Stacking system and method

Information

  • Patent Grant
  • 7193310
  • Patent Number
    7,193,310
  • Date Filed
    Thursday, July 20, 2006
    18 years ago
  • Date Issued
    Tuesday, March 20, 2007
    17 years ago
Abstract
A chip stack comprising a flex circuit including a flex substrate having a first conductive pattern disposed thereon and a plurality of leads extending therefrom. Also included in the chip stack are at least two integrated circuit chip packages. The integrated circuit chip packages may be electrically connected to the first conductive pattern of the flex circuit such that the integrated circuit chip packages are positioned upon respective ones of opposed top and bottom surfaces of the flex substrate. Alternatively, one of the integrated circuit chip packages may be positioned upon the top surface of the flex substrate and electrically connected to the first conductive pattern, with the remaining integrated circuit chip package being attached in a non-conductive manner to the bottom surface of the flex substrate such that the conductive contacts of such integrated circuit chip package and the leads collectively define a composite footprint for the chip stack.
Description
TECHNICAL FIELD

This invention relates to aggregation of integrated circuitry, and more particularly to stacking integrated circuitry.


BACKGROUND OF THE INVENTION

The present invention relates generally to chip stacks, and more particularly to a chip stack having connections routed from the bottom to the perimeter thereof to allow multiple integrated circuit chips such as CSP devices to be quickly, easily and inexpensively vertically interconnected in a volumetrically efficient manner.


Multiple techniques are currently employed in the prior art to increase memory capacity on a printed circuit board. Such techniques include the use of larger memory chips, if available, and increasing the size of the circuit board for purposes of allowing the same to accommodate more memory devices or chips. In another technique, vertical plug-in boards are used to increase the height of the circuit board to allow the same to accommodate additional memory devices or chips.


Perhaps one of the most commonly used techniques to increase memory capacity is the stacking of memory devices into a vertical chip stack, sometimes referred to as 3D packaging or Z-Stacking. In the Z-Stacking process, from two (2) to as many as eight (8) memory devices or other integrated circuit (IC) chips are interconnected in a single component (i.e., chip stack) which is mountable to the “footprint” typically used for a single package device such as a packaged chip. The Z-Stacking process has been found to be volumetrically efficient, with packaged chips in TSOP (thin small outline package) or LCC (leadless chip carrier) form generally being considered to be the easiest to use in relation thereto. Though bare dies or chips may also be used in the Z-Stacking process, such use tends to make the stacking process more complex and not well suited to automation.


In the Z-Stacking process, the IC chips or packaged chips must, in addition to being formed into a stack, be electrically interconnected to each other in a desired manner. There is known in the prior art various different arrangements and techniques for electrically interconnecting the IC chips or packaged chips within a stack. Examples of such arrangements and techniques are disclosed in Applicant's U.S. Pat. No. 4,956,694 entitled INTEGRATED CIRCUIT CHIP STACKING issued Sep. 11, 1990, U.S. Pat. No. 5,612,570 entitled CHIP STACK AND METHOD OF MAKING SAME issued Mar. 18, 1997, and U.S. Pat. No. 5,869,353 entitled MODULAR PANEL STACKING PROCESS issued Feb. 9, 1999.


The various arrangements and techniques described in these issued patents and other currently pending patent applications of Applicant have been found to provide chip stacks which are relatively easy and inexpensive to manufacture, and are well suited for use in a multitude of differing applications. The present invention provides yet a further alternative arrangement and technique for forming a volumetrically efficient chip stack. In the chip stack of the present invention, connections are routed from the bottom of the chip stack to the perimeter thereof so that interconnections can be made vertically which allows multiple integrated circuit chips such as BGA, CSP, fine pitch BGA, or flip chip devices to be stacked in a manner providing the potential for significant increases in the production rate of the chip stack and resultant reductions in the cost thereof.


BRIEF SUMMARY OF THE INVENTION

In accordance with one embodiment of the present invention, there is provided a chip stack comprising a flex circuit. The flex circuit itself comprises a flex substrate having a first conductive pattern disposed thereon, and a plurality of leads extending therefrom. The leads of the flex circuit are electrically connected to the first conductive pattern thereof. In addition to the flex circuit, the chip stack comprises at least two integrated circuit chip packages which are electrically connected to the first conductive pattern. The first conductive pattern comprises first and second sets of flex pads which are disposed on respective ones of the opposed top and bottom surfaces of the flex substrate, with one of the integrated circuit chip packages being disposed on the top surface of the flex substrate and electrically connected to at least some of the flex pads of the first set, and one of the integrated circuit chips being disposed upon the bottom surface of the flex substrate and electrically connected to at least some of the flex pads of the second set. The integrated circuit chip packages may each comprise a CSP device.


