Switching circuit layout with heatsink

Abstract
A circuit board adapted for use in an switching converter for connecting a plurality of switches including a first switch, a second switch, a third switch and a fourth switch. The circuit board has a layout for connecting the switches. The layout is adapted for locating the switches substantially at or symmetrically with respect to the endpoints of a right-angle cross. The right-angle cross is formed from two line segments intersecting with a ninety degree angle. The circuit board may offsets the switches perpendicularly to the line segments at the endpoints of the line segments either in a clockwise or a counterclockwise direction.
Description
BACKGROUND

1. Technical Field


The present invention relates to switching converters and to specifically a circuit layout of four switches


2. Description of Related Art


The thermal resistance of materials used to package electronic components is of great interest to electronic engineers, because most electrical components generate heat and need to be cooled. Electronic components need to be cooled to avoid premature aging and consequent failure. Also, effective cooling of the electronic component(s) susceptible to generating heat in a circuit allows for a stable, efficient and predictable performance of the circuit. In particular, heat generated from electronic components in power supply/conversion circuits are mostly derived from the main switching devices.


Heat sinks function by efficiently transferring thermal energy or heat from a first object at a relatively high temperature to a second object or the environment at a lower temperature with a much greater heat capacity. This rapid transfer of thermal energy quickly brings the first object into thermal equilibrium with the second object or environment, lowering the temperature of the first object thus fulfilling the role of a heat sink as a cooling device.



FIGS. 1
a and 1b show a plan and side view respectively of a circuit board 100 with heat sink 102 according to conventional art. Four switches 104 are shown. Switches 104 are electrically connected to circuit board 100 via legs 106. Plate 104a is used to mechanically attach switch 104 to heat sink 102 using threaded screw 108. An application of a heat sink compound (typically made from zinc oxide in a silicone base) is applied between plate 104a and heat sink 102 prior to fastening with threaded screw 108. The heat sink compound allows for better heat transfer from switch 104 and heat sink 102 to allow for the uneven surfaces of either plate 104a or heat sink 102. Typically switch 104 is a semiconductor switch such as a metal oxide semi-conductor field effect transistor (MOSFET) or insulated gate bipolar transistor (IGBT).



FIG. 2
a shows a conventional full bridge converter 20. Full bridge DC to DC converter 20 has four main switches S1, S2, S3 and S4 connected together in a full bridge configuration. Switches S1, S2, S3 and S4 are insulated gate bipolar transistors. The collectors of switch S1 and switch S3 are connected together at node Y1 and the emitters of switch S2 and switch S4 are connected together at node Y2. The emitter of switch S1 is connected to the collector of switch S2 and the emitter of switch S3 is connected to the collector of switch S4. Each of the four main switches (S1, S2, S3 and S4) has respective diode shunts (D1, D2, D3 and D4) connected in parallel thereto. The diode shunts may be inherent parasitic diodes of the IGBTs, or may be discrete components. The diodes placed across switches S1 and S2 are in both the same direction similarly the diodes of switch S3 and switch S4 are both in the same direction. In the case where full bridge converter 50 is operated as a DC-to-DC converter all diodes (D1, D2, D3 and D4) connected across switches S1, S2, S3 and S4 are reverse biased with respect to the input voltage Vin. An input voltage (Vin) of full bridge converter 20 is connected across the node (Y2) between switches S2 and S4 and an input voltage (Vin+) is connected at the node (Y1) between switches S1 and S3. An output voltage (Vout) of full bridge converter 20 is connected across the node (X1) between switches S1 and S2 and output voltage Vout+ is connected at the node (X2) between switches S3 and S4. Switching of full bridge converter 20 is typically done in a manner such that while switches S1 and S4 are ON, switches S3 and S2 are OFF and vice versa.



