The present invention relates to the field of surgical equipment used to facilitate precise and dexterous manipulation tasks in different surgical procedures, particularly procedures involving microsurgical techniques. Several embodiments relate to mechanical telemanipulators for accomplishing these tasks.
Microsurgical techniques are currently employed in several open and minimally invasive surgical procedures. Typical procedures are focused on the restoration of form and function of different parts of the body, and include amelioration of birth defects, hand surgery, maxillofacial surgery, and reconstruction of defects after tumor removal, as well as applications in ophthalmology, neurosurgery, density, cardiovascular surgery and thoracic surgery. Amongst other precise tasks, these microsurgical techniques may consist in reconnecting small and delicate vessels (blood and lymphatic) and nerves (micro anastomosis) such that their function is fully restored. The precision and quality of their execution has an enormous impact on the overall success of the surgery in which they are applied.
A special set of techniques has to be learned by surgeons in order to be able to perform microsurgery, which may be considerably different from the ones used in other conventional “macro” surgical procedures, requiring a continuously high degree of concentration, small movements, and a strained body posture.
With current equipment, the surgical micro techniques are done with the surgeon seated close to the edge of the operating table, with the forearms normally resting on the patient or on the table's top surface. The wrists are placed close to the operation site, the forearms orientated perpendicularly to each other, and the upper arms down and close to the body.
A surgical microscope is positioned above the patient such that its field of view is centered on the surgical area. The image is acquired by the microscope's objective and displayed with magnification to the surgeon through the microscope's eyepieces, which are adjusted in a way that the surgeon can have a balanced sitting position, maintained for long periods of time. Any excessive movement of the head away from the optical axis will result in loss of sight. As an alternative to the surgical microscope, the surgeon might use amplifying loupes, while looking directly at the surgical area.
The instruments for microsurgical techniques are basically aimed at providing a small enough tool to accurately grab and manipulate relevant tissue, needles and suture wires. All instruments are essentially held and actuated like tweezers, being preloaded to an open position, such that a grip is required for the jaws to remain closed. Their control is most effectively achieved when the surgeon is in a comfortable position, resulting in a minimal amount of muscle activity. The forearms should be optimally rested at about a 45-degree-angle in front of the body and the hands should remain steady, while only the fingers are moved. To dampen the physiological tremor at the instrument tip, the instrument should be held as close to the tip as possible and the ring and little finger should be supported on the surface below. However, quite often the surgical area is restricted and an optimal arm and hand posture is not possible, requiring additional skills from the surgeon and imposing additional discomfort to maintain the precision and dexterity of the movements at the instrument's tip.
With existing equipment, microsurgical techniques are considerably demanding and can be physically discomforting to the surgeon over the short and long term, making it an unpopular specialization. While the visualization systems have been improving over time, enabling higher magnifications with increased resolutions, the instruments used for micro surgical techniques haven't followed along the same path of innovation. As a consequence, the precision and dexterity that can be achieved with today's instruments is very much dependent on the surgeon's fine motor skills, which means that from the overall population of qualified surgeons, only a smaller number are able to perform the most delicate operations. Even highly qualified surgeons are not able to have long, active careers due to the degradation of motor skills with age. These issues have been creating a significant mismatch between surgeon capabilities and patient demand, increasing the waiting lists for surgical procedures requiring microsurgical techniques, and limiting the overall adoption of microsurgical techniques despite the fact that better outcomes are often achieved through microsurgery.
To overcome the above-mentioned issue, several surgical robotic systems have been developed with the goal of providing an easier-to-use approach to micro surgical techniques. By means of computerized robotic interfaces, these systems enable the surgeon to improve the control of the instruments, while maintaining surgeon inputs to the surgical decision-making process.
These surgical robotic systems are essentially composed of a combination of master and slave manipulators wherein the master manipulator has position sensors that register the surgeon's hand movements and converts them into electrical signals, which are then processed from the kinematics of the master to the kinematics of the slave and eventually sent to the slave actuators that deliver the motion to the slave manipulator located in the surgical area. By processing and modifying the electrical signals correctly, a robotic master slave system can provide to the surgeon a remote replication of hand movements, with motion scaling and tremor filtering. In addition, they can further provide the surgeon with improved accessibility and a more ergonomic posture during surgery. The master manipulator can also be controlled with an optimal handgrip while the hand is well-supported.
However, although several surgical robotic systems have been developed over the past decades, currently none of them is considered as a viable replacement for conventional equipment in the microsurgical context.
The robotic system disclosed in WO9743942, WO9825666 and US2010011900 is currently the only FDA approved telemanipulator for robotic surgery. While being originally designed for laparoscopic surgery several tests in open microsurgery procedures have been reported in the literature. According to the literature, the robotic master-slave setup is found to be useful in providing scaled down replication of the surgeon's hand movements with reduced tremor, and facilitating the procedure in terms of ergonomics. However, it does not provide force feedback, which, together with the limited access to the patient, raises safety concerns. Another drawback of this system comes from the fact that it is very large, competing for precious space within the operating room environment and significantly increasing preparation time. This limitation, among others, limits workflow integration in the sense that there is no space between adoption of a robotic system, with all of its drawbacks, and having no robotic system in the operating room.
The fact that this system is not compatible with current vision systems for microsurgical techniques, like surgical microscopes and loupes, represents a significant break with current operating room workflow, making impossible the performance of current microsurgical techniques and robotic techniques in the same surgical procedure. This issue is exacerbated by the size and weight of the robotic system.
