Structures with planar strained layers

Information

  • Patent Grant
  • 7141820
  • Patent Number
    7,141,820
  • Date Filed
    Friday, February 27, 2004
    20 years ago
  • Date Issued
    Tuesday, November 28, 2006
    18 years ago
Abstract
A structure including a compressively strained semiconductor layer, the compressively strained layer having a strain greater than or equal to 0.25%. A tensilely strained semiconductor layer may be formed over the compressively strained layer. The compressively strained layer is substantially planar, having a surface roughness characterized in (i) having an average wavelength greater than an average wavelength of a carrier in the compressively strained layer and/or (ii) having an average height less than 10 nm.
Description
FIELD OF THE INVENTION

This invention relates generally to semiconductor substrates and particularly to semiconductor substrates with strained layers.


BACKGROUND

The recent development of silicon (Si) substrates with strained layers has increased the options available for design and fabrication of field-effect transistors (FETs). Enhanced performance of n-type metal-oxide-semiconductor (NMOS) transistors has been demonstrated with heterojunction metal-oxide-semiconductor field effect transistors (MOSFETs) built on substrates having strained silicon and relaxed silicon-germanium (SiGe) layers. Tensilely strained silicon significantly enhances electron mobilities. NMOS devices with strained silicon surface channels, therefore, exhibit improved performance with higher switching speeds. Hole mobilities are enhanced in tensilely strained silicon as well, but to a lesser extent for strain levels less than approximately 1.5%. Accordingly, equivalent enhancement of p-type metal-oxide-semiconductor (PMOS) device performance in such surface-channel devices presents a challenge.


Hole mobility enhancement has been demonstrated in highly strained SiGe layers. The formation of such highly strained layers is made difficult by the tendency of these layers to undulate, especially with increasing strain levels, i.e., with high Ge content. This undulation lowers hole mobilities, thereby offsetting the beneficial mobility enhancement provided by the strained layers.


The observed undulation arises from lattice mismatch with respect to an underlying layer, and increases in severity with formation temperature. Unfortunately, the formation of a tensilely strained layer made of, for example, Si, over the compressively strained layer is desirably carried out at a relatively high temperature, e.g., 550° C., to achieve a commercially viable formation rate and uniformity.


SUMMARY

The present invention facilitates formation of the tensilely strained layer at a relatively high average temperature, while keeping the compressively strained layer substantially planar. In accordance with the invention, the tensilely strained layer is initially grown at a relatively low temperature (i.e., sufficiently low to avoid undulations in the compressively strained layer) until a thin layer of the tensilely strained layer has been formed. It is found that this thin layer suppresses undulation in the compressively strained layer even at higher process temperatures that would ordinarily induce such undulation. As a result, formation of the tensilely strained layer may continue at these higher temperatures without sacrificing planarity.


In one aspect, therefore, the invention features a method for forming a structure based on forming a compressively strained semiconductor layer having a strain greater than or equal to 0.25%. A tensilely strained semiconductor layer is formed over the compressively strained layer. The compressively strained layer is substantially planar, having a surface roughness characterized by at least one of (i) an average roughness wavelength greater than an average wavelength of a carrier in the compressively strained layer and (ii) an average roughness height less than 10 nm.


One or more of the following features may also be included. The compressively strained layer may include at least one group IV element, such as at least one of silicon and germanium. The compressively strained layer may include >1% germanium. The tensilely strained layer may include silicon. The compressively strained layer may include at least one of a group III and a group V element. The compressively strained layer may include indium gallium arsenide, indium gallium phosphide, and/or gallium arsenide. The compressively strained layer may include at least one of a group II and a group VI element. The compressively strained layer may include zinc selenide, sulphur, cadmium telluride, and/or mercury telluride. The compressively strained layer may have a thickness of less than 500 Å, including less than 200 Å.