FIG. 2
b shows a typical conventional buck-boost DC-to-DC converter circuit 22. The buck circuit of buck-boost DC-to-DC converter 22 has an input voltage Vin with an input capacitor C1 connected in parallel across Vin. Two switches are implemented as field effect transistors (FET) with integral diodes: a high side buck switch Q1 and a low side buck switch Q2 connected in series by connecting the source of Q1 to the drain of Q2. The drain of Q1 and the source of Q2 are connected parallel across an input capacitor C1. A node is formed between switches Q1 and Q2 to which one end of an inductor 206 is connected. The other end of inductor 206 is connected to the boost circuit of buck-boost DC-to-DC converter 22 at a second connecting two switches: a high side boost switch Q4 and a low side boost switch Q3 together in series where the source of Q4 connects to the drain of Q3 to form node B. The drain of Q4 and the source of Q3 connect across an output capacitor C2 to produce the output voltage Vout of buck-boost DC-to-DC converter 22.


At higher switching frequencies of switched inverters/converters, lower values of reactive components can be used in circuit to achieve the required output characteristics of the inverters/converters. However, the increase in frequency can have the undesirable effect of increasing electromagnetic interference (EMI) if good circuit design and good circuit layout practices are not followed. Remembering that currents flowing in a closed path, i.e. a loop (formed by circuit board traces) acts as an efficient radiator of electromagnetic energy, maximum radiation efficiency occurs when the loop dimension is on the order of one-half wavelength. To minimize the radiation efficiency, that is to reduce radiated noise, the loop is made as physically small as possible by being aware of parasitic inductances in the board traces. High-frequency currents follow the path of least impedance (and not the path of least resistance) and a way to reduce the inductive impedance (XL=2πfL) of parasitic inductances (L) is to reduce the frequency (f) or to reduce the size of the loop, since a longer loop gives more parasitic inductance (L). Power loss (P) in the loop is the product of the inductive impedance (XL) squared and the high frequency current in the loop.


Both static and dynamic power losses occur in any switching inverter/converter. Static power losses include I2R (conduction) losses in the wires or PCB traces, as well as in the switches and inductor, as in any electrical circuit. Dynamic power losses occur as a result of switching, such as the charging and discharging of the switch gate, and are proportional to the switching frequency.


BRIEF SUMMARY

According to an embodiment of the present invention there is provided a circuit board adapted for use in a switching converter for connecting a plurality of switches including a first switch, a second switch, a third switch and a fourth switch. The circuit board has a layout for connecting the switches. The layout is adapted for locating the switches substantially at the endpoints of a right-angle cross. The layout is adapted for locating the switches substantially symmetrically with respect to the endpoints of the right-angle cross. The right-angle cross is formed from two line segments intersecting with a ninety degree angle. The circuit board offsets all the switches perpendicularly to the line segments at the endpoints of the line segments either in a clockwise or a counterclockwise direction. The layout typically includes a respective cutout for the switches. The switches are typically chassis mounted.


According to yet another embodiment of the present invention there is provided a switching converter having multiple switches including a first switch, a second switch, a third switch and a fourth switch. A circuit board has a layout for connecting the switches. The layout locates the switches substantially at the endpoints of a right-angle cross or substantially symmetrically with respect to the endpoints of the right-angle cross. The switches are interconnected in a full bridge switching topology. The switches are interconnected in a buck-boost switching topology. A heat-sink is operatively attached to the switches for conducting heat from the switches. The switches are preferably insulated gate bipolar junction transistors (IGBT). The layout includes cutouts for the switches, having a chassis mounting for the insulated gate bipolar junction transistors; and a heat sink attached to the transistors and the chassis. The right-angle cross is formed from two line segments intersecting with a ninety degree angle. The circuit board may offset the switches perpendicularly to the line segments at the endpoints of the line segments either in a clockwise or a counterclockwise direction, thereby forming the layout of the switches in the shape of a fylfot cross. The first switch and the third switch are at the endpoints of the first line segment forming a first pair of the switches and the second switch and the fourth switch are at the endpoints of the second line segment forming a second pair of the switches. The switching converter switches alternately the first pair of switches and the second pair of switches. The right-angle cross is formed from two line segments intersecting with substantially a ninety degree angle. The circuit board may offset only two of the switches perpendicularly to one of the line segments at the endpoints of the one line segment either in a clockwise or an counterclockwise direction. The switching converter is mounted vertically so that the one line segment is substantially vertical and one of the two switches is substantially below the second of the two switches so that while the switching converter is operating, the heat from the lower of the two switches does not flow near the upper of the two switches. The first switch, the second switch, the third switch and the fourth switch may include: silicon controlled rectifier (SCR), insulated gate bipolar junction transistor (IGBT), bipolar junction transistor (BJT), field effect transistor (FET), junction field effect transistor (JFET), switching diode, electrical relay, reed relay, solid state relay, insulated gate field effect transistor (IGFET), diode for alternating current (DIAC), and/or triode for alternating current TRIAC.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is herein described, by way of example only, with reference to the accompanying drawings, wherein:



FIGS. 1
a and 1b show a plan and side view of a circuit board with heat sink according to conventional art;



FIG. 1
b shows a plan and side view of the circuit board with heat sink 102 shown in FIG. 1a according to conventional art;



FIG. 2
a shows a conventional full bridge converter according to conventional art;



FIG. 2
b shows a typical conventional buck-boost DC-to-DC converter circuit according to conventional art;



FIG. 3
a shows a right-angle cross topology according to an exemplary embodiment of the present invention;



FIG. 3
b shows a fylfot cross topology according to an exemplary embodiment of the present invention;



FIG. 3
c shows another fylfot cross topology according to an exemplary embodiment of the present invention;



FIG. 4
a shows a plan view of a circuit board and heat sink according to an exemplary embodiment of the present invention;



FIG. 4
b which shows the side view of the circuit board and heat sink shown in FIG. 4a according to an exemplary embodiment of the present invention;



FIG. 5
a shows a plan view of a circuit board and heat sink according to another exemplary embodiment of the present invention; and



FIG. 5
b which shows the side view of the circuit board and heat sink shown in FIG. 5a according to an exemplary embodiment of the present invention.





The foregoing and/or other aspects will become apparent from the following detailed description when considered in conjunction with the accompanying drawing figures.


DETAILED DESCRIPTION

Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The embodiments are described below to explain the present invention by referring to the figures.


By way of introduction, an intention of embodiments of the present invention is to minimize the lengths of the conductors between switches of a switching converter/inverter, minimizing interference due to parasitic capacitance and inductance, reducing electro-magnetic interference (EMI) emissions and thereby maximizing the efficiency of the switching converter.


It should be noted, that although the discussion herein relates to switching topology for a four insulated gate bipolar junction transistors (IGBT) full bridge inverter, the present invention may, by non-limiting example, alternatively be configured as well using other types of DC-DC converters AC-DC inverters including buck, boost, buck-boost full bridge topologies with 4 switch topologies for both power supply and regulation applications.


Before explaining embodiments of the invention in detail, it is to be understood that the invention is not limited in its application to the details of design and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.


The term “switch” as used herein refers to any type of switch known in the art of electronics switches such as silicon controlled rectifier (SCR), insulated gate bipolar junction transistor (IGBT), metal oxide semi-conductor field effect transistor (MOSFET), bipolar junction transistor (BJT), field effect transistor (FET), junction field effect transistor (JFET), switching diode, electrical relay, reed relay, solid state relay, insulated gate field effect transistor (IGFET), DIAC, and TRIAC.


The term “switching converter” as used herein applies to power converters, AC-to-DC converters, DC-to-DC converters, DC-to-AC inverters, buck converters, boost converters, buck-boost converters, full-bridge converters or any other type of electrical power conversion/inversion known in the art.


With reference to FIG. 3a, the term “right-angle cross” as used herein is a cross of two line segments (arm 36 and arm 34) typically at or near their center points 30 at or close to right angles (e.g. about 80-100 degrees). The two line segments are optionally of equal length or unequal length.


With reference to FIGS. 3b and 3c the term “fylfot cross” as used herein has two arms; arm 36 and arm 34 which are crossed a right angles at a point 32. Arm 36 at each end has a hand 300 and a hand 304 which are offset perpendicular to arm 36 in an anti-clockwise direction in FIG. 3b. Arm 34 at each end has a hand 302 and a hand 306 which are offset perpendicular to arm 34 in an anti-clockwise direction in FIG. 3b. In FIG. 3c, arm 36 at each end has a hand 312 and a hand 308 which are offset perpendicular to arm 36 in a clockwise direction. Arm 34 at each end has a hand 310 and a hand 314 which are offset perpendicular to arm 34 in a clockwise direction in FIG. 3c.