In accordance with another embodiment of the present invention, there is provided a chip stack comprising a flex circuit. The flex circuit itself comprises a flex substrate having a first conductive pattern disposed thereon, and a plurality of conductive leads extending therefrom. The leads of the flex circuit are electrically connected to the first conductive pattern thereon. The chip stack further comprises at least two integrated circuit chip packages, one of which is electrically connected to the first conductive pattern, with the remaining integrated circuit chip package being in non-conductive attachment to the flex substrate. The first conductive pattern of the flex circuit comprises a first set of flex pads disposed on the top surface of the flex substrate and electrically connected to respective ones of the leads. One of the integrated circuit chip packages is disposed upon the top surface of the flex substrate and electrically connected to at least some of the flex pads of the first set, with the remaining integrated circuit chip package being attached to the bottom surface of the flex substrate. The conductive contacts of the integrated circuit chip package attached to the bottom surface of the flex substrate and the leads of the flex circuit collectively define a composite footprint of the chip stack which is electrically connectable to another component. The leads of the chip stack may each comprise either an S-lead or a J-lead.





BRIEF DESCRIPTION OF THE DRAWINGS

These, as well as other features of the present invention, will become more apparent upon reference to the drawings wherein:



FIG. 1 is a side-elevational view of a chip stack constructed in accordance with a first embodiment of the present invention;



FIG. 2 is a top perspective view of the flex circuit included in the chip stack shown in FIG. 1;



FIG. 3 is a side-elevational view of a chip stack constructed in accordance with a second embodiment of the present invention; and



FIG. 4 is a side-elevational view of a chip stack constructed in accordance with a third embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

Referring now to the drawings wherein the showings are for purposes of illustrating preferred embodiments of the present invention only, and not for purposes of limiting the same, FIG. 1 depicts a chip stack 10 constructed in accordance with a first embodiment of the present invention. Referring now to FIGS. 1 and 2, the chip stack 10 comprises a flex circuit 12. The flex circuit 12 itself comprises a rectangularly configured flex substrate 14 which defines a generally planar top surface 16, a generally planar bottom surface 18, an opposed pair of longitudinal peripheral edge segments 20, and an opposed pair of lateral peripheral edge segments 22.


Disposed on the flex substrate 14 of the flex circuit 12 is a first conductive pattern. The first conductive pattern itself preferably comprises a first set of flex pads 24 which are disposed on the top surface 16 of the flex substrate 14, and a second set of flex pads 25 which are disposed on the bottom surface 18 of the flex substrate 14. The flex pads 24 of the first set are arranged in a generally rectangular pattern or array in the central portion of the top surface 16. Likewise, the flex pads 25 of the second set are arranged in a generally rectangular pattern or array in the central portion of the bottom surface 18. It is contemplated that the flex pads 24 of the first set and the flex pads 25 of the second set will be arranged in identical patterns, with each of the flex pads 24 of the first set being coaxially aligned with a respective one of the flex pads 25 of the second set. However, those of ordinary skill in the art will recognize that the flex pads 24 of the first set and the flex pads 25 of the second set may be disposed upon the flex substrate 14 in dissimilar patterns. Additionally, though the flex substrate 14 is described as being rectangularly configured, it will be recognized that the same may be formed in alternative shapes (e.g., square).


Extending from one or more of the longitudinal and lateral peripheral edge segments 20, 22 of the flex substrate 14 are a plurality of conductive leads 26. The leads 26 each comprise an S-lead (i.e., gull wing) having the general shape of the letter S. Each of the leads 26 are electrically connected to the first conductive pattern and, in particular, to the flex pads 24, 25 of the first and second sets. The first conductive pattern of the flex circuit 12 may be configured such that the flex pads 24 of the first set and the flex pads 25 of the second set are each electrically connected to respective ones of the leads 26. It is also contemplated that two or more flex pads 24 of the first set may be electrically connected to a single lead 26, and that two or more flex pads 25 of the second set may be electrically connected to a single lead 26. Still further, one or more flex pads 24 of the first set in combination with one or more flex pads 25 of the second set may be electrically connected to a single lead 26. In this regard, the first conductive pattern may include conductive traces which extend within the flex substrate 14 in any pattern or arrangement as is needed to achieve a desired signal routing. Any flex pad 24 of the first set may be electrically connected to the flex pad 25 of the second set coaxially aligned therewith by a via or feed-through hole extending through the flex substrate 14 therebetween.


In the chip stack 10, the flex pads 24 of the first set, the flex pads 25 of the second set, and the conductive traces extending within the flex substrate 14 are each preferably fabricated from very thin copper having a thickness in the range of from about five microns to about twenty-five microns through the use of conventional etching techniques. The use of thin copper for the various pads and traces allows for etching line widths and spacings down to a pitch of about four mils which substantially increases the routing density of the flex circuit 12. The flex substrate 14 is preferably fabricated from either FR-4, a polyimide film, or some other suitable material which can easily be routed. The material used to form the flex substrate 14 may be as thin as about fifty microns or may be a thicker multi-layer structure.