The compressively strained layer may be formed at a first temperature, and at least a portion of the tensilely strained layer may be formed at a second temperature, with the second temperature being greater than the first temperature. The tensilely strained layer may include silicon and the second temperature may be greater than 450° C. A first portion of the tensilely strained layer may be formed at a first temperature and a second portion of the tensilely strained layer may be formed at the second temperature, the first temperature being sufficiently low to substantially avoid disruption of planarity, with the first portion of the tensilely strained layer maintaining the planarity of the compressively strained layer notwithstanding transition to the second temperature.


The tensilely strained layer may be formed at a rate greater than 100 Å/hour. The compressively strained layer and/or the tensilely strained layer may formed by chemical vapor deposition. The wavelength of the surface roughness may be greater than 10 nanometers (nm).


In another aspect, the invention features a structure including a compressively strained semiconductor layer having a strain greater than or equal to 0.25% and a tensilely strained semiconductor layer disposed over the compressively strained layer. The compressively strained layer is substantially planar, having a surface roughness characterized by at least one of (i) an average roughness wavelength greater than an average wavelength of a carrier in the compressively strained layer and (ii) an average roughness height less than 10 nm.


One or more of the following features may also be included. The compressively strained layer may include a group IV element, such as at least one of silicon and germanium. The strain of the compressively strained layer may be greater than 1%. The compressively strained layer may have a thickness of less than 500 Å, including less than 200 Å. The wavelength of the surface roughness may be greater than 10 nm. The tensilely strained layer may include silicon.


The compressively strained layer may include at least one of a group III and a group V element. For example, the compressively strained layer may include indium gallium arsenide, indium gallium phosphide, and/or gallium arsenide.


The compressively strained layer may include at least one of a group II and a group VI element. For example, the compressively strained layer may include zinc selenide, sulphur, cadmium telluride, and/or mercury telluride.


The structure may also include a first transistor formed over the compressively strained layer. The first transistor may include a first gate dielectric portion disposed over a first portion of the compresssively strained layer, a first gate disposed over the first gate dielectric portion, the first gate comprising a first conducting layer, and a first source and a first drain disposed proximate the first gate and extending into the compressively strained layer. The first transistor may be an n-type metal-oxide-semiconductor field-effect transistor and the first source and first drain may include n-type dopants. The first transistor may be a p-type metal-oxide-semiconductor field-effect transistor and the first source and first drain may include p-type dopants.


The structure may also include a second transistor formed over the compressively strained layer. The second transistor may include a second gate dielectric portion disposed over a second portion of the compresssively strained layer, a second gate disposed over the second gate dielectric portion, the second gate including a second conducting layer, and a second source and a second drain disposed proximate the second gate and extending into the compressively strained layer. The first transistor may be an n-type metal-oxide-semiconductor field-effect transistor, with the first source and first drain including n-type dopants, and the second transistor may be a p-type metal-oxide-semiconductor field-effect transistor, with the second source and second drain including p-type dopants.





BRIEF DESCRIPTION OF DRAWINGS


FIGS. 1 and 2 are schematic cross-sectional views of a semiconductor substrate with several semiconductor layers disposed thereon; and



FIG. 3 is a schematic cross-sectional view of a semiconductor structure formed on a semiconductor substrate.





DETAILED DESCRIPTION

Referring to FIG. 1, which illustrates a structure amenable to use with the present invention, a substrate 10 is made of a semiconductor, such as silicon. Several layers collectively indicated at 11 are formed on substrate 10. Layers 11 may be grown, for example, in a chemical vapor deposition (CVD) system. In some embodiments, layers 11 are grown in an ultra-high vacuum chemical vapor deposition system (UHVCVD). In certain other embodiments, layers 11 may be grown in an atmospheric pressure CVD (APCVD) system or a low pressure CVD (LPCVD) system.


Layers 11 include a graded layer 12 disposed over substrate 10. Graded layer 12 may include Si and Ge with a grading rate of, for example, 10% Ge per micrometer (μm) of thickness, and a thickness T1 of, for example, 2–9 μm. Graded layer 12 may be grown, for example, at 600–1100° C. A relaxed layer 14 is disposed over graded SiGe layer 12. Relaxed layer 14 may include Si1-xGex with a uniform composition, containing, for example, 20–90% Ge and having a thickness T2 of, e.g., 0.2–2 μm. In an embodiment, T2 is 1.5 μm. A virtual substrate 15 includes relaxed layer 14 and graded layer 12.