Reference is now made to FIGS. 4a and 4b which show a plan and side view respectively of a circuit board 400 and heat sink 406 according to an exemplary embodiment of the present invention. Circuit board 400 has four switches S1, S2, S3 and S4 connected electrically to circuit board 400 via leads 408. Switches S1, S2, S3 and S4 are preferably insulated gate bipolar junction transistors (IGBTs). Switches S1, S2, S3 and S4 are preferably connected electrically together according to full bridge converter 20 shown in FIG. 2a. Circuit board 400 is mechanically attached to heat sink 406 for instance via a screw and pillar arrangement 410. Switches S1, S2, S3 and S4 are mechanically and thermally attached to heat sink 406. Cutouts CO1, CO2, CO3 and CO4 in circuit board 400 allow the mechanical and thermal attachment of switches S1, S2, S3 and S4 to heat sink 406.


The layout of switches S1, S2, S3 and S4 is based upon a right-angle cross topology with dotted lines 404 and 402 forming the two arms of the right-angle cross topology. Switches S1 and S4 lay on or symmetrically with respect to arm/axis 402 and switches S2 and S3 lay on an arm/axis 404. The intersection between arm/axis 402 and arm/axis 404, forms the cross portion of right-angle cross topology. In further embodiments of the present invention, perpendicular offsets of switches S1, S4, S2 and S3 (and cutouts C01, CO2, CO3 and C04 in circuit board 400) relative to arms/axis 402 and arm/axis 404 respectively are made such that the offsets are in either a clockwise or anti-clockwise direction. Typically a 50% switching duty cycle is applied to S1, S2, S3 and S4 such that while switches S1 and S4 are ON, switches S3 and S2 are OFF and vice versa. Typically circuit board 400 and heat sink 406 are mounted vertically so that the flow of heat in heat sink 506 generated by switches S1, S2, S3 and S4 flows vertically by convection. Using the plan view of FIG. 4a as the vertical mounting of circuit board 400 and heat sink 406, layout of switches S1, S2, S3 and S4 are such that for example; the heat in heat sink 406 from switches S2 and S3 does not flow near switches S1 and S4 and the distance between S1 and S4 is such that the vertical flow of heat in heat sink 406 of switches S1 and S4 does not affect each other. Alternatively just switches S1 and S4 can be offset in either a clockwise or anti-clockwise direction, so that the vertical flow of heat in heat sink 406 of switches S1 and S4 does not affect each other.


In a typical computer aided design/simulation of circuit board 400, perpendicular offsets of switches S1, S4, S2 and S3 relative to arms/axis 402 and arm/axis 404 respectively and the distance between switches S1 and S4 along arm/axis 402 and switches S2 and S3 along arm/axis 404 respectively, are preferably chosen in order to achieve minimal electromagnetic interference (EMI), minimal impedance of circuit board 400 traces and efficient heat transfer between switches S1, S2, S3 and S4 and heat sink 406.


Reference is now made to FIGS. 5a and 5b which show a plan and side view respectively of a circuit board 500 and heat sink 506 according to an exemplary embodiment of the present invention. Circuit board 500 has four switches S1, S2, S3 and S4 connected electrically to circuit board 500 via leads 508. Switches S1, S2, S3 and S4 are preferably insulated gate bipolar junction transistors (IGBTs). Switches S1, S2, S3 and S4 are preferably connected electrically together according to full bridge converter 20 shown in FIG. 2a. Circuit board 500 is mechanically attached to heat sink 506 via a screw and pillar arrangement 510. Switches S1, S2, S3 and S4 are mechanically and thermally attached to heat sink 506. Cutouts CO1, CO2, CO3 and CO4 in circuit board 500 allow the mechanical and thermal attachment of switches S1, S2, S3 and S4 to heat sink 506.


