Surgical system for microsurgical techniques

Information

  • Patent Grant
  • 10357320
  • Patent Number
    10,357,320
  • Date Filed
    Thursday, August 27, 2015
    8 years ago
  • Date Issued
    Tuesday, July 23, 2019
    4 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Figueroa; Jaime
    Agents
    • Foley & Lardner LLP
    • Bolten; Christopher C.
    • Pisano; Nicola A.
Abstract
This system is composed by mechanical telemanipulators, with master-slave configurations, working together with suitable solutions for image acquisition and display, which are able to transmit, with optional magnification, images from the surgical area to the surgeon. Therefore, the surgeon's capacities and comfort are increased by enhancing the surgeon's motor and visual skills as well as the ergonomics while doing different surgical tasks through access incisions on the patient body. Aside from offering improved performance during procedures involving microsurgical techniques, this system also brings safety, intuitiveness, and cost-effectiveness advantages over current alternatives. Due to the compatibility with current visualization systems for microsurgery, together with the light weight and the compact configuration of the mechanical telemanipulator, this surgical system can be very easily brought to and removed from the surgical area, which enables its intermittent use on several surgical procedures requiring microsurgical techniques. Therefore, it does not require drastic changes in the workflow and setup of current operating rooms and can be more easily adopted by several surgical teams.
Description
FIELD OF THE INVENTION

The present invention relates to the field of surgical equipment used to facilitate precise and dexterous manipulation tasks in different surgical procedures, particularly procedures involving microsurgical techniques. Several embodiments relate to mechanical telemanipulators for accomplishing these tasks.


BACKGROUND OF THE INVENTION

Microsurgical techniques are currently employed in several open and minimally invasive surgical procedures. Typical procedures are focused on the restoration of form and function of different parts of the body, and include amelioration of birth defects, hand surgery, maxillofacial surgery, and reconstruction of defects after tumor removal, as well as applications in ophthalmology, neurosurgery, density, cardiovascular surgery and thoracic surgery. Amongst other precise tasks, these microsurgical techniques may consist in reconnecting small and delicate vessels (blood and lymphatic) and nerves (micro anastomosis) such that their function is fully restored. The precision and quality of their execution has an enormous impact on the overall success of the surgery in which they are applied.


A special set of techniques has to be learned by surgeons in order to be able to perform microsurgery, which may be considerably different from the ones used in other conventional “macro” surgical procedures, requiring a continuously high degree of concentration, small movements, and a strained body posture.


With current equipment, the surgical micro techniques are done with the surgeon seated close to the edge of the operating table, with the forearms normally resting on the patient or on the table's top surface. The wrists are placed close to the operation site, the forearms orientated perpendicularly to each other, and the upper arms down and close to the body.


A surgical microscope is positioned above the patient such that its field of view is centered on the surgical area. The image is acquired by the microscope's objective and displayed with magnification to the surgeon through the microscope's eyepieces, which are adjusted in a way that the surgeon can have a balanced sitting position, maintained for long periods of time. Any excessive movement of the head away from the optical axis will result in loss of sight. As an alternative to the surgical microscope, the surgeon might use amplifying loupes, while looking directly at the surgical area.


The instruments for microsurgical techniques are basically aimed at providing a small enough tool to accurately grab and manipulate relevant tissue, needles and suture wires. All instruments are essentially held and actuated like tweezers, being preloaded to an open position, such that a grip is required for the jaws to remain closed. Their control is most effectively achieved when the surgeon is in a comfortable position, resulting in a minimal amount of muscle activity. The forearms should be optimally rested at about a 45-degree-angle in front of the body and the hands should remain steady, while only the fingers are moved. To dampen the physiological tremor at the instrument tip, the instrument should be held as close to the tip as possible and the ring and little finger should be supported on the surface below. However, quite often the surgical area is restricted and an optimal arm and hand posture is not possible, requiring additional skills from the surgeon and imposing additional discomfort to maintain the precision and dexterity of the movements at the instrument's tip.


With existing equipment, microsurgical techniques are considerably demanding and can be physically discomforting to the surgeon over the short and long term, making it an unpopular specialization. While the visualization systems have been improving over time, enabling higher magnifications with increased resolutions, the instruments used for micro surgical techniques haven't followed along the same path of innovation. As a consequence, the precision and dexterity that can be achieved with today's instruments is very much dependent on the surgeon's fine motor skills, which means that from the overall population of qualified surgeons, only a smaller number are able to perform the most delicate operations. Even highly qualified surgeons are not able to have long, active careers due to the degradation of motor skills with age. These issues have been creating a significant mismatch between surgeon capabilities and patient demand, increasing the waiting lists for surgical procedures requiring microsurgical techniques, and limiting the overall adoption of microsurgical techniques despite the fact that better outcomes are often achieved through microsurgery.


To overcome the above-mentioned issue, several surgical robotic systems have been developed with the goal of providing an easier-to-use approach to micro surgical techniques. By means of computerized robotic interfaces, these systems enable the surgeon to improve the control of the instruments, while maintaining surgeon inputs to the surgical decision-making process.


These surgical robotic systems are essentially composed of a combination of master and slave manipulators wherein the master manipulator has position sensors that register the surgeon's hand movements and converts them into electrical signals, which are then processed from the kinematics of the master to the kinematics of the slave and eventually sent to the slave actuators that deliver the motion to the slave manipulator located in the surgical area. By processing and modifying the electrical signals correctly, a robotic master slave system can provide to the surgeon a remote replication of hand movements, with motion scaling and tremor filtering. In addition, they can further provide the surgeon with improved accessibility and a more ergonomic posture during surgery. The master manipulator can also be controlled with an optimal handgrip while the hand is well-supported.


However, although several surgical robotic systems have been developed over the past decades, currently none of them is considered as a viable replacement for conventional equipment in the microsurgical context.


The robotic system disclosed in WO9743942, WO9825666 and US2010011900 is currently the only FDA approved telemanipulator for robotic surgery. While being originally designed for laparoscopic surgery several tests in open microsurgery procedures have been reported in the literature. According to the literature, the robotic master-slave setup is found to be useful in providing scaled down replication of the surgeon's hand movements with reduced tremor, and facilitating the procedure in terms of ergonomics. However, it does not provide force feedback, which, together with the limited access to the patient, raises safety concerns. Another drawback of this system comes from the fact that it is very large, competing for precious space within the operating room environment and significantly increasing preparation time. This limitation, among others, limits workflow integration in the sense that there is no space between adoption of a robotic system, with all of its drawbacks, and having no robotic system in the operating room.