A compressively strained layer 16 including a semiconductor material is disposed over relaxed layer 14. In an embodiment, compressively strained layer 16 includes group IV elements, such as Si1-yGey, with a Ge content (y) higher than the Ge content (x) of relaxed Si1-xGex layer 14. Compressively strained layer 16 contains, for example, 1–100% Ge and has a thickness T3 of, e.g., 10–500 angstroms (Å). The Ge content (x) of relaxed Si1-xGex layer 14 may be 20–90%, and the Ge content (y) of compressively strained Si1-yGey layer 16 may be 28–100%. In some embodiments, compressively strained layer 16 has a thickness T3 of less than 500 Å. In certain embodiments, T3 is less than 200 Å.


In some embodiments, compressively strained layer 16 includes at least one group III and/or one group V element. Compressively strained layer 16 may include, for example, indium gallium arsenide, indium gallium phosphide, or gallium arsenide.


In alternative embodiments, compressively strained layer 16 includes at least one group II and/or one group VI element. Compressively strained layer may include, for example, zinc selenide, sulphur, cadmium telluride, or mercury telluride.


A tensilely strained layer 18 is disposed over compressively strained layer 16, sharing an interface 19 with compressively strained layer 16. In an embodiment, tensilely strained layer 18 is formed of silicon. Tensilely strained layer 18 has a thickness T4 of, for example, 50–300 Å. In an embodiment, thickness T4 is approximately 200 Å.


Substrate 10 with layers 11 typically has a threading dislocation density of 1051 cm2.


The requirements for attaining a substantially planar compressively strained Si1-yGey layer 16 and an acceptably high growth rate for tensilely strained Si layer 18 formed by CVD are sometimes mutually exclusive. For example, a high growth rate of tensilely strained Si layer 18 is more readily achieved by deposition at high CVD temperatures. Further, higher CVD temperatures reduce the incorporation of impurities and improve layer uniformity. More specifically, tensilely strained Si layer 18 may be deposited by the use of a silane (SiH4) source gas. Adequate growth rates, i.e., >0.01 Å/s with SiH4, may be attained at 550° C. On the other hand, germane (GeH4) and SiH4 may be used to deposit compressively strained Si1-yGey layer 16. GeH4 decomposes at approximately 400° C. To remain planar after deposition, compressively strained Si1-yGey layer 16 may need to be maintained at a relatively low temperature, i.e., less than the 550° C. temperature needed for subsequently achieving rapid Si deposition rates with SiH4 to form tensilely strained Si layer 18.


As a result, maintaining adequate planarity of compressively strained Si1-yGey layer 16 is a challenge, particularly with high Ge content, i.e., with y>40%. Si has a lattice constant of 5.431 Å and Ge has a lattice constant of 5.658 Å. The lattice mismatch between Si and Ge, therefore, is approximately 4%. Because of this lattice mismatch, a high Ge content leads to high compressive strain in compressively strained Si1-yGey layer 16. High compressive strain may be desirable for attaining high carrier mobilities in subsequently fabricated devices.


Referring to FIG. 2, the 4% difference in lattice constants of Si and Ge may lead to undulations 50 in a top surface 52 of compressively strained Si1-yGey layer 16, particularly if the Ge content y is greater than 40%, and/or when the strain of compressively strained Si1-yGey layer 16 is greater than 0.25%. Undulations 50 may form to partially accommodate the lattice mismatch between compressively strained Si1-yGey layer 16 and relaxed layer 14. Undulations 50 may define a sinusoidal shape having a wavelength λ and a height h1. Wavelength λ and height h1 may depend on the Ge content of compressively strained Si1-yGey layer 16, the lattice mismatch between compressively strained Si1-yGey layer 16 and relaxed layer 14, and deposition conditions. Wavelength λ may be, for example, 1–100 nm, and height h1 may be several nm, e.g., 5 nm. The sinusoidal shape of undulations 50 results in surface 52 having a surface roughness with wavelength λ. In an embodiment, the wavelength λ of the surface roughness is greater than a wavelength of a carrier in compressively strained Si1-yGey layer 16. The surface roughness, therefore, does not reduce carrier mobility in compressively strained Si1-yGey layer 16.


