1. Field of the Invention
Embodiments of the present invention relate to computer systems and more particularly, to staggering execution of an instruction.
2. Description of Related Art
Multimedia applications such as 2D/3D graphics, image processing, video compression/decompression, voice recognition algorithms and audio manipulation, require performing the same operation on a large number of data items (referred to as “data parallelism”) which may be represented in a small number of bits. For example, graphical and sound data are typically represented by 32-bits in floating point format and 8 or 16 bits in integer format. Floating point numbers are represented in a computer system in the form of a digit string including three components: a sign, an exponent (indicating the magnitude of the number) and a significand or mantissa (indicating the value of the fractional portion of the number). Each type of multimedia application implements one or more algorithms, where each algorithm may require a number of floating point or integer operations, such as ADD or MULTIPLY (hereafter MUL).
Single Instruction Multiple Data (SIMD) technology has enabled a significant improvement in multimedia application performance. SIMD technology provides for a single macro instruction, the execution of which causes a processor to perform the same operation on multiple data items in parallel. This technology is especially suited to systems that provide packed data formats. A packed data format is one in which the bits in a register are logically divided into a number of fixed-sized data elements, each of which represents a separate value. For example, a 64-bit register may be broken into four 16-bit elements, each of which represents a separate 16-bit value. SIMD instructions then separately manipulate each element in these packed data types in parallel. For example, a SIMD packed ADD instruction adds together corresponding data elements from a first packed data operand and a second packed data operand, as illustrated in FIG. 1. More specifically, the corresponding data elements for X and Y are added to result in Z, i.e. X0+Y0=Z0, X1+Y1=Z1, X2+Y2=Z2 and X3+Y3=Z3.
Thus, as illustrated in
The implementation described above can require a significant amount of duplicated hardware components and is inefficient in utilizing the hardware components (namely the ADD and MUL execution units). At any given time, one execution unit remains idle while the second execution unit is active.
Present embodiments of the invention are described by way of example and not by way of limitation with reference to the figures of the accompanying drawings in which like reference numerals refer to similar elements and in which:
In one aspect of embodiments of invention is a method and apparatus for staggering execution of an instruction. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the various embodiments of the present invention. It will be apparent to one of ordinary skill in the art that these specific details need not be used to practice various embodiments of the present invention. In other instances, well-known structures, interfaces, and processes have not been shown in detail in order not to unnecessarily obscure various embodiments of the present invention.
Overview
While there are a number of different ways in which the staggered execution of instructions can be achieved, the following sections describe two exemplary embodiments to illustrate the invention. In particular, both of the described exemplary embodiments receive the same macro instructions specifying logical registers containing 128 bit operands. The term logical register is used herein to refer to the concept of the manner in which instructions specify a storage area that contains a single operand. Thus, a logical register can be implemented in hardware using any number of well known techniques, including a dedicated physical register, one or more dynamically allocated physical register using a register renaming mechanism (described in further detail below), etc..
In the first exemplary embodiment, each macro instruction specifying logical registers containing 128 bit operands causes the full-width of the operands to be accessed from the physical registers. Subsequent to accessing the full-width operands from the registers, the operands are divided into the low and high order segments (e.g., using latches and multiplexers) and sequentially executed using the same hardware. The resulting half-width results are collected and simultaneously written to a single logical register.
In contrast, in the second exemplary embodiment each macro instruction specifying logical registers containing 128 bit operands is divided into at least two micro instructions that each operate on only half of the operands. Thus, the operands are divided into a high and low order segment and each micro instruction separately causes only half of the operands to be accessed from the registers. This type of a division is possible in a SIMD architecture because each of the operands is independent from the other. While implementations of the second embodiment can execute the micro instructions in any order (either an in order or an out of order execution model), the micro instructions respectively causes the operation specified by the macro instruction to be independently performed on the low and high order segments of the operands. In addition, each micro instruction causes half of the resulting operand to be written into the single logical register specified by the macro instruction.
While embodiments are described in which 128 bit operands are divided into two segments, alternative embodiments could use larger or smaller operands and/or divide those operands into more than two segments. In addition, while two exemplary embodiments are described for performing staggered execution, alternative embodiments could use other techniques.