The fact that this system is not compatible with current vision systems for microsurgical techniques, like surgical microscopes and loupes, represents a significant break with current operating room workflow, making impossible the performance of current microsurgical techniques and robotic techniques in the same surgical procedure. This issue is exacerbated by the size and weight of the robotic system.


Several authors have described more compact robotic alternatives (H. Das et al. 1997, M. Lang et al. 2011, A. Morita et al. 2005, M. Mitsuishi et al. 2012, WO2013007784A1), some of them even providing force feedback to the surgeon. However, they typically comprise complex mechatronic or electromechanical systems, with a high number of sensors and actuators, leading to huge costs of acquisition and maintenance, which are actually not affordable for the majority of surgical departments worldwide.


WO 2008130235 discloses a mechanical manipulator for laparoscopy. A parallelogram construction is provided between the proximal end and the distal end of the mechanical master slave systems, creating an unambiguous positional relationship between the handles and the instruments.


The parallelogram constraint imposed by this mechanical manipulator renders it very difficult to obtain a scaled ratio other than 1:1 between the amplitude of the movements applied to the handle of this manipulator and the amplitude of the movements reproduced by the instrument. This limitation reduces drastically its potential use for microsurgical techniques where scaled down ratios are desired for increased precision and tremor reduction.


The mechanical teleoperated device disclosed in WO 2013014621 is able to provide a scaled down replication of the surgeon's movements, with high dexterity and force feedback. However, that disclosed telemanipulator is mainly intended for laparoscopic surgery and, although it can also be applied in open surgery, it is not intended to work in combination with a surgical microscope, magnifying loupes, or even the naked eye.


Several other mechanical systems have been developed for remote manipulation in radioactive environments and are disclosed in several documents, such as U.S. Pat. No. 2,846,084. However, although the system disclosed in this document comprises master-slave architecture, its dimensions, weight and kinematics are not suitable for surgical applications.


Accordingly, an aim of the present invention is to provide a surgical system composed of a mechanical telemanipulator being suitable to work together with visualization systems for microsurgical techniques while overcoming the aforementioned drawbacks of the prior art.


SUMMARY OF THE INVENTION

This aim and other advantages are achieved by a surgical system composed of at least one mechanical telemanipulator for remote manipulation, designed to naturally replicate the surgeon's hand movements in the surgical area, working together with a visualization system for microsurgical techniques, like a surgical microscope or magnifying loupes.


The size and configuration of the mechanical telemanipulator makes it compatible not only with current surgical microscopes but also may ensure a free line of sight between the eyes of the surgeon and the surgical area, enabling the surgeon to visualize the procedure with magnifying loupes or even with the naked eye.


This surgical system may also comprise a solution where a microscope's objective is replaced by an endoscopic camera (in open surgeries) or by a system with digital cameras to acquire an image of the surgical area. The image can then be displayed to the surgeon on a screen (2D or 3D) or through a head-mounted display (or a similar system where a different stereoscopic image is projected on each eye of the surgeon). One of skill in the art will understand that other visualization and imaging systems are possible and that the above are offered as representative examples of apparatuses that could work with the inventive system.


Due to the compatibility with current visualization systems for microsurgery, together with the light weight and the compact configuration of the mechanical telemanipulator, this surgical system can be very easily brought to and removed from the surgical area, enabling its intermittent use on several surgical procedures requiring microsurgical techniques. Therefore, it does not require drastic changes in the workflow and setup of current operating rooms and can be more easily adopted by several surgical teams.


Like a robotic telemanipulator for surgery, the mechanical telemanipulator of this system does not have autonomy or artificial intelligence, being essentially a surgical tool completely controlled by the surgeon. However, this telemanipulator relies on a fully mechanical technology for motion transmission as opposed to robotic systems where commands are transmitted between the master and slave by a computer-controlled mechatronic or electromechanical system. Without electronics, actuators and software, this mechanical telemanipulator is more reliable, affordable to produce and easier to use, benefiting also from more stable force-feedback to the surgeon.


Mechanical transmission allows perfect kinematic matching between the corresponding joints of the slave and master units of the telemanipulator. This master-slave relationship allows the movement of any of the joints of the master unit to be transmitted to the analogous joint of a slave unit. The low inertia of the links of the master and slave units and the low-friction of the mechanical transmission provide backlash-free and ripple-free movements, which gives to the surgeon a realistic rendering of the forces at the distal end of the instruments.


Due to its kinematic model and multi-articulated end-effectors, each telemanipulator allows controlling the surgical instruments with seven degrees of freedom, providing high dexterity to the surgeon. One of skill in the art will understand that other embodiments are possible, such as a telemanipulator system with nine degrees of freedom.


The mechanical telemanipulator is also able to scale down the movements of the surgeon. As a consequence, the physiologic tremors of the surgeon are reduced and the overall precision of the manipulation is increased.


In certain embodiments, the telemanipulators can also have a remote-center-of-motion, enabling the slave unit to be controlled by the master unit, while respecting the constraints imposed by a body incision (minimally invasive surgical procedures), reducing trauma to the patient and improving cosmetic outcomes.





BRIEF DESCRIPTION OF FIGURES

The invention will be better understood thanks to the following detailed description of several embodiments of the invention with reference to the attached drawings, in which:



FIG. 1 shows a perspective view of the mechanical telemanipulator composing the surgical system for microsurgical techniques according to a preferred embodiment of the invention;



FIG. 2 shows a second perspective view of the mechanical telemanipulator composing the surgical system for microsurgical techniques according to a preferred embodiment of the invention;



FIG. 3 shows a perspective view of the full surgical system for microsurgical techniques operated by a surgeon during a surgical procedure requiring microsurgical techniques;



FIG. 4 shows a second perspective view of the full surgical system for microsurgical techniques operated by a surgeon during a surgical procedure requiring microsurgical techniques;



FIG. 5 shows a schematic view with kinematical connections between the corresponding joints of the master and slave units of the mechanical telemanipulator;



FIG. 6 shows a perspective view of the handle connected to the distal end of the master unit of the mechanical telemanipulator;



FIG. 7 shows a perspective view of the end-effector connected to the distal end of the slave unit of the mechanical telemanipulator;



FIG. 8 shows a different possible kinematic configuration of the mechanical telemanipulator according to different embodiments of the invention, having a remote center of motion for minimally invasive surgical procedures;



FIG. 9 shows a second different possible kinematic configuration of the mechanical telemanipulator according to different embodiments of the invention, having a remote center of motion for minimally invasive surgical procedures;



FIG. 10 shows a third different possible kinematic configuration of the mechanical telemanipulator according to different embodiments of the invention, having a remote center of motion for minimally invasive surgical procedures;



FIG. 11 shows a perspective view of the surgical system for microsurgical techniques where the configuration of the mechanical telemanipulators ensures a free path line between the eyes of the surgeon and the surgical area.