The chip stack 10 further comprises at least two identically configured integrated circuit chip packages 28. Each of the integrated circuit chip packages 28 comprises a rectangularly configured package body 30 defining a generally planar top surface 32, a generally planar bottom surface 34, an opposed pair of longitudinal sides, and an opposed pair of lateral sides. Disposed on the bottom surface 34 of the package body 30 are a plurality of spherically or semi-spherically shaped conductive contacts 36 which are preferably arranged in a pattern identical to the patterns of the flex pads 24 of the first set and the flex pads 25 of the second set. The conductive contacts 36 of one of the integrated circuit chip packages 28 are electrically connected to respective ones of the flex pads 24 of the first set, with the conductive contacts 36 of the remaining integrated circuit chip package 28 being electrically connected to respective ones of the flex pads 25 of the second set. Such electrical connection is preferably accomplished via soldering. Each of the integrated circuit chip packages 28 is preferably a CSP (chip scale package) device such as a BGA (ball grid array) device, a fine pitch BGA device, or a flip chip device.


In assembling the chip stack 10, the integrated circuit chip packages 28 are electrically connected to the first conductive pattern of the flex circuit 12 in the above-described manner. As further seen in FIG. 1, a layer 38 of flux/underfill material may optionally be applied between the bottom surfaces 34 of the package bodies 30 and respective ones of the top and bottom surfaces 16, 18 of the flex substrate 14. The leads 26 are sized relative to the integrated circuit chip packages 28 such that the outwardly turned distal end of each lead 26 extends beyond the top surface 32 of the lowermost integrated circuit chip package 28 of the chip stack 10 (i.e., the integrated circuit chip package 28 disposed on the bottom surface 18 and electrically connected to the flex pads 25 of the second set). Thus, when the chip stack 10 is mounted or electrically connected to an underlying component such as a printed circuit board (PCB) through the use of the leads 26 thereof, a slight gap is defined between the top surface 32 of the lowermost integrated circuit chip package 28 of the chip stack 10 and the printed circuit board 40.


Those of ordinary skill in the art will recognize that the number and orientation/pattern of leads 26 extending from the flex substrate 14 is dependent upon the desired “footprint” of the chip stack 10. In this regard, it is not necessary that the leads 26 protrude from each of the longitudinal and lateral peripheral edge segments 20, 22 of the flex substrate 14. For example, the leads 28 may extend from only each of the longitudinal peripheral edge segments 20, or each of the lateral peripheral edge segments 22. Additionally, the leads 26 may extend from one longitudinal peripheral edge segment 20 and/or one lateral peripheral edge segment 22. Moreover, the leads 26 need not necessarily be provided in a continuous row along any longitudinal or lateral peripheral edge segment 20, 22 of the flex substrate 14.


Referring now to FIG. 3, there is shown a chip stack 100 which is constructed in accordance with a second embodiment of the present invention. The chip stack 100 comprises a flex circuit 112 which is identical to the flex circuit 12 of the chip stack 10 in almost all respects, except that the flex circuit 112 of the chip stack 100 does not include the second set of flex pads 25 described above. Thus, the first conductive pattern of the flex circuit 112 comprises only the first set of flex pads 224 disposed in a generally rectangular pattern or array in the central portion of the top surface 116 of the flex substrate 114. In the flex circuit 112, the leads 126 thereof are electrically connected to respective ones of the flex pads 224 of the first set via conductive traces which extend within the flex substrate 114. It is contemplated that the conductive traces may be arranged in a pattern such that two or more of the flex pads 224 of the first set may be electrically connected to a single lead 126.


The chip stack 100 of the second embodiment further comprises two identically configured integrated circuit chip packages 128 which are identical to the integrated circuit chip packages 28 of the chip stack 10, and each preferably comprises a rectangularly configured package body 130 having a plurality of conductive contacts 136 disposed on the bottom surface 134 thereof. Like the integrated circuit chip packages 28, each of the integrated circuit chip packages 128 preferably comprises a CSP device such as a BGA device, a fine pitch BGA device, or a flip chip device.


In the chip stack 100 of the second embodiment, one of the integrated circuit chip packages 128 is electrically connected to the first conductive pattern of the flex circuit 112. More particularly, the conductive contacts 136 of one of the integrated circuit chip packages 128 are electrically connected to respective ones of the flex pads 224 of the first set. The conductive contacts 136 and flex pads 124 are preferably arranged in identical patterns. The remaining integrated circuit chip package 128 in the chip stack 100 (i.e., the lowermost integrated circuit chip package 128 in the chip stack 100) is attached to the bottom surface 118 of the flex substrate 114 of the flex circuit 112. More particularly, the top surface 132 of the package body 130 of the lowermost integrated circuit chip package 128 is rigidly affixed to the bottom surface 118 via an adhesive layer 142. As seen in FIG. 3, the leads 126 of the flex circuit 112 and integrated circuit chip packages 128 are preferably sized relative to each other such that the outwardly turned distal ends of the leads 126 and the conductive contacts 136 of the lowermost integrated circuit chip package 128 (which is adhesively affixed to the bottom surface 118 of the flex substrate 114) extend in substantially coplanar relation to each other. Thus, in the chip stack 100 of the second embodiment, the leads 126 and conductive contacts 136 collectively define a composite footprint (ball and lead) for the chip stack 100 which is electrically connectable to an underlying component such as a printed circuit board 140.