First Exemplary Embodiment
At time T+1, the MUL instruction may also have been started. Thus, at time T+1, 128-bits of A and B may each have been retrieved from their respective registers via ports 1 and 2. The lower order data segments, namely the lower 64-bits, of both A and B may be passed into multiplexers 406 and 408. After the higher order bits of X and Y are removed from delay elements M1 and M2 and passed into multiplexers 406 and 408, the higher order bits of A and B may be held in storage in delay elements M1 and M2. The results of both processing steps is written back to register file 400 via port 3.
Thus, according to an embodiment of the present invention, execution units are provided that contain only half the hardware (e.g. two single precision ADD execution units and two single precision MUL execution units), instead of the execution units required to process the full width of the operands in parallel as found in a current processor. This embodiment takes advantage of statistical analysis showing that multimedia applications utilize approximately fifty percent ADD instructions and fifty percent MUL instructions. Based on these statistics, this embodiment assumes that multimedia instructions generally follow the following pattern: ADD, MUL, ADD, MUL, etc. By utilizing the ADD and MUL execution units in the manner described above, the present embodiment provides for an optimized use of the execution units, thus enabling comparable performance to the current processor, but at a lower cost.
According to this embodiment, 64-bit hardware may be used to process 128-bit data. A 128-bit register may be broken into four 32-bit elements, each of which represents a separate 32-bit value. At time T, the two ADD execution units perform ADDs first on the two lower 32-bit values, followed by an ADD on the higher 32-bit values at time T+1. In the case of a MUL operation, the MUL execution units behave in the same manner. This ability to use currently available 64-bit hardware to process 128-bit data represents a significant cost advantage to hardware manufacturers.
As described above, the ADD and MUL execution units according to the present embodiment are reused to reexecute a second ADD or MUL operation at a subsequent clock cycle. In order for this re-using or “staggered execution” to perform efficiently, this embodiment takes advantage of the statistical behavior of multimedia applications. More specifically, as described above, this embodiment takes advantage of statistical analysis showing that multimedia applications utilize approximately fifty percent ADD instructions and fifty percent MUL instructions. Based on these statistics, this embodiment assumes that multimedia instructions generally follow the following pattern: ADD, MUL, ADD, MUL, etc.
At time T+1, when the two ADD execution units are performing the second ADD operation on the two data elements of the higher order data segment, the two MUL units may begin a multiply operation. The first two data elements of the MUL, i.e. the lower order data segment, may be multiplied at time T+1 by the two MUL units, followed at time T+2 by the MUL units reexecuting the MUL operation on the two packed data elements of the higher order data segment. In this manner, according to one embodiment of the present invention, the number of ADD and MUL execution units are reduced by half, while maintaining the same or comparable performance as before.
If, however, a second ADD instruction follows the first, the second ADD instruction may be delayed by a scheduling unit to allow the ADD execution units to complete the first ADD instruction, or more specifically on the higher order data segment of the first ADD instruction. The second ADD instruction may then begin executing. Alternatively, in an out-of-order processor, the scheduling unit may determine that a MUL instruction further down the instruction stream may be performed out-of-order. If so, the scheduling unit may inform the MUL execution units to begin processing the MUL instruction. If no MUL instructions are available for processing at time T+1, the scheduler will not issue an instruction following the first ADD instruction, thus allowing the ADD execution units time to complete the first ADD instruction before beginning the second ADD instruction.
Yet another embodiment of the present invention allows for back-to-back ADD or MUL instructions to be issued by re-executing the instruction on the same execution units on a half clock cycle instead of a full clock cycle. Reexecuting the instruction on the half clock cycle effectively “double pumps” the hardware, i.e. makes the hardware twice as fast. In this manner, the ADD or MUL execution units may be available during each clock cycle to execute a new instruction. Double pumped hardware would allow for the hardware units to execute twice as efficiently as single pumped hardware that executes only on the full clock cycle. Double pumped hardware requires significantly more hardware, however, to effectively process the instruction on the half clock cycle.
The full width output of the switches 150 and 160 are split into half width data elements. Data lines 152 and 162 respectively carry low order data output from the switches 150 and 160. Data lines 154 and 164 carry high order data. Data lines 154 and 164 are input to delay elements 190, 200 respectively. Delay elements 190 and 200 delay input data by a full clock cycle. Thus, high order data propagates through the circuitry one clock cycle delayed with respect to the low order data. In one embodiment, the delay elements 190 and 200 may be master slave flip flops.