FIGS. 12 to 14 show three different perspective views of the mechanical systems comprising the mechanical telemanipulators.





DETAILED DESCRIPTION OF THE INVENTION

A surgical system for microsurgical techniques, constructed in accordance with a preferred embodiment of the present invention, is described herein, and is seen generally in FIGS. 3 and 4. This system includes preferably two identical mechanical telemanipulators 1a, 1b configured to be operated independently from the other, and a surgical microscope 5 through which the surgeon can have a magnified view of the surgical area, being able to perform microsurgical techniques. While the present embodiment of the inventive system is shown with a surgical microscope, the skilled person will understand that other magnification optics are possible, such as surgical loupes. In certain applications, use of the naked eye for visualization will also be possible.


According to FIGS. 1 and 2, the two mechanical telemanipulators 1a, 1b are respectively mounted on an articulated structure 2 so that the angles between them and the patient can be tuned and they can be accurately positioned. The articulated structure 2 is mounted on a wheeled base 3, enabling the telemanipulators 1a, 1b to be easily transported and stored within the operating room and hospital. The wheeled base 3 also enables the telemanipulators 1a, 1b to be brought to, and removed from, the surgical area during the part of the surgical procedures requiring microsurgical techniques and precise manipulation. When brought to the surgical area, the articulated structure 2 can be attached to the surgical table with appropriate hardware so that the telemanipulators 1a, 1b can be more steadily supported.


With reference to FIGS. 3 and 4, the surgeon will perform the procedure directly manipulating two handles 4 in the proximal part of each telemanipulator 1a, 1b, viewing the operation through a surgical microscope 5. The movements applied by the surgeon on the two handles 4 (FIG. 6) are replicated (and scaled down) by two multi-articulated surgical instruments 6 (FIG. 7) that reach the surgical area on the patient. Their movements are acquired by the microscope's objective 7 and displayed on the eyepieces 8 as shown in FIG. 3. This surgical system improves the ergonomics for surgeons, enabling them to position their hands in a natural orientation to each other, providing improved hand-eye coordination and intuitive manipulation with scaled down, tremor-reduced movements. The comfort of the surgeons can also be improved by forearm support 9 as shown in FIG. 3.


Although the size and configuration of the mechanical telemanipulators 1a, 1b make it compatible with current surgical microscopes 5, they also may ensure a free line of sight between the eyes of the surgeon and the surgical area (FIG. 11), enabling the surgeon to visualize the procedure with magnifying loupes or even with unaided vision.


In another embodiment of this invention, the surgical system may also comprise a solution where the microscope's objective 7 is replaced by an endoscopic camera (in open surgeries) or by a system with digital cameras to acquire the image on the surgical area. The image can then be displayed to the surgeon on a screen (2D or 3D) or through a head-mounted display (or a similar system where a different stereoscopic image is projected on each eye of the surgeon).


The inventive embodiments include a master-slave configuration of each mechanical telemanipulator 1a, 1b. A slave unit 11 and a master unit 10 are configured to work together, achieving a force-reflecting tele-operation. Given that the two telemanipulators 1a, 1b are structurally and functionally identical, the description hereafter will refer to one mechanical telemanipulator only.



FIG. 5 schematically illustrates the kinematic configuration of the teleoperated device according to the preferred embodiment of the invention. This device comprises a slave unit 11 and a master unit 10 connected to each other by a connecting link 12. This connecting link 12 comprises a joint 13 which connects the teleoperated device to a ground 14.


The slave unit 11 comprises a number of slave links 15, 16, 17 interconnected by a plurality of slave joints 18, 19, 20 whereas the master unit 10 comprises a corresponding number of master links 21, 22, 23 interconnected by a plurality of master joints 24, 25, 26. First mechanical transmission means 27, 28, 29 are arranged to kinematically connect the slave unit 11 with the master unit 10 such that the movement (angle of the joint) applied on each master joint 24, 25, 26 of the master unit 10 is reproduced by the corresponding slave joint 18, 19, 20 of the slave unit 11.


In reference to FIG. 5, the multi-articulated end-effector 6 is connected at the distal end of the slave unit 11 whereas the handle 4 is connected at the distal end of the master unit 10 for operating the mechanical teleoperated device wherein the amplitude of the movements applied on the handle 4 by the surgeon is reproduced, at a predetermined scaled ratio, by end-effector 6. Ratios between the slave and the master units 11, 10 can be advantageously chosen according to the use. For instance, not only 1:1 can be used but also 2:1, 4:1 etc. in order to increase the precision of the telemanipulation and filter tremors of the surgeon.



FIGS. 12 to 14 show three different perspective views of the mechanical systems comprising the mechanical telemanipulators 1a, 1b connected to a fixed table by two articulated structures 2a, 2b.


With reference to FIG. 6, the handle 4 of the telemanipulator has a configuration similar to a current instrument for microsurgical techniques, with a “tweezers-like” shape.


The end-effector 6 as shown in FIG. 7 is a surgical tool and comprises two blades 27, 28 coaxially mounted to each other. The handle 4 is kinematically connected to the surgical tool 6 through second mechanical transmission means 31, 32 in a manner that the movement applied on the second and third handle link 29, 30 by the tips of the thumb and the index finger are reproduced by the two blades 27, 28.


The surgical tool 6 is interchangeable and can be of several types, such as scissors, scalpels, cutters, needle holders and other accessories to be connected to the distal end of salve unit 11, like energy surgical instruments suction devices, etc. The surgical tool 6 which enters the patient's body should be bio-compatible and reusable after sterilization. Disposal surgical tool can also be used.


In other embodiments of this invention (FIG. 8, FIG. 9 and FIG. 10), there can be constraint means 33 of the teleoperated device which are configured to constrain movements of the distal end of the slave unit so that, when the mechanical telemanipulator is in operation, a certain master link 34 of the master unit 10 always translates along and rotates about a single point 37 so that the corresponding link 36 of the slave unit 11 always translates along and rotates about a single virtual point 38, also known as remote renter of motion, RCM. Even during an open surgical procedure, an RCM 38 or other kinematic constraints can be useful to minimize the clashing of instruments when passing through a narrow body incision (for instance in brain surgery or ENT surgical procedures).