Several authors have described more compact robotic alternatives (H. Das et al. 1997, M. Lang et al. 2011, A. Morita et al. 2005, M. Mitsuishi et al. 2012, WO2013007784A1), some of them even providing force feedback to the surgeon. However, they typically comprise complex mechatronic or electromechanical systems, with a high number of sensors and actuators, leading to huge costs of acquisition and maintenance, which are actually not affordable for the majority of surgical departments worldwide.
WO 2008130235 discloses a mechanical manipulator for laparoscopy. A parallelogram construction is provided between the proximal end and the distal end of the mechanical master slave systems, creating an unambiguous positional relationship between the handles and the instruments.
The parallelogram constraint imposed by this mechanical manipulator renders it very difficult to obtain a scaled ratio other than 1:1 between the amplitude of the movements applied to the handle of this manipulator and the amplitude of the movements reproduced by the instrument. This limitation reduces drastically its potential use for microsurgical techniques where scaled down ratios are desired for increased precision and tremor reduction.
The mechanical teleoperated device disclosed in WO 2013014621 is able to provide a scaled down replication of the surgeon's movements, with high dexterity and force feedback. However, that disclosed telemanipulator is mainly intended for laparoscopic surgery and, although it can also be applied in open surgery, it is not intended to work in combination with a surgical microscope, magnifying loupes, or even the naked eye.
Several other mechanical systems have been developed for remote manipulation in radioactive environments and are disclosed in several documents, such as U.S. Pat. No. 2,846,084. However, although the system disclosed in this document comprises master-slave architecture, its dimensions, weight and kinematics are not suitable for surgical applications.
Accordingly, an aim of the present invention is to provide a surgical system composed of a mechanical telemanipulator being suitable to work together with visualization systems for microsurgical techniques while overcoming the aforementioned drawbacks of the prior art.
This aim and other advantages are achieved by a surgical system composed of at least one mechanical telemanipulator for remote manipulation, designed to naturally replicate the surgeon's hand movements in the surgical area, working together with a visualization system for microsurgical techniques, like a surgical microscope or magnifying loupes.
The size and configuration of the mechanical telemanipulator makes it compatible not only with current surgical microscopes but also may ensure a free line of sight between the eyes of the surgeon and the surgical area, enabling the surgeon to visualize the procedure with magnifying loupes or even with the naked eye.
This surgical system may also comprise a solution where a microscope's objective is replaced by an endoscopic camera (in open surgeries) or by a system with digital cameras to acquire an image of the surgical area. The image can then be displayed to the surgeon on a screen (2D or 3D) or through a head-mounted display (or a similar system where a different stereoscopic image is projected on each eye of the surgeon). One of skill in the art will understand that other visualization and imaging systems are possible and that the above are offered as representative examples of apparatuses that could work with the inventive system.
Due to the compatibility with current visualization systems for microsurgery, together with the light weight and the compact configuration of the mechanical telemanipulator, this surgical system can be very easily brought to and removed from the surgical area, enabling its intermittent use on several surgical procedures requiring microsurgical techniques. Therefore, it does not require drastic changes in the workflow and setup of current operating rooms and can be more easily adopted by several surgical teams.
Like a robotic telemanipulator for surgery, the mechanical telemanipulator of this system does not have autonomy or artificial intelligence, being essentially a surgical tool completely controlled by the surgeon. However, this telemanipulator relies on a fully mechanical technology for motion transmission as opposed to robotic systems where commands are transmitted between the master and slave by a computer-controlled mechatronic or electromechanical system. Without electronics, actuators and software, this mechanical telemanipulator is more reliable, affordable to produce and easier to use, benefiting also from more stable force-feedback to the surgeon.
Mechanical transmission allows perfect kinematic matching between the corresponding joints of the slave and master units of the telemanipulator. This master-slave relationship allows the movement of any of the joints of the master unit to be transmitted to the analogous joint of a slave unit. The low inertia of the links of the master and slave units and the low-friction of the mechanical transmission provide backlash-free and ripple-free movements, which gives to the surgeon a realistic rendering of the forces at the distal end of the instruments.
Due to its kinematic model and multi-articulated end-effectors, each telemanipulator allows controlling the surgical instruments with seven degrees of freedom, providing high dexterity to the surgeon. One of skill in the art will understand that other embodiments are possible, such as a telemanipulator system with nine degrees of freedom.
The mechanical telemanipulator is also able to scale down the movements of the surgeon. As a consequence, the physiologic tremors of the surgeon are reduced and the overall precision of the manipulation is increased.
In certain embodiments, the telemanipulators can also have a remote-center-of-motion, enabling the slave unit to be controlled by the master unit, while respecting the constraints imposed by a body incision (minimally invasive surgical procedures), reducing trauma to the patient and improving cosmetic outcomes.
The invention will be better understood thanks to the following detailed description of several embodiments of the invention with reference to the attached drawings, in which:
A surgical system for microsurgical techniques, constructed in accordance with a preferred embodiment of the present invention, is described herein, and is seen generally in
According to
With reference to
Although the size and configuration of the mechanical telemanipulators 1a, 1b make it compatible with current surgical microscopes 5, they also may ensure a free line of sight between the eyes of the surgeon and the surgical area (
In another embodiment of this invention, the surgical system may also comprise a solution where the microscope's objective 7 is replaced by an endoscopic camera (in open surgeries) or by a system with digital cameras to acquire the image on the surgical area. The image can then be displayed to the surgeon on a screen (2D or 3D) or through a head-mounted display (or a similar system where a different stereoscopic image is projected on each eye of the surgeon).