According to one embodiment, the circuitry provides a second switching stage populated by switches 210-240. Switch 210 receives low data output from switch 150; switch 230 receives high data output from switch 150. Switch 220 receives low data output from switch 160; switch 240 receives high data output from switch 160. Switches 210 and 220 both receive data from data lines 250, a “low order global bypass bus,” as a second input. Switches 230 and 240 both receive data from data lines 260, a “high order global bypass bus,” as a second input. The switches 210-240 output the data of the selected input on data lines 215, 225, 235 and 245 respectively, which propagates to a third switching stage. Each switch 210-240 switches to a selected input independently of each other switch under control of the bypass controller 180.
Each execution unit 130 or 140 typically receives inputs at two input terminals IN1 and IN2. Input data arrives at each input terminal via the third stage of switching. The third stage provides a pair of switches for each execution unit. Thus, a pair of switches 270 and 280 is provided for logic unit 130 and a second pair of switches 290 and 300 is provided for logic unit 140. Each switch in the third stage selects from one of four inputs, organized as two pairs. Consider switch 270 as an example. A first pair of data inputs originate from the low and high data switches 210, 230 of the second stage. A second pair of inputs are received from data lines 310 and 320, a “low local bypass bus” and a “high local bypass bus”, respectively. Similarly, switch 300 receives a first pair of inputs from second stage switches 220, 240 and a second pair of inputs from the low and high local bypass buses 310, 320.
For each execution unit 130, 140, the switches associated with the IN1 terminal derive their inputs from the same source. Thus, the inputs to switch 290 are identical to the inputs to switch 270. Also, the switches associated with the IN2 terminal derive their inputs from the same source. Inputs to switch 300 are identical to the inputs to switch 280. Although the inputs are identical, the switches 270-300 may be controlled independently.
Execution units 130 and 140 generate output data as two half width data segments. Low order data is output at an OUTLO terminal. High order data is output one clock cycle later at an OUTHI terminal. The low and high order output data propagate through separate drivers 330 and 340 to the low and high local bypass buses 310 and 320 respectively. Thus, low order output data may be input to any logic unit the next cycle after it is generated. The high order output data, generated one clock cycle later, may be input to any logic unit the cycle after it is generated. Thus, there is no delay associated with the local bypass.
Data on the each of the low and high local bypass buses 310 and 320 propagates through delay elements 350 and 360 to the low and high global bypass buses 250 and 260 respectively. Each delay element 350, 360 may include a latch 370 and a driver 380. Data input to a delay element 350, 360 appears on its output with a one clock cycle delay. Thus, data appears on the low and high global bypass buses 250, 260 one clock cycle after it appeared on the respective local bypass busses 310, 320.
As noted, the global bypass buses 250, 260 are input to the second stage switches 210-240. Low order data arrives to the global bypass bus 260 one clock cycle before the associated high order data arrives at the high global bypass bus 250. If either pair of the second stage switches 210-240 are switched to accept data from the global bypass buses as an input, the global bypass data may be bypassed back to the logic units 130, 140.
Data propagates from the global bypass buses 250, 260 back to a resultant register 390 over data lines 410. Resultant register 390 is a register that possesses the full width of data registers 110 and 120. Data is written to the resultant register 390 using full width, parallel data lines. A master slave flip flop 400 bridges the low order global bypass bus 250 to data lines 410. Data lines 410 are full width, parallel data lines. Flip flop 400 delays the low order data lines for one clock cycle to permit data to become established on the high order global bypass bus 260. When such data becomes available, low and high order data may be written to the resultant register 390 simultaneously.
The write bypass bus 170 allows data being written to the resultant register 390 to bypass back to the first stage of switches 150, 160. Thus, data may be redirected back to the execution unit 130 from the write bypass bus 170 by switching one of the first switches 150, 160 to output data from the write bypass bus 170. Data that flows to the execution unit 130 through the write bypass bus 170 is clocked into the execution unit three clock cycles after having been generated at the output terminal OUTLO.