The seven independent degrees of freedom of the telemanipulator according to this preferred embodiment, as thoroughly described hereafter, provide the desired dexterity needed to perform complicated surgical procedures, such as pulling, cutting and/or suturing tissues. With the aim of being as intuitive as possible, the distal degrees of freedom of both the master and slave units 10, 11 are designed to resemble a simplified human forearm, with an articulated wrist and a distal tool.


For each degree of freedom of the mechanical telemanipulator according to the preferred embodiment of the invention, different types of mechanical transmission can be used resulting in the same functional outcome.


Mechanical transmissions means can be partly in the form of pulley-routed flexible elements configured such that each driven pulley of each degree of freedom of the slave unit 11 is connected to the equivalent driving pulley of the master 10 unit, by a single closed cable/tendon loop transmission. A solution using rigid transmission may also be employed, where the transmission is mainly based on articulated linkages or geared elements, which may guarantee an increased stiffness of the system.


The kinematic model of the master and slave manipulators may also take different configurations (for example, the ones shown in FIG. 8, FIG. 9 and FIG. 10) and different number of degrees of freedom, keeping the same principle of working.


In some embodiments, as shown in FIG. 2, counterweights 39 are connected to some links of the master 10 and slave 11 units, in order to compensate the telemanipulator, minimizing gravity forces felt by the surgeon when manipulating the system.


In some embodiments, the mechanical telemanipulator comprises brake means, allowing the system to be fixed in several positions of its workspace, when the surgeon is not holding the handle.


In some embodiments, the mechanical teleoperated device comprises force sensors capable of measuring the forces exerted on the moving links and/or position sensors capable of measuring the movement of the different joints, in order to allow a reconstruction of the movement of the entire telemanipulator.


The surgical system according to the invention has been described for performing microsurgical techniques in different fields of surgery, which can further include ophthalmology, brain surgery, cardiology, orthopedics and dentistry, to name a few.


The surgical system according to the invention could also be employed for any suitable remote actuated application requiring a dexterous manipulation with high precision and dexterity, such as micro-assembly manipulation, manipulation in narrow places, manipulation in dangerous or difficult environments, and manipulation in contaminated or clean environments. In this configuration, the surgical tool may be replaced by a suitable multi-articulated holder or gripper.