The inventive embodiments include a master-slave configuration of each mechanical telemanipulator 1a, 1b. A slave unit 11 and a master unit 10 are configured to work together, achieving a force-reflecting tele-operation. Given that the two telemanipulators 1a, 1b are structurally and functionally identical, the description hereafter will refer to one mechanical telemanipulator only.
The slave unit 11 comprises a number of slave links 15, 16, 17 interconnected by a plurality of slave joints 18, 19, 20 whereas the master unit 10 comprises a corresponding number of master links 21, 22, 23 interconnected by a plurality of master joints 24, 25, 26. First mechanical transmission means 27, 28, 29 are arranged to kinematically connect the slave unit 11 with the master unit 10 such that the movement (angle of the joint) applied on each master joint 24, 25, 26 of the master unit 10 is reproduced by the corresponding slave joint 18, 19, 20 of the slave unit 11.
In reference to
With reference to
The end-effector 6 as shown in
The surgical tool 6 is interchangeable and can be of several types, such as scissors, scalpels, cutters, needle holders and other accessories to be connected to the distal end of salve unit 11, like energy surgical instruments suction devices, etc. The surgical tool 6 which enters the patient's body should be bio-compatible and reusable after sterilization. Disposal surgical tool can also be used.
In other embodiments of this invention (
The seven independent degrees of freedom of the telemanipulator according to this preferred embodiment, as thoroughly described hereafter, provide the desired dexterity needed to perform complicated surgical procedures, such as pulling, cutting and/or suturing tissues. With the aim of being as intuitive as possible, the distal degrees of freedom of both the master and slave units 10, 11 are designed to resemble a simplified human forearm, with an articulated wrist and a distal tool.
For each degree of freedom of the mechanical telemanipulator according to the preferred embodiment of the invention, different types of mechanical transmission can be used resulting in the same functional outcome.
Mechanical transmissions means can be partly in the form of pulley-routed flexible elements configured such that each driven pulley of each degree of freedom of the slave unit 11 is connected to the equivalent driving pulley of the master 10 unit, by a single closed cable/tendon loop transmission. A solution using rigid transmission may also be employed, where the transmission is mainly based on articulated linkages or geared elements, which may guarantee an increased stiffness of the system.
The kinematic model of the master and slave manipulators may also take different configurations (for example, the ones shown in
In some embodiments, as shown in
In some embodiments, the mechanical telemanipulator comprises brake means, allowing the system to be fixed in several positions of its workspace, when the surgeon is not holding the handle.
In some embodiments, the mechanical teleoperated device comprises force sensors capable of measuring the forces exerted on the moving links and/or position sensors capable of measuring the movement of the different joints, in order to allow a reconstruction of the movement of the entire telemanipulator.
The surgical system according to the invention has been described for performing microsurgical techniques in different fields of surgery, which can further include ophthalmology, brain surgery, cardiology, orthopedics and dentistry, to name a few.
The surgical system according to the invention could also be employed for any suitable remote actuated application requiring a dexterous manipulation with high precision and dexterity, such as micro-assembly manipulation, manipulation in narrow places, manipulation in dangerous or difficult environments, and manipulation in contaminated or clean environments. In this configuration, the surgical tool may be replaced by a suitable multi-articulated holder or gripper.
Moreover, while this invention has been particularly shown and described with references to particular embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
