Information
-
Patent Grant
-
6413822
-
Patent Number
6,413,822
-
Date Filed
Thursday, April 22, 199925 years ago
-
Date Issued
Tuesday, July 2, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Smith; Matthew
- Malsawma; Lex H.
Agents
-
CPC
-
US Classifications
Field of Search
US
- 438 270
- 438 273
- 438 294
- 438 334
- 438 430
- 438 431
- 438 272
- 438 268
- 257 331
-
International Classifications
- H01L21336
- H01L2176
- H01L2976
-
Abstract
A novel super-self-aligned (SSA) structure and manufacturing process uses a single photomasking layer to define critical features and dimensions of a trench-gated vertical power DMOSFET. The single critical mask determines the trench surface dimension, the silicon source-body mesa width between trenches, and the dimensions and location of the silicon mesa contact. The contact is self-aligned to the trench, eliminating the limitation imposed by contact-to-trench mask alignment in conventional trench DMOS devices needed to avoid-process-induced gate-to-source shorts. Oxide step height above the silicon surface is also reduced avoiding metal step coverage problems. Poly gate bus step height is also reduced. Other features described include polysilicon diode formation, controlling the location of drain-body diode breakdown, reducing gate-to-drain overlap capacitance, and utilizing low-thermal budget processing techniques.
Description
BACKGROUND
FIG. 1
illustrates a conventional vertical double-diffused MOSFET (DMOS)
10
with a trench gate
11
, a diffused P-type body diffusion (P
B
), a shallow N+ source region
12
, a P+ body contact region
13
, formed in an N-type epitaxial layer N
epi
, grown on an N+ substrate. The source and body contact regions
12
,
13
are shorted by a source metal
14
, using a butting contact structure. The gate
11
is embedded in a trench
15
etched into the epitaxial layer N
epi
, oxidized and then filled with doped polysilicon. The channel of the device is formed along the sidewall of the trench in the silicon region extending between the N+ source-to-P
B
body junction to the junction formed between the P
B
body and the N-type epitaxial drain. In conventional devices, the gate oxide
16
on the trench sidewalls and bottom is formed simultaneously and is therefore of uniform thickness (except for the subtle variations due to compressive oxidation effects on curved surfaces and differing oxidizing rates on various crystallographic planes).
The drain doping is typically lower in concentration than the P
B
body region so as to provide substantial depletion spreading in the drain and minimal depletion spreading in the channel for any applicable voltage. The heavier doping in the P
B
body avoids punchthrough breakdown and other undesirable effects of the short channel, which normally has an effective length of 0.3 to 1 μm.
The on-resistance of such a device is determined by the sum of its resistive components shown in
FIG. 2
, namely its substrate resistance (R
sub
), its epitaxial drain resistance (R
epi
), its channel resistance (R
ch
), its source contact resistance (R
c
) and its metal interconnect resistance (R
M
). The epitaxial resistance (R
epi
) is subdivided between a region where current emanating from the channel is spreading out (R
epi1
) and, in the case of thicker epi layers, another region where the current has become uniform (R
epi2
).
R
DS
=R
M
+R
c
+R
ch
+R
epi
+R
sub
(1)
where
R
epi
=R
epi1
+R
epi2
(2)
The primary design goal for a power MOSFET used as a switch is to achieve the lowest on-resistance by simultaneously minimizing each of its resistive constituents. The following factors must be considered:
1. The metal resistance is minimized through the use of a thicker metal layer.
2. Grinding the wafer to the thinnest possible dimension minimizes the substrate resistance. The grinding must be performed near the end of the fabrication process so that the risk of breakage from handling is minimized.
3. There is an unavoidable tradeoff between the avalanche breakdown voltage and the on-resistance of the device. Higher breakdown voltages require thicker, more lightly doped epitaxial layers contributing higher epitaxial resistances. Generally, the doping of the epitaxial layer is chosen so as to provide the most highly-doped layer capable of supporting the required off-state blocking voltage (i.e. its specified avalanche breakdown voltage).
4. The channel resistance is minimized by maximizing the channel perimeter for a given area. The individual cells of the MOSFET may be constructed in any striped or polygonal shape. Ideally, the shape chosen should be one that can be repeated at a regular pitch so that more cells can be connected in parallel in a given area. By paralleling many cells and operating them in tandem an extremely low on-resistance can be achieved.
5. Higher cell densities have the advantage that the current in the epitaxial drain becomes uniform closer to the surface, more fully utilizing the epitaxial layer for conduction and reducing the spreading resistance term (R
epi1
) of the epitaxial resistance. As may be seen be by comparing
FIG. 3A
with
FIG. 3B
, a smaller cell pitch reduces the area wasted where no current flows, conducting current uniformly through a greater percentage of the total thickness of the epitaxial layer. The more uniform conducting epitaxial layer exhibits a lower drain resistance.
Maximizing the perimeter of the trench gate for a given area lowers the channel resistance (R
ch
), since the equation for the MOSFET channel conduction depends on the total “perimeter” of the gate, not the area of the device.
The equation for the channel resistance of a conventional lateral MOSFET can be used to approximate the channel resistance of a vertical DMOS.
Expressed in terms of area using the geometric figure of merit A/W yields the form
Since it is desirable to maximize W and minimize A, the figure of merit A/W needs to be reduced to lower the channel resistance. To determine the A/W for various cell geometries, the equations for area A and perimeter W can be defined in terms of the trench width (the surface dimension Y
G
of the trench, as distinguished from the “gate width W”) and the width Y
SB
of the source-body “mesa” between trenches. For the continuous stripe of surface length Z, as shown in
FIG. 4A
, we have
In other words, the A/W for a stripe geometry is simply one-half of the pitch. For the square cell of
FIG. 4B
, the perimeter is
A
=(
Y
G
+Y
SB
)
2
(11)
and
W
=4
Y
SB
(12)
so
Compared to the stripe geometry, the square cell geometry offers a lower resistance whenever the gate is small compared to the source-body dimension. Since in a conventional trench-gated DMOS, manufacturing a small trench is not as difficult as manufacturing a small silicon mesa, the closed cell geometry is superior in performance. In the event that the gate dimension is larger than the source-body mesa dimension, the stripe geometry offers superior performance. This circumstance is difficult to achieve in practice, especially in narrow trench gate designs where the alignment tolerances needed to form the source and body regions and to establish a contact to them leads to a wide mesa. Whenever the gate dimension Y
G
and the source-body mesa dimension Y
SB
are equal, then there is no difference between the two geometries in terms of minimizing A/W.
The presence of a source at the square corners in an array of trench-gated DMOS cells has been found to lead to off-state leakage in the device, possibly due to defects along the trench corners or some enhanced diffusion of the source along the corners. One solution to this problem is to block the N+ source from being implanted into the corners of the trench using a photoresist mask, as shown in FIG.
4
C. Unfortunately, this corner block feature reduces the gate perimeter of the device and increases channel resistance. Assume the donut-shaped source has a width of Y
S
, which necessarily must be less than half the mesa width Y
SB
. If we remove only the corners from the source mask as shown, the perimeter of the device is no longer 4Y
SB
, but drops to
W
=4·(
Y
SB
−Y
S
) (14)
so
The predicted resistance penalty due to the corner block is linear, so if Y
S
is 20% of Y
SB
, the gate perimeter is reduced by 20% and the channel resistance is increased accordingly. This explanation is a worst case model since it assumes no conduction in the corner-blocked region. In reality, some current flows in the corner blocked regions, but they correspond to a transistor having a longer channel length and possibly a different threshold voltage. Furthermore, as the cell is scaled to smaller dimensions it becomes impractical to continue to employ the corner block concept since the corners become too close together. The reduction of source perimeter becomes substantial in such a case and the contact area of the source also suffers.
The need for corner blocking may conceivably be eliminated in a hexagonal cell trench DMOS (see FIG.
4
D), since the angles around the perimeter of the hexagonal mesas are less acute (actually obtuse). On the other hand, the etched surfaces of the trench do not run parallel to natural crystallographic planes in silicon. By cutting across multiple crystal surfaces, the surface roughness of the channel is increased, channel mobility declines, and channel resistance increases. Despite some claims to the contrary in commercial and industry trade magazines, the packing density of hexagonal cells is no better then the conventional square cell design, resulting in exactly the same A/W.
Thus, to maximize the cell density and minimize the cell pitch of a vertical trench-gated DMOS, the trench gate surface dimension and the surface dimension of the mesa should both be minimized as long as A/W is reduced. The minimum possible trench dimension is a function of the trench etch equipment, the trench width and depth, the shape of the trench including rounding, and the trench refill process. Despite all these variations, the minimum drawn feature size of the trench is a single layer dimension, i.e., its minimum feature size is determined by the wafer fab's ability to print, etch and fill a trench, not by some interaction to other photomasking layers. The minimum trench size is then specified as a single layer mask feature. A single mask layer design feature is commonly referred to as a single layer dimension or SLD. As photomasking equipment now used exclusively for microprocessor and DRAM manufacturing becomes available for power semiconductor production, the trench width SLD is likely to shrink.
The minimum dimension of the source-body mesa is determined by the design rules associated with more than one photomasking layer, i.e. it involves multi-layer dimensions (MLD) design rules. The rules account for variability both in a critical dimension (referred to as ΔCD) and registration error of one masking layer to another, known as overlay, or OL. ΔCD variations in a feature size are a consequence of variability in photoresist thickness and viscosity, exposure time, optical reflections, photoresist erosion during etching, etching time, etch rates, and so on. The variability due to OL layer-to-layer misalignment is more substantial.
FIGS. 5A-5E
illustrate the components of variability in setting the minimum size of the trench DMOS mesa. In this case the mesa width is set by three design rules
1. Minimum space of contact to trench. The purpose of the design rule illustrated in
FIG. 5A
is to prevent the metal contact from shorting to the gate (see catastrophic failure shown in FIG.
5
D). Assuming that the contact is aligned to the trench, OL represents a single overlay misalignment. ΔCD
1
represents the variation in the width of the trench width, while ΔCD
2
represents the variation in the contact size. The values for ΔCD
1
and ΔCD
2
are divided by two for the half cells. The minimum space considering all variation must exceed zero to prevent a short between the embedded gate polysilicon and the source metal.
2. Minimum overlap of metal contact and N+ source. The purpose of the design rule illustrated in
FIG. 5B
is to guarantee contact between the metal contact layer and the N+ source (see
FIG. 5E
for an example of misalignment). Assuming that the contact mask is aligned to the trench feature on the wafer, OL represents at least two successive misalignments, i.e., one misalignment can occur in aligning the contact mask to the trench, and a second (statistically independent) misalignment can occur between the N+ source mask and the trench. ΔCD
3
represents the variation in the width of the N+ source region while ΔCD
2
represents the variation in the size of the contact (to metal). The minimum space per side considering all variations must exceed a net overlap δ
N+
to guarantee an ohmic contact between the metal contact and the N+source region.
