1. Field of Invention
The field of the currently claimed embodiments of this invention relates to surgical tools and systems that incorporate the surgical tools, and more particularly to systems and surgical tools that have integrated surface tracking and motion compensation sensors.
2. Discussion of Related Art
Retinal surgery is one example of microsurgery. In current practice, retinal surgery is performed under an operating microscope with free-hand instrumentation. Human limitations include an inability to clearly view surgical targets, physiological hand tremor, and lack of tactile feedback in tool-to-tissue interactions. In addition, tool limitations, such as lack of proximity sensing or smart functions, are important factors that contribute to surgical risk and reduce the likelihood of achieving surgical goals. Current instruments do not provide physiological or even basic interpretive information. Surgical outcomes (both success and failure) are limited, in part, by technical hurdles that cannot be overcome by conventional instrumentation.
Microsurgery requires constant attention to and compensation for involuntary patient motion due to physiological processes such as breathing and cardiac pulsation, as well as the motion due to surgeon hand tremor. The resulting involuntary distance changes between the surgical tool and surgical tissue surface, although usually on the order of a few hundreds of micrometer at less than 5 Hz, may cause serious error due to the scale of microsurgery. The “tool-tissue” relative motion is especially critical in the case of surface operations such as retina vitreous surgery and cerebral cortex neurosurgery where the fragile tissue's axial involuntary motion is a primary concern that requires high dexterity and constant attention from experienced surgeons.
There thus remains a need for improved surgical tools and systems for microsurgical applications.
A motion-compensating surgical tool system according to an embodiment of the current invention includes a surgical tool that includes a hand piece and a moveable component, a drive assembly connecting the moveable component to the hand piece such that the moveable component is movable in an axial direction relative to the hand piece by the drive assembly. The motion-compensating surgical tool system also includes an optical detection system that includes an optical fiber attached to the moveable component with an end at a fixed distance to a distal-most portion of the moveable component. The optical detection system is configured to output a signal for the determination of a distance of the distal-most portion of the moveable component to a target during surgery.
A surgical tool for a motion-compensating surgical tool system according to an embodiment of the current invention includes a hand piece, a drive assembly connected to the hand piece, a moveable component connected to the drive assembly such that the moveable component is movable in an axial direction relative to the hand piece, and an optical fiber attached to the moveable component with an end at a fixed distance to a distal-most portion of the moveable component. The optical fiber is adapted to be optically coupled to an optical detection system configured to output a signal for the determination of a distance of the distal-most portion of the moveable component to a target during surgery.
Further objectives and advantages will become apparent from a consideration of the description, drawings, and examples.
Some embodiments of the current invention are discussed in detail below. In describing embodiments, specific terminology is employed for the sake of clarity. However, the invention is not intended to be limited to the specific terminology so selected. A person skilled in the relevant art will recognize that other equivalent components can be employed and other methods developed without departing from the broad concepts of the current invention. All references cited anywhere in this specification are incorporated by reference as if each had been individually incorporated.
Some embodiments of the current invention can provide a simple and compact hand-held microsurgical tool capable of surface tracking and motion compensation based on a common-path optical coherence tomography (CP-OCT) distance-sensor to improve the accuracy and safety of microsurgery. Some embodiments of the current invention use a single fiber probe as a CP-OCT distance-sensor and a high-speed piezo-electric micro linear motor for the 1-D actuation. The distance between the tool tip and the surgical target surface is determined from the OCT signal by an automatic edge-searching algorithm. The target surface can be the surface of tissue, for example, or it could be within tissue. The micro linear motor is controlled by a computer according to feedback from the CP-OCT distance-sensor. In a current example, CP-OCT microsurgical tool according to an embodiment of the current invention is miniaturized into a 15 mm-diameter plastic syringe and is capable of surface tracking at less than 5 micrometer resolution. A phantom made with intralipid layer was used to simulate a real tissue surface and a single-fiber integrated micro-dissector works as a surgical tip to perform tracking and accurate incision on the phantom surface in this example.
Some embodiments of the current invention can be integrated into standard freehand microsurgical tools and enable surgeons to make precise surgical maneuvers safely and effectively.
The motion-compensating surgical tool system 100 also includes a drive controller 118 configured to communicate with the drive assembly 108 for moving the moveable component 106 of the surgical tool 102. The motion-compensating surgical tool system 100 also includes a data processor 120 configured to communicate with the optical detection system 112 to receive the signal for the determination of the distance and to communicate with the drive controller 118.
The data processor 120 can be configured to perform edge searching to determine at least one of an edge, a center of mass, or an axial feature of the target 116 according to some embodiments of the current invention. The data processor 120 can be a dedicated “hard-wired” device, or it can be a programmable device. For example, it can be, but is not limited to, a personal computer, a work station or any other suitable electronic device for the particular application. In some embodiments, it may be integrated into a unit or it could be attachable, remote and/or distributed.
In some embodiments, data processor 120 is further configured to determine an amount, speed and/or direction of movement of the moveable component 106 to be moved by the drive assembly 108 to counter motions of the distal-most portion of the moveable component 106 relative to the target 116 during surgery.