Referring again to FIG. 5a, the layout of switches S1, S2, S3 and S4 is based upon a fylfot cross topology. Switches S1 and S4 lay parallel to arm/axis 502 and switches S2 and S3 lay parallel to arm/axis 504. The intersection between arm/axis 502 and arm/axis 504, form the right-angle cross portion of the fylfot cross topology. The hands of the fylfot cross topology are represented by dotted lines as hand 512, hand 516, hand 514 and hand 518. Hand 512 and hand 514 represent respectively the offsets of switches S1 and S4 with respect to arm/axis 502. Hand 516 and hand 518 represent respectively the offsets of switches S2 and S3 with respect to arm/axis 504. In FIG. 5a hand 512, hand 516, hand 514 and hand 518 are offset from axis/arms 502 and 504 in an anti-clockwise direction, alternatively hand 512, hand 516, hand 514 and hand 518 may be offset from axis/arms 502 and 504 in a clockwise direction. Typically circuit board 500 and heat sink 506 are mounted vertically so that the flow of heat in heat sink 506 generated by switches S1, S2, S3 and S4 flows vertically by convection. Using the plan view of FIG. 5a as an example of vertically mounting circuit board 500 and heat sink 506, the layout of switches S1, S2, S3 and S4 are such that for example; the vertical flow of heat from switch S2 does not significantly run into the vertical heat flow of switch S1, the vertical flow of heat from switch S1 does not significantly run into the vertical heat flow of switch S4 and the vertical flow of heat from switch S4 does not run significantly into the vertical heat flow of switch S3.


The definite articles “a”, “an” is used herein, such as “a switch converter”, “a switch” have the meaning of “one or more” that is “one or more switch converters” or “one or more switches”.


Although selected embodiments of the present invention have been shown and described, it is to be understood the present invention is not limited to the described embodiments. Instead, it is to be appreciated that changes may be made to these embodiments without departing from the principles and spirit of the invention, the scope of which is defined by the claims and the equivalents thereof.

Claims
  • 1. A switching converter comprising: a plurality of switches including a first switch, a second switch, a third switch and a fourth switch;a circuit board having a layout for connecting said switches, wherein said layout locates said switches substantially at endpoints of a right-angle cross, wherein said layout includes cutouts at the endpoints of said right angle cross, and wherein said switches are located within said cutouts;a chassis mounting said switches; anda heat sink attached to said switches and said chassis.
  • 2. The switching converter of claim 1, wherein said layout is adapted for locating said switches substantially symmetrically with respect to the endpoints of said right-angle cross.
  • 3. The switching converter of claim 1, wherein said switches are interconnected in a full bridge switching topology.
  • 4. The switching converter of claim 1, wherein said switches are interconnected in a buck-boost switching topology.
  • 5. The switching converter of claim 1, wherein said heat sink conducts heat from said switches.
  • 6. The switching converter of claim 1, wherein said first switch, said second switch, said third switch and said fourth switch are selected from the group consisting of: a silicon controlled rectifier (SCR), an insulated gate bipolar junction transistor (IGBT), a bipolar junction transistor (BJT), a field effect transistor (FET), a junction field effect transistor (JFET), a switching diode, an electrical relay, a reed relay, a solid state relay, an insulated gate field effect transistor (IGFET), a diode for alternating current (DIAC), and a triode for alternating current (TRIAC).
  • 7. The switching converter of claim 1, wherein said switches are insulated gate bipolar junction transistors (IGBT).
  • 8. The switching converter of claim 1, wherein said right-angle cross is formed from two line segments intersecting with a ninety degree angle, wherein the circuit board offsets all said switches perpendicularly to said line segments at the endpoints of the line segments either in a clockwise or a counterclockwise direction, thereby forming said layout of said switches in a shape of a fylfot cross.
  • 9. The switching converter of claim 1, wherein said right-angle cross is formed from two line segments, including a first line segment and a second line segment intersecting with a ninety degree angle, wherein said first switch and said third switch are at the endpoints of said first line segment forming a first pair of said switches and said second switch and said fourth switch are at the endpoints of said second line segment forming a second pair of said switches, and wherein the switching converter switches alternately said first pair of said switches and said second pair of said switches.
  • 10. The switching converter of claim 1, wherein said right-angle cross is formed from two line segments intersecting with a ninety degree angle, wherein the circuit board offsets only two of said switches perpendicularly to one of said line segments at the endpoints of said one line segment either in a clockwise or a counterclockwise directions.
  • 11. The switching converter of claim 10, wherein, when the switching converter is mounted vertically, said one line segment is substantially vertical and one of said two switches is substantially below and offset horizontally from the second of said two switches so that while the switching converter is operating heat from the lower of said two switches does not flow vertically near the upper of said two switches.
  • 12. A switching converter comprising: a chassis;a heat sink;a circuit board having a first switch, a second switch, a third switch and a fourth switch connected thereto, wherein the circuit board includes cutouts, wherein said switches are located within the cutouts and mounted to the heat sink, wherein the heat sink and circuit board are mounted vertically within the chassis, and wherein the switches are located such that heat from any one of the switches does not flow vertically through the heat sink to the other switches.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application benefits from U.S. provisional application 61/060,878 filed on Jun. 12, 2008 by the present inventors.