This application is a national phase of International PCT Patent Application No. PCT/IB2015/002095, filed Aug. 27, 2015, which claims priority to U.S. Provisional Patent Application No. 62/042,789, filed on Aug. 27 2014, the entire contents of each of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2015/002095 | 8/27/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/030767 | 3/3/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2764301 | Goertz et al. | Sep 1956 | A |
2771199 | Jelatis | Nov 1956 | A |
2774488 | Goertz | Dec 1956 | A |
2846084 | Goertz et al. | Aug 1958 | A |
3065863 | Saunders, Jr. | Nov 1962 | A |
3095096 | Chesley | Jun 1963 | A |
3212651 | Specht et al. | Oct 1965 | A |
3261480 | Haaker et al. | Jul 1966 | A |
3297172 | Haaker et al. | Jan 1967 | A |
3391801 | Haaker | Jul 1968 | A |
3425569 | Haaker et al. | Feb 1969 | A |
4221516 | Haaker et al. | Sep 1980 | A |
4756655 | Jameson | Jul 1988 | A |
5147357 | Rose et al. | Sep 1992 | A |
5176352 | Braun | Jan 1993 | A |
5207114 | Salisbury et al. | May 1993 | A |
5209747 | Knoepfler | May 1993 | A |
5304203 | El-Mallawany et al. | Apr 1994 | A |
5308358 | Bond et al. | May 1994 | A |
5330502 | Hassler et al. | Jul 1994 | A |
5368606 | Marlow et al. | Nov 1994 | A |
5383888 | Zvenyatsky et al. | Jan 1995 | A |
5484435 | Fleenor et al. | Jan 1996 | A |
5599151 | Daum et al. | Feb 1997 | A |
5603723 | Aranyi et al. | Feb 1997 | A |
5631973 | Green | May 1997 | A |
5649956 | Jensen et al. | Jul 1997 | A |
5710870 | Ohm et al. | Jan 1998 | A |
5716352 | Viola et al. | Feb 1998 | A |
5735874 | Measamer et al. | Apr 1998 | A |
5784542 | Ohm et al. | Jul 1998 | A |
5797900 | Madhani et al. | Aug 1998 | A |
5810716 | Mukherjee et al. | Sep 1998 | A |
5810805 | Sutcu et al. | Sep 1998 | A |
5828813 | Ohm | Oct 1998 | A |
5908436 | Cuschieri et al. | Jun 1999 | A |
5951587 | Qureshi et al. | Sep 1999 | A |
6026701 | Reboulet | Feb 2000 | A |
6197017 | Brock et al. | Mar 2001 | B1 |
6206903 | Ramans | Mar 2001 | B1 |
6233504 | Das et al. | May 2001 | B1 |
6281651 | Haanpaa et al. | Aug 2001 | B1 |
6358249 | Chen et al. | Mar 2002 | B1 |
6361534 | Chen et al. | Mar 2002 | B1 |
6364879 | Chen et al. | Apr 2002 | B1 |
6371952 | Madhani et al. | Apr 2002 | B1 |
6394998 | Wallace et al. | May 2002 | B1 |
6435794 | Springer | Aug 2002 | B1 |
6436107 | Wang | Aug 2002 | B1 |
6554844 | Lee et al. | Apr 2003 | B2 |
6786896 | Madhani et al. | Sep 2004 | B1 |
6788999 | Green | Sep 2004 | B2 |
6850817 | Green | Feb 2005 | B1 |
6852107 | Wang et al. | Feb 2005 | B2 |
6902560 | Morley et al. | Jun 2005 | B1 |
6951535 | Ghodoussi et al. | Oct 2005 | B2 |
6991627 | Madhani et al. | Jan 2006 | B2 |
6994708 | Manzo | Feb 2006 | B2 |
7090637 | Danitz et al. | Aug 2006 | B2 |
7101363 | Nishizawa et al. | Sep 2006 | B2 |
7204836 | Wagner et al. | Apr 2007 | B2 |
7232440 | Dumbauld et al. | Jun 2007 | B2 |
7306597 | Manzo | Dec 2007 | B2 |
7316681 | Madhani et al. | Jan 2008 | B2 |
7338513 | Lee et al. | Mar 2008 | B2 |
7364582 | Lee | Apr 2008 | B2 |
7398707 | Morley et al. | Jul 2008 | B2 |
7481824 | Boudreaux et al. | Jan 2009 | B2 |
7594912 | Cooper et al. | Sep 2009 | B2 |
7608039 | Todd | Oct 2009 | B1 |
7615002 | Rothweiler et al. | Nov 2009 | B2 |
7615067 | Lee et al. | Nov 2009 | B2 |
7674255 | Braun | Mar 2010 | B2 |
7699855 | Anderson et al. | Apr 2010 | B2 |
7819894 | Mitsuishi et al. | Oct 2010 | B2 |
7824401 | Manzo et al. | Nov 2010 | B2 |
7828798 | Buysse et al. | Nov 2010 | B2 |
7976458 | Stefanchik et al. | Jul 2011 | B2 |
8048084 | Schneid | Nov 2011 | B2 |
8105320 | Manzo | Jan 2012 | B2 |
8114017 | Bacher | Feb 2012 | B2 |
8137263 | Marescaux et al. | Mar 2012 | B2 |
8224485 | Unsworth | Jul 2012 | B2 |
8287469 | Stefanchik et al. | Oct 2012 | B2 |
8292889 | Cunningham et al. | Oct 2012 | B2 |
8306656 | Schaible et al. | Nov 2012 | B1 |
8308738 | Nobis et al. | Nov 2012 | B2 |
8332072 | Schaible et al. | Dec 2012 | B1 |
8336751 | Scirica | Dec 2012 | B2 |
8347754 | Veltri et al. | Jan 2013 | B1 |
8353898 | Lutze et al. | Jan 2013 | B2 |
8357161 | Mueller | Jan 2013 | B2 |
8382742 | Hermann et al. | Feb 2013 | B2 |
8403832 | Cunningham et al. | Mar 2013 | B2 |
8418904 | Wenchell et al. | Apr 2013 | B2 |
8496152 | Viola | Jul 2013 | B2 |
8523900 | Jinno et al. | Sep 2013 | B2 |
8540748 | Murphy et al. | Sep 2013 | B2 |
8562592 | Conlon et al. | Oct 2013 | B2 |
8568444 | Cunningham | Oct 2013 | B2 |
8579176 | Smith et al. | Nov 2013 | B2 |
8591397 | Berkelman et al. | Nov 2013 | B2 |
8603077 | Cooper et al. | Dec 2013 | B2 |
