The present invention relates to trench MOS transistors.
Power MOSFETs (metal-oxide-semiconductor field-effect transistors) comprise one of the most useful field effect transistors implemented in both analog and digital circuit applications as energy saving switches.
In general, a trench-based power MOSFET is built using a vertical structure as opposed to a planar structure. The vertical structure enables the transistor to sustain both high blocking voltage and high current.
The conventional trench MOS transistors have realized much higher cell density than the planar MOS transistors. But the denser pitches and the trench structures have increased gate-drain overlap capacitances and gate-drain charges. At high density the resistance of these structures is mainly limited by the epitaxial resistance for a given breakdown voltage. The so called split gate structure was proposed to overcome several drawbacks of the conventional trench structure performance. In this structure a shielded poly, which is connected to the source, is placed under the gate poly inside the trench.
Split gate structures have been known to have better switching, breakdown voltage, and lower on-resistance characteristics. But due to its complexity the split gate structure is more difficult to manufacture. Also at high density it is necessary to bury the split gate structure under a top isolation oxide so that a space saving self-aligned contact technique can be utilized. Under these conditions difficulties in forming a isolation oxide, gate poly, inter poly oxide and shield poly inside a trench are very challenging.
Embodiments of the present invention implement high density power field effect transistor that avoids the channel mobility problems caused by gate oxide scattering, that exhibits lower forward voltage (Vf) rated at high current; and that shows shorter channel length for faster switching. This invention can apply to DC-DC conversion as a synchronized rectifier transistor.
In one embodiment, the present invention is implemented as a split gate field effect transistor device. The device includes a split gate structure having a trench, a gate electrode and a source electrode, a first poly layer a disposed within the trench and connected to the source electrode. A second poly layer is disposed within the trench and connected to the gate electrode, wherein the first poly layer and the second poly layer are independent.
In one embodiment, the device further includes a gate contact connecting the second poly layer to the gate electrode, and a source contact connecting the first poly layer to the source electrode. Both contacts are made within the trench region.
In one embodiment, the device further includes an active region body and a source contact, wherein the active region body and the source contact are disposed at a same surface plane.
In one embodiment, the same surface plane is established via a CMP compatible process.
In one embodiment, a layout method is used to enable a CMP compatible process to connect the first poly layer to the source electrode and the second poly layer to the gate electrode the same surface plane with active region source contacts.
In one embodiment, the present invention is implemented as a CMP compatible split gate field effect transistor device. The device includes a split gate structure having a trench, a gate electrode and a source electrode. The device further includes a first poly layer disposed within the trench and connected to the source electrode, a second poly layer disposed within the trench and connected to the gate electrode, wherein the first poly layer and the second poly layer are independent. The device further includes a metal layer disposed over the split gate structure.
In one embodiment, the device further includes a gate contact connecting the second poly layer to the gate electrode, and a source contact connecting the first poly layer to the source electrode. Both contacts are made within the trench region.
In one embodiment, the device further includes an active region body and a source contact, wherein the active region body and the source contact are disposed at a same surface plane.
In one embodiment, the same surface plane is established via a CMP compatible process.
In one embodiment, a layout method is used to enable a CMP compatible process to connect the first poly layer to the source electrode and the second poly layer to the gate electrode the same surface plane with active region source contacts.
In one embodiment, the present invention is implemented as a planar split gate field effect transistor device, comprising:
The device includes a split gate structure having a trench, a gate electrode and a source electrode. The device further includes a first poly layer disposed within the trench and connected to the source electrode, a second poly layer disposed within the trench and connected to the gate electrode, wherein the first poly layer and the second poly layer are independent. The device further includes a metal layer disposed over the split gate structure, and wherein the first poly layer and the second poly layer are coplanar.
In one embodiment, the device further includes a gate contact connecting the second poly layer to the gate electrode, and a source contact connecting the first poly layer to the source electrode. Both contacts are made within the trench region.
In one embodiment, the device further includes an active region body and a source contact, wherein the active region body and the source contact are disposed at a same surface plane.
