Supplying slurry to a polishing pad in a chemical mechanical polishing system

Information

  • Patent Grant
  • 6551174
  • Patent Number
    6,551,174
  • Date Filed
    Friday, September 25, 1998
    25 years ago
  • Date Issued
    Tuesday, April 22, 2003
    21 years ago
Abstract
An apparatus for supplying a slurry to a polishing surface has a slurry source, a slurry supply line, and a slurry return line. The slurry supply line and slurry return line are configured so that slurry may be directed from the outlet of the slurry supply line onto the polishing surface during a chemical mechanical polishing operation, or into an inlet of the slurry return line after the polishing operation is stopped. This permits continuous circulation of slurry through the slurry supply line to prevent coagulation.
Description




BACKGROUND




The present invention relates generally to chemical mechanical polishing of substrates, and more particularly to an apparatus and method for supplying slurry to a polishing pad.




Integrated circuits are typically formed on substrates, particularly silicon wafers, by the sequential deposition of conductive, semiconductive or insulative layers. After each layer is deposited, the layer is etched to create circuitry features. As a series of layers are sequentially deposited and etched, the outer or uppermost surface of the substrate, i.e, the exposed surface of the substrate, becomes increasingly non-planar. This non-planar surface presents a photolithography problem for the integrated circuit manufacturer. Therefore, there is a need to periodically planarize the substrate surface to provide a flat surface.




Chemical mechanical polishing (CMP) is one accepted method of planarization. This planarization method typically requires that the substrate be mounted on a carrier or polishing head. The exposed surface of the substrate is placed against a moving polishing pad. The polishing pad may be either a “standard” pad or a fixed-abrasive pad. A standard pad has a durable roughened surface, whereas a fixed-abrasive pad has abrasive particles held in a containment media. The carrier head provides a controllable load, i.e., pressure, on the substrate to push it against the polishing pad. A polishing slurry, including at least one chemically-reactive agent, and abrasive particles, if a standard pad is used, is supplied to the surface of the polishing pad.




An effective CMP process not only provides a high polishing rate, but also provides a substrate surface which is finished (lacks small-scale roughness) and flat (lacks large-scale topography). The polishing rate, finish and flatness are determined by the pad and slurry combination, the relative speed between t.-ie substrate and pad, and the force pressing the substrate against the pad.




One problem in CMP is coagulation of the polishing slurry. Specifically, small abrasive particles in the slurry tend to conglomerate to form larger particulates. These large particulates create scratches, e.g., shallow grooves on the order of 300 angstroms (A) deep, in the substrate surface. These scratches render the substrate finish unsuitable for integrated circuit fabrication, decreasing process yield.




SUMMARY




In one aspect, the invention is directed to an apparatus for supplying a slurry to a polishing surface. The apparatus has a slurry source, a slurry supply line, and a slurry return line. The slurry supply line extends from the slurry source and has an outlet that may be fluidly coupled to a dispensing port positionable over the polishing surface to deliver slurry thereto during a chemical mechanical polishing operation. The slurry return line extends between the dispensing port and the slurry source, and has an inlet that may be fluidly coupled to the outlet of the slurry supply line to direct slurry away from the dispensing port and to the slurry supply.




In another aspect, the slurry supply line extends from the slurry source and has an outlet located at or proximate to a slurry dispensing point. The slurry return line extends from the slurry source and has an inlet. The slurry supply line and slurry return line are configured so that slurry may be directed from the outlet of the slurry supply line onto the polishing surface during a chemical mechanical polishing operation, and from the outlet of the slurry supply line into the inlet of the slurry return line after the polishing operation is stopped to return slurry to the slurry supply. This substantially eliminates deadleg from the slurry supply line.




Implementations of the invention may include the following. A pump may provide a flow of slurry through the slurry supply line, e.g., during the polishing operation. The pump may also direct slurry through the slurry supply line and the slurry return line, e.g., after the polishing operation is stopped. Thus, the pump may operate to provide a substantially continuous flow of slurry through the slurry supply line. A filter may be located between the slurry source and the pump.