Moreover, while this invention has been particularly shown and described with references to particular embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims
  • 1. A surgical system for use by a surgeon to perform microsurgical techniques in a surgical area, the system comprising: a first telemanipulator having a first proximal end and a first distal end, a first master unit having a first handle coupled to the first proximal end, and a first slave unit having a first end-effector coupled to the first distal end, the first master unit comprising first master links coupled to first slave links of the first slave unit, whereby movement of the first master unit via the first handle by the surgeon is reproduced by the first slave unit to move the first end-effector;a second telemanipulator having a second proximal end and a second distal end, a second master unit having a second handle coupled to the second proximal end, and a second slave unit having a second end-effector coupled to the second distal end, the second master unit comprising second master links coupled to second slave links of the second slave unit, whereby movement of the second master unit via the second handle by the surgeon is reproduced by the second slave unit to move the second end-effector; anda visualization system configured to provide the surgeon a free line of sight between the first and second telemanipulators to the surgical area.
  • 2. The surgical system of claim 1, wherein the visualization system includes an image acquisition unit and an image display.
  • 3. The surgical system of claim 2, wherein the image acquisition unit comprises a microscope.
  • 4. The surgical system of claim 2, wherein the image acquisition unit comprises an endoscopic camera.
  • 5. The surgical system of claim 2, wherein the image acquisition unit comprises a system with at least one digital camera.
  • 6. The surgical system of claim 1, further comprising a support structure that supports the first and second telemanipulators.
  • 7. The surgical system of claim 2, wherein the image display comprises a video display screen.
  • 8. The surgical system of claim 2, wherein the image display comprises components that provide a different stereoscopic image to each eye of the surgeon.
  • 9. The surgical system of claim 2, wherein the visualization system comprises a magnifying loupe that allows the surgeon to visualize the surgical area through the free line of sight between the eyes of the surgeon and the surgical area.
  • 10. The surgical system of claim 6, wherein the support structure enables the first and second telemanipulators to be precisely and stably positioned over a patient.
  • 11. The surgical system of claim 10, wherein the support structure is mounted on a wheeled base, enabling the system to be easily brought to and removed from the surgical area during a surgical procedure.
  • 12. The surgical system of claim 1, wherein the amplitude of the movement of the first and second handles by the surgeon is reproduced by the first and second end-effectors at the surgical area at a predetermined scaled down ratio.
  • 13. The surgical system of claim 1, wherein the first telemanipulator comprises a first cable-driven articulated transmission system extending between the first handle and the first end-effector, whereby movement of the first handle by the surgeon is reproduced by the first end-effector at the surgical area, and wherein the second telemanipulator comprises a second cable-driven articulated transmission system extending between the second handle and the second end-effector, whereby movement of the second handle by the surgeon is reproduced by the second end-effector at the surgical area.
  • 14. The surgical system of claim 1, wherein the first and second master links of the first and second master units of the first and second telemanipulators each are connected by respective first and second master joints, wherein the first and second slave links of the first and second slave units of the first and second telemanipulators each are connected by respective first and second slave joints, wherein a number of links and joints in each of the first and second slave units corresponds to a number of links and joints in each of the first and second master units, and wherein motion applied at a particular link or joint in the first or second master unit is reproduced at a corresponding link or joint in the respective first or second slave unit.
  • 15. The surgical system of claim 1, wherein the first and second telemanipulators each further comprises one or more constraints applied to each of the first and second slave units, thus creating a remote center of motion whereby rotation about a predetermined point in the first or second master unit produces rotation about a predetermined point in the respective first or second slave unit.
  • 16. The surgical system of claim 13, wherein the movement of the first handle by the surgeon comprises a movement in at least one of seven degrees of freedom, and wherein the movement of the second handle by the surgeon comprises a movement in at least one of seven degrees of freedom.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a national phase of International PCT Patent Application No. PCT/IB2015/002095, filed Aug. 27, 2015, which claims priority to U.S. Provisional Patent Application No. 62/042,789, filed on Aug. 27 2014, the entire contents of each of which are incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/IB2015/002095 8/27/2015 WO 00
Publishing Document Publishing Date Country Kind
WO2016/030767 3/3/2016 WO A
US Referenced Citations (269)
Number Name Date Kind
2764301 Goertz et al. Sep 1956 A
2771199 Jelatis Nov 1956 A
2774488 Goertz Dec 1956 A
2846084 Goertz et al. Aug 1958 A
3065863 Saunders, Jr. Nov 1962 A
3095096 Chesley Jun 1963 A
3212651 Specht et al. Oct 1965 A
3261480 Haaker et al. Jul 1966 A
3297172 Haaker et al. Jan 1967 A
3391801 Haaker Jul 1968 A
3425569 Haaker et al. Feb 1969 A
4221516 Haaker et al. Sep 1980 A
4756655 Jameson Jul 1988 A
5147357 Rose et al. Sep 1992 A
5176352 Braun Jan 1993 A