In one embodiment, the same surface plane is established via a CMP compatible process.
In one embodiment, a layout method is used to enable a CMP compatible process to connect the first poly layer to the source electrode and the second poly layer to the gate electrode in the same surface plane with active region source contacts.
The foregoing is a summary and thus contains, by necessity, simplifications, generalizations and omissions of detail; consequently, those skilled in the art will appreciate that the summary is illustrative only and is not intended to be in any way limiting. Other aspects, inventive features, and advantages of the present invention, as defined solely by the claims, will become apparent in the non-limiting detailed description set forth below.
The accompanying drawings, which are incorporated in and form a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention:
Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the preferred embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of embodiments of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be recognized by one of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the embodiments of the present invention.
Embodiments of the present invention function with trench MOS transistors having much higher cell density than conventional planar MOS transistors. Embodiments of the present invention utilize a split gate structure that overcome certain drawbacks of the conventional trench structure performance. Embodiments of the present invention employ a split gate structure having a shielded poly, which is connected to the source, is placed under the gate poly inside the trench. This feature provides better switching, breakdown voltage, and lower on-resistance characteristics.
Embodiments of the present invention advantageously utilize chemical mechanical polishing (CMP) to facilitate the fabrication of the complex split gate structure. The split gate structure is buried under a top isolation oxide so that a space saving self-aligned contact technique can be utilized. The use of chemical mechanical polishing facilitates the forming a isolation oxide, gate poly and shield poly inside a trench.
As described above, embodiments of the present invention utilize chemical mechanical polishing to facilitate fabrication of the split gate structure. The use of CMP allows for the planarization of each film inside the trench. This aspect results in better structure control and improved process margin. In order for CMP to be used, both the process and device layout need to be optimized to generate a planner structure. An extra benefit of such a planner structure is the improvement in photo lithography depth of focus. The above described features of embodiments of the present invention enable an improved ability to scale the features of the process to a smaller dimension.
As depicted in the
In accordance with embodiments of the present invention, the fabricated trench gated MIS device implements the split gate structures having gate contact connecting the second poly layer and source contact connecting the first poly layer, and active region body and source contact at the same surface plane through CMP compatible processes.
It should be noted that in addition to the illustrated
The foregoing descriptions of specific embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order best to explain the principles of the invention and its practical application, thereby to enable others skilled in the art best to utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.