Referring to FIG. 2 and also to FIG. 1, a compressively strained Si1-yGey layer 16 that is substantially planar may be grown as follows. Compressively strained Si1-yGey layer 16 may be deposited at a first temperature low enough to enable formation of planar Si1-yGey layers but not low enough to provide a suitably high deposition rate for tensilely strained Si layer 18. In the case of compressively strained Si1-yGey layer 16 having a relatively high strain, e.g., greater than 0.25% and/or with y>40%, this deposition temperature for compressively strained Si1-yGey layer 16 may be, e.g., 400° C. for UHVCVD using SiH4 and GeH4 source gases. The tensilely strained Si layer 18 may then be deposited in a two-step process. During the first step, the silicon source gas, e.g., SiH4, is flowed while the growth temperature is slowly raised from a relatively low temperature, e.g., 400° C., to a final desired temperature in which the silicon growth rate is acceptably high. The final desired temperature may be, e.g., >450° C., such as 550° C., for UHVCVD using SiH4 source gas. This step allows enough silicon to deposit at a low temperature to help stabilize the compressively strained Si1-yGey layer 16 against strain-induced undulations, as explained below. Second, deposition of tensilely strained layer 18 may be completed at a faster rate at a second deposition temperature, e.g., a temperature greater than 450° C., such as 550° C., for UHVCVD using SiH4 source gas. The deposition rate of tensilely strained layer 18 may be greater than 100 Å/hour. Another possible result of forming a substantially planar compressively strained Si1-yGey layer 16 is an increase in wavelength λ of surface 52 of compressively strained Si1-yGey layer 16. The increase in planarity may also be accompanied by a reduction in height h1 of undulations to, e.g., less than 10 nm. After deposition of tensilely strained layer 18, compressively strained layer 16 has a surface roughness with wavelength λ greater than a wavelength of a carrier in compressively strained layer 16, e.g., greater than 10 nm.


A possible mechanism for formation of tensilely strained Si layer 18, deposited as described above, may be as follows. During the first step of the deposition of tensilely strained Si layer 18, surface 52 of compressively strained Si1-yGey layer 16 is initially passivated by hydrogen atoms bonding to silicon and germanium during CVD when exposed to a hydrogen-containing source gas, such as SiH4. The bond of hydrogen atoms to germanium, however, is relatively weak in comparison to the bond of hydrogen atoms to silicon. This bond strength difference is manifested, e.g., in the difference in the activation energy of decomposition of silane in UHVCVD (i.e., 2.22 eV) in comparison to the activation energy of decomposition of germane in UHVCVD (i.e., 1.68 eV). After passivation of surface 52, a surface exchange takes place in which a silicon atom from the SiH4 source gas exchanges bonds to hydrogen with a germanium atom from compressively strained Si1-yGey layer 16. The silicon atom thereby adheres to surface 52 of compressively strained Si1-yGey layer 16, beginning formation of tensilely strained layer 18. Initially, a relatively fast growth rate of tensilely strained layer 18 may be attained at the relatively low temperature of approximately 400° C. because the exchange of Ge—H bonds with Si—H bonds is energetically favored and Ge atoms are directly at surface 52, or are relatively close to surface 52. Deposition at a higher temperature, however, may cause surface 52 to buckle excessively, resulting in undulations 50 with unacceptably short wavelength λ and/or high height h1. As SiH4 continues to flow and more Si atoms are deposited on surface 52 by exchange with Ge atoms, the deposition temperature may be raised. Buckling of surface 52 due to exposure to higher temperatures is prevented by the deposited Si atoms forming tensilely strained layer 18. Specifically, the deposited Si atoms physically suppress buckling of surface 52. As tensilely strained layer 18 becomes thicker, there is an increase in a migration path distance that Ge atoms in compressively strained Si1-yGey layer 16 need to traverse to reach surface 52. This increase in Ge migration path distance becomes prohibitive, even at higher temperatures, resulting in Ge segregation from tensilely strained Si layer 18 and allowing the deposition of tensilely strained Si layer 18, substantially free of Ge. Consequently, initially depositing tensilely strained Si layer 18 at a relatively low temperature retards subsequent undulation formation, thereby facilitating completion of the deposition of tensilely strained Si layer at a higher temperature while maintaining the planarity of compressively strained layer 16.