A valve, e.g., a ball valve or a plunger valve, at the outlet of the slurry supply line may be operable between a first position in which the outlet of the slurry supply line is fluidly coupled to the port to dispense slurry onto the polishing pad and a second position in which the outlet of the slurry supply line is fluidly coupled to the inlet of the slurry return line. A portion of the slurry supply line may be flexible and moveable between a first position in which the outlet of the slurry supply line dispenses slurry to the polishing surface and a second position in which the slurry supply line is fluidly coupled to the supply return line.




The inlet of the slurry return line may be located adjacent to the polishing surface to receive slurry from the slurry supply line. The outlet of the slurry supply line may be movable between a first position in which it is positioned over the polishing surface and a second position in which it positioned over the inlet of the slurry return line.




An arm may extend over the polishing surface and support at least a portion of the slurry supply line. The outlet of the slurry supply line may be located at the end of the arm. The slurry supply line can be a passage in the arm or tubing supported by the arm. A machine base may support the polishing surface, and the arm may be pivotally connected to the base.




A second slurry supply line may extend from the slurry source and have a second outlet proximate to a second slurry dispensing point. A second slurry return line may extend from the slurry source and have an inlet. The second slurry supply line and second slurry return line may be configured so that slurry may be directed from the outlet of the slurry supply line to a second polishing surface during a chemical mechanical polishing operation, and into the inlet of the slurry return line after the polishing operation is stopped to return slurry to the slurry supply. This substantially eliminates deadleg from the second slurry supply line.




In another aspect, the invention is directed to a method of chemical mechanical polishing. In the method, slurry is pumped from a slurry source to an outlet of a slurry supply line that is positionable over a polishing surface. The slurry is directed from the outlet to the polishing surface. The outlet of the slurry supply line is fluidly coupled to an inlet of a slurry return line after the polishing operation has stopped to return the slurry to the slurry source.




Implementations of the invention may include the following. The pumping may create a flow of slurry through the slurry supply line and the slurry return line after polishing operation has stopped. The pumping may create a substantially continuous flow of slurry through the slurry supply line.




Advantages of the invention may include the following. Coagulation of slurry is reduced or eliminated, thereby reducing scratch defects and increasing process yield.











Other features and advantages will be apparent from the following description, including the drawings and claims.




BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic exploded perspective view of a chemical mechanical polishing apparatus.





FIG. 2

is a schematic diagram of a prior art slurry delivery system.





FIG. 3A

is a schematic diagram of a slurry delivery system according to the present invention.





FIGS. 3B and 3C

are enlarged views of a valve from the slurry delivery system of FIG.


3


A.





FIG. 4

is a schematic diagram of a slurry delivery system having a flexible slurry supply line.





FIG. 5

is a schematic diagram of a slurry delivery system having a plunger valve.





FIG. 6

is a schematic diagram of a slurry delivery system having a slurry catch inlet.











DETAILED DESCRIPTION




Referring to

FIG. 1

, one or more substrates


10


will be polished by a chemical mechanical polishing apparatus


20


. A description of polishing apparatus


20


may be found in U.S. Pat. No. 5,738,574, the entire disclosure of which is incorporated herein by reference. Polishing apparatus


20


includes a lower machine base


22


with a table top


23


mounted thereon and a removable outer cover (not shown). Table top


23


supports a series of polishing stations, including a first polishing station


25




a


, a second polishing station


25




b


, a final polishing station


25




c


, and a transfer station


27


. Transfer station


27


forms a generally square arrangement with the three polishing stations


25




a


,


25




b


and


25




c


. Transfer station


27


serves multiple functions, including receiving individual substrates


10


from a loading apparatus (not shown), washing the substrates, loading the substrates into carrier heads, receiving the substrates from the carrier heads, washing the substrates again, and finally, transferring the substrates back to the loading apparatus.