The chip stack 100 of the second embodiment is preferably assembled by initially electrically connecting one of the integrated circuit chip packages 128 to the first conductive pattern of the flex circuit 112 in the above-described manner. Thereafter, the remaining integrated circuit chip package 128 is secured to the bottom surface 118 of the flex substrate 114 in the above-described manner. Those of ordinary skill in the art will recognize that an assembly sequence varying from that described above may be employed for use in relation to the chip stack 100 of the second embodiment. Additionally, if desired, a layer 138 of flux/underfill material may be applied between the bottom surface 134 of the uppermost integrated circuit chip package 128 and the top surface 116 of the flex substrate 114 of the flex circuit 112.


Referring now to FIG. 4, there is depicted a chip stack 200 constructed in accordance with a third embodiment of the present invention. The chip stack 200 of the third embodiment is virtually identical to the chip stack 100 of the second embodiment, with the exception that the leads 238 of the flex circuit 212 of the chip stack 200, each comprise a J-lead having a generally J shape as opposed to the S-leads shown and described in relation to the flex circuit 112. In the chip stack 200, the leads 238 and integrated circuit chip packages 228 are sized and configured relative to each other such that the inwardly turned distal ends of the leads 238 and the conductive contacts 236 of the lowermost integrated circuit chip package 228 extend in substantially co-planar relation to each other so as to collectively define a composite footprint (ball and lead) for the chip stack 200 which is electrically connectable to an underlying component such as a printed circuit board 240.


Those of ordinary skill in the art will recognize that, though not shown, each of the leads 26 of the chip stack 10 may alternatively be configured as a J-lead as opposed to an S-lead. Additionally, the leads 26 of the chip stack 10, as well as the leads 126 of the chip stack 100, may alternatively be configured as gull-wing leads as opposed to S-leads. It is contemplated that in each embodiment of the present chip stack, the flex circuit will initially be formed such that a plurality of metal tabs extend linearly from the longitudinal peripheral edge segment(s) and/or lateral peripheral edge segment(s) thereof. Subsequent to the electrical connection/adhesive attachment of the integrated circuit chip packages to the flex circuit, these linearly extending metal tabs can be bent or otherwise formed into the leads. As indicated above, the leads of any embodiment of the chip stack of the present invention may be formed into a J, S, or gull-wing shape.


Additional modifications and improvements of the present invention may also be apparent to those of ordinary skill in the art. Thus, the particular combination of parts described and illustrated herein is intended to represent only certain embodiments of the present invention, and is not intended to serve as limitations of alternative devices within the spirit and scope of the invention.

Claims
  • 1. A chip stack comprising: a flex circuit comprising: a flex substrate;a first conductive pattern disposed on the flex substrate; anda plurality of flex pads electrically connected to the first conductive pattern;two integrated circuit devices electrically connected to the first conductive pattern and disposed one above the other.
  • 2. The chip stack of claim 1 in which the two integrated circuit devices are disposed on opposite sides of the flex substrate.
  • 3. The chip stack of claim 1 in which conductive contacts of a first one of the two integrated circuit devices are attached to the plurality of flex pads.
  • 4. The chip stack of claim 1 in which the first conductive pattern comprises a first set of flex pads and a second set of flex pads.
  • 5. The chip stack of claim 1 in which a first one of the two integrated circuit devices is a flip-chip device.
  • 6. The chip stack of claim 1 in which the conductive contacts of a first one of the two integrated circuit devices are BGA contacts.
Parent Case Info

This application is a continuation of U.S. application Ser. No. 10/016,939, filed on Dec. 14, 2001 now U.S. Pat. No. 7,081,373, the disclosure of the prior application is considered part of (and is incorporated by reference in) the disclosure of this application.