US Referenced Citations (131)
Number Name Date Kind
3369210 Manickella Feb 1968 A
3596229 Hohorst Jul 1971 A
4171861 Hohorst Oct 1979 A
4452867 Conforti Jun 1984 A
4460232 Sotolongo Jul 1984 A
4623753 Feldman et al. Nov 1986 A
4637677 Barkus Jan 1987 A
4641079 Kato et al. Feb 1987 A
4783728 Hoffman Nov 1988 A
4903851 Slough Feb 1990 A
4987360 Thompson Jan 1991 A
5045988 Gritter et al. Sep 1991 A
5280232 Kohl et al. Jan 1994 A
5460546 Kunishi et al. Oct 1995 A
5497289 Sugishima et al. Mar 1996 A
5548504 Takehara Aug 1996 A
5604430 Decker et al. Feb 1997 A
5646501 Fishman et al. Jul 1997 A
5773963 Blanc et al. Jun 1998 A
5780092 Agbo et al. Jul 1998 A
5798631 Spee et al. Aug 1998 A
5801519 Midya et al. Sep 1998 A
5804894 Leeson et al. Sep 1998 A
5821734 Faulk Oct 1998 A
5822186 Bull et al. Oct 1998 A
5838148 Kurokami et al. Nov 1998 A
5869956 Nagao et al. Feb 1999 A
5873738 Shimada et al. Feb 1999 A
5892354 Nagao et al. Apr 1999 A
5923158 Kurokami et al. Jul 1999 A
5933327 Leighton et al. Aug 1999 A
5945806 Faulk Aug 1999 A
5963010 Hayashi et al. Oct 1999 A
5990659 Frannhagen Nov 1999 A
6031736 Takehara et al. Feb 2000 A
6038148 Farrington et al. Mar 2000 A
6046919 Madenokouji et al. Apr 2000 A
6050779 Nagao et al. Apr 2000 A
6082122 Madenokouji et al. Jul 2000 A
6105317 Tomiuchi et al. Aug 2000 A
6111188 Kurokami et al. Aug 2000 A
6111391 Cullen Aug 2000 A
6111767 Handleman Aug 2000 A
6163086 Choo Dec 2000 A
6166455 Li Dec 2000 A
6166527 Li Dec 2000 A
6169678 Kondo et al. Jan 2001 B1
6259234 Perol Jul 2001 B1
6262558 Weinberg Jul 2001 B1
6285572 Onizuka et al. Sep 2001 B1
6320769 Kurokami et al. Nov 2001 B2
6339538 Handleman Jan 2002 B1
6493246 Suzui et al. Dec 2002 B2
6531848 Chitsazan et al. Mar 2003 B1
6545211 Mimura Apr 2003 B1
6548205 Leung et al. Apr 2003 B2
6590793 Nagao et al. Jul 2003 B1
6608468 Nagase Aug 2003 B2
6611441 Kurokami et al. Aug 2003 B2
6672018 Shingleton Jan 2004 B2
6678174 Suzui et al. Jan 2004 B2
6690590 Stamenic et al. Feb 2004 B2
6738692 Schienbein et al. May 2004 B2
6768047 Chang et al. Jul 2004 B2
6788033 Vinciarelli Sep 2004 B2
6795318 Haas et al. Sep 2004 B2
6801442 Suzui et al. Oct 2004 B2
6914418 Sung Jul 2005 B2
6919714 Delepaut Jul 2005 B2
6936995 Kapsokavathis et al. Aug 2005 B2
6963147 Kurokami et al. Nov 2005 B2
6984970 Capel Jan 2006 B2
7030597 Bruno et al. Apr 2006 B2
7031176 Kotsopoulos et al. Apr 2006 B2
7042195 Tsunetsugu et al. May 2006 B2
7046531 Zocchi et al. May 2006 B2
7053506 Alonso et al. May 2006 B2
7072194 Nayar et al. Jul 2006 B2
7079406 Kurokami et al. Jul 2006 B2
7087332 Harris Aug 2006 B2
7090509 Gilliland et al. Aug 2006 B1
7091707 Cutler Aug 2006 B2
7126053 Kurokami et al. Oct 2006 B2
7126294 Minami et al. Oct 2006 B2
7148669 Maksimovic et al. Dec 2006 B2
7291036 Daily et al. Nov 2007 B1
7385833 Keung Jun 2008 B2
7420815 Love Sep 2008 B2
7435134 Lenox Oct 2008 B2
7435897 Russell Oct 2008 B2