3. Minimum contact between P+ body contact region and metal contact. The purpose of the design rule illustrated in
FIG. 5C
is to guarantee ohmic contact between the metal contact and the P+ body contact region by insuring that the N+ source region does not completely cover the P+ body contact region. ΔCD
3
is the variation in the width of the N+ source region. Since the total size of the opening through the N+ source region can shrink by ΔCD/2 on each side, a total possible variation in size is ΔCD. The minimum space considering all variation must exceed a net overlap δ
P+
to guarantee an ohmic contact between the metal contact and the P+ body contact region. In the extreme case, shown in
FIG. 5F
, the entire P+ region is covered by the lateral extensions of the N+ regions, overlapping at the center of the cell. For the half cell,
DR
P+
≧ΔCD
3
+δ
P+
(18)
In conclusion, the minimum mesa width, then, is determined by two contact-to-trench rules (one on each side of the mesa), two N+ contact rules (to guarantee contact to the N+ source on both sides of the mesa), and a single P+ rule. But since a misalignment in the contact mask toward one trench increases the distance to the other, each design rule must be considered only once when calculating the minimum mesa dimension. Assuming all OL and ΔCD rules, the minimum width of the mesa is:
Y
SB
(min·mesa)=3
ΔCD
+3
OL
+2δ
N+
+δ
P+
(19)
For example, assuming a ±3-sigma OL error of 0.25 μm, a 3-sigma ΔCD of 0.1 μm, a minimum N+ overlap of 0.1 μm (for each N+ as drawn), and a minimum N+ opening (to contact the P+) of 0.3 μm, the minimum source-body mesa size is:
In practice, however, an additional 0.5 μm may be needed to achieve high yields, good defect tolerance, and improved P+ contact areas. Below this 2 μm mesa it becomes difficult to implement a trench DMOS using a contact mask and a butting N+/P+ source-body contact. In such a case, a design wherein the N+ source region extends from trench-to-trench across the silicon mesa must be used. The P+ body contact used to connect to the underlying P
B
body diffusion can be contacted in the z-dimension (along the length of the stripe). Two contact-to-trench features and the contact dimension then determine the mesa width.
Y
SB
(min·mesa)=2
ΔCD
+2
OL+δ
N+
(21)
which, applying the same tolerances but with a 0.4 μm N+ contact window, yields
In practice, to achieve high yields and good defect tolerance, larger dimensions are likely required, as large as 1.5 μm. Below a mesa width of around 0.9 to 1.1 μm, even fine line contacts and accurate layer-to-layer alignments become difficult. Moreover, at these dimensions other manufacturing-related problems exist.
Another design and process consideration in a trench-gated DMOS is the resistance of the body region P
B
and the quality of the body contact shorting it to the source metal. The source-to-body short prevents conduction and snapback breakdown of the parasitic NPN bipolar transistor (see the cross-sectional view of
FIG. 7A
) by maintaining the emitter and base at the same potential. Shorting the emitter and base terminals ideally prevents forward-biasing of the emitter-base junction and avoids consequent minority carrier (electron) injection into the MOSFET's body (i.e. base).
The frequency of the body pickup determines the base resistance along the z-direction. In a “ladder” design, the P+ body contact regions occasionally interrupt the N+ source stripe to pick up the body region electrically (see the plan view of FIG.
7
B and the three-dimensional projection view of FIG.
7
C). The “pinch resistance” of the portion of the P-body region P
B
that lies under the N+ source region must be maintained at a low value without adversely affecting other device characteristics such as the threshold voltage. The method used to form the P-body region and the integration of a shallow P+ region used to achieve a low resistance ohmic contact to the body, are specific to each trench-gated DMOS design and process. Many commercial power MOSFETs today are inadequate in this regard and suffer from snapback and ruggedness problems as a result. The smaller or less frequent the P+ contact, the more likely snapback will occur.
Whenever a small contact feature is used to achieve a small mesa and high cell density, another problem occurs with respect to the step coverage of the metal contact. As shown in
FIG. 8A
, the deposition via sputtering of the top metal such as aluminum-silicon, aluminum-copper, or aluminum-copper-silicon, follows the contact shape conformally, leading to a notch or gap in the middle of the metal layer
70
. The notch is not too severe in the case of a thin metal layer. But the resistance of a thin metal layer, especially under 1.2 μm thick, is too high to be useful in a power device. Surface metal resistance can add milliohms of resistance to a trench-gated DMOS laterally (as current flows along the surface of the device to the bond wire or source pickup), producing a significant fractional increase in the on-resistance of a large die product. A thick metal layer (e.g. 3 to 4 μm in thickness) is needed to minimize the on-resistance problem. However, as shown in
FIG. 8B
, thick metal layer
72
exhibits extreme notching which results in thin metal at the contact step caused by the oxide layer
71
. Since all of the current must flow through the thin metal and over the step, the device still exhibits high metal resistance, but also suffers from poor electromigration performance, despite the thick metal deposition.
The oxide step height in the active contact area can be reduced by depositing a thinner interlayer dielectric (ILD), but the thinner dielectric may exhibit metal breakage wherever metal runs over the polysilicon gate bus. The thinner ILD also can cause shorts between the source metal and the polysilicon gate bus or lead to a thin oxide sensitive to ESD damage. As an example,
FIG. 9A
shows a metal layer
90
crossing over a gate bus
92
. The metal step coverage problem occurs anywhere in the die where the source metal crosses the polysilicon gate bus, because the surface polysilicon is too thick. It occurs because the polysilicon gate bus sitting on the die surface has a thickness resulting from the polysilicon planarization of the trench. This thickness of the polysilicon must be thick enough to fill the trench at its widest point. Assuming a 1-um wide trench, the widest point occurs at the trench corner on the diagonal, with a dimension of around 1.4 μm (see FIG.
9
B). The thickness of the polysilicon above the surface of the die after deposition needs to be at least half the dimension of the diagonal to fill the trench, as shown in
FIG. 9C
, to ensure that the polysilicon does not dip below the die surface later during etchback. This entire polysilicon thickness, in the example case 0.7 μm, plus an underlying oxide will be present on top of the die in the gate bus, so a 1 to 1.5 μm step is likely. The area of the gate bus is normally masked during the planarization etchback of the polysilicon, resulting in the step. The thick polysilicon also limits the possible manufacturing process sequence because the polysilicon is too thick to introduce dopants through it.
To summarize, one problem with existing conventional trench-gated vertical DMOS devices is that the cell density cannot be increased and the geometric-area-to-gate-perimeter ratio cannot be further reduced to produce improvements in the area efficiency of low-on-resistance switches, since the construction of conventional trench-gated vertical DMOS imposes fundamental restrictions in cell dimensions. The resistance penalty is especially significant for low voltage devices where a large portion of the total resistance is attributable to the resistance of the MOS channel (R
ch
). The limitations on cell density are primarily a consequence of the minimum width of the mesa between trenches. The minimum width of the mesa is determined by the use of multiple mask layers and is especially due to the design rules associated with the contact mask.
Stripe geometries reduce or eliminate the need for frequent or large area abutting source/body shorts, allowing tighter cell pitches but potentially creating problems in achieving good breakdown and snapback characteristics. Pushing the minimum possible contact dimension requires a solution to the metal step coverage problem in the active contact areas and over the gate bus. But without pushing the design rules to the point where the width of the mesa equals the width of the gate trench, the A/W of the stripe geometry is inferior to the A/W of a square cell geometry having a similar cell pitch.
SUMMARY OF THE INVENTION
These problems are solved in a super self-aligned (SSA) trench DMOSFET in accordance with this invention. An SSA trench MOSFET according to this invention comprises a semiconductor body having a trench formed therein, a wall of the trench intersecting a major surface of the semiconductor body at a trench corner. The semiconductor body comprises a source region of a first conductivity type adjacent the trench and the major surface of the semiconductor body; a body region of a second conductivity type forming a junction with the source region, the body region comprising a channel region adjacent a wall of the trench; and a drain region of the first conductivity type forming a junction with the body region. A gate is disposed in the trench. The gate is bordered by a gate oxide layer. The gate oxide layer includes a first portion adjacent the channel region and a second portion overlying the gate, the first portion being thicker than the second portion. A metal layer is in contact with the major surface of the semiconductor body, and the contact between the metal layer and the major surface extends laterally to the trench corner. The first portion of the gate oxide layer prevents shorting between the gate and the source, thereby allowing the contact between the metal layer and the major surface to extend to the corner of the trench. Thus, with the contact being “self-aligned” to the trench without the risk of a gate-source short, the design rules discussed above can be avoided, and the width of the mesa between segments of the trench can be made smaller than was possible with conventional MOSFETs. As explained above, this in turn allows the cell density to be increased and the figure of merit A/W to be reduced.
According to another aspect of the invention, the gate oxide layer also comprises a third portion adjacent the bottom of the trench, the third portion being thicker than the first portion. This reduces the gate-drain capacitance and avoids field plate induced breakdown.
According to another aspect of the invention, a heavily-doped buried layer, patterned to conform generally to the shape of the trench gate, is used to reduce the on-resistance of the DMOSFET. One way of achieving this structure is to implant the buried layer after the trenches have been formed.
An SSA trench MOSFET is advantageously produced by a process described herein. The process comprises: providing a body of a semiconductor material having a surface; forming a first mask over the surface, the first mask having an opening where a trench is to be located in the body; etching the semiconductor material through the opening in the first mask to form a trench in the semiconductor body; forming a first oxide layer on a sidewall of in the trench; filling the trench with polysilicon; with the first mask in place oxidizing an exposed surface of the polysilicon to form a second oxide layer at the top of the trench, the second oxide layer extending down into the trench; removing the first mask; and depositing a metal layer on the surface of the second oxide layer and the surface of the semiconductor body.
According to another aspect of this invention, the polysilicon gate filling the trench is deposited in two polysilicon layers. The first polysilicon layer does not cover the mesas, thereby enabling easy ion implantation of the mesas after the formation of the trench.
According to another aspect of this invention, the polysilicon diodes are formed in a layer of polysilicon overlying the surface of the semiconductor body.
According to yet another aspect of this invention, an oxide feature defined by a contact mask may be disposed over the top of the trench to reduce interelectrode capacitance the source contact metal and the gate.
According to still another aspect of this invention, in the event that a contact mask with a small feature is employed, the contact may be planarized with a metal such as tungsten to avoid step coverage problems.
In the prior art, separate masks were typically used to define the trench and the source-metal contact, respectively. This led to the problems of alignment discussed above. According to the process of this invention, the same mask is used to define both the trench and the source-metal contact. The trench is “self-aligned” to the source-metal contact, and shorts between the gate and the source are prevented by the thick oxide layer overlying the gate.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
illustrates a cross-sectional view of a conventional vertical trench DMOSFET.
FIG. 2
illustrates a cross-sectional view of a conventional vertical trench DMOSFET showing the resistive components of the device.
FIGS. 3A and 3B
illustrate cross-sectional views of a conventional vertical trench DMOSFET showing the benefit of cell density in improving epitaxial drain spreading resistance.
FIGS. 4A-4D
illustrate plan and cross-sectional views of various trench DMOS source geometries.
FIG. 4A
shows a stripe geometry.
FIG. 4B
shows a square cell geometry.
FIG. 4C
shows a square cell geometry with a source corner block.
FIG. 4D
shows a hexagonal cell geometry. In each drawing, the cross-sectional view is taken at the section line indicated in the plan view.
FIGS. 5A-5F
illustrate the design rules for the mesa of a conventional trench DMOSFET.
FIG. 5A
shows the contact-to-trench design rule.