Each polishing station includes a rotatable platen


30


on which is placed a polishing pad. The first and second stations


25




a


and


25




b


may include a relatively hard polishing pad


32


, whereas the final polishing station may include a relative soft polishing pad


34


. If substrate


10


is an “eight-inch” (200 millimeter) or “twelve-inch” (300 millimeter) diameter disk, then the platens and polishing pads will be about twenty inches or thirty inches in diameter, respectively. Each platen


30


may be a rotatable aluminum or stainless steel plate connected to a platen drive motor (not shown). For most polishing processes, the platen drive motor rotates platen


30


at thirty to two hundred revolutions per minute, although lower or higher rotational speeds may be used.




Each polishing station


25




a


-


25




c


may further include an associated pad conditioner apparatus


40


. Each pad conditioner apparatus


40


has a rotatable arm


42


holding an independently-rotating conditioner head


44


and an associated washing basin


46


. The pad conditioner apparatus


40


maintains the condition of the polishing pad so that it will effectively polish substrates.




At each polishing station, a polishing slurry


50


containing deionized water, abrasive particles (e.g., silica particles for oxide polishing) and a chemically reactive component (e.g., potassium hydroxide for oxide polishing) is supplied to the polishing pad surface by a slurry delivery system


200


. As described in greater detail below, the slurry delivery system is designed to prevent coagulation of the slurry.




Two or more intermediate washing stations


55




a


and


55




b


may be positioned between neighboring polishing stations. The washing stations rinse the substrates as they pass from one polishing station to another.




A rotatable multi-head carousel


60


is positioned above lower machine base


22


. Carousel


60


is supported by a center post


62


and is rotated thereon about a carousel axis


64


by a carousel motor assembly located within machine base


22


. Center post


62


supports a carousel support plate


66


and a cover


68


. Carousel


60


includes four carrier head systems


70




a


,


70




b


,


70




c


, and


70




d


. Three of the carrier head systems receive and hold substrates, and polish them by pressing them against the polishing pads on the platens of the polishing stations. One of the carrier head systems receives a substrate from and delivers a substrate to transfer station


27


.




The four carrier head systems


70




a


-


70




d


are mounted on carousel support plate


66


at equal angular intervals about carousel axis


64


. Center post


62


allows the carousel motor to rotate carousel support plate


66


and to orbit carrier head systems


70




a


-


70




d


and the attached substrates thereto about carousel axis


64


.




Each carrier head system


70




a


-


70




d


includes a carrier or carrier head


80


. A carrier drive shaft


74


connects a carrier head rotation motor


76


(shown by the removal of one quarter of cover


68


) to carrier head


80


so that each carrier head


80


can independently rotate about its own axis. There is one carrier drive shaft and motor for each head. In addition, each carrier head


80


independently laterally oscillates in a radial slot


72


formed in carousel support plate


66


. A slider (not shown) supports each drive shaft in its associated radial slot. A radial drive motor (not shown) may move the slider to laterally oscillate the carrier head.




The carrier head


80


performs several mechanical functions. Generally, the carrier head holds the substrate against the polishing pad, evenly distributes a downward pressure across the back surface of the substrate, transfers torque from the drive shaft to the substrate, and ensures that the substrate does not slip out from beneath the carrier head during polishing operations.




The carrier head


80


may include a flexible membrane (not shown) which provides a substrate receiving surface. A description of a suitable carrier head


80


may be found in U.S. patent application Ser. No. 08/745,679, entitled a CARRIER HEAD WITH a FLEXIBLE MEMBRANE FOR a CHEMICAL MECHANICAL POLISHING SYSTEM, filed Nov. 8, 1996, by Steven M. Zuniga et al., assigned to the assignee of the present invention, the entire disclosure of which is incorporated herein by reference.