This application claims the benefit of U.S. Provisional Patent Application No. 61/253,455, filed Oct. 20, 2009, “STRUCTURES OF AND METHODS OF FABRICATING SPLIT GATE MIS DEVICES”, by Terrill, et al., which is incorporated herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4710790 | Okamoto et al. | Dec 1987 | A |
4881105 | Davari et al. | Nov 1989 | A |
5283201 | Tsang et al. | Feb 1994 | A |
5321289 | Baba et al. | Jun 1994 | A |
5477071 | Hamamoto et al. | Dec 1995 | A |
5502320 | Yamada | Mar 1996 | A |
5614751 | Yilmaz et al. | Mar 1997 | A |
5637898 | Baliga | Jun 1997 | A |
5668026 | Lin et al. | Sep 1997 | A |
5726463 | Brown et al. | Mar 1998 | A |
5763915 | Hshieh et al. | Jun 1998 | A |
5864159 | Takahashi | Jan 1999 | A |
5877528 | So | Mar 1999 | A |
5914503 | Iwamuro et al. | Jun 1999 | A |
5998833 | Baliga | Dec 1999 | A |
6031265 | Hshieh | Feb 2000 | A |
6084264 | Darwish | Jul 2000 | A |
6211549 | Funaki et al. | Apr 2001 | B1 |
6242775 | Noble | Jun 2001 | B1 |
6255683 | Radens et al. | Jul 2001 | B1 |
6281547 | So et al. | Aug 2001 | B1 |
6291298 | Williams et al. | Sep 2001 | B1 |
6309929 | Hsu et al. | Oct 2001 | B1 |
6404007 | Mo et al. | Jun 2002 | B1 |
6413822 | Williams et al. | Jul 2002 | B2 |
6462376 | Wahl et al. | Oct 2002 | B1 |
6489204 | Tsui | Dec 2002 | B1 |
6495884 | Harada et al. | Dec 2002 | B2 |
6525373 | Kim | Feb 2003 | B1 |
6545315 | Hshieh et al. | Apr 2003 | B2 |
6548860 | Hshieh et al. | Apr 2003 | B1 |
6621107 | Blanchard et al. | Sep 2003 | B2 |
6683346 | Zeng | Jan 2004 | B2 |
6707128 | Moriguchi et al. | Mar 2004 | B2 |
6781199 | Takahashi | Aug 2004 | B2 |
6838722 | Bhalla et al. | Jan 2005 | B2 |
6882000 | Darwish et al. | Apr 2005 | B2 |
6900100 | Williams et al. | May 2005 | B2 |
6906380 | Pattanayak et al. | Jun 2005 | B1 |
6921697 | Darwish et al. | Jul 2005 | B2 |
7005347 | Bhalla et al. | Feb 2006 | B1 |
7009247 | Darwish | Mar 2006 | B2 |
7335946 | Bhalla et al. | Feb 2008 | B1 |
7345342 | Challa et al. | Mar 2008 | B2 |
7385248 | Herrick et al. | Jun 2008 | B2 |
7393749 | Yilmaz et al. | Jul 2008 | B2 |
7494876 | Giles et al. | Feb 2009 | B1 |
7544571 | Park | Jun 2009 | B2 |
7598143 | Zundel et al. | Oct 2009 | B2 |
7868381 | Bhalla et al. | Jan 2011 | B1 |
7936009 | Pan et al. | May 2011 | B2 |
8247865 | Hirler | Aug 2012 | B2 |
8629505 | Nishiwaki | Jan 2014 | B2 |
8686493 | Thorup et al. | Apr 2014 | B2 |
20020036319 | Baliga | Mar 2002 | A1 |
20020056884 | Baliga | May 2002 | A1 |
20030086296 | Wu et al. | May 2003 | A1 |
20030178676 | Henninger et al. | Sep 2003 | A1 |
20030201502 | Hsieh | Oct 2003 | A1 |
20040021173 | Sapp | Feb 2004 | A1 |
20040038479 | Hsieh | Feb 2004 | A1 |
20040084721 | Kocon et al. | May 2004 | A1 |
20040113202 | Kocon et al. | Jun 2004 | A1 |
20050001268 | Baliga | Jan 2005 | A1 |
20050079676 | Mo et al. | Apr 2005 | A1 |
20050082591 | Hirler et al. | Apr 2005 | A1 |
20050151190 | Kotek et al. | Jul 2005 | A1 |
20050167742 | Challa et al. | Aug 2005 | A1 |
20060017056 | Hirler | Jan 2006 | A1 |
20060113577 | Ohtani | Jun 2006 | A1 |
20060209887 | Bhalla et al. | Sep 2006 | A1 |
20060214221 | Challa et al. | Sep 2006 | A1 |
20060273386 | Yilmaz et al. | Dec 2006 | A1 |
20060281249 | Yilmaz et al. | Dec 2006 | A1 |
20070004116 | Hshieh | Jan 2007 | A1 |