FIG. 5B
shows the contact-to-source design rule.
FIG. 5C
shows the P+ contact to the body.
FIG. 5D
shows an example of a gate-to-source short.
FIG. 5E
shows an example of an uncontacted or insufficiently contacted source.
FIG. 5F
shows an example of an uncontacted body.
FIG. 6
illustrates a cross-sectional view of a conventional stripe trench DMOSFET with a contact mask feature and with the N+ source extending across the entire mesa between adjacent trenches.
FIGS. 7A
,
7
B and
7
C are cross-sectional, plan and perspective views, respectively, of a “ladder”-source trench DMOS with contact mask.
FIG. 8A
is a cross-sectional view of a conventional trench DMOSFET illustrating the step coverage problem with a conformal thin metal layer.
FIG. 8B
is a cross-sectional view of a conventional trench DMOSFET illustrating the step coverage problem with a thick metal layer.
FIG. 8C
illustrates the keyhole problem with a thick metal layer.
FIG. 9A
illustrates a cross-sectional view of the step coverage problem of a metal layer over a polysilicon gate bus in a conventional trench DMOSFET.
FIG. 9B
illustrates a plan view of the intersection of gate trenches in a conventional trench DMOSFET.
FIG. 9C
illustrates a cross-sectional view showing the minimum polysilicon refill thickness in a trench DMOSFET.
FIG. 10A
is a graph showing the equivalent vertical MOSFET cell density as a function of mesa width.
FIG. 10B
is a graph showing the equivalent vertical MOSFET cell density as a function of cell pitch.
FIGS. 11A-11E
are cross-sectional views that illustrate the steps of a process sequence for manufacturing a super self-aligned (SSA) source contact in a trench-gated MOSFET.
FIGS. 12A and 12B
are cross-sectional views that show the comparison of a MOSFET manufactured with a conventional contact mask (
FIG. 12A
) and a MOSFET manufactured using the SSA process (FIG.
12
B).
FIG. 12C
shows a MOSFET manufactured by the SSA process but with a contact-mask-defined oxide feature overlying the trench.
FIG. 13
is a graph of the vertical DMOS cell perimeter ratio A/W as a function of mesa width.
FIG. 14
is a graph of the vertical DMOS cell perimeter ratio A/W as a function of cell density.
FIGS. 15A-15D
are cross-sectional views of various embodiments of a SSA trench DMOSFET.
FIG. 15A
shows a full mesa N+ source wherein the P-body is contacted in the third dimension.
FIG. 15B
shows an embodiment similar to the one shown in
FIG. 15A
, except that the MOSFET includes a deep clamping diode.
FIG. 15C
shows an embodiment similar to the one shown in
FIG. 15B
, except that the MOSFET includes a relatively shallow clamping diode.
FIG. 15D
shows an embodiment wherein the source metal is in contact with a P+ body contact and wherein there is no clamping diode.
FIG. 16A
is a cross-sectional view illustrating the contours of impact ionization occurring at trench corners at the onset of avalanche breakdown.
FIG. 16B
is a graph of the breakdown voltage BV
DSS
as a function of the thickness of the gate oxide layer.
FIG. 17A
is a graph illustrating the parasitic capacitances between the gate and the drain (C
GD
), the body (C
GB
) and the source (C
GS
) in a trench-gated DMOSFET.
FIG. 17B
is a graph illustrating the gate voltage V
g
as a function of gate charge Q
g
.
FIG. 18
is a perspective view of a SSA trench DMOSFET in a stripe geometry with a “ladder” P+ source-body design and a thick bottom oxide in the trench.
FIGS. 19A-19F
are plan views of various source-body designs.
FIG. 19
A shows a “corrugated” P+ body contact region with a continuous N+ source.
FIG. 19B
shows a corrugated P+ body contact region with periodic P+ straps.
FIG. 19C
shows continuous P+ body contact region with N+ source “islands”.
FIG. 19D
shows a “bamboo” ladder structure (alternating N+ and P+ regions).
FIG. 19E
shows a continuous N+ source region with P+ body contact “windows”
FIG. 19F
shows P+ body contact “windows”. Alternating with periodic P+ “straps”.
FIGS. 20A
,
20
B and
20
D illustrate circuit diagrams of polysilicon diode arrangements for voltage-clamping the gate to the source of a trench-gated MOSFET.
FIG. 20C
shows a cross-sectional view of a polysilicon diode arrangement.
FIG. 21A
illustrates a cross-sectional view of SSA trench DMOSFET with a thick oxide layer at the bottom of the trench overlapping a heavily-doped buried layer which was implanted immediately after the formation of the epitaxial layer.
FIGS. 21B and 21C
show embodiments similar to the embodiment shown in
FIG. 21A
except that the buried layer was implanted after the formation of the trench but before the filling of the trench with the gate material.
FIG. 22
is a diagram of a process flow for manufacturing an SSA trench DMOSFET, including variants.
FIG. 23
is a cross-sectional view of an SSA trench DMOSFET, including an active cell array, a gate bus, a polysilicon ESD diode and an edge termination.
FIGS. 24A-24Q
illustrate cross-sectional views of a step-by step process for manufacturing an SSA trench DMOSFET, including an active cell array, a gate bus, a polysilicon ESD diode and an edge termination.
FIGS. 25A-25C
illustrate cross-sectional views of a process for manufacturing a trench having a thick oxide layer on the bottom.
FIG. 26A
shows the dopant profile in a conventional MOSFET.
FIG. 26B
shows the dopant profile in a MOSFET formed using a chained body implant in accordance with an aspect of this invention.
FIGS. 27A-27D
MOSFET structures that can be fabricated using a high pressure process for depositing a metal contact layer.
FIGS. 28A-28D
illustrate the steps of a process of fabricating another MOSFET in accordance with the invention.
DESCRIPTION OF THE INVENTION
FIGS. 10A and 10B
illustrate the advantages in cell density that can be obtained by reducing the width of the source/body mesa and the cell pitch.
FIG. 10A
illustrates a plot of the mesa dimension Y
SB
against the equivalent cell density for trench gate drawn surface dimensions Y
G
of 1.0, 0.8 and 0.5 μm. The density is plotted both in Mcells/in
2
(left axis) and Mcells/cm
2
(right axis) from the equation
The graph is divided into three regions, namely:
1. Region III for Y
SB
>2 μm, where normal butting source-body contacts may be used. The limit in cell densities for this type of device ranges from 67 to 100 Mcells/in
2
, although 30 to 40 Mcells/in
2
densities are the highest in production.
2. Region II for 0.9 μm<Y
SB
<2 μm, where source stripe designs are possible using a contact mask aligned photolithographically to the trench. Maximum densities using such a structure can reach the 170 to 320 Mcell/in
2
range, but only provided certain design and manufacturing related problems are overcome (the solutions for which are described later herein).
3. Region I for Y
SB
<0.9 μm, where a new technique is required to form the contact feature in the active trench DMOS transistor cells. If this were possible, the limit of such a construction would be set only by the ability of photolithographic processing equipment to resolve (pattern) and etch smaller feature sizes.
Only region III represents devices that are manufacturable using present technology. The graph of
FIG. 10A
illustrates, however, the possible cell that could be obtained if technical problems encountered in regions I and II could be overcome.
FIG. 10B
illustrates some specific examples of cell densities possible using different technologies, reflecting the complexity (and initial capital equipment investment cost) of various wafer fabrication facilities. For example a 0.8-um capable wafer fab is needed to manufacture a 32 Mcell/in
2
trench DMOS, while a 0.6-um fab is needed for 180 Mcell/in
2
designs. In this context, the term “0.6 μm fab” refers to the feature size of the highest density CMOS IC process that the a facility is capable of producing, with the requisite level of air and water cleanliness. So the term “0.6 μm” refers not only to the gate dimension, but the minimum contact window, the metal rules and even the type of surface planarization needed. Specifically, metal step coverage is an issue using small contact windows and requires techniques and equipment commonly not available in a 0.8 μm fab. Achieving high cell densities is therefore not simply a matter of using better, more modem wafer fabs. New developments are needed to solve the problems of manufacturing reliable, high yield, ultra dense power MOSFETs.
FIGS. 11A-11E
illustrate the basic elements of a process of forming a super-self-aligned (SSA) trench DMOSFET. The process describes a method to form a dense array of trench capacitors with access to the silicon on the backside or to the surface between the trenches without the need for a contact mask to contact the top of the silicon mesa regions. This SSA capacitor is consistent with the formation of trench-gated DMOSFETs but is not limited as such. For example, the SSA array could be used in insulated gate bipolar transistors (IGBTs), MOS-gated bipolar devices, and other types of devices.
A nitride layer
102
(or a layer of another “hard” material such as oxide) is chosen to define the trench
104
(
FIG. 11A
) so as to survive subsequent process operations, some of which will be at a higher temperature than photoresist can withstand. Nitride is preferable since it can be removed by chemical etch techniques which do not attack the oxide used to protect the trench gate. The nitride layer
102
typically is formed over a thin oxide layer
106
on a major surface
103
of the silicon body
108
, to reduce any stress from the thermal coefficient of expansion (TCE) between the silicon body
108
and the nitride layer
102
. In some processes, thin oxide layer
106
can be eliminated. An additional oxide layer (not shown) may also be formed over the nitride layer
102
to avoid erosion during the trench etch process. The photoresist layer (not shown) used to define the nitride feature may also be left on top of the nitride or oxide-nitride sandwich during the silicon etch process. After the trench has been defined, the trench is formed by etching with known processes (e.g., reactive ion etching (RIE)). This results in the structure shown in FIG.
11
A. “Mesas”
114
are formed between the segments of trench
104
. As shown, in this embodiment silicon body
108
includes an epitaxial layer, but the invention is not so limited.
As will be understood,
FIGS. 11A-11E
show several MOSFET cells of an array which would typically include millions of cells in a power MOSFET. As shown, the structure produced is a large area capacitor which is a structural element of a trench power MOSFET.
The trench is then oxidized to form a sacrificial oxide (not shown) to reduce any surface damage caused by the trench etching process. The sacrificial oxide is subsequently removed. A gate oxide layer
110
is formed and the trench is filled with polysilicon. The polysilicon is etched back to planarize the gate
112
with the major surface of the silicon body
108
. (
FIG. 11B
)
A variety of dopants may be introduced by predeposition or ion implantation during these steps according to the desired construction of the device and its requisite PN junctions. Such details will be described below for the exemplary fabrication of a trench power MOSFET. Next, the exposed surface of the polysilicon gate
112
is oxidized to form a thick oxide layer
116
overlying the gate
112
(FIG.
11
C). Thick oxide layer
116
protects gate
112
from subsequent etches and “embeds” gate
112
in the trench
104
so that gate
112
will not short to the (source) metal that will overlay the trench
104
in a completed device. Nitride layer
102
prevents the oxide layer
106
over the mesas
114
from being oxidized. At this point in the device fabrication, a single mask (nitride layer
102
) has defined both the silicon mesa
114
and the embedded gate trench
104
protected by the oxide layer
116
. In conventional processes the oxide used to embed the gate is not localized or “self-aligned” to the trench region, but may extend on to or across the mesas.