In an alternative embodiment, during the first step of the deposition of tensilely strained Si layer 18, the flow of SiH4 may be stopped during the increase in temperature, after the formation of a thin tensilely strained Si layer 18. The SiH4 flow may then be resumed when the deposition system reaches the desired higher temperature.


In some embodiments, a substantially planar compressively strained Si1-yGey layer 16 may be formed, with compressively strained Si1-yGey layer 16 having a strain greater than 1%, by using the two-step silicon deposition process described above.


In another embodiment, compressively strained layer 16 may be formed as follows. Compressively strained Si1-yGey layer 16 having a relatively low Ge content is deposited on relaxed Si1-yGey layer 14, e.g., y˜0.4–0.6, under relatively light compressive strain, e.g., y−x≈0.2. In this embodiment, device layers 20, including compressively strained Si1-yGey layer 16 and tensilely strained Si layer 18, may be deposited at a temperature that permits deposition of planar compressively strained Si1-yGey layer 16 and simultaneously provides an acceptably high growth rate, e.g., >0.01 Å/s, for tensilely strained Si layer 18. This temperature may be, e.g., 550° C. in ultrahigh vacuum chemical vapor deposition using SiH4 and GeH4 source gases.


Referring to FIG. 3 as well as to FIGS. 1 and 2, a first transistor 60 and a second transistor 62 may be formed over a substantially planar compressively strained semiconductor layer 16 having a strain greater than or equal to 0.25%. Tensilely strained semiconductor layer 18 is disposed over compressively strained layer 16. First transistor 60 includes a first gate dielectric portion 64 disposed over a first portion 66 of compressively strained semiconductor layer 16. First dielectric portion 64 may be formed of a dielectric such as, e.g., silicon dioxide. A first gate 68 is disposed over first gate dielectric portion 64. First gate 68 includes a first conducting layer, such as, e.g., doped polysilicon. First transistor 60 also includes a first source 70 and a first drain 72 (defined for purposes of illustration by the interior boundaries), disposed proximate first gate 68 and extending into compressively strained layer 16. In an embodiment, first transistor 60 is a PMOS field-effect transistor, and first source 70 and first drain 72 are formed by the introduction of p-type dopants, such as boron. In an alternative embodiment, first transistor 60 is an NMOS field-effect transistor, and first source 70 and first drain 72 are formed by the introduction of n-type dopants, such as phosphorus or arsenic.


Second transistor 62 includes a second gate dielectric portion 74 disposed over second portion 76 of compressively strained semiconductor layer 16. Second dielectric portion 74 may be formed of a dielectric such as, e.g., silicon dioxide. A second gate 78 is disposed over second gate dielectric portion 74. Second gate 78 includes a second conducting layer, such as, e.g., doped polysilicon. Second transistor 62 also includes a second source 80 and a second drain 82 (defined for purposes of illustration by the interior boundaries), disposed proximate second gate 78 and extending into compressively strained layer 16. Second transistor 62 may be an NMOS field-effect transistor. Second source 80 and second drain 82 may be formed by the introduction of n-type dopants, such as phosphorus or arsenic.


In an embodiment, first transistor 60 is a PMOS field-effect transistor with first source 70 and first drain 72 including p-type dopants, and second transistor 62 is an NMOS field-effect transistor with second source 80 and second drain 82 including n-type dopants. Together, first transistor 60 and second transistor 62 form a complementary metal-oxide-semiconductor (CMOS) device.