A bypass controller 180 is provided in communication with the switches of all three switching stages. Bypass controller 180 monitors instructions issued by the microprocessor core (not shown). The bypass controller 180 configures the switching of each switch to implement any desired bypass. When the bypass controller 180 receives an instruction from the core, it determines whether the input data from the new instruction is resident on any bypass bus in the system. Consider an example where the core issues the following instructions:
PADD A,B Ø C,
PSHFT A, C Ø D
PXOR A, C Ø E, and
PSUB A,C Ø F
Also assume that execution unit 130 selectively performs the PADD, PXOR or PSUB functions and execution unit 140 performs the PSHFT function. The result, labeled “C” generated from the PADD function is an input to each of the following three instructions. The bypass architecture advantageously routes the C value back to inputs of the execution units without having to write data to register 390 and read it back to the circuitry.
The bypass controller 180 maintains a three register memory (not shown). One register, a local bypass register, is associated with the low local bypass bus 310. A second register, a global bypass register, is associated with the low order global bypass bus 250. The third register, a write back bypass register, is associated with the write-back bypass bus 170. Labels of data present on each bypass bus are stored in a corresponding register in the bypass controller 180.
Each time a new instruction is to be executed by the circuitry of
The following table explains how the bypass controller 180 performs its monitoring function. At clock cycle T, the PADD function is performed, generating a result that is to be stored in destination register 390 labeled register “C”. The bypass controller 180 stores a label for C in a memory register associated with the local bypass for low order data.
At clock cycle T+1, the core issues the PSHFT instruction. The bypass controller 180 compares its local, global and write back buses against the designated inputs of the PSHFT command, A and C. A match is detected at the register associated with the local bypass bus 310. Accordingly, the bypass controller 180 causes a local bypass to be effected. In this case, switch 300 selects the local bypass bus 310 to bypass C back to the PSHFT execution unit 140.
At clock cycle T+2, the data within the bypass controller 180 registers are advanced to correspond to the movement of data from bypass bus to bypass bus. The label for C moves to the register associated with the global bypass bus 250; the label for D is input to the register associated with the local bypass bus 310. To cause the high order data to follow the low order data for the PSHFT instruction, the bypass controller 180 causes switch 300 to select the local bypass for high order data 320 as an input.
When the core issues the PXOR instruction, the bypass controller 180 again compares its registers against the designated inputs of the PXOR instruction, A and C. A match is detected at the register associated with the global bypass 250. Accordingly, the bypass controller 180 causes a global bypass to be effected. Here, switch 220 selects the global bypass bus 250 and switch 280 selects data line 225. The data from the low order global bypass bus 250 is routed back to logic unit 130.
At clock cycle T+3, the data within the bypass controller 180 registers advance again in a manner corresponding to the advance of data. The label for C moves to the register associated with the write back, bypass bus 170, the label for D moves to the global bypass register and the label for E is written into the local bypass register. The bypass controller 180 causes switch 240 to select the high order global bypass bus 260 to bypass the high order data to logic unit 140 to complete the PXOR instruction.
When the core issues the PSUB instruction, the bypass controller 180 performs the comparison and detects a match at the write back bypass bus 170. The bypass controller 180 causes switch 160 to select write back bypass bus 170, switch 220 to selects data lines 162 and switch 280 to select data line 1225. For clock cycles T+4 and beyond, if C were designated as an input to an instruction, it would be read from register 390 according to conventional processes.
Bus contentions may be encountered among sequential operations to be performed by a single execution unit. Using the example of Table 1 again, consider what would occur if the core issued a PADD instruction at clock cycle T+4. Execution unit 130 performs PADDs. At cycle T+4, however, the bypass controller 180 bypasses high order data from the delay latch 200 to execution unit 130 to complete the PSUB instruction of cycle T+3. Execution unit 130 is busy completing the PSUB instruction. Accordingly, core schedulers account for the bus contention and delay issuing the PADD instruction until the execution unit 130 is no longer busy.
The bus contention noted above occurs only when high order data from a bypass bus and a new instruction must use the same logic unit such as unit 130 in the example above. If the new instruction were a PSHFT or another instruction the referenced any execution unit other than unit 130, no contention would occur. Thus, the bypass architecture of the embodiment of the present invention permits data to be input to two or more execution units simultaneously.
In one embodiment, the switches of the circuit may be multiplexer latches (“LMUX”). The LMUXes select one of a plurality of inputs and route data from the selected input to an output. The bypass bus architecture described above advantageously provides an architecture scheme that avoids unnecessary reading and writing of data between the microprocessor core and the execution units and also provides the desired “one UOP, two data” principle of the staggered execution.