8617203 | Stefanchik et al. | Dec 2013 | B2 |
8663270 | Donnigan et al. | Mar 2014 | B2 |
8668689 | Dumbauld et al. | Mar 2014 | B2 |
8668702 | Awtar et al. | Mar 2014 | B2 |
8696666 | Sanai et al. | Apr 2014 | B2 |
8709000 | Madhani et al. | Apr 2014 | B2 |
8768509 | Unsworth | Jul 2014 | B2 |
8792688 | Unsworth | Jul 2014 | B2 |
8801752 | Fortier et al. | Aug 2014 | B2 |
8818560 | Kishi | Aug 2014 | B2 |
8821480 | Burbank | Sep 2014 | B2 |
8828046 | Stefanchik et al. | Sep 2014 | B2 |
8845517 | Russo | Sep 2014 | B2 |
8845622 | Paik et al. | Sep 2014 | B2 |
8870867 | Walberg et al. | Oct 2014 | B2 |
8887979 | Mastri et al. | Nov 2014 | B2 |
8894674 | Balanev et al. | Nov 2014 | B2 |
8930027 | Schaible et al. | Jan 2015 | B2 |
8945098 | Seibold et al. | Feb 2015 | B2 |
8961499 | Paik et al. | Feb 2015 | B2 |
8961514 | Garrison | Feb 2015 | B2 |
8968187 | Kleyman et al. | Mar 2015 | B2 |
8989844 | Cinquin et al. | Mar 2015 | B2 |
8992564 | Jaspers | Mar 2015 | B2 |
9023015 | Penna | May 2015 | B2 |
9033998 | Schaible et al. | May 2015 | B1 |
9044238 | Orszulak | Jun 2015 | B2 |
9084606 | Greep | Jul 2015 | B2 |
9113861 | Martin et al. | Aug 2015 | B2 |
9149339 | Unsworth | Oct 2015 | B2 |
9307894 | Von Grunberg et al. | Apr 2016 | B2 |
9474580 | Hannaford | Oct 2016 | B2 |
9480531 | Von Grunberg | Nov 2016 | B2 |
9492240 | Itkowitz | Nov 2016 | B2 |
9696700 | Beira | Jul 2017 | B2 |
10092359 | Coe et al. | Oct 2018 | B2 |
20020040217 | Jinno | Apr 2002 | A1 |
20020049367 | Irion et al. | Apr 2002 | A1 |
20020072736 | Tierney et al. | Jun 2002 | A1 |
20030155747 | Bridges | Aug 2003 | A1 |
20030208186 | Moreyra | Nov 2003 | A1 |
20040049205 | Lee et al. | Mar 2004 | A1 |
20040116906 | Lipow | Jun 2004 | A1 |
20040236316 | Danitz et al. | Nov 2004 | A1 |
20040253079 | Sanchez | Dec 2004 | A1 |
20050096502 | Khalili | May 2005 | A1 |
20050204851 | Morley et al. | Sep 2005 | A1 |
20050240078 | Kwon et al. | Oct 2005 | A1 |
20060043698 | Bridges | Mar 2006 | A1 |
20060178559 | Kumar | Aug 2006 | A1 |
20060183975 | Saadat et al. | Aug 2006 | A1 |
20060219065 | Jinno et al. | Oct 2006 | A1 |
20060235436 | Anderson et al. | Oct 2006 | A1 |
20060253109 | Chu | Nov 2006 | A1 |
20070088340 | Brock et al. | Apr 2007 | A1 |
20070137371 | Devengenzo | Jun 2007 | A1 |
20070156123 | Moll et al. | Jul 2007 | A1 |
20070208375 | Nishizawa et al. | Sep 2007 | A1 |
20070299387 | Williams et al. | Dec 2007 | A1 |
20080039255 | Jinno et al. | Feb 2008 | A1 |
20080046122 | Manzo et al. | Feb 2008 | A1 |
20080058776 | Jo et al. | Mar 2008 | A1 |
20080071208 | Voegele et al. | Mar 2008 | A1 |
20080103492 | Morley et al. | May 2008 | A1 |
20080177285 | Brock et al. | Jul 2008 | A1 |
20080243106 | Coe et al. | Oct 2008 | A1 |
20080314181 | Schena | Dec 2008 | A1 |
20090036902 | DiMaio | Feb 2009 | A1 |
20090198253 | Omori | Aug 2009 | A1 |
20090216249 | Jinno et al. | Aug 2009 | A1 |
20090247821 | Rogers | Oct 2009 | A1 |
20090248039 | Cooper et al. | Oct 2009 | A1 |
20090299141 | Downey et al. | Dec 2009 | A1 |
20100004508 | Naito et al. | Jan 2010 | A1 |
20100011900 | Burbank | Jan 2010 | A1 |
20100023025 | Zeiner et al. | Jan 2010 | A1 |
20100094130 | Ninomiya | Apr 2010 | A1 |
20100121347 | Jaspers | May 2010 | A1 |
20100160929 | Rogers et al. | Jun 2010 | A1 |
20100160940 | Lutze et al. | Jun 2010 | A1 |
20100170519 | Romo et al. | Jul 2010 | A1 |
20100225209 | Goldberg | Sep 2010 | A1 |
20100305595 | Hermann | Dec 2010 | A1 |
20100318099 | Itkowitz et al. | Dec 2010 | A1 |
20100318101 | Choi | Dec 2010 | A1 |
20100331859 | Omori | Dec 2010 | A1 |
20110087236 | Stokes et al. | Apr 2011 | A1 |
20110087238 | Wang | Apr 2011 | A1 |
20110213346 | Morley et al. | Sep 2011 | A1 |
20110230867 | Hirschfeld et al. | Sep 2011 | A1 |
20110275901 | Shelton, IV | Nov 2011 | A1 |
20110276084 | Shelton, IV | Nov 2011 | A1 |
20110290854 | Timm et al. | Dec 2011 | A1 |
20110301419 | Craft et al. | Dec 2011 | A1 |
20120027762 | Schofield | Feb 2012 | A1 |
20120031114 | Mueller et al. | Feb 2012 | A1 |
20120049623 | Nakayama | Mar 2012 | A1 |
20120095298 | Stefanchik et al. | Apr 2012 | A1 |
20120116163 | Lutze et al. | May 2012 | A1 |
20120132018 | Tang et al. | May 2012 | A1 |
20120143173 | Steege et al. | Jun 2012 | A1 |
20120158014 | Stefanchik et al. | Jun 2012 | A1 |
20120209292 | Devengenzo et al. | Aug 2012 | A1 |
20120253326 | Kleyman | Oct 2012 | A1 |