The removal of nitride layer
102
is essentially the contact mask operation in the SSA process flow, since the oxide layer
106
below nitride layer
102
is chosen to be thin compared to the thick oxide layer
116
that overlies the gate
112
. The structure following the removal of nitride layer
102
is shown in FIG.
11
D.
As shown in
FIG. 11E
, a short dip in hydrofluoric acid (HF typically diluted in water), or a short isotropic plasma oxide etch, removes the oxide layer
106
from over the mesa
114
without uncovering the embedded polysilicon gate
112
. The resulting contact area
118
between the silicon and the metal layer (to be deposited) extends all the way across mesa
114
, from one segment to the next of trench
104
, a feature defined by the original trench mask itself. The contact is therefore self-aligned to the trench itself and extends to a trench corner
120
, where a wall of the trench
104
intersects the surface
103
of the silicon. The exposed mesa
118
, or contact, is therefore defined by the same mask feature that defined the trench
104
and the thick oxide layer
116
. In this way it is possible to reduce the width of mesa
114
.
By contrast, in conventional trench devices the contact is defined by another feature, the so-called “contact mask”. The feature of the contact mask is necessarily smaller than the width of the mesa to allow for imperfect alignment and for variations in oxide etch (see FIG.
12
A).
Because thick oxide layer
116
is formed after polysilicon etchback (FIG.
11
B), the top surface of thick oxide layer
116
is nearly planar with the surface of mesa
114
, resulting in a smaller step between mesa and oxide than results from the use of deposited oxide and a classic contact mask. This is evident from a comparison of
FIG. 12A
, which shows a conventional trench DMOSFET, and
FIG. 12B
, which shows a mesa according to this invention with a metal layer
122
in contact with the top surface of the mesa
114
.
As a result, no limitation in the size of the mesa-to-metal (source-metal) contact exists because no separate contact mask is used in the cell array itself, although a separate contact mask may still be needed to form contacts to the polysilicon gate bus, the termination, and the polysilicon PN diode array needed to achieve robust ESD performance. Likewise, no metal strip coverage problem exists in the active array since the step height is reduced. Even if a contact mask is desired (for example, to reduce the interelectrode capacitance between the polysilicon gate and the top metal), as shown in
FIG. 12C
, the step height can be reduced since some of the oxide is “below” the silicon surface.
A known figure of merit for a power MOSFET is the area-to-width ratio A/W, which is a measure of the area of the die required to provide a given “channel width” (roughly speaking, the total perimeter of the MOSFET cells). A comparison of various device designs can be performed using the A/W ratio as an indicator of the device performance and on-resistance. The smaller the A/W, the better the performance.
FIG. 13
makes this A/W comparison (using the previously defined equations) as a function of the silicon mesa width Y
SB
. The square cell has a U-shaped curve with a minimum whenever the mesa and the trench are equal width. Whenever the source-body dimension is smaller than the gate dimension, any reduction in mesa width reduces the cell perimeter to a greater degree than it saves area, thereby increasing the A/W ratio. For a 1-um-wide gate, the minimum A/W for a closed cell occurs geometrically where the mesa Y
SB
is also 1 μm wide, which results in a cell pitch of 2 μm. At this minimum point, the A/W for a 2 μm pitch device is the same for either closed cell or stripe geometries.
In commercial practice, however, closed cell designs with active channel conduction in the trench corners exhibit anomalous leakage and reduced threshold due to a variety of reasons including short channel effects, transient enhanced diffusions and crystalline defects. As mentioned earlier in regard to
FIG. 4C
, the solution to this problem is the introduction of a “corner block” feature in the N+ source implant mask that prevents ion implantation into the corners of every mesa. Note that the inside corner of the trench gate grid is the same feature which forms the outside corner of the silicon mesa remaining after the formation of the trench.
Because of this corner block feature, each incremental reduction in cell pitch reduces the channel perimeter significantly more than the area it saves. Accordingly, further decreasing mesa dimensions smaller than the trench gate dimension produces a rapid rise in A/W as Y
SB
is reduced. Notice also that the A/W minima of both 1 μm cell designs occur in Region II having Y
SB
values between unity and 2 μm. As described earlier, in Region II, where only stripe designs are practical, contact dimensions result in metal step coverage problems. Practical state-of-the-art production devices identified as the two rightmost circles on the curves are still in Region III far from their A/W optima.
FIG. 13
also illustrates that 0.8 μm and 0.5 μm stripe designs continue to improve, i.e. reduce, the A/W ratio well below the 1 μm square cell design. With a solution to the small-contact metal step coverage problem, a 1.2 μm mesa can achieve a sub-unity A/W value still using a contact mask based stripe design (Region II). But since the A/W values are nowhere close to their minima, further shrinking of the mesa into Region I using self-alignment to achieve mesa widths below 0.9 μm, is still beneficial and warranted. As shown, using such self-alignment techniques, A/Ws below 0.5 μm are realistically feasible.
Looking at the A/W ratio of the same geometric designs plotted against an abscissa defined as cell density (
FIG. 14
) rather than mesa width clearly reveals the benefit of using higher densities to lower A/W. Notice that the stripe design requires a higher cell density than the closed cell approach to achieve comparable A/W performance. For example, a 70 Mcell/in
2
stripe design is required just to reach parity with a 32 Mcell/in
2
square cell design. In other words, the self-alignment and extensive dimensional scaling made possible through this invention are needed to compensate for the intrinsic disadvantage in A/W characteristic of the stripe geometry. Fortunately, continuity of the body and source diffusion (in the z-direction along the stripe) or remote body contacts (again in the z-direction) possible in stripe designs help compensate for the A/W disadvantage by allowing tighter dimensions. In the graph of
FIG. 14
, densities approaching 1 billion cells per square inch (1Gcells/in
2
) are anticipated as realistic trench DMOS structures for manufacturing, using the invention described herein. Applying these methods, the scaling of such a design is not even limited to this number, but is expected to scale indefinitely, limited only by progress in photolithographic technology.
FIGS. 15A-15D
illustrate cross-sectional views of a variety of trench DMOS designs, each with a uniform gate oxide thickness along the trench sidewalls and bottom. In this case uniform is defined as a gate oxide not intentionally manufactured in a way that produces a different oxide thickness on the trench sidewalls than on its bottom surface. Of course, the oxide thickness is expected to vary along the trench surface according to different oxidation rates of the various crystallographic planes intersected by the trench itself, and by stress-induced enhanced or retarded oxidation.
In
FIG. 15A
, the body region P
B
is uniform and no specific region is tailored to exhibit a lower breakdown than the body-to-drain junction
150
, i.e. to serve as a voltage clamp. Such a device could be subject to hot carrier degradation of the gate oxide and undesirably exhibit avalanche near the thin gate oxide. Hot carrier generation can be minimized by keeping the body-to-drain junction
150
as close as possible to the bottom of the polysilicon gate.
In
FIG. 15B
, a deep P region
152
is used to lower the breakdown locally and serve as a voltage clamp (represented schematically on the cross-sectional view as a zener diode
154
between deep P region
152
and N buried layer
156
). As described in application Ser. No. 08/459,555, filed Jun. 2, 1995, which is incorporated herein by reference, the voltage clamp may be repeated randomly or at regular intervals throughout the device or cell array. The clamp concept is not manufacturable in ultradense devices using the methods known in the prior art. Contact to the small-dimension clamp is not generally possible using conventional methods without creating a short to the gate.
The device shown in
FIG. 15C
is similar to the device of
FIG. 15B
except that the heavy doping setting the voltage clamp's avalanche breakdown is located inside the P
B
body region, but with a higher concentration. Contact to the small-dimension clamp is not generally possible using conventional methods without creating a short to the gate.
In
FIG. 15D
, a butting source/body contact is illustrated, applicable to either closed cell or stripe designs. Metal layer contacts both N+ source region
159
and P+ body contact region
160
, thereby shorting the source and body together. In
FIGS. 15A
,
15
B and
15
C a body contact in the z-dimension (along the trench not in the cutaway plane shown in the drawing) is assumed. Alternatively, those devices showing no P+ contact to the P
B
region could be designed and produced so that the body region is fully depleted in its off state. Because the self-aligned contact extends to the edge of the trench, the length of the N+ source can be shortened and still guarantee a good ohmic contact. The dimensions of the N+ source region and therefore the mesa cannot be achieved without using the techniques described herein.
FIG. 16A
illustrates the phenomenon of field plate induced (FPI) breakdown in thin gate oxide trench DMOS devices. As shown in
FIG. 16A
, ionization in FPI limited devices occurs at the trench corner overlapping the drain. As the oxide is thinned, the breakdown voltage decreases, as shown in FIG.
16
B. In every event where FPI breakdown is prevalent, avalanche and carrier generation are located near the trench gate and its gate oxide, subjecting the gate to hot carrier damage and oxide wearout.
Another disadvantage of a thin gate oxide trench DMOSFET is the resulting overlap capacitance between the gate and the drain, and the increase in gate charge resulting from this capacitance (see FIG.
17
A). The effect of the gate-drain capacitance C
GD
on the input capacitance and corresponding gate charge is further exacerbated by the Miller effect. The Miller effect is an increase in the input capacitance due to feedback from the gate-drain capacitance. The effect is seen as a flat plateau in the gate voltage curves of
FIG. 17B
, where the rise of the gate voltage with increasing gate charge is halted while the drain voltage is dropping and the device turns on. After the voltage across the device is low, i.e., it is fully turned on, then the gate voltage resumes its rise proportional to input charge. In essence, the gate charge was used to counterbalance the ΔV
DG
occurring across the gate-to-drain capacitance. Since the addition of the plateau requires more charge (value plotted on the x-axis), then the “effective” input capacitance is increased and the device will exhibit a higher energy loss during switching. While the gate-body and gate-source capacitances C
GB
and C
GS
are also present, the magnitude of their contribution to the input gate charge, shown in
FIG. 17B
as the slope of the curve prior to the plateau, is less substantial than the drain term, i.e., the plateau is wider. From the graph, it can clearly be seen that a thinner oxide turns on at a lower gate bias (a lower threshold voltage is desirable in many applications), but requires more gate charge to reach the same final value of gate bias (and likewise to reach the same channel enhancement). It is more desirable to achieve low threshold and high transconductance without increasing overlap capacitance, but a special process and device structure is needed to do so.
An embodiment of this invention is shown in FIG.
18
. MOSFET
180
is formed in a stripe design in an N-epitaxial layer
188
, with fully self-aligned features of the trench gate
181
, the silicon mesa
182
, and the contact mask. Across the mesa (in the y-direction), the N+ source region
183
and P
B
body region
184
are likewise self-aligned to the trench. The N+ source region
183
is periodically interrupted in the z-dimension by P+ body contact regions
185
for contacting the underlying P
B
body region
184
. This feature is not critical in setting the cell pitch in a stripe design, so self-alignment is not needed for the z-dimension features. As shown, the trench top oxide layer
186
embeds the gate below the surface to avoid shorting to the source metal (not shown), but without significantly protruding above the top surface of the silicon mesas
182
. Step coverage problems with the source metal are thus avoided. A uniform N-type buried layer (NBL)
187
is shown in N-epitaxial layer
188
and N+ substrate
189
, indicating that the distance from the top surface to the NBL can be set by ion implantation after the N+ epitaxial layer
188
is grown. To reduce overlap capacitance and to avoid field plate induced breakdown effects whenever thin gate oxides are desired, a thick oxide layer portion
190
is formed at the trench bottom but not on the trench sidewalls overlapping the channel region
191
of the device.