It will be appreciated that modifications and variations of various embodiments of the present invention are covered by the above teachings and within the preview of the appended claims without departing from the spirit and intended scope of the embodiments of the present invention. For example, although only two execution units are described above, any number of logic units may be provided.
Second Exemplary Embodiment
According to an alternate embodiment of the present invention, the staggered execution of a full width operand is achieved by converting a full width macro operation into at least two micro instructions that each operate on only half of the operands. Although the description below is written according to a particular register renaming method, it will be appreciated that other register renaming mechanisms may also be utilized consistent with the embodiments of the present invention. The register renaming method as described below assumes the use of a Register Alias Table (RAT), a Reorder Buffer (ROB) and a retirement buffer, as described in detail in U.S. Pat. No. 5,446,912. Alternate register renaming methods such as that described in U.S. Pat. No. 5,197,132 may also be implemented.
The two half width micro instructions then move into a register renaming stage of the pipeline. The register renaming stage includes a variety of register maps and reorder buffers. The sources of each micro instruction are pointers to specific register entries in a register mapping table (e.g. a RAT). The entries in the register mapping table in turn point to the location of the sources in an ROB or in a retirement register. According to one embodiment, in order to accommodate the half width high and low order operations described above, a RAT for packed floating point data is provided with Y*2 entries. Thus, for example, instead of a RAT with the 8 entries, a RAT is created with 16 entries, each addressed as “high” or “low.” Each entry identifies a 64-bit source corresponding to either a high or a low part of the 128-bit logical register.
Each of the high and low order micro instructions thus has associated entries in the register mapping table corresponding to the respective operands. The micro instructions then move into a scheduling stage (for an out of order processor) or to an execution stage (for an in order processor). Each micro instruction retrieves and separately processes a 64-bit segment of the 128-bit operands. One of the operations (e.g. the lower order operation) is first executed by the 64-bit hardware units and 64-bits of data (e.g. the 64 lower order bits) are retrieved and processed. The other operation (e.g. the higher order operation) waits until the 64-bit hardware units have completed the lower order operation. Then, the same 64-bit hardware unit executes the higher order operation, first retrieving another 64 bits of data (e.g. the higher order bits) to process. Although the above example describes the lower order operation and higher order operation being performed sequentially, the operations do not in fact have to be performed sequentially. Each operation is completely independent of the other, i.e. either operation may be performed first and any number of other operations may be performed in between these two operations. The results of the operation, however, are retired sequentially.
Although the above embodiment describes the macro instruction being divided into two micro operations, alternate embodiments may divide the macro instruction into more micro instruction. While
Thus, a method and apparatus for staggering execution of an instruction is disclosed. These specific arrangements and methods described herein are merely illustrative of the embodiments of the present invention. Numerous modifications in form and detail may be made by those of ordinary skill in the art without departing from the scope of the embodiments of the present invention. Although various embodiments of the present invention have been shown in relation to a particular embodiment, it should not be considered so limited.
This is a continuation application of U.S. application Ser. No. 10/164,774, filed on Jun. 6, 2002 now U.S. Pat. No. 6,694,426, which is a continuation of U.S. application Ser. No. 09/805,280, filed on Mar. 13, 2001, now U.S. Pat. No. 6,425,073, issued on Jul. 23, 2002, which is a continuation of U.S. application Ser. No. 09/053,004 filed on Mar. 31, 1998, now U.S. Pat. No. 6,230,257, issued on May 8, 2001.