In order to more clearly explain the invention, a conventional slurry delivery system will first be described. Referring to

FIG. 2

, a conventional slurry delivery system


100


includes a slurry reservoir


102


, a pump


104


, a coarse filter


106


located upstream of pump


104


, and a point-of-use (POU) filter


108


located downstream of pump


104


. Slurry is pumped through filters


106


and


108


by pump


104


, and returned to reservoir


102


through a slurry manifold


110


. Pump


104


may be operated so that slurry from reservoir


102


is continuously circulated through the slurry line and the filters. The continuous motion of the slurry helps prevent coagulation, and filters


106


and


108


remove slurry particle conglomerates from slurry manifold


110


.




A plurality of peristaltic pumps


112




a


,


112




b


and


112




c


, associated with polishing stations


25




a


,


25




b


and


25




c


, respectively, are fluidly coupled to slurry manifold


110


by intake lines


114




a


,


114




b


and


114




c


, respectively. Three supply lines


116




a


,


116




b


and


116




c


deliver slurry from peristaltic pumps


112




a


,


112




b


and


112




c


, respectively, to the polishing pads at the polishing stations. Each supply line extends through a combined slurry/rinse arm


118


that extends over platen


30


. Although arm


118


is illustrated with only one supply line, the arm may include two or more supply lines to distribute multiple slurries to the surface of the polishing pad. The arm


118


also includes several spray nozzles (not shown) which provide a high pressure rinse of the polishing pad at the end of each polishing and conditioning cycle.




Unfortunately, the portion of the slurry delivery system extending between slurry manifold


110


and each polishing pad, e.g., intake line


114




a


, peristaltic pump


112




a


and supply line


116




a


, constitutes a so-called “deadleg”. When slurry is not required at one of the polishing stations, e.g., polishing station


25




a


, the peristaltic pump associated with that polishing station is stopped, and the slurry in the deadleg sits stagnant and coagulates. When the peristaltic pump is restarted, coagulated slurry will be delivered to the polishing pad, where it can scratch the substrate and cause defects.




Referring to

FIGS. 3A-3C

, a slurry delivery system


200


is constructed without a deadleg. Slurry delivery system


200


includes a slurry reservoir


202


, a primary pump


204


, and a coarse filter


206


located between primary pump


204


and reservoir


202


. Reservoir


202


, primary pump


204


and coarse filter


206


may be located in machine base


22


or in a separate slurry supply module


220


. Three peristaltic pumps


208


are connected to primary pump


204


by a slurry supply manifold


210


. A slurry/rinse arm


218


extends over each polishing pad, and a three-way valve


214


is located at the end of the each arm. Each peristaltic pump


208


is fluidly coupled to a first port


228




a


of the three-way valve by a slurry supply line


212


. A point-of-use filter


216


may be located in each slurry supply line


212


between the peristaltic pump and the three-way valve. A slurry return line


222


extends back through the arm to fluidly couple a second port


288




b


of each valve


214


to a slurry return manifold


224


, which returns the slurry to reservoir


202


. A third port


228




c


of valve


214


is connected to an exit port


226


(see

FIGS. 3A and 3B

) in the arm to dispense slurry onto the polishing pad.




In the configuration illustrated in

FIGS. 3A-3C

, valve


214


is a ball valve rotatable between a first position (shown in

FIG. 3A

) in which slurry supply line


212


is fluidly coupled to exit port


226


, and a second position (shown in

FIG. 3B

) in which slurry supply line


212


is fluidly coupled to exit port


226


. Thus, when the valve is in the first position, slurry is directed through slurry supply line


212


and exit port


226


and onto the polishing pad. In contrast, when the valve is in the second position, slurry is pumped out to the end of arm


218


via slurry supply line


212


and returned to reservoir


202


via slurry return line


222


. Pumps


204


and


208


are operated to provide a substantially continuous, i.e., both during and between polishing operations (but not when slurry delivery system


200


is shut down for maintenance and the like), flow of slurry through the slurry supply line, thereby reducing coagulation and substrate defects.