In this embodiment, the gate dimension Y
G
is chosen as 0.5 μm and the silicon mesa forming the source-body elements of the device has a dimension Y
SB
of 0.5 μm. As a stripe design, device construction requires no corner block (except perhaps at the ends of long fingers) and therefore does not penalize the A/W efficiency of the device. Moreover, whenever Y
SB
=Y
G
(as it does in the preferred embodiment of this design), the A/W for square and stripe geometries are identical, so use of a stripe design does not impose any resistance penalty.
The source and body contact construction can also be varied geometrically for the stripe design, as shown in the plan views of
FIGS. 19A-19F
. The design can be selected to maximize the N+ source perimeter (to achieve the lowest possible resistance) or to maximize the P+ contact to the body region (to suppress parasitic bipolar turn-on, prevent snapback and ruggedize the device), or to compromise between the two. In
FIG. 19A
, both the N+ source region and P+ body contact form continuous stripes, but with periodic widening of the P+ opening (the hole in the N+) to improve body contact. The narrow portion of the N+ region can be made as small as photolithographic alignment will allow without risking that the N+ region will disappear. For example, the N+ region could be make 0.2 μm wide (each side), leaving a 0.4 μm hole for the P+ region. The minimum manufacturable mesa width is therefore around 0.8 μm for a pitch of 1.3 μm (assuming a 0.5 μm trench gate), a density of 59 Mcell/cm
2
(381 Mcells/in
2
) and an A/W of 0.65 μm. Such a “corrugated” design is a compromise between resistance and ruggedness. In the portion where the N+ source region is wider than the P+ region, the P+ region may become so narrow as to provide only a fairly resistive contact. For example, if the N+ region were 0.3 μm wide, the P+ region would narrow to 0.2 μm. In such an event, the lateral diffusion of the N+ region into the P+ region must be minimized by limiting the amount of high temperature processing after the N+ implantation (a rapid thermal anneal is preferred).
A slight improvement in ruggedness can be achieved with the “strapped corrugated” design of
FIG. 19B
where a P+ stripe periodically transects the width of the mesa. A/W is reduced in linear proportion to its periodicity of use along the stripe. Actually, some conduction does occur in the P+ areas through lateral current flow along the trench length and eventual vertical conduction.
The segmented N+ source design of
FIG. 19C
reduces the N+ contact and the channel perimeter further, compromising on-resistance to achieve enhanced ruggedness. The minimum manufacturable mesa width for this design is preferably around 0.9 μm for a pitch of 1.4 μm (assuming a 0.5 μm trench gate), a density of 51 Mcell/cm
2
(329 Mcells/in
2
) and an A/W of 0.7 μm. The N+ contact resistance of this design could vary considerably in manufacturing, however, since each island of N+ requires its own good quality contact.
Another design which does not compromise N+ contact resistance at all is the bamboo or ladder structure of
FIG. 19D
where the N+ source is contacted along its length except for an occasional P+ strap. The minimum manufacturable mesa width is not restricted by its structure. A 0.5 μm wide mesa yields a pitch of 1.0 μm (assuming a 0.5 μm trench gate), a cell density of 100 Mcell/cm
2
(645 cells/in
2
) and an A/W of 0.5 μm (increased linearly by the periodicity of the P+ straps). Such a design should be scaleable in the future to 1 Gcell/in
2
densities (a 0.8 μm pitch) and an A/W of 0.4 μm. The window and strapped window based designs of
FIGS. 19E and 19F
have similar geometric features to the corrugated and strapped corrugated designs of
FIGS. 19A and 19B
, respectively, but with better N+ contact resistance and less P+ contact area (less rugged).
Considering the geometries and device features discussed thus far, a preferred embodiment of an SSA trench DMOSFET is expected to exhibit structural and electrical characteristics as summarized in the Table 1.
TABLE 1
|
|
Feature
Characteristic
Benefit/advantage
|
|
Cell density
High density
Low channel resistance
|
D = 100 Mcells/cm
2
(many parallel cells/area)
|
= 645 Mcells/in
2
|
Cell pitch
Small
Low channel resistance
|
Y
SB
= 0.5 μm,
Uniform drain current
|
Y
G
= 0.5 μm
5X I-line stepper capable
|
Pitch = 1 μm
|
Alignment
Super self aligned
Maximum contact area
|
SSA trench/top oxide/
Avoids gate to source shorts
|
mesa/contact
Small A/W
|
Step coverage
Low step height; top
Good electromigration
|
oxide extends below
performance; low lateral
|
mesa
metal resistance
|
Gate perimeter
Small
Low channel resistance,
|
A/W
A/W = 0.5 μm
high g
m
,
|
Small drain to body cap
|
Array geometry
Stripe
Good body contact
|
with Y
SB
= Y
G
No corner block penalty
|
Same A/W as square cell
|
Trench bottom
Thick (1 kÅ to 3 kÅ)
Low gate-drain overlap cap
|
oxide (optional)
Low gate charge
|
Minimal FPI avalanche
|
Trench sidewall
Thin (50 Å to 700 Å)
High transconductance
|
gate oxide
Low channel resistance
|
Low threshold
|
No punchthrough
|
ESD protection
Poly diode
Protects thin gates
|
ESD tolerance
|
DC overvoltage clamp
|
|
The ESD protection shown in Table 1 invokes a combination of back-to-back PN junction diodes D
1
, D
2
produced in a polysilicon layer and electrically shunting the gate to source electrodes of the trench power DMOS. Below a specified voltage, typically 6.5- to 8-V per series-diode pair, the diodes D
1
, D
2
remain open circuit (except for junction leakage in the sub-microamp range). Above the diode voltage, they experience avalanche breakdown and conduct, clamping the maximum gate voltage. A single pair shown in
FIG. 20A
can protect against ESD pulses to some degree but still may allow some overvoltage stress of the gate oxide to occur. Furthermore a single stage design cannot survive a DC overvoltage stress under a steady state condition.
The 2-stage clamp of
FIG. 20B
avoids this problem altogether by limiting the current flowing into the second diode pair D
3
,D
4
by the value selected for the series gate resistor R
1
. The network can survive a DC overvoltage condition above the gate rupture voltage indefinitely as long as the inner diode pair D
1
,D
2
breaks down and protects the oxide while the voltage on the device's terminals does not exceed the breakdown of the outer diode pair D
3
,D
4
. In some embodiments, the blocking voltage of the diode pair D
3
,D
4
can be equal to the blocking voltage of the diode pair D
1
,D
2
.
The poly diode construction is shown in
FIG. 20C
for two back-to-back pairs D
5
,D
6
,D
7
,D
8
series connected, i.e. NPNPN, using the N+ from the source implant as the N+ cathode, and likely using a dedicated P-type implant as the anode doping to set the value of the breakdown. The diodes D
5
-D
8
are formed in a polysilicon layer
198
which overlies an oxide or dielectric layer
199
. Contact to the cathodes of diodes D
5
and D
8
is made by a metal layer
197
. If a gate oxide layer capable of withstanding a voltage lower than 6.5V is to be protected, the inner avalanche diode stack must be replaced by an array of paralleled forward biased diodes, instead (see FIG.
20
D).
FIG. 21A
illustrates an SSA trench DMOSFET
210
with the N buried layer NBL
212
overlapping the thick oxide layer
214
at the bottom of the gate trench to achieve an improved on-resistance in lower breakdown voltage devices (especially for avalanche breakdown voltages below 12 V), by eliminating the epitaxial component of drain resistance. The N buried layer (NBL) may be implanted immediately after the growth of the epi layer, i.e., before the formation of the trench, or after the formation of the trench prior to the refill of the trench.
As shown in
FIGS. 21B and 21C
, when the NBL is implanted after the trench formation, it exhibits a shape which conforms to or follows the shape of the silicon top surface during the implantation. Accordingly, the NBL extends further into the substrate in regions underneath the trench than in the mesa areas between the trenches. In the regions beneath the mesas, the NBL extends further into the epitaxial layer and toward the trenches, even overlapping into the mesa regions between trenches. In
FIG. 21C
, the contours of the NBL follow those of the trench, and the regions of the mesas between the thick oxide at the bottoms of the trenches become doped. Such a shape can be formed by ion implantation at some intermediate stage of the trench formation, e.g., after the thick bottom oxide deposition but before the refilling of the trench with the gate polysilicon, or after the polysilicon refill and etchback but before the deposition of the second polysilicon layer.
Fabrication of an SSA trench DMOSFET is outlined in the flow chart of FIG.
22
. Included are major blocks associated with:
Drain formation
SSA trench formation
Gate formation
Body formation
Gate bus/polysilicon diode formation
SSA source/mesa formation
SSA contact formation
Optional P+ body contact formation
Metal contact formation
The flow chart of
FIG. 22
details the steps used to form each structural element as a series of labeled rectangles. Those steps where the corner of the rectangle is clipped are optional and may be omitted if certain structural features are not required for a particular embodiment. Multiple paths for the arrows indicate an optional process flow. The flows described do not preclude other sequences which produce similar structural elements and are thus not meant to be limiting.
A cross-sectional view of an SSA trench MOSFET produced by this process sequence is shown in FIG.
23
. While the device shown is an N-channel SSA trench DMOS, the flow can also produce an SSA P-channel device by substituting N-type dopants for P-type, and vice-versa. Since the process is, in its preferred embodiment, a low-thermal-budget fabrication sequence, the diffusion cycles need not be altered significantly to produce a P-channel device.
FIG. 23
illustrates the important features of the device
250
including its active cell array
260
, gate bus region
270
, polysilicon diode region
280
, and edge termination region
290
. The drawing is schematic and illustrative in the sense that the spatial relationship among the various regions may vary based on the device layout, and the devices may occur in various combinations depending on which cross-sectional cut line is chosen. The purpose of
FIG. 23
is to show a variety of regions in a single drawing to illustrate the manufacture of such a device.
In the active cell array
260
a number of trench gate segments
262
form an array or grid containing an embedded polysilicon gate
264
with a thin gate oxide layer portion
266
on the sidewalls adjacent the channel regions
263
, a thicker oxide layer portion
268
overlying the polysilicon gate
264
(to electrically isolate the gates from the overlying source metal layer
269
), and in a preferred embodiment, a thicker gate oxide layer portion
261
located at the bottom of the trench. The embedded polysilicon gate
264
extends below the bottom extent of the body region, labeled P
B
, and into the epitaxial drain material
267
, which may be uniformly doped, may be graded or stepped in concentration with the lightest doping near the trench, or may contain the implanted buried layer
265
as shown. The buried layer
265
is identifiable as an implanted layer since its center (vertically in the x-dimension) is not located near the interface between the epitaxial layer
267
and the N+ substrate
300
.
An N+ source region
302
extends across the mesas formed by the transecting trench segments and is in contact from trench-to-trench with a barrier metal sandwich
303
(such as Ti/TiN or W). The barrier metal can be reacted at an elevated temperature to form a silicide with the silicon mesa. The barrier metal is covered by the thick source metal layer
269
, preferably pure aluminum (Al), aluminum with 1% copper (AlCu), aluminum with 1% copper and 1% silicon (AlCuSi), or possibly pure copper. Body contact is achieved with the periodic introduction of shallow P+ doped regions where N+ is not located, either at the edge of the array or throughout the array along the stripes according to the structures of
FIGS. 19A-19F
.