5207114 Salisbury et al. May 1993 A
5209747 Knoepfler May 1993 A
5304203 El-Mallawany et al. Apr 1994 A
5308358 Bond et al. May 1994 A
5330502 Hassler et al. Jul 1994 A
5368606 Marlow et al. Nov 1994 A
5383888 Zvenyatsky et al. Jan 1995 A
5484435 Fleenor et al. Jan 1996 A
5599151 Daum et al. Feb 1997 A
5603723 Aranyi et al. Feb 1997 A
5631973 Green May 1997 A
5649956 Jensen et al. Jul 1997 A
5710870 Ohm et al. Jan 1998 A
5716352 Viola et al. Feb 1998 A
5735874 Measamer et al. Apr 1998 A
5784542 Ohm et al. Jul 1998 A
5797900 Madhani et al. Aug 1998 A
5810716 Mukherjee et al. Sep 1998 A
5810805 Sutcu et al. Sep 1998 A
5828813 Ohm Oct 1998 A
5908436 Cuschieri et al. Jun 1999 A
5951587 Qureshi et al. Sep 1999 A
6026701 Reboulet Feb 2000 A
6197017 Brock et al. Mar 2001 B1
6206903 Ramans Mar 2001 B1
6233504 Das et al. May 2001 B1
6281651 Haanpaa et al. Aug 2001 B1
6358249 Chen et al. Mar 2002 B1
6361534 Chen et al. Mar 2002 B1
6364879 Chen et al. Apr 2002 B1
6371952 Madhani et al. Apr 2002 B1
6394998 Wallace et al. May 2002 B1
6435794 Springer Aug 2002 B1
6436107 Wang Aug 2002 B1
6554844 Lee et al. Apr 2003 B2
6786896 Madhani et al. Sep 2004 B1
6788999 Green Sep 2004 B2
6850817 Green Feb 2005 B1
6852107 Wang et al. Feb 2005 B2
6902560 Morley et al. Jun 2005 B1
6951535 Ghodoussi et al. Oct 2005 B2
6991627 Madhani et al. Jan 2006 B2
6994708 Manzo Feb 2006 B2
7090637 Danitz et al. Aug 2006 B2
7101363 Nishizawa et al. Sep 2006 B2
7204836 Wagner et al. Apr 2007 B2
7232440 Dumbauld et al. Jun 2007 B2
7306597 Manzo Dec 2007 B2
7316681 Madhani et al. Jan 2008 B2
7338513 Lee et al. Mar 2008 B2
7364582 Lee Apr 2008 B2
7398707 Morley et al. Jul 2008 B2
7481824 Boudreaux et al. Jan 2009 B2
7594912 Cooper et al. Sep 2009 B2
7608039 Todd Oct 2009 B1
7615002 Rothweiler et al. Nov 2009 B2
7615067 Lee et al. Nov 2009 B2
7674255 Braun Mar 2010 B2
7699855 Anderson et al. Apr 2010 B2
7819894 Mitsuishi et al. Oct 2010 B2
7824401 Manzo et al. Nov 2010 B2
7828798 Buysse et al. Nov 2010 B2
7976458 Stefanchik et al. Jul 2011 B2
8048084 Schneid Nov 2011 B2
8105320 Manzo Jan 2012 B2
8114017 Bacher Feb 2012 B2
8137263 Marescaux et al. Mar 2012 B2
8224485 Unsworth Jul 2012 B2
8287469 Stefanchik et al. Oct 2012 B2
8292889 Cunningham et al. Oct 2012 B2
8306656 Schaible et al. Nov 2012 B1
8308738 Nobis et al. Nov 2012 B2
8332072 Schaible et al. Dec 2012 B1
8336751 Scirica Dec 2012 B2
8347754 Veltri et al. Jan 2013 B1
8353898 Lutze et al. Jan 2013 B2
8357161 Mueller Jan 2013 B2
8382742 Hermann et al. Feb 2013 B2
8403832 Cunningham et al. Mar 2013 B2
8418904 Wenchell et al. Apr 2013 B2
8496152 Viola Jul 2013 B2
8523900 Jinno et al. Sep 2013 B2
8540748 Murphy et al. Sep 2013 B2
8562592 Conlon et al. Oct 2013 B2
8568444 Cunningham Oct 2013 B2
8579176 Smith et al. Nov 2013 B2
8591397 Berkelman et al. Nov 2013 B2
8603077 Cooper et al. Dec 2013 B2
8617203 Stefanchik et al. Dec 2013 B2
8663270 Donnigan et al. Mar 2014 B2
8668689 Dumbauld et al. Mar 2014 B2
8668702 Awtar et al. Mar 2014 B2
8696666 Sanai et al. Apr 2014 B2
8709000 Madhani et al. Apr 2014 B2
8768509 Unsworth Jul 2014 B2
8792688 Unsworth Jul 2014 B2
8801752 Fortier et al. Aug 2014 B2
8818560 Kishi Aug 2014 B2
8821480 Burbank Sep 2014 B2
8828046 Stefanchik et al. Sep 2014 B2
8845517 Russo Sep 2014 B2
8845622 Paik et al. Sep 2014 B2
8870867 Walberg et al. Oct 2014 B2
8887979 Mastri et al. Nov 2014 B2
8894674 Balanev et al. Nov 2014 B2
8930027 Schaible et al. Jan 2015 B2
8945098 Seibold et al. Feb 2015 B2
8961499 Paik et al. Feb 2015 B2
8961514 Garrison Feb 2015 B2
8968187 Kleyman et al. Mar 2015 B2
8989844 Cinquin et al. Mar 2015 B2
8992564 Jaspers Mar 2015 B2
9023015 Penna May 2015 B2
9033998 Schaible et al. May 2015 B1
9044238 Orszulak Jun 2015 B2
9084606 Greep Jul 2015 B2
9113861 Martin et al. Aug 2015 B2
9149339 Unsworth Oct 2015 B2
9307894 Von Grunberg et al. Apr 2016 B2
9474580 Hannaford Oct 2016 B2
9480531 Von Grunberg Nov 2016 B2
9492240 Itkowitz Nov 2016 B2
9696700 Beira Jul 2017 B2
10092359 Coe et al. Oct 2018 B2
20020040217 Jinno Apr 2002 A1
20020049367 Irion et al. Apr 2002 A1
20020072736 Tierney et al. Jun 2002 A1
20030155747 Bridges Aug 2003 A1
20030208186 Moreyra Nov 2003 A1
20040049205 Lee et al. Mar 2004 A1
20040116906 Lipow Jun 2004 A1
20040236316 Danitz et al. Nov 2004 A1
20040253079 Sanchez Dec 2004 A1
20050096502 Khalili May 2005 A1
20050204851 Morley et al. Sep 2005 A1
20050240078 Kwon et al. Oct 2005 A1
20060043698 Bridges Mar 2006 A1
20060178559 Kumar Aug 2006 A1
20060183975 Saadat et al. Aug 2006 A1
20060219065 Jinno et al. Oct 2006 A1
20060235436 Anderson et al. Oct 2006 A1
20060253109 Chu Nov 2006 A1
20070088340 Brock et al. Apr 2007 A1
20070137371 Devengenzo Jun 2007 A1
20070156123 Moll et al. Jul 2007 A1
20070208375 Nishizawa et al. Sep 2007 A1
20070299387 Williams et al. Dec 2007 A1
20080039255 Jinno et al. Feb 2008 A1
20080046122 Manzo et al. Feb 2008 A1
20080058776 Jo et al. Mar 2008 A1
20080071208 Voegele et al. Mar 2008 A1
20080103492 Morley et al. May 2008 A1
20080177285 Brock et al. Jul 2008 A1
20080243106 Coe et al. Oct 2008 A1
20080314181 Schena Dec 2008 A1
20090036902 DiMaio Feb 2009 A1
20090198253 Omori Aug 2009 A1
20090216249 Jinno et al. Aug 2009 A1
20090247821 Rogers Oct 2009 A1
20090248039 Cooper et al. Oct 2009 A1
20090299141 Downey et al. Dec 2009 A1
20100004508 Naito et al. Jan 2010 A1
20100011900 Burbank Jan 2010 A1
20100023025 Zeiner et al. Jan 2010 A1
20100094130 Ninomiya Apr 2010 A1
20100121347 Jaspers May 2010 A1
20100160929 Rogers et al. Jun 2010 A1
20100160940 Lutze et al. Jun 2010 A1
20100170519 Romo et al. Jul 2010 A1
20100225209 Goldberg Sep 2010 A1
20100305595 Hermann Dec 2010 A1
20100318099 Itkowitz et al. Dec 2010 A1
20100318101 Choi Dec 2010 A1
20100331859 Omori Dec 2010 A1
20110087236 Stokes et al. Apr 2011 A1
20110087238 Wang Apr 2011 A1
20110213346 Morley et al. Sep 2011 A1
20110230867 Hirschfeld et al. Sep 2011 A1
20110275901 Shelton, IV Nov 2011 A1
20110276084 Shelton, IV Nov 2011 A1
20110290854 Timm et al. Dec 2011 A1
20110301419 Craft et al. Dec 2011 A1
20120027762 Schofield Feb 2012 A1
20120031114 Mueller et al. Feb 2012 A1
20120049623 Nakayama Mar 2012 A1