The slurry supply line


212


may be a passageway formed integrally through arm


218


, or it may be a flexible or rigid tube supported by the arm (either inside or outside the arm housing). Alternately, the slurry supply line may be sufficiently rigid that an arm is not required. Similarly, slurry return line


222


may be a passage formed through the arm, a flexible tube supported by the arm, or a rigid self-supporting tube.





FIG. 4

illustrates a slurry delivery system


200


′ in which the ball valve is replaced with a moveable tubing. For clarity, only the portion of the slurry delivery system associated with a single polishing station is illustrated. Additionally, the slurry reservoir, the coarse filter, the primary pump, the peristaltic pump and the point-of-use filter are not shown. A slurry/rinse arm


218


′ supports a slurry supply line


230


having an outlet


234


near the end of the arm. The slurry supply line


230


includes a flexible portion


232


located adjacent an aperture


238


in the arm


218


′. The flexible portion of slurry supply line


230


is moveable between a first position in which the outlet of the slurry supply line dispenses slurry onto the polishing pad via outlet


234


, and a second position (shown in phantom) in which the outlet of the slurry supply line is connected to an inlet


239


of a slurry return line


236


. Inlet


239


may be provided with a seal (not shown) to prevent leakage of the slurry when the slurry supply line is connected to the slurry return line. Alternately, inlet


239


may be slightly wider than outlet


234


. The flexible portion


232


of slurry supply line


230


may be actuated between the first and second positions by a pneumatic actuator


237


. Between polishing operations at this particular polishing station, slurry supply line


230


is fluidly coupled to slurry return line


236


so that the pumps continuously recirculate slurry through the slurry delivery system. On the other hand, during polishing operations, flexible portion


232


is shifted so that slurry flows through outlet


234


and aperture


238


onto the polishing pad.




Referring to

FIG. 5

, in another configuration, a slurry delivery system


200


″ includes a slurry supply line


240


to transport slurry to a plunger valve


242


located adjacent an aperture or port


244


at the end of a slurry/rinse arm


218


″. The plunger valve may be operated between a first position in which a first valve passage


250


directs slurry from slurry supply line


240


onto the polishing pad, and a second position (shown in phantom) in which a second valve passage


252


fluidly couples slurry supply line


240


to a slurry return line


248


. Thus, during polishing at this particular polishing station, the plunger valve is in the first position to dispense slurry onto the pad. On the other hand, between polishing operations, the plunger valve is in the second position so that slurry is continuously circulated through the slurry delivery system. The plunger valve may be equipped with a lip-seal (not shown) to prevent leakage of the slurry from slurry supply line


240


and slurry return line


248


. Plunger valve


242


may be actuated by a pneumatic actuator


246


in such a fashion as to minimize particle generation.




Referring to

FIG. 6

, in another embodiment (illustrated for a single polishing station


25


), a slurry delivery system


300


includes a slurry reservoir


302


, a primary pump


304


, a coarse filter


306


, a peristaltic pump


308


and a POU filter


310


. Slurry delivery system


300


also includes a generally funnel-shaped slurry catch cup


322


located adjacent platen


30


. The slurry catch cup


322


is fluidly coupled to reservoir


302


by a slurry return line


324


. A slurry supply line


314


extends through a moveable slurry/rinse arm


318


to direct slurry onto polishing pad


32


. The arm


318


is pivotally connected to table top


23


and may be moved between a first position in which an outlet


320


at the end of slurry supply line


314


is located over polishing pad


32


, and a second position (illustrated in phantom) in which outlet


320


is positioned over slurry catch cup


322


. A motor or pneumatic actuator


316


may be connected at the base of arm


318


to pivot the arm. Thus, during polishing, slurry delivery system


300


may position arm


318


over polishing pad


32


, whereas between polishing operations, pneumatic actuator


316


may rotate or pivot arm


318


over slurry catch cup


322


so that slurry is continuously recirculated though slurry supply line


314


and slurry return line


324


.