In some embodiments, the optical detection system 112 also includes a light source 138 optically coupled to the optical fiber 114 and an optical detector 140 optically coupled to the optical fiber 114. For example, a 2×1 optical coupler 142 can be included to couple the light source 138 and optical detector to the optical fiber 114. (The term “light” as used herein is intended to have a broad meaning. For example, infrared, visible and ultraviolet light can be included within the broad meaning of the term “light.”) The optical fiber 114 provides a common transmit and receive optical path such that the optical detection system is a common-path optical coherence tomography system (CP-OCT).
In some embodiments, the light source 138 can be a superluminescent light emitting diode. In some embodiments, the optical detector 140 can be a spectrometer, as is illustrated in the example of
In some embodiments, the drive assembly 108 can include a piezo-electric micromotor that has a traveling range of at least 20 mm, a maximum speed of at least 4 mm/second, and a travel resolution of at least 0.5 μm. In some embodiments, the drive assembly can include a piezo-electric micromotor that weighs less than about 100 grams.
In some embodiments, the surgical tool 102 can be, but is not limited to, a micro-surgical tool. The micro-surgical tool can be one of a needle, a pick, a scalpel, forceps, scissors, or a trocar, for example.
In the example of
In the CP-OCT system section, a 12-bit CCD line-scan camera (e2v, EM4, USA) is used as the detector of the OCT spectrometer. A superluminescence (SLED) source (λ0=870 nm, Δλ=180 nm, Superlum, Ireland) is used as the light source, giving an experimental axial resolution of 3.6 μm in air. The minimum line period is camera-limited to 14.4 μs, corresponding to a maximum line rate of 70 k A-scan/s. A single-mode fiber which is integrated in to the hand-held tool works as the distance sensing probe. The distance between the tool tip and the surgical target surface is directly determined from the OCT signal by an automatic edge-searching algorithm (Zhang, K., Wang, W., Han, J-H., Kang, J. U., “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng., 56(9), 2318-2321 (2009); Zhang, K., Akpek, E. K., Weiblinger, R. P., Kim, D-H., Kang, J. U., and Ilev, I. K., “Noninvasive volumetric quality evaluation of post-surgical clear corneal incision via high-resolution Fourier-domain optical coherence tomography,” Electron. Lett., 46(22), 1482-1483(2010), the entire contents of which are incorporated herein by reference), and the micro linear motor is controlled by the computer according to the feedback from CP-OCT distance-sensor. A quad-core Dell T7500 workstation was used to host the frame grabber, motor controller and perform real-time signal processing and feedback control.
In the example of
First we implemented the surface tracking and motion compensation tests for an example. The surgical tool tip is pointed perpendicularly to a reflective target surface, which moves back and forth from the initial position. The tool tip senses the motion and adjusts to keep a constant distance D=1120 μm by moving together with the target surface. The error changing between d and D is recorded with time, and the compensation effect is apparent by comparing the error values between “Compensation off” mode and “Compensation on” mode, as in
Then, to show that these tools will actually enhance a surgeon's ability, using phantoms fabricated from intralipid film, we performed surgical incisions with intended depth of 100 μm with and without the surface tracking and motion compensation. To show the incision depth relative to the phantom surface, we took the 3-D volumetric OCT images of the incision sites using our high speed FD-OCT system (Zhang, K. and Kang, J. U., “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express, 18(11), 11772-11784 (2010)). The image volume is 1000(X)×150(Y)×512(Z) voxels.
A hand-held microsurgical tool based on a CP-OCT distance sensor according to some embodiments of the current invention was tested. The tool is capable of tracking the tissue surface of a microsurgical target and of compensating the tool-tissue relative motion on a micrometer scale. Using a phantom model, the quality of incision depth was evaluated using 3D FD-OCT, and the results using the surface tracking and motion compensation tool show significant improvement compared to the results by free-hand. Such tools can have broad applicability in other microsurgical procedures and can improve surgical accuracy and safety.
The embodiments illustrated and discussed in this specification are intended only to teach those skilled in the art how to make and use the invention. In describing embodiments of the invention, specific terminology is employed for the sake of clarity. However, the invention is not intended to be limited to the specific terminology so selected. The above-described embodiments of the invention may be modified or varied, without departing from the invention, as appreciated by those skilled in the art in light of the above teachings. It is therefore to be understood that, within the scope of the claims and their equivalents, the invention may be practiced otherwise than as specifically described.
This application claims priority to U.S. Provisional Application No. 61/365,998 filed Jul. 20, 2010, the entire contents of which are hereby incorporated by reference.
This invention was made with Government support of Grants No. 1R01 EB 007969-01 and 1R21NS063131-01A1, awarded by the Department of Health and Human Services, NIH. The U.S. Government has certain rights in this invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2011/044693 | 7/20/2011 | WO | 00 | 1/18/2013 |
Number | Date | Country | |
---|---|---|---|
61365998 | Jul 2010 | US |