The functionality of first and second transistors 60, 62 is enhanced by the use of substrate 10 with a substantially planar compressively strained semiconductor layer 16. The planarity of compressively strained semiconductor layer 16 enhances mobility of carriers within compressively strained layer 16, thereby enabling faster speeds during operation of first and second transistors 60, 62.


The invention may be embodied in other specific forms without departing from the spirit of essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting on the invention described herein. Scope of the invention is thus indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are intended to be embraced herein.

Claims
  • 1. A structure comprising: a compressively strained semiconductor layer having a strain greater than or equal to 0.25%,wherein the compressively strained layer is substantially planar, having a surface roughness characterized by at least one of (i) an average roughness wavelength greater than an average wavelength of a carrier in the compressively strained layer and (ii) an average roughness height less than 10 nm.
  • 2. The structure of claim 1, further comprising: a tensilely strained semiconductor layer disposed over the compressively strained layer.
  • 3. The structure of claim 2, wherein the tensilely strained layer comprises silicon.
  • 4. The structure of claim 1, wherein the compressively strained layer comprises a group IV element.
  • 5. The structure of claim 4, wherein the compressively strained layer comprises at least one of silicon and germanium.
  • 6. The structure of claim 5, wherein the strain of the compressively strained layer is greater than 1%.
  • 7. The structure of claim 5 wherein the compressively strained layer comprises a germanium content selected from a range of 0.4 to 0.6.
  • 8. The structure of claim 1, wherein the compressively strained layer has a thickness of less than 500 Å.
  • 9. The structure of claim 8, wherein the compressively strained layer has a thickness of less than 200 Å.
  • 10. The structure of claim 1, wherein the wavelength of the surface roughness is greater than 10 nanometers.
  • 11. The structure of claim 1, wherein the compressively strained layer comprises at least one of a group III and a group V element.
  • 12. The structure of claim 11, wherein the compressively strained layer comprises indium gallium arsenide.
  • 13. The structure of claim 11, wherein the compressively strained layer comprises indium gallium phosphide.
  • 14. The structure of claim 11, wherein the compressively strained layer comprises gallium arsenide.
  • 15. The structure of claim 1, wherein the compressively strained layer comprises at least one of a group II and a group VI element.
  • 16. The structure of claim 15, wherein the compressively strained layer comprises zinc selenide.
  • 17. The structure of claim 15, wherein the compressively strained layer comprises sulphur.
  • 18. The structure of claim 15, wherein the compressively strained layer comprises cadmium telluride.
  • 19. The structure of claim 15, wherein the compressively strained layer comprises mercury telluride.
  • 20. The structure of claim 1, further comprising: a first transistor formed over the compressively strained layer, the first transistor including:(i) a first gate dielectric portion disposed over a first portion of the compressively strained layer,(ii) a first gate disposed over the first gate dielectric portion, the first gate comprising a first conducting layer, and(iii) a first source and a first drain disposed proximate the first gate and extending into the compressively strained layer.
  • 21. The structure of claim 20, wherein the first transistor is an n-type metal-oxide-semiconductor field-effect transistor and the first source and first drain comprise n-type dopants.
  • 22. The structure of claim 20, wherein the first transistor is a p-type metal-oxide-semiconductor field-effect transistor and the first source and first drain comprise p-type dopants.
  • 23. The structure of claim 20, further comprising: a second transistor formed over the compressively strained layer, the second transistor including:(i) a second gate dielectric portion disposed over a second portion of the compressively strained layer,(ii) a second gate disposed over the second gate dielectric portion, the second gate comprising a second conducting layer, and(iii) a second source and a second drain disposed proximate the second gate and extending into the compressively strained layer,wherein the first transistor is an n-type metal-oxide-semiconductor field-effect transistor, the first source and first drain comprise n-type dopants, the second transistor is a p-type metal-oxide-semiconductor field-effect transistor, and the second source and second drain comprise p-type dopants.
  • 24. The structure of claim 1, further comprising: a relaxed layer,wherein the compressively strained layer is disposed over the relaxed layer.
  • 25. A structure comprising: at least a first transistor including:(i) a first source and a first drain, the first source and first drain each comprising a compressively strained semiconductor having a strain greater than or equal to 0.25% and an average roughness height less than 10 nm, and(ii) a first gate disposed over a strained semiconductor and between the first source and the first drain.
  • 26. The structure of claim 25, wherein the compressively strained semiconductor has a strain greater than 1%.
  • 27. The structure of claim 25, wherein the compressively strained semiconductor comprises Si1-yGey.
  • 28. The structure of claim 27, further comprising: a relaxed Si1-xGex region disposed proximate the compressively strained semiconductor,wherein y-x is equal to approximately 0.2.
  • 29. The structure of claim 25, wherein the first gate is disposed over a tensilely strained semiconductor.
  • 30. The structure of claim 25, wherein the strained semiconductor shares an interface with the compressively strained semiconductor.
  • 31. The structure of claim 25, wherein the strained semiconductor comprises silicon.
  • 32. The structure of claim 25, wherein the compressively strained semiconductor is disposed over a substrate, and a difference between a Ge content of the compressively strained semiconductor and a Ge content of the substrate is approximately 0.2.
  • 33. The structure of claim 25, wherein the first transistor is a p-type metal-oxide-semiconductor field-effect transistor and the first source and first drain comprise p-type dopants.
  • 34. The structure of claim 33, further comprising: a second transistor including(i) a second gate disposed over a tensilely strained semiconductor,wherein the second transistor is an n-type metal-oxide-semiconductor field-effect transistor.
RELATED APPLICATIONS