7600349 Liebendorfer Oct 2009 B2
7748175 Liebendorfer Jul 2010 B2
7759575 Jones et al. Jul 2010 B2
7763807 Richter Jul 2010 B2
7780472 Lenox Aug 2010 B2
7960650 Richter et al. Jun 2011 B2
8003885 Richter et al. Aug 2011 B2
20030080741 LeRow et al. May 2003 A1
20040201279 Templeton Oct 2004 A1
20050057214 Matan Mar 2005 A1
20050057215 Matan Mar 2005 A1
20050068820 Radosevich et al. Mar 2005 A1
20050172995 Rohrig et al. Aug 2005 A1
20060001406 Matan Jan 2006 A1
20060038692 Schnetker Feb 2006 A1
20060108979 Daniel et al. May 2006 A1
20060149396 Templeton Jul 2006 A1
20060162772 Presher, Jr. et al. Jul 2006 A1
20060174939 Matan Aug 2006 A1
20060185727 Matan Aug 2006 A1
20060192540 Balakrishnan et al. Aug 2006 A1
20060208660 Shinmura et al. Sep 2006 A1
20070013080 DiBene et al. Jan 2007 A1
20070044837 Simburger et al. Mar 2007 A1
20070147075 Bang Jun 2007 A1
20070159866 Siri Jul 2007 A1
20080080177 Chang Apr 2008 A1
20080097655 Hadar et al. Apr 2008 A1
20080136367 Adest et al. Jun 2008 A1
20080136732 O'Connell et al. Jun 2008 A1
20080144294 Adest et al. Jun 2008 A1
20080238195 Shaver et al. Oct 2008 A1
20090084570 Gherardini et al. Apr 2009 A1
20090282755 Abbott et al. Nov 2009 A1
20100269430 Haddock et al. Oct 2010 A1
20100282290 Schwarze et al. Nov 2010 A1
20100294528 Sella et al. Nov 2010 A1
20100294903 Shmukler et al. Nov 2010 A1
20100297860 Shmukler et al. Nov 2010 A1
20110114154 Lichy et al. May 2011 A1
20110271611 Maracci et al. Nov 2011 A1
Foreign Referenced Citations (20)
Number Date Country
0420295 Apr 1991 EP
0604777 Jul 1994 EP
1531545 May 2005 EP
1657797 May 2006 EP
2249147 Mar 2006 ES
2003134667 May 2003 JP
2007058845 Mar 2007 JP
9313587 Jul 1993 WO
9613093 May 1996 WO
9823021 May 1998 WO
03050938 Jun 2003 WO
03071655 Aug 2003 WO
2004023278 Mar 2004 WO
2004090993 Oct 2004 WO
2004107543 Dec 2004 WO
2005076445 Aug 2005 WO
2006078685 Jul 2006 WO
2007006564 Jan 2007 WO
2007084196 Jul 2007 WO
2007113358 Oct 2007 WO
Non-Patent Literature Citations (26)
Entry
International Search Report for PCT/IB2007/004610 dated Feb. 23, 2009.
International Search Report for PCT/IB2007/004584 dated Jan. 28, 2009.
International Search Report for PCT/IB2007/004586 dated Mar. 5, 2009.
International Search Report for PCT/IB2007/004643 dated Jan. 30, 2009.
International Search Report for PCT/US2008/085736 dated Jan. 28, 2009.
International Search Report for PCT/US2008/085754 dated Feb. 9, 2009.
International Search Report for PCT/US2008/085755 dated Feb. 3, 2009.
Kajihara, et al., “Model of Photovoltaic Cell Circuits Under Partial Shading”, 2005 IEEE, pp. 866-870.
Knaupp, et al., “Operation of a 10 KW PV Façade with 100 W AC Photovoltaic Modules”, 1996 IEEE, 25th PVSC, May 13-17, 1996, pp. 1235-1238, Washington, DC.
Alonso, et al., “Cascaded H-Bridge Multilevel Converter for Grid Connected Photovoltaic Generators with Independent Maximum Power Point Tracking of Each Solor Array”, 2003 IEEE 34th, Annual Power Electronics Specialists Conference, Acapulco, Mexico, Jun. 15-19, 2003, pp. 731-735, vol. 2.