US Referenced Citations (408)
Number Name Date Kind
3372310 Kantor Mar 1968 A
3411122 Schiller et al. Nov 1968 A
3436604 Hyltin Apr 1969 A
3654394 Gordon Apr 1972 A
3704455 Scarbrough Nov 1972 A
3718842 Abbott III, et al. Feb 1973 A
3727064 Bottini Apr 1973 A
3746934 Stein Jul 1973 A
3766439 Isaacson Oct 1973 A
3772776 Weisenburger Nov 1973 A
3983547 Almasi Sep 1976 A
4079511 Grabbe Mar 1978 A
4103318 Schwede Jul 1978 A
4169642 Moulssie Oct 1979 A
4288841 Gogal Sep 1981 A
4342069 Link Jul 1982 A
4398235 Lutz et al. Aug 1983 A
4406508 Sadigh-Behzadi Sep 1983 A
4429349 Zachry Jan 1984 A
4437235 McIver Mar 1984 A
4513368 Houseman Apr 1985 A
4567543 Miniet Jan 1986 A
4587596 Bunnell May 1986 A
4645944 Uya Feb 1987 A
4656605 Clayton Apr 1987 A
4672421 Lin Jun 1987 A
4682207 Akasaki et al. Jul 1987 A
4696525 Coller et al. Sep 1987 A
4709300 Landis Nov 1987 A
4712129 Orcutt Dec 1987 A
4722691 Gladd et al. Feb 1988 A
4724611 Hagihara Feb 1988 A
4727513 Clayton Feb 1988 A
4733461 Nakano Mar 1988 A
4758875 Fujisawa et al. Jul 1988 A
4763188 Johnson Aug 1988 A
4821007 Fields et al. Apr 1989 A
4823234 Konishi et al. Apr 1989 A
4833568 Berhold May 1989 A
4839717 Phy et al. Jun 1989 A
4850892 Clayton et al. Jul 1989 A
4862249 Carlson Aug 1989 A
4884237 Mueller et al. Nov 1989 A
4891789 Quattrini et al. Jan 1990 A
4911643 Perry et al. Mar 1990 A
4953060 Lauffer et al. Aug 1990 A
4956694 Eide Sep 1990 A
4972580 Nakamura Nov 1990 A
4982265 Watanabe et al. Jan 1991 A
4983533 Go Jan 1991 A
4985703 Kaneyama Jan 1991 A
4992849 Corbett et al. Feb 1991 A
4992850 Corbett et al. Feb 1991 A
5012323 Farnworth Apr 1991 A
5014115 Moser May 1991 A
5014161 Lee et al. May 1991 A
5016138 Woodman May 1991 A
5025306 Johnson et al. Jun 1991 A
5034350 Marchisi Jul 1991 A
5041015 Travis Aug 1991 A
5041902 McShane Aug 1991 A
5053853 Haj-Ali-Ahmadi et al. Oct 1991 A
5057903 Olla Oct 1991 A
5064762 Nishiguchi Nov 1991 A
5065277 Davidson Nov 1991 A
5068708 Newman Nov 1991 A
5081067 Shimru et al. Jan 1992 A
5099393 Bentlage et al. Mar 1992 A
5104820 Go et al. Apr 1992 A
5109318 Funari et al. Apr 1992 A
5117282 Salatino May 1992 A
5119269 Nakayama Jun 1992 A
5122862 Kajihara et al. Jun 1992 A
5138430 Gow, 3rd et al. Aug 1992 A
5138434 Wood et al. Aug 1992 A
5140405 King et al. Aug 1992 A
5158912 Kellerman et al. Oct 1992 A
5159434 Kohno et al. Oct 1992 A
5159535 Desai et al. Oct 1992 A
5168926 Watson et al. Dec 1992 A
5173840 Kodai et al. Dec 1992 A
5191404 Wu et al. Mar 1993 A
5198888 Sugano et al. Mar 1993 A
5198965 Curtis et al. Mar 1993 A
5208729 Cipolla et al. May 1993 A
5214307 Davis May 1993 A
5219377 Poradish Jun 1993 A
5219794 Satoh et al. Jun 1993 A
5222014 Lin Jun 1993 A
5224023 Smith et al. Jun 1993 A
5229916 Frankeny et al. Jul 1993 A
5229917 Harris et al. Jul 1993 A
5239198 Lin et al. Aug 1993 A
5240588 Uchida Aug 1993 A
5241454 Ameen et al. Aug 1993 A
5241456 Marcinkiewiez et al. Aug 1993 A
5243133 Engle et al. Sep 1993 A
5247423 Lin et al. Sep 1993 A
5252855 Ogawa et al. Oct 1993 A
5252857 Kane et al. Oct 1993 A
5259770 Bates et al. Nov 1993 A
5261068 Gaskins et al. Nov 1993 A
5262927 Chia et al. Nov 1993 A
5268815 Cipolla et al. Dec 1993 A
5276418 Klosowiak et al. Jan 1994 A
5279029 Burns Jan 1994 A
5281852 Normington Jan 1994 A
5289062 Wyland Feb 1994 A
5311401 Gates, Jr. et al. May 1994 A
5313097 Haj-Ali-Ahmadi et al. May 1994 A
5343075 Nishino Aug 1994 A