20070037327 | Herrick et al. | Feb 2007 | A1 |
20070108511 | Hirler | May 2007 | A1 |
20070108515 | Hueting et al. | May 2007 | A1 |
20070132014 | Hueting | Jun 2007 | A1 |
20070155104 | Marchant et al. | Jul 2007 | A1 |
20070221952 | Thorup et al. | Sep 2007 | A1 |
20080073707 | Darwish | Mar 2008 | A1 |
20080076222 | Zundel et al. | Mar 2008 | A1 |
20080135889 | Session | Jun 2008 | A1 |
20080166845 | Darwish | Jul 2008 | A1 |
20080197407 | Challa et al. | Aug 2008 | A1 |
20080199997 | Grebs et al. | Aug 2008 | A1 |
20080265289 | Bhalla et al. | Oct 2008 | A1 |
20090035900 | Thorup et al. | Feb 2009 | A1 |
20090050959 | Madson | Feb 2009 | A1 |
20090057756 | Hshieh | Mar 2009 | A1 |
20090072301 | Bhalla et al. | Mar 2009 | A1 |
20090162989 | Cho et al. | Jun 2009 | A1 |
20090246923 | Park | Oct 2009 | A1 |
20090273026 | Wilson et al. | Nov 2009 | A1 |
20090309156 | Darwish et al. | Dec 2009 | A1 |
20100006928 | Pan et al. | Jan 2010 | A1 |
20110079843 | Darwish et al. | Apr 2011 | A1 |
20110089485 | Gao et al. | Apr 2011 | A1 |
20120043602 | Zeng et al. | Feb 2012 | A1 |
20120061753 | Nishiwaki | Mar 2012 | A1 |
20120267704 | Siemieniec et al. | Oct 2012 | A1 |
20130049072 | Heineck et al. | Feb 2013 | A1 |
20130221436 | Hossain et al. | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
102005041322 | Mar 2007 | DE |
0717450 | Jun 1996 | EP |
S63296282 | Feb 1988 | JP |
H03211885 | Jan 1990 | JP |
03211885 | Sep 1991 | JP |
H07-045817 | Feb 1995 | JP |
H07-235676 | Sep 1995 | JP |
H08-167711 | Jun 1996 | JP |
H10173175 | Jun 1998 | JP |
H11068102 | Sep 1999 | JP |
2000223705 | Aug 2000 | JP |
2001308327 | Nov 2001 | JP |
2002110984 | Apr 2002 | JP |
2003282870 | Oct 2003 | JP |
2003309263 | Oct 2003 | JP |
2004241413 | Aug 2004 | JP |
2005032941 | Feb 2005 | JP |
2005057050 | Mar 2005 | JP |
2005191221 | Jul 2005 | JP |
2006202931 | Aug 2006 | JP |
2007529115 | Oct 2007 | JP |
2008543046 | Nov 2008 | JP |
2008546189 | Dec 2008 | JP |
2008546216 | Dec 2008 | JP |
2009505403 | Feb 2009 | JP |
2009141005 | Jun 2009 | JP |
2009542002 | Nov 2009 | JP |
2010505270 | Feb 2010 | JP |
2011258834 | Dec 2011 | JP |
2012059943 | Mar 2012 | JP |
2013508980 | Mar 2013 | JP |
9403922 | Feb 1994 | WO |
0025363 | May 2000 | WO |
0025365 | May 2000 | WO |
0042665 | Jul 2000 | WO |
0051167 | Aug 2000 | WO |
0065646 | Nov 2000 | WO |
2005065385 | Jul 2005 | WO |
2006127914 | Nov 2006 | WO |
2007021701 | Feb 2007 | WO |
2007129261 | Nov 2007 | WO |
2009026174 | Feb 2009 | WO |
2011050115 | Apr 2011 | WO |
Entry |
---|
K Imai et al., “Decrease in Trenched Surface Oxide Leakage Currents by Rounding Off Oxidation”, Extended Abstracts of the 18.sup.th (1986 International) Conference on Solid State Devices and Materials, Tokyo 1986, pp. 303-306. |
Y. Baba et al., “High Reliable UMOSFET with Oxide-Nitride Complex Gate Structure” 1997 IEEE, pp. 369-372. |
Hsu et al., “A Novel Trench Termination Design for 100-V TMBS Diode Application”, IEEE Electron Device Letters, vol. 22 No. 11, Nov. 2001, pp. 551-552. |
Initial Publication with ISR, Nov. 7, 2013, International application No. PCT/US2013/038956, Korean Intellectual Property Office, Republic of Korea. |
Initial Publication with ISR, Nov. 7, 2013, International application No. PCT/US2013/038957, Korean Intellectual Property Office, Republic of Korea. |
Number | Date | Country | |
---|---|---|---|
20110210406 A1 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
61253455 | Oct 2009 | US |