20120277762 | Lathrop et al. | Nov 2012 | A1 |
20120283745 | Goldberg | Nov 2012 | A1 |
20120289973 | Prisco et al. | Nov 2012 | A1 |
20120289974 | Rogers et al. | Nov 2012 | A1 |
20120296341 | Seibold et al. | Nov 2012 | A1 |
20130123805 | Park et al. | May 2013 | A1 |
20130144274 | Stefanchik et al. | Jun 2013 | A1 |
20130172713 | Kirschenman | Jul 2013 | A1 |
20130245643 | Woodard et al. | Sep 2013 | A1 |
20130245647 | Martin et al. | Sep 2013 | A1 |
20130282027 | Woodard et al. | Oct 2013 | A1 |
20130303408 | Indermuhle | Nov 2013 | A1 |
20130304083 | Kaercher et al. | Nov 2013 | A1 |
20130304084 | Beira et al. | Nov 2013 | A1 |
20140005681 | Gee et al. | Jan 2014 | A1 |
20140018447 | McGovern et al. | Jan 2014 | A1 |
20140018780 | Hirscheld | Jan 2014 | A1 |
20140076088 | Berkelman et al. | Mar 2014 | A1 |
20140114481 | Ogawa et al. | Apr 2014 | A1 |
20140135794 | Cau | May 2014 | A1 |
20140142595 | Awtar et al. | May 2014 | A1 |
20140166023 | Kishi | Jun 2014 | A1 |
20140180308 | Von Grunberg | Jun 2014 | A1 |
20140188091 | Vidal et al. | Jul 2014 | A1 |
20140188159 | Steege | Jul 2014 | A1 |
20140195010 | Beira | Jul 2014 | A1 |
20140200561 | Ingmanson et al. | Jul 2014 | A1 |
20140207150 | Rosa et al. | Jul 2014 | A1 |
20140230595 | Butt et al. | Aug 2014 | A1 |
20140249546 | Shvartsberg et al. | Sep 2014 | A1 |
20140263541 | Leimbach et al. | Sep 2014 | A1 |
20140263553 | Leimbach et al. | Sep 2014 | A1 |
20140276950 | Smaby et al. | Sep 2014 | A1 |
20140276951 | Hourtash et al. | Sep 2014 | A1 |
20140276956 | Crainich et al. | Sep 2014 | A1 |
20140350570 | Lee | Nov 2014 | A1 |
20150057499 | Erden et al. | Feb 2015 | A1 |
20150057702 | Edmondson et al. | Feb 2015 | A1 |
20150060517 | Williams | Mar 2015 | A1 |
20150066018 | Doll et al. | Mar 2015 | A1 |
20150105821 | Ward et al. | Apr 2015 | A1 |
20150113933 | Markt | Apr 2015 | A1 |
20150142018 | Sniffin et al. | May 2015 | A1 |
20150150575 | Hartoumbekis et al. | Jun 2015 | A1 |
20150250547 | Fukushima et al. | Sep 2015 | A1 |
20150265355 | Prestel et al. | Sep 2015 | A1 |
20160022365 | Jensen et al. | Jan 2016 | A1 |
20160051274 | Howell et al. | Feb 2016 | A1 |
20160151115 | Karguth et al. | Jun 2016 | A1 |
20160346053 | Beira | Dec 2016 | A1 |
20160374766 | Schuh | Dec 2016 | A1 |
20170245954 | Beira | Aug 2017 | A1 |
20170273749 | Grover et al. | Sep 2017 | A1 |
20170308667 | Beira et al. | Oct 2017 | A1 |
20170360522 | Beira | Dec 2017 | A1 |
20170367778 | Beira | Dec 2017 | A1 |
20180000472 | Beira | Jan 2018 | A1 |
20180000544 | Beira | Jan 2018 | A1 |
20180000550 | Beira | Jan 2018 | A1 |
20180055583 | Schuh et al. | Mar 2018 | A1 |
20180125519 | Beira et al. | May 2018 | A1 |
20180353252 | Chassot et al. | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
101584594 | Nov 2009 | CN |
101637402 | Feb 2010 | CN |
101732093 | Jun 2010 | CN |
103717355 | Apr 2014 | CN |
43 03 311 | Aug 1994 | DE |
19652792 | May 1999 | DE |
10314827 | Apr 2004 | DE |
10314828 | Jul 2004 | DE |
10 2012 222 755 | Jun 2014 | DE |
10 2014 205 036 | Sep 2015 | DE |
10 2014 205 159 | Sep 2015 | DE |
0 595 291 | May 1994 | EP |
0 621 009 | Oct 1994 | EP |
0 677 275 | Oct 1995 | EP |
0 776 739 | Jun 1997 | EP |
1 254 642 | Nov 2002 | EP |
1 279 371 | Dec 2004 | EP |
1 886 630 | Feb 2008 | EP |
1 889 579 | Feb 2008 | EP |
2 058 090 | May 2009 | EP |
1 977 677 | Aug 2009 | EP |
2 095 778 | Sep 2009 | EP |
1 889 583 | Apr 2011 | EP |
2 377 477 | May 2012 | EP |
2 473 119 | Jul 2012 | EP |
2 305 144 | Oct 2012 | EP |
2 044 893 | Jul 2013 | EP |
2 653 110 | Oct 2013 | EP |
2 679 192 | Jan 2014 | EP |
2 736 680 | Jun 2014 | EP |
2 777 561 | Sep 2014 | EP |
2 837 340 | Feb 2015 | EP |
2 837 354 | Feb 2015 | EP |
2 554 131 | Aug 2015 | EP |
2 979 657 | Feb 2016 | EP |
0 969 899 | Sep 1964 | GB |
2004-041580 | Feb 2004 | JP |
2007-290096 | Nov 2007 | JP |
2008-104620 | May 2008 | JP |
2009-018027 | Jan 2009 | JP |
20110032444 | Mar 2011 | KR |
20130031403 | Mar 2013 | KR |
WO-8200611 | Mar 1982 | WO |
WO-9743942 | Nov 1997 | WO |
WO-9825666 | Jun 1998 | WO |
WO-03067341 | Aug 2003 | WO |
WO-03086219 | Oct 2003 | WO |
WO-2004052171 | Jun 2004 | WO |
WO-2005009482 | Feb 2005 | WO |
WO-2005046500 | May 2005 | WO |
WO-2006086663 | Apr 2006 | WO |
WO-2007133065 | Nov 2007 | WO |
WO-2008130235 | Oct 2008 | WO |
WO-2009091497 | Jul 2009 | WO |
WO-2009095893 | Aug 2009 | WO |
WO-2009145572 | Dec 2009 | WO |