20120095298 Stefanchik et al. Apr 2012 A1
20120116163 Lutze et al. May 2012 A1
20120132018 Tang et al. May 2012 A1
20120143173 Steege et al. Jun 2012 A1
20120158014 Stefanchik et al. Jun 2012 A1
20120209292 Devengenzo et al. Aug 2012 A1
20120253326 Kleyman Oct 2012 A1
20120277762 Lathrop et al. Nov 2012 A1
20120283745 Goldberg Nov 2012 A1
20120289973 Prisco et al. Nov 2012 A1
20120289974 Rogers et al. Nov 2012 A1
20120296341 Seibold et al. Nov 2012 A1
20130123805 Park et al. May 2013 A1
20130144274 Stefanchik et al. Jun 2013 A1
20130172713 Kirschenman Jul 2013 A1
20130245643 Woodard et al. Sep 2013 A1
20130245647 Martin et al. Sep 2013 A1
20130282027 Woodard et al. Oct 2013 A1
20130303408 Indermuhle Nov 2013 A1
20130304083 Kaercher et al. Nov 2013 A1
20130304084 Beira et al. Nov 2013 A1
20140005681 Gee et al. Jan 2014 A1
20140018447 McGovern et al. Jan 2014 A1
20140018780 Hirscheld Jan 2014 A1
20140076088 Berkelman et al. Mar 2014 A1
20140114481 Ogawa et al. Apr 2014 A1
20140135794 Cau May 2014 A1
20140142595 Awtar et al. May 2014 A1
20140166023 Kishi Jun 2014 A1
20140180308 Von Grunberg Jun 2014 A1
20140188091 Vidal et al. Jul 2014 A1
20140188159 Steege Jul 2014 A1
20140195010 Beira Jul 2014 A1
20140200561 Ingmanson et al. Jul 2014 A1
20140207150 Rosa et al. Jul 2014 A1
20140230595 Butt et al. Aug 2014 A1
20140249546 Shvartsberg et al. Sep 2014 A1
20140263541 Leimbach et al. Sep 2014 A1
20140263553 Leimbach et al. Sep 2014 A1
20140276950 Smaby et al. Sep 2014 A1
20140276951 Hourtash et al. Sep 2014 A1
20140276956 Crainich et al. Sep 2014 A1
20140350570 Lee Nov 2014 A1
20150057499 Erden et al. Feb 2015 A1
20150057702 Edmondson et al. Feb 2015 A1
20150060517 Williams Mar 2015 A1
20150066018 Doll et al. Mar 2015 A1
20150105821 Ward et al. Apr 2015 A1
20150113933 Markt Apr 2015 A1
20150142018 Sniffin et al. May 2015 A1
20150150575 Hartoumbekis et al. Jun 2015 A1
20150250547 Fukushima et al. Sep 2015 A1
20150265355 Prestel et al. Sep 2015 A1
20160022365 Jensen et al. Jan 2016 A1
20160051274 Howell et al. Feb 2016 A1
20160151115 Karguth et al. Jun 2016 A1
20160346053 Beira Dec 2016 A1
20160374766 Schuh Dec 2016 A1
20170245954 Beira Aug 2017 A1
20170273749 Grover et al. Sep 2017 A1
20170308667 Beira et al. Oct 2017 A1
20170360522 Beira Dec 2017 A1
20170367778 Beira Dec 2017 A1
20180000472 Beira Jan 2018 A1
20180000544 Beira Jan 2018 A1
20180000550 Beira Jan 2018 A1
20180055583 Schuh et al. Mar 2018 A1
20180125519 Beira et al. May 2018 A1
20180353252 Chassot et al. Dec 2018 A1
Foreign Referenced Citations (107)
Number Date Country
101584594 Nov 2009 CN
101637402 Feb 2010 CN
101732093 Jun 2010 CN
103717355 Apr 2014 CN
43 03 311 Aug 1994 DE
19652792 May 1999 DE
10314827 Apr 2004 DE
10314828 Jul 2004 DE
10 2012 222 755 Jun 2014 DE
10 2014 205 036 Sep 2015 DE
10 2014 205 159 Sep 2015 DE
0 595 291 May 1994 EP
0 621 009 Oct 1994 EP
0 677 275 Oct 1995 EP
0 776 739 Jun 1997 EP
1 254 642 Nov 2002 EP
1 279 371 Dec 2004 EP
1 886 630 Feb 2008 EP
1 889 579 Feb 2008 EP
2 058 090 May 2009 EP
1 977 677 Aug 2009 EP
2 095 778 Sep 2009 EP
1 889 583 Apr 2011 EP
2 377 477 May 2012 EP
2 473 119 Jul 2012 EP
2 305 144 Oct 2012 EP
2 044 893 Jul 2013 EP
2 653 110 Oct 2013 EP
2 679 192 Jan 2014 EP
2 736 680 Jun 2014 EP
2 777 561 Sep 2014 EP
2 837 340 Feb 2015 EP
2 837 354 Feb 2015 EP
2 554 131 Aug 2015 EP
2 979 657 Feb 2016 EP
0 969 899 Sep 1964 GB
2004-041580 Feb 2004 JP
2007-290096 Nov 2007 JP
2008-104620 May 2008 JP
2009-018027 Jan 2009 JP
20110032444 Mar 2011 KR
20130031403 Mar 2013 KR
WO-8200611 Mar 1982 WO
WO-9743942 Nov 1997 WO
WO-9825666 Jun 1998 WO
WO-03067341 Aug 2003 WO
WO-03086219 Oct 2003 WO
WO-2004052171 Jun 2004 WO
WO-2005009482 Feb 2005 WO
WO-2005046500 May 2005 WO
WO-2006086663 Apr 2006 WO
WO-2007133065 Nov 2007 WO
WO-2008130235 Oct 2008 WO
WO-2009091497 Jul 2009 WO
WO-2009095893 Aug 2009 WO
WO-2009145572 Dec 2009 WO
WO-2009157719 Dec 2009 WO
WO-2010019001 Feb 2010 WO
WO-2010030114 Mar 2010 WO
WO-2010050771 May 2010 WO
WO-2010083480 Jul 2010 WO
WO-2010096580 Aug 2010 WO
WO-2010130817 Nov 2010 WO
WO-2011027183 Mar 2011 WO
WO-2011123669 Oct 2011 WO
WO-2012020386 Feb 2012 WO
WO-2012049623 Apr 2012 WO
WO-2013007784 Jan 2013 WO
WO-2013014621 Jan 2013 WO
WO-2013014621 Jan 2013 WO
WO-2014012780 Jan 2014 WO
WO-2014018447 Jan 2014 WO
WO-2014067804 May 2014 WO
WO-2014094716 Jun 2014 WO
WO-2014094717 Jun 2014 WO
WO-2014094718 Jun 2014 WO
WO-2014094719 Jun 2014 WO
WO-2014145148 Sep 2014 WO
WO-2014156221 Oct 2014 WO
WO-2014201010 Dec 2014 WO
WO-2014201538 Dec 2014 WO
WO-2015081946 Jun 2015 WO
WO-2015081947 Jun 2015 WO
WO-2015088647 Jun 2015 WO
WO-2015088655 Jun 2015 WO
WO-2015111475 Jul 2015 WO
WO-2015113933 Aug 2015 WO
WO-2015129383 Aug 2015 WO
WO-2015139674 Sep 2015 WO
WO-2015175200 Nov 2015 WO
WO-2016030767 Mar 2016 WO
WO-2016083189 Jun 2016 WO
WO-2016097861 Jun 2016 WO
WO-2016097864 Jun 2016 WO
WO-2016097868 Jun 2016 WO
WO-2016097871 Jun 2016 WO
WO-2016097873 Jun 2016 WO
WO-2016162751 Oct 2016 WO
WO-2016162752 Oct 2016 WO
WO-2016183054 Nov 2016 WO
WO-016189284 Dec 2016 WO
WO-2016189284 Dec 2016 WO
WO-2017015599 Jan 2017 WO
WO-2017064301 Apr 2017 WO
WO-2017064303 Apr 2017 WO
WO-2017064305 Apr 2017 WO
WO-2017064306 Apr 2017 WO
Non-Patent Literature Citations (44)
Entry
Abbott, et al., “Design of an Endoluminal Notes Robotic System,” IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, pp. 410-416 (2007).
Aesculap Surgical Technologies, Aesculap® Caiman®, Advanced Bipolar Seal and Cut Technology Brochure, 6 pages (retrieved Aug. 31, 2015).
Arata, et al., “Development of a dexterous minimally-invasive surgical system with augmented force feedback capability,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3207-3212 (2005).
Çavuşo{hacek over (g)}lu, et al., “Laparoscopic Telesurgical Workstation,” IEEE Transactions on Robotics and Automation,(15)4:728-739 (1999).
Dachs, et al., “Novel Surgical Robot Design: Minimizing the Operating Envelope Within the Sterile Field,” 28th International Conference, IEEE Engineering in Medicine Biology Society, New York, pp. 1505-1508 (2006).