The invention is not limited to the embodiments depicted and described. Rather, the scope of the invention is defined by the appended claims.



Claims
  • 1. An apparatus for supplying a slurry to a polishing surface, comprising:a slurry source; a slurry supply line extending from the slurry source and having an outlet that is selectively fluidly coupled to a dispensing port positionable over the polishing surface to deliver slurry thereto during a chemical mechanical polishing operation; and a slurry return line extending between the dispensing port and the slurry source, the slurry return line having an inlet that is selectively fluidly coupled to the outlet of the slurry supply line to direct slurry away from the dispensing port and to the slurry source.
  • 2. The apparatus of claim 1, further comprising a pump to provide a flow of slurry through the slurry supply line during the polishing operation.
  • 3. The apparatus of claim 2, wherein the pump provides a flow of slurry through the slurry supply line and the slurry return line after the polishing operation is stopped.
  • 4. The apparatus of claim 3, wherein the pump operates to provide a substantially continuous uninterrupted flow of slurry through the slurry supply line both during and after the polishing operation.
  • 5. The apparatus of claim 1, further comprising a valve at the outlet of the slurry supply line, the valve operable between a first position in which the outlet of the slurry supply line is fluidly coupled to the port to dispense slurry onto the polishing pad and a second position in which the outlet of the slurry supply line is fluidly coupled to the inlet of the slurry return line.
  • 6. The apparatus of claim 5, wherein the valve is a ball valve rotatable between the first and second positions.
  • 7. The apparatus of claim 1, wherein a portion of the slurry supply line is flexible and is moveable between a first position in which the outlet of the slurry supply line dispenses slurry to the polishing surface and a second position in which the slurry supply line is fluidly coupled to the slurry return line.
  • 8. An apparatus for supplying a slurry to a polishing surface, comprising:a slurry source; a slurry supply line extending from the slurry source and having an outlet adjacent a slurry dispensing point; and a slurry return line extending from the slurry source and having an inlet, wherein the slurry supply line and slurry return line are configured so that slurry is selectively directed from the outlet of the slurry supply line onto the polishing surface during a chemical mechanical polishing operation, and is alternatively selectively directed from the outlet of the slurry supply line into the inlet of the slurry return line after the polishing operation is stopped to return slurry to the slurry supply and to provide a continuous uninterrupted flow of the slurry to substantially eliminate deadleg from the slurry supply line.
  • 9. The apparatus of claim 8, further comprising an arm extending over the polishing surface and supporting at least a portion of the slurry supply line, the outlet of the slurry supply line being located at the end of the arm.
  • 10. The apparatus of claim 9, wherein the slurry supply line comprises a passage in the arm.
  • 11. The apparatus of claim 9, wherein the slurry supply line comprises tubing supported by the arm.
  • 12. The apparatus of claim 9, further comprising a machine base to support the polishing surface, the arm being pivotally connected to the base.
  • 13. The apparatus of claim 9, wherein the arm supports at least a portion of the slurry return line, the inlet of the slurry return line being located at the end of the arm adjacent the outlet of the slurry supply line.
  • 14. The apparatus of claim 8, further comprising a valve at the outlet of the slurry supply line, the valve operable between a first position in which the outlet of the slurry supply line is fluidly coupled to a dispensing port to dispense slurry onto the polishing pad and a second position in which the outlet of the slurry supply line is fluidly coupled to the inlet of the slurry return line.
  • 15. The apparatus of claim 8, wherein a portion of the slurry supply line is flexible and is operable between a first position in which the outlet of the slurry supply line dispenses slurry to the polishing surface and a second position in which the outlet of the slurry supply line is fluidly coupled to the inlet of the slurry return line.
  • 16. The apparatus of claim 8, wherein the inlet of the slurry return line is located adjacent to the polishing surface to receive slurry from the slurry supply line.