This application is a divisional of application Ser. No. 10/211,126, filed on Aug. 2, 2002 now U.S. Pat. No. 6,730,551, which claims the benefit of U.S. Provisional Application No. 60/310,346, filed Aug. 6, 2001, now expired, the entire disclosures of which are incorporated by reference herein.

US Referenced Citations (88)
Number Name Date Kind
4710788 Dämbkes et al. Dec 1987 A
4920076 Holland et al. Apr 1990 A
4990979 Otto Feb 1991 A
5089872 Ozturk et al. Feb 1992 A
5155571 Wang et al. Oct 1992 A
5241197 Murakami et al. Aug 1993 A
5242847 Ozturk et al. Sep 1993 A
5291439 Kauffmann et al. Mar 1994 A
5312766 Aronowitz et al. May 1994 A
5327375 Harari Jul 1994 A
5442205 Brasen et al. Aug 1995 A
5461243 Ek et al. Oct 1995 A
5523592 Nakagawa et al. Jun 1996 A
5534713 Ismail et al. Jul 1996 A
5596527 Tomioka et al. Jan 1997 A
5617351 Bertin et al. Apr 1997 A
5683934 Candelaria Nov 1997 A
5739567 Wong Apr 1998 A
5777347 Bartelink Jul 1998 A
5780922 Mishra et al. Jul 1998 A
5786612 Otani et al. Jul 1998 A
5792679 Nakato Aug 1998 A
5808344 Ismail et al. Sep 1998 A
5847419 Imai et al. Dec 1998 A
5891769 Liaw et al. Apr 1999 A
5906951 Chu et al. May 1999 A
5951757 Dubbelday et al. Sep 1999 A
5963817 Chu et al. Oct 1999 A
5986287 Eberl et al. Nov 1999 A
5998807 Lustig et al. Dec 1999 A
6013134 Chu et al. Jan 2000 A
6058044 Sugiura et al. May 2000 A
6059895 Chu et al. May 2000 A
6096590 Chan et al. Aug 2000 A
6107653 Fitzgerald Aug 2000 A
6111267 Fischer et al. Aug 2000 A
6117750 Bensahel et al. Sep 2000 A
6130453 Mei et al. Oct 2000 A
6143636 Forbes et al. Nov 2000 A
6204529 Lung et al. Mar 2001 B1
6207977 Augusto Mar 2001 B1
6228694 Doyle et al. May 2001 B1
6235568 Murthy et al. May 2001 B1
6249022 Lin et al. Jun 2001 B1
6251755 Furukawa et al. Jun 2001 B1
6266278 Harari et al. Jul 2001 B1
6281532 Doyle et al. Aug 2001 B1
6326664 Chau et al. Dec 2001 B1
6339232 Takagi Jan 2002 B1
6350993 Chu et al. Feb 2002 B1
6399970 Kubo et al. Jun 2002 B1
6407406 Tezuka Jun 2002 B1
6461945 Yu Oct 2002 B1
6498359 Schmidt et al. Dec 2002 B1
6555839 Fitzgerald Apr 2003 B1