5347428 Carson et al. Sep 1994 A
5357478 Kikuda et al. Oct 1994 A
5361228 Adachi et al. Nov 1994 A
5375041 McMahon Dec 1994 A
5377077 Burns Dec 1994 A
5386341 Olson et al. Jan 1995 A
5394010 Tazawa et al. Feb 1995 A
5394300 Yoshimura Feb 1995 A
5394303 Yamaji Feb 1995 A
5397916 Normington Mar 1995 A
5400003 Kledzik Mar 1995 A
5402006 O'Donley Mar 1995 A
5420751 Burns May 1995 A
5428190 Stopperan Jun 1995 A
5438224 Papageorge et al. Aug 1995 A
5446620 Burns et al. Aug 1995 A
5448511 Paurus et al. Sep 1995 A
5455740 Burns Oct 1995 A
5475920 Burns et al. Dec 1995 A
5477082 Buckley, III et al. Dec 1995 A
5479318 Burns Dec 1995 A
5484959 Burns Jan 1996 A
5491612 Nicewarner, Jr. et al. Feb 1996 A
5493476 Burns Feb 1996 A
5499160 Burns Mar 1996 A
5502333 Bertin et al. Mar 1996 A
5514907 Moshayedi May 1996 A
5523619 McAllister et al. Jun 1996 A
5523695 Lin Jun 1996 A
5541812 Burns Jul 1996 A
5543664 Burns Aug 1996 A
5561591 Burns Oct 1996 A
5566051 Burns Oct 1996 A
5572065 Burns Nov 1996 A
5588205 Roane Dec 1996 A
5592364 Roane Jan 1997 A
5594275 Kwon et al. Jan 1997 A
5600178 Russell Feb 1997 A
5612570 Eide et al. Mar 1997 A
5631193 Burns May 1997 A
5642055 Difrancesco Jun 1997 A
5644161 Burns Jul 1997 A
5646446 Nicewarner, Jr. et al. Jul 1997 A
5654877 Burns Aug 1997 A
5657537 Saia et al. Aug 1997 A
5661339 Clayton Aug 1997 A
5677569 Choi et al. Oct 1997 A
5686730 Laudon et al. Nov 1997 A
5708297 Clayton Jan 1998 A
5714802 Cloud et al. Feb 1998 A
5729894 Rostoker et al. Mar 1998 A
5731633 Clayton Mar 1998 A
5744827 Jeong et al. Apr 1998 A
5744862 Ishii Apr 1998 A
5751553 Clayton May 1998 A
5754409 Smith May 1998 A
5763296 Casati et al. Jun 1998 A
5764497 Mizumo et al. Jun 1998 A
5776797 Nicewarner, Jr. et al. Jul 1998 A
5778522 Burns Jul 1998 A
5778552 LeGuin Jul 1998 A
5783464 Burns Jul 1998 A
5789815 Tessier et al. Aug 1998 A
5790447 Laudon et al. Aug 1998 A
5801437 Burns Sep 1998 A
5801439 Fujisawa et al. Sep 1998 A
5802395 Connolly et al. Sep 1998 A
5804870 Burns Sep 1998 A
5805422 Otake et al. Sep 1998 A
5828125 Burns Oct 1998 A
5835988 Ishii Nov 1998 A
5841721 Kwon et al. Nov 1998 A
5869353 Levy et al. Feb 1999 A
5895970 Miyoshi et al. Apr 1999 A
5899705 Akram May 1999 A
5917709 Johnson et al. Jun 1999 A
5922061 Robinson Jul 1999 A
5925934 Lim Jul 1999 A
5926369 Ingraham et al. Jul 1999 A
5949657 Karabatsos Sep 1999 A
5953214 Dranchak et al. Sep 1999 A
5953215 Karabatsos Sep 1999 A
5959839 Gates Sep 1999 A
5963427 Bollesen Oct 1999 A
5973395 Suzuki et al. Oct 1999 A
5995370 Nakamori Nov 1999 A
6002167 Hatano et al. Dec 1999 A
6002589 Perino et al. Dec 1999 A
6008538 Akram et al. Dec 1999 A
6014316 Eide Jan 2000 A
6021048 Smith Feb 2000 A
6025642 Burns Feb 2000 A
6028352 Eide Feb 2000 A
6028365 Akram et al. Feb 2000 A
6034878 Osaka et al. Mar 2000 A
6038132 Tokunaga et al. Mar 2000 A
6040624 Chambers et al. Mar 2000 A
6049975 Clayton Apr 2000 A
6060339 Akram et al. May 2000 A
6072233 Corisis et al. Jun 2000 A
6078515 Nielsen et al. Jun 2000 A
6084293 Ohuchi Jul 2000 A
6084294 Tomita Jul 2000 A
6091145 Clayton Jul 2000 A
6097087 Farnworth et al. Aug 2000 A
6111757 Dell et al. Aug 2000 A
6121676 Solberg Sep 2000 A
RE36916 Moshayedi Oct 2000 E
6157541 Hacke Dec 2000 A
6165817 Akram Dec 2000 A
6172874 Bartilson Jan 2001 B1
6178093 Bhatt et al. Jan 2001 B1
6180881 Isaak Jan 2001 B1
6187652 Chou et al. Feb 2001 B1
6205654 Burns Mar 2001 B1
