plurality of access transistors is turned on said bit electrical contact with said respective access transistor is also in elect contact with said sense lines that are in electrical contact with said s line interconnect in electrical contact with same said respective acce transistor.
- 13. The semiconductor device of claim 11, wherein each said MRAM mem cell comprises a write-only line, pinned ferromagnetic layer, a tunne junction, a free ferromagnetic layer, and a common line.
- 14. The semiconductor device of claim 13, wherein at least one of said MR memory cells is addressed for a reading function by said respective transistor, said respective bit line in electrical contact with said resp access transistor, and said common line of said at least one of MRAM memory cells.
- 15. The semiconductor device of claim 11, wherein said sense lines compris metal.
- 16. The semiconductor device of claim 15, wherein said metal comprises tungsten.
- 17. The semiconductor device of claim 11, wherein said bit line in electrical contact with said access transistor is also in contact with a sense amp
- 18. The semiconductor device of claim 11, wherein each of said sense lines electrical contact with a sense amplifier.
- 19. A memory device, comprising:
a first memory array layer comprising a first MRAM memory cell, said fi MRAM memory cell being associated with a first sense line; a second memory array layer over said first memory array layer and comprising a second MRAM memory cell, wherein said second MR memory cell is located above said first MRAM memory cell and is associated with a second sense line; and an access transistor layer comprising a first access transistor, said first ac transistor, when turned on, coupling a first bit line with said first an second sense lines.
- 20. The memory device of claim 19, wherein said first and second sense lint in electrical contact with said first access transistor through a first sei line interconnect.
- 21. The memory device of claim 19, wherein said first and second sense line formed of a metal.
- 22. The memory device of claim 21, wherein said metal comprises tungsten
- 23. The memory device of claim 19, wherein each of said first and second MRAM memory cells each comprise one of said sense lines, a respec common line, a respective magnetic bit, and a respective write-only
- 24. The memory device of claim 23, wherein one of said first and second M memory cells is addressed during a read function by a respective con line, said first access transistor, and said first bit line.
- 25. The memory device of claim 19, further comprising a plurality of third memory array layers over said second memory array layer, each of sa plurality of third memory array layers comprising a third MRAM me cell, each said third MRAM memory cell is located above said first al second MRAM memory cells and is associated with a third sense lin third sense line being in electrical contact with said first access transi
- 26. The memory device of claim 25, wherein said first, second, and third se lines are in electrical contact with said first access transistor through sense line interconnect.
- 27. The memory device of claim 25, wherein said first, second, and third se lines are formed of a metal.
- 28. The memory device of claim 27, wherein said metal comprises tungster
- 29. The memory device of claim 25, wherein each of said first, second, and MRAM memory cells comprise a respective common line, one of sa sense lines, a respective magnetic bit, and a respective write-only lin
- 30. The memory device of claim 29, wherein one of said first, second, and MRAM memory cells is addressed during a read function by said respective common line, said first access transistor, and said first bit
- 31. The memory device of claim 25, wherein said access transistor layer comprises a plurality of second access transistors.
- 32. The memory device of claim 31, wherein each of said first memory arra layer, said second memory array layer, and said plurality of third me array layers comprise a fourth MRAM memory cell, wherein each sa fourth MRAM memory cell comprises a fourth sense line in electric contact with said second access transistor through a second sense li interconnect.
- 33. A semiconductor device, comprising:
a first access transistor layer comprising a plurality of access transistors; a first memory array layer comprising a plurality of first MRAM memo each of said plurality of first MRAM memory cells being defined at a plurality of first intersection points of a plurality of first common li and a plurality of first sense lines; a second memory array layer provided over said first memory array layer comprising a plurality of second MRAM memory cells, each of said plurality of second MRAM memory cells being defined at one of a plurality of second intersection points of a plurality of second comm lines and a plurality of second sense lines; and a plurality of sense line interconnects, each one of said plurality of sense interconnects being in electrical contact with the respective first sens line, the respective second sense line, and with one of said plurality access transistors.
- 34. An MRAM read architecture, comprising:
an access transistor; a series of n magnetic bits each having a magnetic tunnel junction and t associated with a respective sense line, said series of n magnetic bits in a substantially columnar stack over said access transistor, n being to or greater than 2; and an interconnect in electrical contact with each said respective sense line said series of n magnetic bits and with said access transistor.
- 35. A processor system, comprising:
a processor; and an MRAM memory circuit, comprising:
a first memory array layer comprising a first MRAM memory cell, said f MRAM memory cell being associated with a first sense line; a second memory array layer over said first memory array layer and comprising a second MRAM memory cell, wherein said second MR memory cell is located above said first MRAM memory cell and is associated with a second sense line; and an access transistor layer comprising a first access transistor, said first an transistor, when turned on, coupling a first bit line with said first an second sense lines.
- 36. The processor system of claim 35, wherein said first and second sense li are in electrical contact with said first access transistor through a firs sense line interconnect.