WO-2009157719 | Dec 2009 | WO |
WO-2010019001 | Feb 2010 | WO |
WO-2010030114 | Mar 2010 | WO |
WO-2010050771 | May 2010 | WO |
WO-2010083480 | Jul 2010 | WO |
WO-2010096580 | Aug 2010 | WO |
WO-2010130817 | Nov 2010 | WO |
WO-2011027183 | Mar 2011 | WO |
WO-2011123669 | Oct 2011 | WO |
WO-2012020386 | Feb 2012 | WO |
WO-2012049623 | Apr 2012 | WO |
WO-2013007784 | Jan 2013 | WO |
WO-2013014621 | Jan 2013 | WO |
WO-2013014621 | Jan 2013 | WO |
WO-2014012780 | Jan 2014 | WO |
WO-2014018447 | Jan 2014 | WO |
WO-2014067804 | May 2014 | WO |
WO-2014094716 | Jun 2014 | WO |
WO-2014094717 | Jun 2014 | WO |
WO-2014094718 | Jun 2014 | WO |
WO-2014094719 | Jun 2014 | WO |
WO-2014145148 | Sep 2014 | WO |
WO-2014156221 | Oct 2014 | WO |
WO-2014201010 | Dec 2014 | WO |
WO-2014201538 | Dec 2014 | WO |
WO-2015081946 | Jun 2015 | WO |
WO-2015081947 | Jun 2015 | WO |
WO-2015088647 | Jun 2015 | WO |
WO-2015088655 | Jun 2015 | WO |
WO-2015111475 | Jul 2015 | WO |
WO-2015113933 | Aug 2015 | WO |
WO-2015129383 | Aug 2015 | WO |
WO-2015139674 | Sep 2015 | WO |
WO-2015175200 | Nov 2015 | WO |
WO-2016030767 | Mar 2016 | WO |
WO-2016083189 | Jun 2016 | WO |
WO-2016097861 | Jun 2016 | WO |
WO-2016097864 | Jun 2016 | WO |
WO-2016097868 | Jun 2016 | WO |
WO-2016097871 | Jun 2016 | WO |
WO-2016097873 | Jun 2016 | WO |
WO-2016162751 | Oct 2016 | WO |
WO-2016162752 | Oct 2016 | WO |
WO-2016183054 | Nov 2016 | WO |
WO-016189284 | Dec 2016 | WO |
WO-2016189284 | Dec 2016 | WO |
WO-2017015599 | Jan 2017 | WO |
WO-2017064301 | Apr 2017 | WO |
WO-2017064303 | Apr 2017 | WO |
WO-2017064305 | Apr 2017 | WO |
WO-2017064306 | Apr 2017 | WO |
Entry |
---|
Abbott, et al., “Design of an Endoluminal Notes Robotic System,” IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, pp. 410-416 (2007). |
Aesculap Surgical Technologies, Aesculap® Caiman®, Advanced Bipolar Seal and Cut Technology Brochure, 6 pages (retrieved Aug. 31, 2015). |
Arata, et al., “Development of a dexterous minimally-invasive surgical system with augmented force feedback capability,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3207-3212 (2005). |
Çavuşo{hacek over (g)}lu, et al., “Laparoscopic Telesurgical Workstation,” IEEE Transactions on Robotics and Automation,(15)4:728-739 (1999). |
Dachs, et al., “Novel Surgical Robot Design: Minimizing the Operating Envelope Within the Sterile Field,” 28th International Conference, IEEE Engineering in Medicine Biology Society, New York, pp. 1505-1508 (2006). |
Dario, et al., “Novel Mechatronic Tool for Computer-Assisted Arthroscopy,” IEEE Transactions on Information Technology in Biomedicine, 4(1):15-29 (Mar. 2000). |
Focacci, et al., “Lightweight Hand-held Robot for Laparoscopic Surgery,” IEEE International Conference on Robotics & Automation, Rome, Italy, pp. 599-604 (2007). |
Guthart, et al., “The Intuitive™ Telesurgery System: Overview and Application,” IEEE International Conference on Robotics & Automation, San Francisco, CA, pp. 618-621 (2000). |
Ikuta, et al., “Development of Remote Microsurgery Robot and New Surgical Procedure for Deep and Narrow Space,” IEEE International Conference on Robotics & Automation, Taipei, Taiwan, pp. 1103-1108 (2003). |
Ikuta, et al., “Hyper Redundant Miniature Manipulator ‘Hyper Finger’ for Remote Minimally Invasive Surgery in Deep Area,” IEEE International Conference on Robotics & Automation, Taipei, Taiwan, pp. 1098-1102 (2003). |
International Search Report & Written Opinion dated Feb. 2, 2017 in Int'l PCT Patent Appl. Serial No. PCT/IB2016/001286. |
International Search Report & Written Opinion dated Jan. 18, 2013 in Int'l PCT Patent Appl Serial No. PCT/IB2012/053786. |
International Search Report dated Jan. 18, 2013 in Int'l PCT Patent Appl Serial No. PCT/IB2012/053786. |
International Search Report dated Mar. 23, 2012 in Int'l PCT Patent Appl Serial No. PCT/IB2011/054476. |
Ishii, et al., “Development of a New Bending Mechanism and Its Application to Robotic Forceps Manipulator,” IEEE International Conference on Robotics & Automation, Rome, Italy, pp. 238-243 (2007). |
International Search Report & Written Opinion dated May 23, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2015/002524. |
International Search Report & Written Opinion dated Mar. 30, 2015 in Int'l PCT Patent Appl Serial No. PCT/EP2015/051473. |
International Search Report & Written Opinion dated Apr. 26, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2015/002512. |