The gate bus region
270
includes a gate
272
with a heavily doped polysilicon portion embedded in a trench
271
and extending onto the top surface with a strapping metal layer
273
, which may represent a gate bus or a gate bonding pad area. The polysilicon layer
278
outside of the trench sits atop a nitride layer
274
, with a thin oxide layer
275
beneath nitride layer
274
. The polysilicon is oxidized on its edges and the entire structure is encapsulated with another nitride layer
276
,
295
on top.
The polysilicon diode region
280
includes the same structure as the gate bus, except that the portion of polysilicon layer
278
that is in the diode region
280
is moderately doped with a P
A
anode implant and selectively counterdoped by the N+ source implant to form a series of diodes
288
. Any polysilicon (such as layer
278
) extending laterally along the surface in the gate bus or polysilicon diode structure includes a P
B
body junction beneath it, except in the termination region
290
. The polysilicon gate
272
and polysilicon layer
278
are contacted by the metal layers
269
,
273
, with the intervening Ti/TiN barrier metal
281
localized to the contact windows. Unlike the active array
260
, the opening of the contact window
281
to contact the polysilicon layer
278
is defined by a contact mask, which etches through the encapsulating nitride layer
276
and the thin polysilicon oxide
283
. The series of polysilicon diodes
288
is generally electrically connected to the source metal layer
269
on one end and to the polysilicon gate
272
on the other. The N+ portion of polysilicon gate
272
and polysilicon layer
278
is connected either by a metal layer (not shown) or through N+ polysilicon embedded in the trenches to other polysilicon gate regions such as the gates
264
in the active region
260
.
The outer termination region
290
includes a polysilicon field plate
291
(a portion of polysilicon layer
278
and an extension of polysilicon electrode
293
) sitting atop nitride layer
274
and oxide sandwich
275
and extending past the P-body
292
. Polysilicon electrode
293
/field plate
291
may be biased at either the gate or the source potential. The contact to polysilicon electrode
293
/field plate
291
is made through source metal layer
269
. If, instead the source metal layer
269
were split from the polysilicon electrode
293
/field plate
291
, then polysilicon electrode
293
/field plate
291
could alternatively be electrically shorted to the gate electrode
272
via strapping metal layer
273
. Since the gate and source of a power MOSFET are typically shorted together when the device is biased in the off condition, the operation of the gate
272
and field plate
291
would be identical. The additional gate bias above the source potential in the on-state does not substantially modify the operation of the field plate, so the field plate is capable of performing the tasks of a termination in all gate bias conditions.
A second polysilicon electrode
294
and second field plate
299
biased at the drain potential circumscribe the outer edge of the device and extend laterally toward the body junction, stopping to form an intervening gap laterally between it and the source field plate
291
. The gap is filled with nitride
295
, which also seals and encapsulates the polysilicon field plates
291
and
299
and protects thin oxide sandwich
275
. The outer polysilicon electrode
294
and field plate
299
are shorted via metal
296
to the outer edge of the device, i.e. the drain potential, by a N+ contact
297
to the portion of epitaxial layer
267
at the die edge. Alternatively, the second field plate
299
could be extended to the outer edge of the chip and into the scribe line area, where the saw used to separate the chips would cut through the field plate
299
thereby shorting it to the drain.
While numerous fabrication sequences exist to introduce the dopant into the active device areas, the main structural feature of the disclosed invention is its SSA (super-self-alignment) as defined by the nitride layer
274
. The process flow is defined in
FIGS. 24A-24Q
.
Drain Formation
As shown in
FIG. 24A
, the process begins with N+ substrate
300
, on which N-epitaxial (epi) layer
267
is grown by a known process. Stress relief oxide layer
275
is formed, and blanket buried layer
265
is implanted, as shown in FIG.
24
B. The steps are uniform for the active array region
260
, gate bus region
270
, polysilicon diode region
280
and edge termination region
290
. The energy of the NBL implant can be adjusted to program the BV
DSS
of the device. Table 2 shows typical process parameters. The symbols B
+
, P
+
and P
++
refer to singly ionized boron, singly ionized phosphorus, and doubly ionized phosphorus, respectively.
TABLE 2
|
|
Feature
Range
Target
Requirement
P-channel
|
|
N++ substrate 300
1 to 5 mΩcm
1 to 3
Lowest possible
P++ boron
|
arsenic/phosphorus
mΩ-cm
resistivity
Same spec
|
N-epi layer 267
1 to 10 μm
3 μm
Set by BV
DSS
P-epitaxy
|
(thickness and
10
15
to 4 · 10
17
cm
−3
spec
|
doping
phosphorus
|
concentration)
|
Stress relief oxide
30 to 700 Å
90 Å
Implant As N+
Layer may be
|
layer 275 (thickness,
800 to 1100° C.
850° C.
through it later in
thicker since B
+
|
anneal temperature
5 to 60 min
15 min
process; prevent
implant can easily
|
and time)
dry O
2
“lifting of nitride
penetrate; preferably
|
during
the same as for N-
|
polysilicon top
channel process
|
oxidation
|
N buried layer 265
10
12
to 5 · 10
13
cm
−2
5 · 10
12
depth from
PBL implant
|
(implant dose and
500 keV to 2.3 MeV
cm
−2
P
++
surface:
1.3 MeV B
+
or B
+
|
energy)
P
+
or P
++
1.7 MeV
X
NBL
(top) > 3 μm
|
|
Trench Formation
The gate trench formation involves the photomask definition and etching of the trench using a hardmask of nitride layer
274
or another dielectric that will survive the etching process. Nitride layer
274
is deposited by chemical vapor deposition (CVD) and may be capped with a thin oxide to help reduce its erosion. The nitride layer
274
or other dielectric must have a good dry etch selectivity versus oxide later in the process.
FIG. 24C
shows the deposition of nitride layer
274
. Any other dielectric which shows such selectivity compared to oxide could also suffice.
FIG. 24D
shows the trench-masking step with fine lines and spaces to form the trench segments
262
in the active array region
260
. A photoresist layer
320
is deposited over nitride layer
274
and patterned using known photolithographic processes (Mask
1
). In the gate bus region (not shown) only one or two trenches per bus are opened for etching, in the termination region
290
two trenches are opened, and in the polysilicon diode region
280
no trenches are opened. The trench etch, shown in
FIG. 24E
, is performed using a RIE etcher (the same equipment commonly used for polysilicon etching). Photoresist layer
320
may be left in place during the silicon trench etch, even though the nitride or oxide-nitride stack will act as a mask. Hard-baking the photoresist at a higher than average temperature (e.g., 10-20° C. higher than conventional bakes) will make the photoresist stiffer by improving cross-linking of the photoresist. Exposure to ultraviolet (UV) light has a similar effect. The steep profile of the photoresist will therefore be maintained during etching. Specifically, these steps minimize the erosion of the nitride during the silicon trench etch. Afterward, the photoresist is stripped. Typical process parameters are shown in Table 3.
TABLE 3
|
|
Feature
Range
Target
Requirement
P-channel
|
|
Nitride layer 274
500 to 3000 Å
2000 Å
B
+
body implant
P+ body
|
deposition
must penetrate
implant must
|
(CVD) (thickness)
Good oxide etch
penetrate
|
selectivity
|
Oxide layer (not
200 to 5000 Å
Not
Prevent nitride
same
|
shown) deposition
shown
erosion during
|
(thickness)
(1000 Å)
silicon etch
|
Trench mask (Mask
0.2 to 1.5 μm line
0.5 μm
Pattern/etch
same
|
1) (gap width)
& space
oxide & nitride
|
Trench etch
0.3 to 4 μm deep
2 μm
Rounded corners
same
|
(depth)
steep sidewall
|
<100> alignment
|
|
Gate Formation
After the trench has been etched, the trench is oxidized and the sacrificial oxide layer is etched (not shown) to remove any damage. As shown in
FIG. 24F
, the trench is then oxidized to form the gate oxide layer
266
. In a preferred embodiment, a thick oxide layer
261
is formed on the bottom of the trench before the final sidewall gate oxide layer
266
is grown. One example of the thick bottom oxide process is described below in connection with FIG.
25
. Referring again to
FIG. 24F
, the first polysilicon layer
322
is then deposited and preferably doped simultaneously in situ to a low resistivity, preferably with phosphorus for an N-channel device or with boron for a P-channel device. Alternatively, polysilicon layer
322
could be deposited, undoped, and implanted with phosphorus at an energy of 60 to 100 KeV at a dose of 1 to 7×10
15
cm
−2
and then annealed at 900 to 1100° C. for 10 minutes to 2 hours.
As shown in
FIG. 24G
, the first polysilicon layer
322
is then etched back down into the trench, or at least below the surface of nitride layer
274
. The polysilicon layer
322
is totally removed from the polysilicon diode region
280
at this step. Illustrative process parameters for the steps shown in
FIGS. 24F and 24G
are shown in Table 4.
TABLE 4
|
|
Feature
Range
Target
Requirement
P-channel
|
|
Sacrificial oxide
70 to 200 Å
300 Å
Remove damage
same
|
(thickness, anneal
800 to 900° C.
850° C.
with subsequent
|
temperature and
15 to 40 min
28 min
oxide etchback
|
time)
dry O
2
|
Thick bottom oxide
1000 to 3000 Å at
2000 Å
Various methods
same
|
layer 261
trench bottom
Directional
|
(optional)
deposit/resist
|
(thickness)
etchback
|
Sidewall nitride/
|
LOCOS
|
Gate oxide layer 266
70 to 700 Å
175 Å or
Active channel
same
|
(thickness, anneal
800 to 950° C.
300 Å
gate oxide
|
temperature and
5 to 130 min
850° C.
|
time)
dry O
2
16 or 60
|
min
|
Polysilicon layer 322
2000 to 12000 Å
7000 Å
Gate poly must
same
|
(thickness)
in situ doped N+
18 Ω/sq.
fill trench
|
<75 Ω/sq.
x
poly1
> 1.4 · y
G
/2
|
Polysilicon layer 322
Below nitride top
even with
Remove from
same
|
etchback
Above source
nitride
surface for body
|
bottom
implant
|
Oxide removal from
Remove all oxide
3500 Å
Strip oxide for
same
|
top of nitride
(0 to 5000 Å)
subsequent
|
implant
|
|
In the event that a thick bottom oxide process was employed or an oxide hard mask was employed prior to the trench etch, an oxide layer will remain on top of the nitride layer
274
after the etchback of the polysilicon (not shown in FIG.
24
G). This oxide is preferably removed at this step prior to subsequent ion implantations. Care must be taken not to etch or damage the gate oxide during an oxide etch.