6208521 Nakatsuka Mar 2001 B1
6208546 Ikeda Mar 2001 B1
6214641 Akram Apr 2001 B1
6215181 Akram et al. Apr 2001 B1
6215687 Sugano et al. Apr 2001 B1
6218731 Huang et al. Apr 2001 B1
6222737 Ross Apr 2001 B1
6222739 Bhakta et al. Apr 2001 B1
6225688 Kim et al. May 2001 B1
6232659 Clayton May 2001 B1
6233650 Johnson et al. May 2001 B1
6234820 Perino et al. May 2001 B1
6262476 Vidal Jul 2001 B1
6262895 Forthun Jul 2001 B1
6265660 Tandy Jul 2001 B1
6265766 Moden Jul 2001 B1
6266252 Karabatsos Jul 2001 B1
6281577 Oppermann et al. Aug 2001 B1
6285560 Lyne Sep 2001 B1
6288907 Burns Sep 2001 B1
6288924 Sugano et al. Sep 2001 B1
6300679 Mukerji et al. Oct 2001 B1
6303981 Moden Oct 2001 B1
6310392 Burns Oct 2001 B1
6313998 Kledzik Nov 2001 B1
6316825 Park et al. Nov 2001 B1
6323060 Isaak Nov 2001 B1
6329708 Komiyama Dec 2001 B1
6336262 Dalal et al. Jan 2002 B1
6343020 Lin et al. Jan 2002 B1
6347394 Ochoa et al. Feb 2002 B1
6349050 Woo et al. Feb 2002 B1
6351029 Isaak Feb 2002 B1
6360433 Ross Mar 2002 B1
6368896 Farnworth et al. Apr 2002 B2
6370668 Garrett, Jr. et al. Apr 2002 B1
6376769 Chung Apr 2002 B1
6392162 Karabatsos May 2002 B1
6404043 Isaak Jun 2002 B1
6410857 Gonya Jun 2002 B1
6423622 Chen et al. Jul 2002 B1
6426240 Isaak Jul 2002 B2
6426549 Isaak Jul 2002 B1
6426560 Kawamura et al. Jul 2002 B1
6428360 Hassanzadeh et al. Aug 2002 B2
6433418 Fujisawa et al. Aug 2002 B1
6444490 Bertin et al. Sep 2002 B2
6444921 Wang et al. Sep 2002 B1
6446158 Karabatsos Sep 2002 B1
6449159 Haba Sep 2002 B1
6452826 Kim et al. Sep 2002 B1
6462412 Kamei et al. Oct 2002 B2
6462423 Akram et al. Oct 2002 B1
6465877 Farnworth et al. Oct 2002 B1
6465893 Khandros et al. Oct 2002 B1
6472735 Isaak Oct 2002 B2
6473308 Forthun Oct 2002 B2
6486544 Hashimoto Nov 2002 B1
6489178 Coyle et al. Dec 2002 B2
6489687 Hashimoto Dec 2002 B1
6492718 Ohmori Dec 2002 B2
6502161 Perego et al. Dec 2002 B1
6509639 Lin Jan 2003 B1
6514793 Isaak Feb 2003 B2
6528870 Fukatsu et al. Mar 2003 B2
6531772 Akram et al. Mar 2003 B2
6532162 Schoenborn Mar 2003 B2
6544815 Isaak Apr 2003 B2
6549413 Karnezos et al. Apr 2003 B2
6552910 Moon et al. Apr 2003 B1
6552948 Woo et al. Apr 2003 B2
6560117 Moon May 2003 B2
6566746 Isaak et al. May 2003 B2
6572387 Burns et al. Jun 2003 B2
6573593 Syri et al. Jun 2003 B1
6576992 Cady et al. Jun 2003 B1
6588095 Pan Jul 2003 B2
6590282 Wang et al. Jul 2003 B1
6600222 Levardo Jul 2003 B1
6614664 Lee Sep 2003 B2
6620651 He et al. Sep 2003 B2
6627984 Bruce et al. Sep 2003 B2
6629855 North et al. Oct 2003 B1
6646936 Hamamatsu et al. Nov 2003 B2
6657134 Spielberger et al. Dec 2003 B2
6660561 Forthun Dec 2003 B2
6661092 Shibata et al. Dec 2003 B2
6677670 Kondo Jan 2004 B2
6683377 Shim et al. Jan 2004 B1
6690584 Uzuka et al. Feb 2004 B2
6699730 Kim et al. Mar 2004 B2
6707684 Andric et al. Mar 2004 B1
6709893 Moden et al. Mar 2004 B2
6720652 Akram et al. Apr 2004 B2
6721185 Dong et al. Apr 2004 B2
6721226 Woo et al. Apr 2004 B2
6724076 Kahlisch et al. Apr 2004 B1
6744656 Sugano et al. Jun 2004 B2
6751113 Bhakta et al. Jun 2004 B2
6756661 Tsuneda et al. Jun 2004 B2
6760220 Canter et al. Jul 2004 B2
6768660 Kong et al. Jul 2004 B2
6781240 Choi et al. Aug 2004 B2
6803651 Chiang Oct 2004 B1
6812567 Kim et al. Nov 2004 B2
6833981 Suwabe et al. Dec 2004 B2
6833984 Belgacem Dec 2004 B1
6839266 Garrett, Jr. et al. Jan 2005 B1
6841868 Akram et al. Jan 2005 B2