- 37. The processor system of claim 35, wherein said first and second sense li are formed of a metal.
- 38. The processor system of claim 37, wherein said metal comprises tungst
- 39. The processor system of claim 35, wherein each of said first and second MRAM memory cells each comprise one of said sense lines, a respec common line, a respective magnetic bit, and a respective write-only
- 40. The processor system of claim 39, wherein one of said first and second MRAM memory cells is addressed during a read function by a respe common line, said first access transistor, and said first bit line.
- 41. The processor system of claim 35, further comprising a plurality of thir memory array layers over said second memory array layer, each of sa plurality of third memory array layers comprising a third MRAM m cell, each said third MRAM memory cell is located above said first a second MRAM memory cells and is associated with a third sense lin third sense line being in electrical contact with said first access trans
- 42. The processor system of claim 41, wherein said first, second, and third lines are in electrical contact with said first access transistor through sense line interconnect.
- 43. The processor system of claim 41, wherein said first, second, and third lines are formed of a metal.
- 44. The processor system of claim 43, wherein said metal comprises tungst
- 45. The processor system of claim 41, wherein each of said first, second, an third MRAM memory cells comprise a respective common line, one said sense lines, a respective magnetic bit, and a respective write-onl
- 46. The processor system of claim 45, wherein one of said first, second, an MRAM memory cells is addressed during a read function by said respective common line, said first access transistor, and said first bit
- 47. The processor system of claim 41, wherein said access transistor layer comprises a plurality of second access transistors.
- 48. The processor system of claim 47, wherein each of said first memory an layer, said second memory array layer, and said plurality of third me array layers comprise a fourth MRAM memory cell, wherein each sa fourth MRAM memory cell comprises a fourth sense line in electric contact with said second access transistor through a second sense lir interconnect.
- 49. A method of fabricating a memory device, comprising:
providing a substrate; forming an access transistor on said substrate, said access transistor havi first and a second active area; providing a bit line in electrical contact with said access transistor at sai active area; providing an interconnect in electrical contact with said access transisto said second active area; forming a first magnetic bit over said access transistor; forming a first sense line associated with said first magnetic bit, which i electrical contact with said interconnect; forming a second magnetic bit over said first magnetic bit; and forming a second sense line associated with said second magnetic bit, w is in electrical contact with said interconnect.
- 50. The method of claim 49, where each respective act of forming said first second magnetic bits comprises:
forming a write-only line; forming a dielectric layer over said write only line; forming one of said sense lines over said dielectric layer; forming a pinned ferromagnetic layer over said sense line; forming a tunnel barrier over said pinned layer; forming a free ferromagnetic layer over said tunnel barrier; and providing a common line over said free ferromagnetic layer.
- 51. The method of claim 50, where said common line is formed orthogona said sense line.
- 52. The method of claim 50, where said common line is formed orthogona said write-only line.
- 53. The method of claim 50, further comprising providing a sense amplifie electrical contact with said bit line.
- 54. The method of claim 43, where said forming said access transistor com
Forming source and drain regions and a gate structure between said so and drain regions; and providing conductive plugs to said source and drain regions, said bit lin being in electrical contact with one of said conductive plugs and sai interconnect being in electrical contact with the other of said condu plugs.
- 55. The method of claim 54, further comprising:
providing a plurality of third magnetic bits, each over said first and seco magnetic bits; and providing a plurality of third sense lines, each associated with one respe said third magnetic bit and being in electrical contact with said interconnect.
- 56. A method of forming an MRAM device, comprising:
providing a sense amplifier; providing an interconnect; providing an access transistor capable of electrically connecting said sen amplifier and said interconnect; providing n array planes over said access transistor, each of said n array comprising at least one MRAM memory cell, said at least one MRA memory cell comprising a common line, wherein n is equal to 2 or greater; and providing a plurality of sense lines, each associated with a respective sai least one MRAM memory cell of said n array planes and being in electrical contact with said interconnect.
- 57. A method of reading memory stored in an MRAM cell, comprising:
selecting a common line associated with a respective magnetic bit of a plurality of magnetic bits, wherein each one of said plurality of mag bits is in a respective plane of magnetic bits and is associated with a respective sense line; selecting a wordline of an access transistor, said access transistor being electrically coupled to each said respective sense line; and sensing a resistance state of said respective magnetic bit associated with common line at a bit line coupled to said access transistor.
- 58. The method of claim 57, wherein said respective magnetic bit of said plurality of magnetic bits has a read address consisting of an X, Y, a coordinate, where X, Y and Z are axes in three dimensions.
- 59. The method of claim 58, wherein said selecting a bit line designates on said X, Y, and Z coordinates of said address of said respective magn bit.
- 60. The method of claim 59, wherein said selecting a wordline designates another of said X, Y, and Z coordinates.
- 61. The method of claim 60, wherein said selecting a common line designa third one of said X, Y, and Z coordinates.