  • 17. The apparatus of claim 16, wherein the outlet of the slurry supply line is movable between a first position in which it is positioned over the polishing surface and a second position in which it positioned over the inlet of the slurry return line.
  • 18. The apparatus of claim 8, further comprising a pump to direct slurry from the slurry source through the slurry supply line.
  • 19. The apparatus of claim 18, wherein the pump operates to create a substantially continuous flow of slurry through the slurry supply line.
  • 20. The apparatus of claim 8, further comprising a second slurry supply line extending from the slurry source and having a second outlet proximate to a second slurry dispensing point, and a second slurry return line extending from the slurry source and having an inlet, wherein the second slurry supply line and second slurry return line are configured so that slurry may be directed from the outlet of the slurry supply line to a second polishing surface during a chemical mechanical polishing operation, and wherein slurry may be directed from the outlet of the slurry supply line into the inlet of the slurry return line after the polishing operation is stopped to return slurry to the slurry supply and substantially eliminate deadleg from the second slurry supply line.
  • 21. An apparatus for supplying a slurry to a polishing surface of a chemical mechanical polishing apparatus, comprising:a slurry source; a slurry delivery arm positionable over the polishing surface and having a dispensing port for dispensing slurry onto the polishing surface; a slurry supply line extending from the slurry source to a valve located in the arm adjacent the dispensing port; a slurry return line extending from the valve to the slurry source; and wherein the valve is operable between a first position in which the slurry supply line is fluidly coupled to the dispensing port and a second position in which the slurry supply line is fluidly coupled to the slurry return line for a continuous uninterrupted flow of the slurry.
  • 22. The apparatus of claim 21, wherein the valve is a ball valve rotatable between the first and second positions.
  • 23. An apparatus for supplying a slurry to a polishing surface of a chemical mechanical polishing apparatus, comprising:a slurry source; a slurry delivery arm positionable over the polishing surface and having a dispensing port for dispensing slurry; a slurry supply line extending from the slurry source to the dispensing port; a slurry inlet positioned adjacent the polishing surface; a slurry return line extending from the slurry inlet to the slurry source; and wherein the slurry delivery arm is movable between a first position in which the dispensing port is positioned over the polishing surface and a second position in which the dispensing port is positioned off the polishing surface and over the slurry inlet to directs slurry into the slurry inlet.
  • 24. A chemical mechanical polishing apparatus, comprising:a rotatable polishing pad; a carrier head for holding a substrate; a slurry source; a slurry supply line extending from the slurry source and having an outlet adjacent a slurry dispensing point; and a slurry return line extending from the slurry source and having an inlet, wherein the slurry supply line and slurry return line are configured so that slurry is selectively directed from the outlet of the slurry supply line onto the polishing pad during a chemical mechanical polishing operation, and is alternatively selectively directed from the outlet of the slurry supply line into the inlet of the slurry return line after the polishing operation is stopped to return slurry to the slurry supply and to provide a continuous uninterrupted flow of the slurry to substantially eliminate deadleg from the slurry supply line.
  • 25. The apparatus of claim 24, wherein there are a plurality of polishing pads and a slurry supply line and a slurry return line associated with each polishing pad.
  • 26. The apparatus of claim 25, further comprising a dispensing arm extending over each polishing pad, and a pump to direct slurry thereto.
  • 27. The apparatus of claim 26, further comprising a carousel to position the carrier head over a selected one of the polishing pads.
  • 28. A method of chemical mechanical polishing, comprising:pumping slurry from a slurry source through a slurry supply line to an outlet of the slurry supply line; selectively fluidly coupling the outlet to a dispensing port that is positionable over a polishing surface; directing slurry from the outlet through the dispensing port to the polishing surface during a polishing operation; and selectively fluidly coupling the outlet of the slurry supply line to an inlet of a slurry return line that extends between the dispensing port and the slurry source after the polishing operation has stopped to return the slurry to the slurry source, thereby providing a continuous uninterrupted flow of the slurry.