International Search Report & Written Opinion dated May 24, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2015/002487. |
International Search Report & Written Opinion dated Jun. 10, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2015/002533. |
International Search Report & Written Opinion dated Jun. 13, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2015/002493. |
International Search Report & Written Opinion dated Aug. 25, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2016/000542. |
International Search Report & Written Opinion dated Sep. 2, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2016/000543. |
Kobayashi, et al., “Small Occupancy Robotic Mechanisms for Endoscopic Surgery,” International Conference on Medical Image Computing and Computer assisted Interventions, pp. 75-82 (2002). |
Mayer, et al., “The Endo[PA]R System for Minimally Invasive Robotic Surgery,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, pp. 3637-3642 (2004). |
Mitsuishi, et al., “Development of a Remote Minimally Invasive Surgical System with Operational Environment Transmission Capability,” IEEE International Conference on Robotics & Automation, Taipei, Taiwan, pp. 2663-2670 (2003). |
Nakamura, et al., “Multi-DOF Forceps Manipulator System for Laparoscopic Surgery-Mechanism miniaturized & Evaluation of New Interface,” 4th International Conference on Medical Image Computing and Computer assisted Interventions (MICCAI2001), pp. 606-613 (2001). |
Peirs, et al., “Design of an advanced tool guiding system for robotic surgery,” IEEE International Conference on Robotics & Automation, Taipei, Taiwan, pp. 2651-2656 (2003). |
Sallé, et al., “Optimal Design of High Dexterity Modular MIS Instrument for Coronary Artery Bypass Grafting,” IEEE International Conference on Robotics & Automation, New Orleans, LA, pp. 1276-1281 (2004). |
Seibold, et al., “Prototype of Instrument for Minimally Invasive Surgery with 6-Axis Force Sensing Capability,” IEEE International Conference on Robotics & Automation, Barcelona, Spain, pp. 496-501 (2005). |
Simaan et al., “Dexterous System for Laryngeal Surgery: Multi-Backbone Bending Snake-like Slaves for Teleoperated Dexterous Surgical Tool Manipulation,” IEEE International Conference on Robotics & Automation, New Orleans, LA, pp. 351-357 (2004). |
Stryker®, Endoscopy, Take a Look Around, Ideal Eyes™ FFD122 HD, Articulating Laparoscope Brochure, 2 pages (2009). |
Swiss Search Report dated Jun. 4, 2012 in Swiss Patent Application No. CH 00702/12. |
Tavakoli, et al., “Force Reflective Master-Slave System for Minimally Invasive Surgery,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV, pp. 3077-3082 (2003). |
Taylor, et al., “Steady-Hand Robotic System for Microsurgical Augmentation,” The International Journal of Robotics Research, 18(12):1201-1210 (1999). |
www.cttc.co/technologies/maestro-non-robotic-dexterous-laproscopic-instrument-writs-providing-seven-degrees, “Maestro: Non-Robotic Dexterous Laproscopic Instrument With a Wrist Providing Seven Degrees of Freedom”, accessed Nov. 12, 2015, 4 pages. |
Yamashita, et al., “Development of Endoscopic Forceps Manipulator Using Multi-Slider Linkage Mechanisms,” The 1st Asian Symposium on Computer Aided Surgery-Robotic and Image-Guided Surgery, Ibaraki, Japan, 4 pages. (2005). |
Zeus, “Robotic Surgical System” available at http://allaboutroboticsurgery.com/zeusrobot.html. |
Charles, et al., Dexterity-enhanced Telerobotic Microsurgery, Advanced Robotics, ICAR '97. Proceedings, 8th Int'l Conference (1997). |
ISR & Written Opinion dated Feb. 17, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2015/002095. |
Lang, et al., Intra-operative robotics: NeuroArm., Acta Neurochir Suppl, 109:231-236 (2011). |
Mitsuishi, et al., Master-slave robotic platform and its feasibility study for micro-neurosurgery, Int. J. Med. Robot., 9(2):180-9 (2013). |
Morita, et al., Microsurgical robotic system for the deep surgical field: development of a prototype and feasibility studies in animal and cadaveric models, J. Neurosurg., 103(2):320-7 (2005). |
International Search Report & Written Opinion dated Jul. 10, 2018 in Int'l PCT Patent Appl. Serial No. PCT/IB2018/053272. |
Number | Date | Country | |
---|---|---|---|
20170245954 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
62042789 | Aug 2014 | US |