Body Formation
As shown in
FIG. 24H
, the body region P
B
is next introduced through the nitride layer
274
. Since boron is a small ion, it is the preferred P-type dopant. Boron easily penetrates the nitride layer
274
and can be implanted deep into the epitaxial layer
267
forming the body doping profile from ion implantation alone, without the need for a long drive-in diffusion. In the event that the final profile is ion-implanted, the photoresist layer
324
needed to block implantation from the termination region
290
must be thick enough, generally over 1 to 3 μm, to block implants up to the MeV range. A boron implant in the range of 800 keV to 3 MeV with a dose in the range of 8×10
12
cm
−2
to 8×10
13
cm
−2
is recommended. The feature size of photoresist layer
324
is not critical since only the termination requires implant blocking. Furthermore, the body implant can be introduced later in the cycle, but implantation at this stage has the benefit the resulting body-drain junction is uniform, avoiding any localized junction breakdown problems.
The body implant in a conventional diffused version is at a dose in the range of 1·10
13
to 1·10
14
cm
−2
and energy of 60 to 100 keV. This shallow implant is then followed by a drive-in diffusion at 1050° C. to 1150° C. for 6 to 15 hours, resulting in a typical junction depth of 1.7 μm. More information on typical process parameters is given in Table 5.
TABLE 5
|
|
Feature
Range
Target
Requirement
P-channel
|
|
Body mask (Mask 2)
No small mask
4 μm at die
Block body
Same but
|
(photoresist)
features except
edge
implant up to
blocking
|
termination
MeV range
phosphorus
|
Body implant
10
13
to 10
14
cm
−2
;
6 · 10
13
cm
−2
;
After diffusion;
P
+
implant;
|
(conventional)
60 to 150 keV
80 keV
400 to 900 Ω/sq.
120 keV
|
B
+
|
Body implant (high
8 × 10
12
to 8 ×
3 × 10
13
sets threshold V;
phosphorus
|
energy)
10
13
cm
−2
800
cm
−2
, 1.6
avoids
implant, 35%
|
keV to 3 MeV
MeV
punchthrough
higher energy
|
boron
|
Drive-in diffusion
1050 to 1150° C.,
1100° C.
1 < x
jB
< 2 μm
same
|
6 to 15 hrs
12 hrs
typical 1.6 μm
|
|
Alternatively, a “chained implant” technique can be used to form the body region. For example, a succession of “chained” boron implants can be performed at a dose of 7·10
12
cm
−2
and at energies of 1 MeV, 700 keV, 525 keV, 375 keV, 225 keV and 125 keV. In other embodiments different doses and energies can be used, and more than one dose can be used in a single device. This process produces a dopant profile of the general form shown in
FIG. 26B
(wherein a “chain” of four implants is shown), which can be compared to the conventional dopant profile of a single implanted body as shown in FIG.
26
A. The chained implant method produces a more uniform body doping concentration and a steeper concentration gradient (at the body-drain junction), with a higher total body charge for a given threshold voltage, thereby reducing the vulnerability of the device to punchthrough breakdown. This technique also has the advantage that the depth of the source-body junction does not, to a first order, affect the threshold voltage of the device, as it does in DMOS devices formed with conventional diffused body processes. The body-drain junction can be targeted at the same depth as in a conventional diffused-body MOSFET. The maximum implant energy is chosen to penetrate the nitride and set the junction at the desired depth. The implants into the mesa regions do not need to penetrate the thick first polysilicon layer
322
, since polysilicon layer
322
was removed from over the mesas in the etchback step described above.
Gate Bus/Diode Formation
The gate bus and polysilicon diode are formed in a second deposited polysilicon layer
278
, deposited across all device areas as shown in
FIG. 241
, contacting with the exposed remaining portions of polysilicon layer
322
. Polysilicon layer
278
is deposited undoped or lightly doped so that it can easily be counterdoped by subsequent implants, such as the diode implant or the source implant. No interfacial oxide can be present between the polysilicon layers
322
and
278
. The polysilicon layer
278
is next blanket-implanted with boron to form the anodes of the PN junctions in the polysilicon diode.
As shown in
FIG. 24J
, an optional thin oxide layer
328
is then formed on top of the polysilicon layer
278
, and a nitride layer
330
is deposited by chemical vapor deposition and patterned by the “polymask” (not shown). The nitride patterning is referred to as the “polymask” because it is this mask feature which will determine where polysilicon emerges out of the trench and onto the surface so that a contact to the polysilicon can be made. It is also the polymask that determines where polysilicon layer
278
will sit atop the field oxide to define the gate buses and the field plates in the drain and diode areas. If the polymask is clear (assuming positive photoresist), the nitride layer
330
, and hence the polysilicon layer
278
, will be subjected to an etchback whereby the polysilicon will be removed from the surface and etched back into the trenches (i.e., embedded). Accordingly, the nitride layer
330
is removed in the active array region
260
, but left protecting the gate bus region
270
and the polysilicon diode region
280
. Two regions in the termination region
290
are also left protected by the nitride layer
330
, one for the source field plate
291
, the other for the drain field plate
299
. The nitride layer
330
serves two roles: first it defines where the polysilicon layer
278
will not be etched back, and secondly, it prevents the subsequent oxidation of the polysilicon bus
278
, source and drain field plates
291
,
299
and the polysilicon diode region
280
.
As shown in
FIG. 24K
, polysilicon layer
278
is etched back in the exposed areas to a level even with the bottom of nitride layer
274
. Nitride layer
274
is exposed in the center of the termination region
290
and on top of all the silicon mesas in the active array region
260
. Typical process parameters for the steps illustrated in
FIGS. 24I-24K
are given in Table 6.
TABLE 6
|
|
Feature
Range
Target
Requirement
P-channel
|
|
Polysilicon layer 278
1000 to 8000 Å
5000 Å then
Gate poly must
similar but
|
(thickness) and
undoped, then
60 keV
fill trench when
phosphorus is
|
blanket boron
B
+
implant,
3 · 10
12
cm
−2
doped N-type
implanted
|
implant (dose and
20 to 80 keV
and make ohmic
|
energy)
10
12
to 10
13
cm
−2
contact to poly1
|
Polysilicon oxide
70 to 700 Å
300 Å
Implant As N+
Thicker ok
|
layer 328 (thickness,
800 to 1000° C.
850° C.
through it later
since B
+
|
anneal temperature
5 to 60 min dry O
2
28 min
in process
implant can
|
and time
penetrate
|
Nitride layer 330
500 to 3000 Å
2000 Å
Good oxide
similar
|
(thickness)
etch selectivity
|
Polysilicon mask
0.5 to 3.5 μm line
1.5 μm line
Pattern / etch
same
|
(Mask 3)
& space
& space
nitride/oxide &
|
poly
|
Polysilicon layer 278
Below nitride top
even with
Remove from
same
|
etchback
Above source
nitride
surface for
|
bottom
bottom
body implant
|
|
Source/Mesa Formation
As shown in
FIG. 24L
, the exposed surfaces of polysilicon layer
278
in trench segments
262
are oxidized to form oxide layers
268
in the active array. The side edges of polysilicon layer
278
in the gate bus region
270
and the termination region
290
, i.e., the exposed areas not covered by nitride layer
330
, are also oxidized. The mesas in the active array
260
are protected from oxidation by nitride layer
274
, and the polysilicon layer
278
in the gate bus region
270
, the polysilicon diode region
280
and the termination region
290
is protected from oxidation by nitride layer
330
.
Next, as shown in
FIG. 24M
, the nitride layer
274
is stripped from the active array region
260
exposing the thin oxide layer
275
atop the silicon mesas for the first time since the beginning of the process. Nitride layer
330
is also removed, leaving the top surfaces of the polysilicon gate bus, the polysilicon diode and the field plates
291
,
299
covered only by the thin polysilicon oxide
328
that was grown after the deposition of polysilicon layer
278
. The polysilicon layer
278
is doped with a blanket anode implant of P-type impurity (not shown), so that polysilicon layer becomes P-type except where layer
278
contacts the in-situ doped polysilicon layer
322
, where some out diffusion may occur into layer
278
. In these regions, the updiffusing of the highly doped N+ polysilicon layer
322
may cause some of the overlying undoped portions of the polysilicon layer
278
to become doped with N-type impurity to a concentration that is higher than concentration of P-type dopant from the anode implant. For example, in termination area
290
the portions of polysilicon layer
278
directly above the trenches will exhibit an N+ dopant concentration, while the portions of polysilicon layer
278
in the field plates
291
,
299
may remain P-type until the N+ source implant (described below).
A photoresist layer
332
is then applied, defining the N+ source regions
302
in the active array region
260
and the cathodes of the diodes in the polysilicon diode region
280
. Photoresist layer
332
also fills the gaps in the nitride layer
274
in the gate bus region
270
and the termination region
290
. The entire structure, including the gate bus, polysilicon field plates
291
,
299
and the cathodes of the poly diodes and, is implanted with arsenic, as shown in FIG.
24
N. Photoresist layer
332
is then removed. Typical process parameters for the steps shown in
FIGS. 24L-24N
are shown in Table 7.
TABLE 7
|
|
Feature
Range
Target
Requirement
P-channel
|
|
Oxidation of
800 and 3000 Å
1500 Å
Protect trench
same
|
polysilicon layer 278
800 to 1050° C.
950° C.
gate from oxide
|
(thickness, anneal
5 to 80 min
50 min
dip and metal
|
temperature and
short (self-
|
time)
aligned contact)
|
Strip nitride layer
Remove exposed
clear
Good selectivity
same
|
274
nitride
to poly
|
underneath
|
Source mask
Blocks arsenic
3 μm
Defines poly
Blocks BF
2
|
(photoresist) Mask 4
implant
feature
diode cathodes
implant
|
and N+ source
|
N+ (As)implant
20 to 180 keV
100 keV
N+ must
BF
2
typical
|
(energy and dose)
10
15
to 10
16
cm
−2
8 · 10
15
penetrate initial
60 keV
|
As
+
cm
−2
and poly ox
|
|
SSA Contact Formation
Since the oxide layer
328
on the polysilicon bus, polysilicon diode, and polysilicon field plates
291
,
299
is thin, passivation nitride layer
276
is then deposited by chemical vapor deposition, as shown in FIG.
240
. This is followed by a contact mask (not shown) which opens nitride layer
276
and exposes polysilicon layer
278
(covered only by thin oxide layer
328
) in the regions to be electrically contacted. In the active array region
260
the nitride layer
276
is completely removed. A shallow boron implant is next introduced as a blanket implant, preferably using BF
2
at a low energy and a low concentration so as not to counterdope the N+ regions. The nitride layer
276
also protects the regions between the field plates
291
,
299
in the termination region
290
. Alternatively, the boron implant can be performed through a photomask defined photoresist layer and limited to the regions where the body contact is to be formed (described below). Contacts are made to the polysilicon diode cathodes, and to the gate bus. This step is accomplished by a contact mask which opens areas for these selective contacts since they are not defined by the remaining portions of nitride layer
276
. If the contact mask covers the active array, the oxide
328
is etched in the contact windows and then the mask can be removed, followed by a dip to remove the remaining oxide remaining under the nitride in the active areas. If the photomask has an open feature in the polysilicon diode region
280
, and edge termination region
290
, and the active array area
260
, care must be taken not to overetch oxide layer above the trenches so as to cause a short.
The thin oxide layer
328
exposed in the active contact areas is then dipped off, without undue etching of the oxide layer
268
atop the polysilicon gates embedded in the trench. As shown in
FIGS. 24P and 24Q
, the barrier metal
303
is then applied in the areas where the polysilicon layer
278
and the silicon surface of the mesa in the active array region
260
have been exposed. Typical parameters for the process steps shown in
FIGS. 240-24Q
are shown in Table 8.