  • 29. The method of claim 28, wherein the pumping step creates a flow of slurry through the slurry supply line and the slurry return line after polishing operation has stopped.
  • 30. The method of claim 28, wherein the pumping step creates a substantially continuous flow of slurry through the slurry supply line.
  • 31. An apparatus for supplying a slurry to a polishing surface, comprising:a slurry source; a slurry supply line extending from the slurry source and having an outlet located at a slurry dispensing point; and a slurry return line extending from the slurry source and having an inlet, wherein the slurry supply line and slurry return line are configured so that slurry is selectively directed from the outlet of the slurry supply line onto the polishing surface during a chemical mechanical polishing operation, and is alternatively selectively directed from the outlet of the slurry supply line into the inlet of the slurry return line after the polishing operation is stopped to return slurry to the slurry supply and to provide a continuous uninterrupted flow of the slurry to substantially eliminate deadleg from the slurry supply line.
  • 32. An apparatus for supplying a slurry to a polishing surface, comprising:a slurry source; a slurry supply line extending from the slurry source and having an outlet that is selectively fluidly coupled to a dispensing port positionable over the polishing surface to deliver slurry thereto during a chemical mechanical polishing operation; a slurry return line extending between the dispensing port and the slurry source, the slurry return line having an inlet that is selectively fluidly coupled to the outlet of the slurry supply line to direct slurry away from the dispensing port and to the slurry source; and a valve at the outlet of the slurry supply line, the valve operable between a first position in which the outlet of the slurry supply line is fluidly coupled to the port to dispense slurry onto the polishing pad and a second position in which the outlet of the slurry supply line is fluidly coupled to the inlet of the slurry return line, wherein the valve is a plunger valve movable between the first and second positions.
  • 33. An apparatus for supplying a slurry to a polishing surface, comprising:a slurry source; a slurry supply line extending from the slurry source and having an outlet adjacent a slurry dispensing point; a pump to direct slurry from the slurry source through the slurry supply line; a filter located between the slurry source and the pump; and a slurry return line extending from the slurry source and having an inlet, wherein the slurry supply line and slurry return line are configured so that slurry is selectively directed from the outlet of the slurry supply line onto the polishing surface during a chemical mechanical polishing operation, and is alternatively selectively directed from the outlet of the slurry supply line into the inlet of the slurry return line after the polishing operation is stopped to return slurry to the slurry supply and to provide a continuous uninterrupted flow of the slurry to substantially eliminate deadleg from the slurry supply line.
  • 34. An apparatus for supplying a slurry to a polishing surface of a chemical mechanical polishing apparatus, comprising:a slurry source; a slurry delivery arm positionable over the polishing surface and having a dispensing port for dispensing slurry onto the polishing surface; a slurry supply line extending from the slurry source to a valve located in the arm adjacent the dispensing port; and a slurry return line extending from the valve to the slurry source, wherein the valve is operable between a first position in which the slurry supply line is fluidly coupled to the dispensing port and a second position in which the slurry supply line is fluidly coupled to the slurry return line for a continuous uninterrupted flow of the slurry, and wherein the valve is a plunger valve movable between the first and second positions.
US Referenced Citations (9)
Number Name Date Kind
3505766 Boettcher et al. Apr 1970 A
4593716 Cesna Jun 1986 A
5407526 Danielson et al. Apr 1995 A
5478435 Murphy et al. Dec 1995 A
5490809 Jones et al. Feb 1996 A
5664990 Adams et al. Sep 1997 A
5709593 Guthrie et al. Jan 1998 A
5750440 Vanell et al. May 1998 A
5897426 Somekh Apr 1999 A
Foreign Referenced Citations (3)
Number Date Country
1096794 Jan 1961 DE
0 709 166 May 1996 EP
9029637 Feb 1997 JP