Myrzik, et al., “String and Module Integrated Inverters for Single-Phase Grid Connected Photovoltaic Systems—A Review”, Power Tech Conference Proceedings, 2003 IEEE Bologna, Jun. 23-26, 2003, p. 8, vol. 2.
Chen, et al., “Predictive Digital Current Programmed Control”, IEEE Transactions on Power Electronics, vol. 18, Issue 1, Jan. 2003.
Wallace, et al., “DSP Controlled Buck/Boost Power Factor Correction for Telephony Rectifiers”, Telecommunications Energy Conference 2001, INTELEC 2001, Twenty-Third International, Oct. 18, 2001, pp. 132-138.
Alonso, “A New Distributed Converter Interface for PV Panels”, 20th European Photovoltaic Solar Energy Conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2288-2291.
Alonso, “Experimental Results of Intelligent PV Module for Grid-Connected PV Systems”, 21st European Photovoltaic Solar Energy Conference, Sep. 4-8, 2006, Dresden, Germany, pp. 2297-2300.
Enslin, “Integrated Photovoltaic Maximum Power Point Tracking Converter”, IEEE Transactions on Industrial Electronics, vol. 44, No. 6, Dec. 1997, pp. 769-773.
Lindgren, “Topology for Decentralised Solar Energy Inverters with a Low Voltage AC-Bus”, Chalmers University of Technology, Department of Electrical Power Engineering, EPE '99—Lausanne.
Nikraz, “Digital Control of a Voltage Source Inverter in a Photovoltaic Applications”, 2004 35th Annual IEEE Power Electronics Specialists Conference, Aachen, Germany, 2004, pp. 3266-3271.
Orduz, “Evaluation Test Results of a New Distributed MPPT Converter”, 22nd European Photovoltaic Solar Energy Conference, Sep. 3-7, 2007, Milan, Italy.
Palma, “A Modular Fuel Cell, Modular DC-DC Converter Concept for High Performance and Enhanced Reliability”, IEEE 2007, pp. 2633-2638.
Quaschning, “Cost Effectiveness of Shadow Tolerant Photovoltaic Systems”, Berlin University of Technology, Institute of Electrical Energy Technology, Renewable Energy Section. EuroSun '96, pp. 819-824.
Roman, “Intelligent PV Module for Grid-Connected PV Systems”, IEEE Transactions on Industrial Electronics, vol. 52, No. 4, Aug. 2006, pp. 1066-1073.
Roman, “Power Line Communications in Modular PV Systems”, 20th European Photovoltaic Solar Energy Conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2249-2252.
Uriarte, “Energy Integrated Management System for PV Applications”, 20th European Photovoltaic Solar Energy Conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2292-2295.
Walker, “Cascaded DC-DC Converter Connection of Photovoltaic Modules”, IEEE Transactions on Power Electronics, vol. 19, No. 4, Jul. 2004, pp. 1130-1139.
PCT/IB2010/052287 International Search Report and Written Opinion dated Sep. 2, 2010.
Related Publications (1)
Number Date Country
20100124027 A1 May 2010 US
Provisional Applications (1)
Number Date Country
61060878 Jun 2008 US