6563152 Roberds et al. May 2003 B1
6583437 Mizuno et al. Jun 2003 B1
6593191 Fitzgerald Jul 2003 B1
6593625 Christiansen et al. Jul 2003 B1
6593641 Fitzgerald Jul 2003 B1
6600170 Xiang Jul 2003 B1
6605498 Murthy et al. Aug 2003 B1
6621131 Murthy et al. Sep 2003 B1
6649480 Fitzgerald et al. Nov 2003 B1
6657223 Wang et al. Dec 2003 B1
6703648 Xiang et al. Mar 2004 B1
6743684 Liu Jun 2004 B1
20010003364 Sugawara et al. Jun 2001 A1
20020063292 Armstrong et al. May 2002 A1
20020100942 Fitzgerald et al. Aug 2002 A1
20020123197 Fitzgerald Sep 2002 A1
20020125471 Fitzgerald et al. Sep 2002 A1
20020125497 Fitzgerald Sep 2002 A1
20020140031 Rim Oct 2002 A1
20020190284 Murthy et al. Dec 2002 A1
20020197803 Leitz et al. Dec 2002 A1
20030013323 Hammond et al. Jan 2003 A1
20030052334 Lee et al. Mar 2003 A1
20030057439 Fitzgerald Mar 2003 A1
20030077867 Fitzgerald Apr 2003 A1
20030089901 Fitzgerald May 2003 A1
20040007724 Murthy et al. Jan 2004 A1
20040014276 Murthy et al. Jan 2004 A1
20040070035 Murthy et al. Apr 2004 A1
20040084735 Murthy et al. May 2004 A1
20040119101 Schrom et al. Jun 2004 A1
20040142545 Ngo et al. Jul 2004 A1
20040173815 Yeo et al. Sep 2004 A1
Foreign Referenced Citations (29)
Number Date Country
41 01 167 Jul 1992 DE
0 683 522 Nov 1995 EP
0 829 908 Mar 1998 EP
0 838 858 Apr 1998 EP
0 844 651 May 1998 EP
1 020 900 Jul 2000 EP
1 174 928 Jan 2002 EP
63122176 May 1988 JP
4-307974 Oct 1992 JP
7-106446 Apr 1995 JP
9-219524 Aug 1997 JP
11-233744 Aug 1999 JP
2000-21783 Jan 2000 JP
2001319935 May 2000 JP
2001-160594 Jun 2001 JP
2001-168342 Jun 2001 JP
02241195 Aug 2002 JP
WO 9859365 Dec 1998 WO
WO 9953539 Oct 1999 WO
WO 0054338 Sep 2000 WO
WO 0154202 Jul 2001 WO
WO 0193338 Dec 2001 WO
WO 0199169 Dec 2001 WO
WO 0213262 Feb 2002 WO
WO 0215244 Feb 2002 WO
WO 0247168 Jun 2002 WO
WO 02071488 Sep 2002 WO
WO 02071491 Sep 2002 WO
WO 02071495 Sep 2002 WO
Related Publications (1)
Number Date Country
20040164318 A1 Aug 2004 US
Provisional Applications (1)
Number Date Country
60310346 Aug 2001 US
Divisions (1)
Number Date Country
Parent 10211126 Aug 2002 US
Child 10788741 US