Dario, et al., “Novel Mechatronic Tool for Computer-Assisted Arthroscopy,” IEEE Transactions on Information Technology in Biomedicine, 4(1):15-29 (Mar. 2000).
Focacci, et al., “Lightweight Hand-held Robot for Laparoscopic Surgery,” IEEE International Conference on Robotics & Automation, Rome, Italy, pp. 599-604 (2007).
Guthart, et al., “The Intuitive™ Telesurgery System: Overview and Application,” IEEE International Conference on Robotics & Automation, San Francisco, CA, pp. 618-621 (2000).
Ikuta, et al., “Development of Remote Microsurgery Robot and New Surgical Procedure for Deep and Narrow Space,” IEEE International Conference on Robotics & Automation, Taipei, Taiwan, pp. 1103-1108 (2003).
Ikuta, et al., “Hyper Redundant Miniature Manipulator ‘Hyper Finger’ for Remote Minimally Invasive Surgery in Deep Area,” IEEE International Conference on Robotics & Automation, Taipei, Taiwan, pp. 1098-1102 (2003).
International Search Report & Written Opinion dated Feb. 2, 2017 in Int'l PCT Patent Appl. Serial No. PCT/IB2016/001286.
International Search Report & Written Opinion dated Jan. 18, 2013 in Int'l PCT Patent Appl Serial No. PCT/IB2012/053786.
International Search Report dated Jan. 18, 2013 in Int'l PCT Patent Appl Serial No. PCT/IB2012/053786.
International Search Report dated Mar. 23, 2012 in Int'l PCT Patent Appl Serial No. PCT/IB2011/054476.
Ishii, et al., “Development of a New Bending Mechanism and Its Application to Robotic Forceps Manipulator,” IEEE International Conference on Robotics & Automation, Rome, Italy, pp. 238-243 (2007).
International Search Report & Written Opinion dated May 23, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2015/002524.
International Search Report & Written Opinion dated Mar. 30, 2015 in Int'l PCT Patent Appl Serial No. PCT/EP2015/051473.
International Search Report & Written Opinion dated Apr. 26, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2015/002512.
International Search Report & Written Opinion dated May 24, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2015/002487.
International Search Report & Written Opinion dated Jun. 10, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2015/002533.
International Search Report & Written Opinion dated Jun. 13, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2015/002493.
International Search Report & Written Opinion dated Aug. 25, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2016/000542.
International Search Report & Written Opinion dated Sep. 2, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2016/000543.
Kobayashi, et al., “Small Occupancy Robotic Mechanisms for Endoscopic Surgery,” International Conference on Medical Image Computing and Computer assisted Interventions, pp. 75-82 (2002).
Mayer, et al., “The Endo[PA]R System for Minimally Invasive Robotic Surgery,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, pp. 3637-3642 (2004).
Mitsuishi, et al., “Development of a Remote Minimally Invasive Surgical System with Operational Environment Transmission Capability,” IEEE International Conference on Robotics & Automation, Taipei, Taiwan, pp. 2663-2670 (2003).
Nakamura, et al., “Multi-DOF Forceps Manipulator System for Laparoscopic Surgery-Mechanism miniaturized & Evaluation of New Interface,” 4th International Conference on Medical Image Computing and Computer assisted Interventions (MICCAI2001), pp. 606-613 (2001).
Peirs, et al., “Design of an advanced tool guiding system for robotic surgery,” IEEE International Conference on Robotics & Automation, Taipei, Taiwan, pp. 2651-2656 (2003).
Sallé, et al., “Optimal Design of High Dexterity Modular MIS Instrument for Coronary Artery Bypass Grafting,” IEEE International Conference on Robotics & Automation, New Orleans, LA, pp. 1276-1281 (2004).
Seibold, et al., “Prototype of Instrument for Minimally Invasive Surgery with 6-Axis Force Sensing Capability,” IEEE International Conference on Robotics & Automation, Barcelona, Spain, pp. 496-501 (2005).
Simaan et al., “Dexterous System for Laryngeal Surgery: Multi-Backbone Bending Snake-like Slaves for Teleoperated Dexterous Surgical Tool Manipulation,” IEEE International Conference on Robotics & Automation, New Orleans, LA, pp. 351-357 (2004).
Stryker®, Endoscopy, Take a Look Around, Ideal Eyes™ FFD122 HD, Articulating Laparoscope Brochure, 2 pages (2009).
Swiss Search Report dated Jun. 4, 2012 in Swiss Patent Application No. CH 00702/12.
Tavakoli, et al., “Force Reflective Master-Slave System for Minimally Invasive Surgery,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV, pp. 3077-3082 (2003).
Taylor, et al., “Steady-Hand Robotic System for Microsurgical Augmentation,” The International Journal of Robotics Research, 18(12):1201-1210 (1999).
www.cttc.co/technologies/maestro-non-robotic-dexterous-laproscopic-instrument-writs-providing-seven-degrees, “Maestro: Non-Robotic Dexterous Laproscopic Instrument With a Wrist Providing Seven Degrees of Freedom”, accessed Nov. 12, 2015, 4 pages.
Yamashita, et al., “Development of Endoscopic Forceps Manipulator Using Multi-Slider Linkage Mechanisms,” The 1st Asian Symposium on Computer Aided Surgery-Robotic and Image-Guided Surgery, Ibaraki, Japan, 4 pages. (2005).
Zeus, “Robotic Surgical System” available at http://allaboutroboticsurgery.com/zeusrobot.html.
Charles, et al., Dexterity-enhanced Telerobotic Microsurgery, Advanced Robotics, ICAR '97. Proceedings, 8th Int'l Conference (1997).
ISR & Written Opinion dated Feb. 17, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2015/002095.
Lang, et al., Intra-operative robotics: NeuroArm., Acta Neurochir Suppl, 109:231-236 (2011).
Mitsuishi, et al., Master-slave robotic platform and its feasibility study for micro-neurosurgery, Int. J. Med. Robot., 9(2):180-9 (2013).
Morita, et al., Microsurgical robotic system for the deep surgical field: development of a prototype and feasibility studies in animal and cadaveric models, J. Neurosurg., 103(2):320-7 (2005).
International Search Report & Written Opinion dated Jul. 10, 2018 in Int'l PCT Patent Appl. Serial No. PCT/IB2018/053272.
Related Publications (1)
Number Date Country
20170245954 A1 Aug 2017 US
Provisional Applications (1)
Number Date Country
62042789 Aug 2014 US