6849949 Lyu et al. Feb 2005 B1
6850414 Benisek et al. Feb 2005 B2
6873534 Bhakta et al. Mar 2005 B2
6876074 Kim Apr 2005 B2
6878571 Isaak et al. Apr 2005 B2
6884653 Larson Apr 2005 B2
6891729 Ko et al. May 2005 B2
6908792 Bruce et al. Jun 2005 B2
6914324 Rapport et al. Jul 2005 B2
6919626 Burns Jul 2005 B2
7081373 Roeters et al. Jul 2006 B2
20010001085 Hassanzadeh et al. May 2001 A1
20010006252 Kim et al. Jul 2001 A1
20010013423 Dalal et al. Aug 2001 A1
20010015487 Forthun Aug 2001 A1
20010026009 Tsuneda et al. Oct 2001 A1
20010028588 Yamada et al. Oct 2001 A1
20010035572 Isaak Nov 2001 A1
20010040793 Inaba Nov 2001 A1
20010052637 Akram et al. Dec 2001 A1
20020001216 Sugano et al. Jan 2002 A1
20020006032 Karabatsos Jan 2002 A1
20020030995 Shoji Mar 2002 A1
20020048849 Isaak Apr 2002 A1
20020076919 Peters et al. Jun 2002 A1
20020094603 Isaak Jul 2002 A1
20020101261 Karabatsos Aug 2002 A1
20020139577 Miller Oct 2002 A1
20020164838 Moon et al. Nov 2002 A1
20020180022 Emoto Dec 2002 A1
20020185731 Akram et al. Dec 2002 A1
20020196612 Gall et al. Dec 2002 A1
20030002262 Benisek et al. Jan 2003 A1
20030016710 Kamoto Jan 2003 A1
20030026155 Yamagata Feb 2003 A1
20030035328 Hamamatsu et al. Feb 2003 A1
20030045025 Coyle et al. Mar 2003 A1
20030049886 Salmon Mar 2003 A1
20030064548 Isaak Apr 2003 A1
20030081387 Schulz May 2003 A1
20030081392 Cady et al. May 2003 A1
20030089978 Miyamoto et al. May 2003 A1
20030090879 Doblar et al. May 2003 A1
20030096497 Moore et al. May 2003 A1
20030107118 Pflughaupt et al. Jun 2003 A1
20030109078 Takahashi et al. Jun 2003 A1
20030116835 Miyamoto et al. Jun 2003 A1
20030159278 Peddle Aug 2003 A1
20030168725 Warner et al. Sep 2003 A1
20040000708 Rapport et al. Jan 2004 A1
20040004281 Bai et al. Jan 2004 A1
20040012991 Kozaru Jan 2004 A1
20040021211 Damberg Feb 2004 A1
20040031972 Pflughaupt et al. Feb 2004 A1
20040045159 DiStefano et al. Mar 2004 A1
20040065963 Kamezos Apr 2004 A1
20040075991 Haba et al. Apr 2004 A1
20040099938 Kang et al. May 2004 A1
20040104470 Bang et al. Jun 2004 A1
20040115866 Bang et al. Jun 2004 A1
20040150107 Cha et al. Aug 2004 A1
20040157352 Beroz et al. Aug 2004 A1
20040203190 Pflughaupt et al. Oct 2004 A1
20040217461 Damberg Nov 2004 A1
20040217471 Haba Nov 2004 A1
20040238931 Haba et al. Dec 2004 A1
20040245617 Damberg et al. Dec 2004 A1
20050018495 Bhakta et al. Jan 2005 A1
20050035440 Mohammed Feb 2005 A1
20050040508 Lee Feb 2005 A1
20050104209 Kang May 2005 A1
20050108468 Hazelzet et al. May 2005 A1
20050133897 Baek et al. Jun 2005 A1
Foreign Referenced Citations (25)
Number Date Country
004215467 Nov 1992 DE
004214102 Dec 1992 DE
0426-303 (A2) Oct 1990 EP
359088863 (A) May 1984 JP
60-254762 (A) Dec 1985 JP
3641047659 (A) Mar 1986 JP
62-230027 (A) Aug 1987 JP
4-209562 (A) Jul 1992 JP
4-4368167 (A) Dec 1992 JP
50-29534 (A) Feb 1993 JP
63-153849 (A) Jun 1998 JP
2000-88921 (A) Mar 2000 JP
2000307029 (A) Nov 2000 JP
2001077294 (A) Mar 2001 JP
2001085592 (A) Mar 2001 JP
2001332683 (A) Nov 2001 JP
2003037246 (A) Feb 2003 JP
2003086760 (A) Mar 2003 JP
2003086761 (A) Mar 2003 JP
2003309246 (A) Oct 2003 JP
2003309247 (A) Oct 2003 JP
2003347475 (A) Dec 2003 JP
2003347503 (A) Dec 2003 JP
3602000 (B2) Oct 2004 JP
WO 03037053 May 2003 WO
Related Publications (1)
Number Date Country
20060261461 A1 Nov 2006 US
Continuations (1)
Number Date Country
Parent 10016939 Dec 2001 US
Child 11489956 US