Number | Name | Date | Kind |
---|---|---|---|
3675001 | Singh | Jul 1972 | A |
3723715 | Chen et al. | Mar 1973 | A |
3900724 | Mclver et al. | Aug 1975 | A |
3941990 | Rabasse | Mar 1976 | A |
4542476 | Nagafuji | Sep 1985 | A |
4677582 | Nagafuji | Jun 1987 | A |
4760545 | Inagami et al. | Jul 1988 | A |
4811269 | Hirose et al. | Mar 1989 | A |
4890218 | Bram | Dec 1989 | A |
4945479 | Rusterholz et al. | Jul 1990 | A |
4972362 | Elkind et al. | Nov 1990 | A |
4985848 | Pfeiffer et al. | Jan 1991 | A |
5001662 | Baum | Mar 1991 | A |
5047975 | Patti et al. | Sep 1991 | A |
5081698 | Kohn | Jan 1992 | A |
5126964 | Zurawski | Jun 1992 | A |
5161247 | Murakami et al. | Nov 1992 | A |
5189636 | Patti et al. | Feb 1993 | A |
5210711 | Rossmere et al. | May 1993 | A |
5241493 | Chu et al. | Aug 1993 | A |
5303355 | Gergen et al. | Apr 1994 | A |
5311508 | Buda et al. | May 1994 | A |
5327369 | Ashkenazi | Jul 1994 | A |
5390135 | Lee et al. | Feb 1995 | A |
5426598 | Hagihara | Jun 1995 | A |
5515520 | Hatta et al. | May 1996 | A |
5579253 | Lee et al. | Nov 1996 | A |
5590365 | Ide et al. | Dec 1996 | A |
5606677 | Balmer et al. | Feb 1997 | A |
5642306 | Mennemeier et al. | Jun 1997 | A |
5673427 | Brown et al. | Sep 1997 | A |
5701508 | Glew et al. | Dec 1997 | A |
5721892 | Pelog et al. | Feb 1998 | A |
5742840 | Hansen et al. | Apr 1998 | A |
5765037 | Morrison et al. | Jun 1998 | A |
5778419 | Hansen et al. | Jul 1998 | A |
5793661 | Dulong et al. | Aug 1998 | A |
5794060 | Hansen et al. | Aug 1998 | A |
5794061 | Hansen et al. | Aug 1998 | A |
5802336 | Peleg et al. | Sep 1998 | A |
5806049 | Petruzzi | Sep 1998 | A |
5809321 | Hansen et al. | Sep 1998 | A |
5819101 | Peleg et al. | Oct 1998 | A |
5822603 | Hansen et al. | Oct 1998 | A |
5835392 | Dulong et al. | Nov 1998 | A |
5852726 | Lin et al. | Dec 1998 | A |
5870619 | Wilkinson et al. | Feb 1999 | A |
5880983 | Elliott et al. | Mar 1999 | A |
5883824 | Lee et al. | Mar 1999 | A |
5884071 | Kosaraju | Mar 1999 | A |
5936782 | Nomura et al. | Aug 1999 | A |
5953241 | Hansen et al. | Sep 1999 | A |
5983257 | Dulong et al. | Nov 1999 | A |
6006318 | Hansen et al. | Dec 1999 | A |
6018351 | Mennemeier et al. | Jan 2000 | A |
6035387 | Hsu et al. | Mar 2000 | A |
6041403 | Parker et al. | Mar 2000 | A |
6122725 | Roussel et al. | Sep 2000 | A |
6154831 | Thayer et al. | Nov 2000 | A |
6178482 | Sollars | Jan 2001 | B1 |
6192467 | Abdallah et al. | Feb 2001 | B1 |
6230253 | Roussel et al. | May 2001 | B1 |
6230257 | Roussel et al. | May 2001 | B1 |
6233671 | Abdallah et al. | May 2001 | B1 |
6260137 | Fleck et al. | Jul 2001 | B1 |
6295599 | Hansen et al. | Sep 2001 | B1 |
6378060 | Hansen et al. | Apr 2002 | B1 |
6385634 | Peleg et al. | May 2002 | B1 |
6470370 | Fischer et al. | Oct 2002 | B2 |
6502117 | Golliver et al. | Dec 2002 | B2 |
6584482 | Hansen et al. | Jun 2003 | B1 |
6643765 | Hansen et al. | Nov 2003 | B1 |
6725356 | Hansen et al. | Apr 2004 | B2 |
Number | Date | Country |
---|---|---|
9907221.7 | Oct 1999 | GB |
2 339 040 | Dec 2000 | GB |
WO 9708608 | Mar 1997 | WO |
WO 9722921 | Jun 1997 | WO |
WO 9722923 | Jun 1997 | WO |
WO 9722924 | Jun 1997 | WO |
WO 9723821 | Jul 1997 | WO |
WO 9950740 | Oct 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20040083353 A1 | Apr 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10164774 | Jun 2002 | US |
Child | 10689291 | US | |
Parent | 09805280 | Mar 2001 | US |
Child | 10164774 | US | |
Parent | 09053004 | Mar 1998 | US |
Child | 09805280 | US |