TABLE 8
|
|
Feature
Range
Target
Requirement
P-channel
|
|
Nitride layer 276
500 to 4000 Å
2000 Å
Protect
same
|
(CVD) (thickhess)
termination, gate
|
bus & poly
|
diodes
|
Contact mask
Etch & remove
Clear
Open small
same
|
(Mask 5)
contact openings in
2 μm
features on gate
|
nitride layer 276
contact
bus
|
P+ (B) implant
20 to 80 keV BF
2
+
X
j
< 0.8
x
j
(P+) < x
j
(N+)
As
+
|
(energy and dose)
7 · 10
14
to 3 · 10
15
μm
to avoid V
t
60 keV
|
cm
−2
30 keV
change
5 · 10
15
cm
−2
|
2 · 10
15
|
cm
−2
|
Oxide dip
remove initial oxide
Clear in
Do not remove
same
|
contacts
poly top oxide
|
over trenches
|
Barrier metal
Ti/TN
1000 Å
Ohmic contact to
sarne
|
(composition and
300 Å to 2000 Å
900° C.
N+ & P+ silicon,
|
thickness)
With RTA sintering
20 sec
N+ poly
|
|
P+ Body Contact Formation
This is an optional process step (not shown) wherein the P+ implant regions are selected by a mask rather than going into every contact (as shown in FIG.
24
O). This permits implants of a higher dose to be used. The mask should keep P+ dopant from entering the channel regions along the trench sidewalls except in the areas where the body is to be contacted. Table 9 gives some process variables for this optional step.
TABLE 9
|
|
Feature
Range
Target
Requirement
P-channel
|
|
P + mask
Blocks BF
2
2 μm
Defines body
Blocks As
|
(photoresist)
implant
feature
contact
implant
|
P + implant
20 to 80 keV BF
2
+
0.8 μm
No depth
As
+
|
(energy and
7 · 10
14
to 8 · 10
15
restriction
60 keV
|
dose)
cm
−2
5 · 10
15
cm
−2
|
|
Top Metal Formation
The deposition and patterning of metal layer
269
completes the fabrication. No passivation mask is needed since the nitride layer
276
passivates the termination and the polysilicon gate buses. The process variables for the metal layer
269
are shown in Table
10
.
TABLE 10
|
|
P-
|
Feature
Range
Target
Requirement
channel
|
|
Metal layer 269
0.5 to 5 μm
3 μm
Ohmic
same
|
(thickness and
AlCu, AlCuSi, AlSi
AlCu
contact
|
composition)
|
Metal mask
1 to 20 μm lines
2 μm
No shorts
same
|
(Mask 6)
1 to 3 μm spaces
lines
|
(photoresist/etch)
and
|
spaces
|
|
FIGS. 25A-25C
illustrate the steps of one method for forming a thick oxide layer on the bottom of the trench (see FIG.
24
F). After the trench
262
has been etched, as shown in
FIG. 24E
, a sacrificial gate oxide layer
352
is formed on the bottom and sidewalls of the trench by a thermal process to repair damage to the silicon caused by the etching process. Oxide layer
352
is then removed. Oxide is then deposited in a vertical direction by CVD to fill the trench
262
and overflow the nitride layer
274
, as shown in FIG.
25
A. The result is oxide layer
350
. Oxide layer
350
is then etched back until all that remains is the thick oxide layer
261
on the bottom of the trench
262
, as shown in FIG.
25
B. Thin oxide layer
266
is then grown on the sidewalls of trench
262
by a thermal process. As noted in Table 4, gate oxide layer
266
is typically 70 to 700 Å thick.
In accordance with another aspect of this invention, the problems associated with combining a contact mask with a narrow mesa leading to metal step coverage problems, such as are shown
FIGS. 8B and 8C
, can be overcome by one of several additional techniques. These techniques permit the structure shown in
FIG. 12A
to be fabricated but with the size of the “large” contact being reduced laterally sufficiently to produce devices in Region II of
FIG. 13
or, in conjunction the SSA techniques described herein, in Region I.
FIG. 27A
illustrates a trench MOSFET wherein a contact with a mesa has a submicron width, even though the oxide layer
400
has a thickness greater than the width δ
N+
of the contact. This structure can be fabricated by performing the deposition of the metal layer
402
(e.g., aluminum) at a high pressure, typically several times atmospheric pressure (e.g., 1.2-4 atmospheres). The high pressure helps to force the metal ions (typically aluminum or copper) into the contact window, thereby avoiding the confirmal deposition properties that give rise to the notches and voids shown in
FIGS. 8B and 8C
. For example, deposition of aluminum-copper-silicon can be performed at conditions that are identical to those normally used but at pressures elevated above atmospheric, giving rise to improved step coverage. For example, at two atmospheres and a wafer temperature of 250° C., the step coverage is better than at atmospheric pressure.
As shown in
FIG. 27B
, the high pressure deposition of the thick metal layer
402
can be combined with the formation of a barrier layer
404
. If a barrier such as a sandwich of Ti and TiN is used, the deposition can be performed at elevated temperatures, e.g., over 400° C. and even approaching the melting temperature of the metal (e.g., aluminum), without causing the metal in layer
402
to alloy with or sinter into the barrier metal so as to produce metal “spikes” that can short the N+ source region (or the P-body) to the to the gate electrode or crystal defects that lower the quality of the gate oxide layer. If the temperature is sufficiently high (e.g., 400 to 450° C.), the deposition can be conducted at atmospheric pressure. The deposition can be performed, for example, by sputtering, evaporation, chemical vapor deposition (CVD), or plasma-enhanced chemical vapor deposition (PECVD).
As shown in
FIGS. 27C and 27D
, the contact windows can be filled with another material such as tungsten or copper and then planarized using known procedures, to form plugs
406
which interconnect the top metal layer
408
with the barrier metal
404
. The device shown in
FIG. 27C
is formed using a process flow that includes a contact mask. An oxide layer
400
is deposited, masked and etched to form the contact openings. The dashed lines represent the boundary between the oxide resulting from the oxidized gate polysilicon and the deposited oxide layer
400
.
The device shown in
FIG. 27D
is formed using the SSA process of this invention. A layer
412
of a glass such as borophosphosilicate glass (BSPS) is then flowed over the SSA structure, and a contact mask is used to define contact openings
414
in the glass layer
412
which are filled with the metal that forms plugs
406
. The glass layer
412
is deposited on top of the oxidized surface of the polysilicon embedded gate, i.e., the top oxide. Layer
413
is nitride that remains from the nitride layer used in the SSA process. The motivation for a contact mask and intervening glass in the SSA flow is primarily to reduce the coupling capacitance between the source metal and the top of the embedded trench gate.
FIGS. 28A-28D
show a process sequence for forming a device according to this aspect of the invention. In
FIG. 28A
, after the SSA process has been completed, the trench MOSFET has been coated with a glass layer
420
, which could for example be borophosphosilicate glass (BPSG), to have a relatively flat top surface. As shown in
FIG. 28B
, the device is then masked and etched to form contact openings
422
, and an optional barrier metal layer
424
is deposited on the surface of the N+ source regions. As shown in
FIG. 28C
, a layer
428
of a material such as tungsten is used to fill the contact openings
422
, the layer
428
extending to a level well above the surface of the glass layer
420
. The design rules for tungsten layer
428
are similar to those for the polysilicon used to fill the trench as shown in
FIGS. 9B and 9C
. Next, as shown in
FIG. 28D
, tungsten layer
428
is either etched back or ground flat, using chemical-mechanical polishing, and a metal layer
430
is deposited of layer
428
. Tungsten layer
428
provides a flat surface so that the metal layer
430
does not have to extend over the step formed by glass layer
420
.
The embodiments described above are intended to be illustrative only, and not limiting. Other embodiments in accordance with the principles of this invention will be apparent to those skilled in the art.
Claims
- 1. A method for fabricating a trench MOSFET, comprising providing a body of semiconductor material having a surface;forming a first mask over the surface, the first mask having an opening where a trench is to be located in the body; etching the semiconductor material through the opening in the first mask to form a first trench in the body; forming a second trench in the body; forming a first oxide layer in the first trench; introducing a first polysilicon layer into the first trench and the second trench; introducing a second polysilicon layer over the first polysilicon layer, the second polysilicon layer covering the first polysilicon layer and the first mask; forming a second mask over the second polysilicon layer, the second mask having an opening over the first trench; etching the second polysilicon layer through the opening in the second mask, thereby leaving a remaining portion of the second polysilicon layer extending laterally over the surface of the semiconductor body; etching the first polysilicon layer until an exposed surface of the first polysilicon layer is at a level below the surface of the semiconductor body; and with the first mask in place, oxidizing an exposed surface of the first polysilicon layer to form a second oxide layer at the top of the first trench, the second oxide layer extending down into the first trench; removing at least a portion of the first mask; and depositing a metal layer on a surface of the second oxide layer and the surface of the body.
- 2. The method of claim 1 comprising:implanting dopant of a first conductivity type into the remaining portion of the second polysilicon layer; forming a third mask with an opening over the remaining portion of the second polysilicon layer; and implanting dopant of a second conductivity type into the second polysilicon layer through the opening in the third mask, thereby to form a PN diode in the remaining portion of second polysilicon layer.
- 3. The method of claim 2 comprising depositing a metal layer in contact with the surface of the semiconductor body and the remaining portion of the second polysilicon layer.
- 4. A process comprising:forming a first mask over a surface of a body of semiconductor material, the first mask having openings where trenches are to be in the body; etching the semiconductor material through the openings in the first mask to form a first trench and a second trench in the semiconductor body; forming a first oxide layer in the first and second trenches; introducing a polysilicon layer into the first and second trenches and overlying the first mask; forming a second mask over the polysilicon layer, the second mask having an opening over the second trench and a portion of the first mask; etching the polysilicon layer through the opening in the second mask to expose the portion of the first mask underlying the opening in the second mask and leave a first remaining portion of the polysilicon layer extending laterally under the second mask and a second remaining portion of the polysilicon layer isolated in the second trench; with the first and second masks in place, oxidizing an exposed surface of the remaining portions of the polysilicon layer to form a second oxide layer at the top of the second trench; removing the portion of the first mask exposed during the etching through the opening in the second mask; and depositing a metal layer on a surface of the second oxide layer and the surface of the body.
- 5. The process of claim 4, wherein oxidizing causes the second oxide layer to extend down into the second trench.
- 6. The process of claim 4, wherein forming the polysilicon layer comprises:forming a first layer of polysilicon in the first and second trenches and extending over the first mask; planarizing the first layer; and depositing a second layer of polysilicon on the first layer after the planarizing.
- 7. The process of claim 4, comprising implanting dopants into the first remaining portion of the polysilicon layer to form a PN diode in the first remaining portion of the polysilicon layer.
- 8. The process of claim 7, wherein depositing the metal layer provides contacts to the surface of the semiconductor body and the first remaining portion of the polysilicon layer.
US Referenced Citations (14)
Foreign Referenced Citations (1)
Number |
Date |
Country |
7326738 |
Dec 1995 |
JP |