This is generally related to the technical field of networking. More specifically, this disclosure is related to systems and methods for facilitating efficient host memory access from a network interface controller (NIC).
As network-enabled devices and applications become progressively more ubiquitous, various types of traffic as well as the ever-increasing network load continue to demand more performance from the underlying network architecture. For example, applications such as high-performance computing (HPC), media streaming, and Internet of Things (JOT) can generate different types of traffic with distinctive characteristics. As a result, in addition to conventional network performance metrics such as bandwidth and delay, network architects continue to face challenges such as scalability, versatility, and efficiency.
A network interface controller (NIC) capable of efficient host memory access is provided. The NIC can be equipped with an operation logic block, a signaling logic block, and a tracking logic block. The operation logic block can maintain a first operation group associated with packets requesting an operation on a memory segment of a host device of the NIC. The signaling logic block can determine whether a packet associated with the first operation group has arrived at or departed from the NIC. Furthermore, the tracking logic block can determine that a request for releasing the memory segment has been issued. The tracking logic block can then determine whether at least one packet associated with the first operation group is under processing in the NIC. If no packet associated with the first operation group is under processing in the NIC, tracking logic block can notify the host device that the memory segment can be released.
In the figures, like reference numerals refer to the same figure elements.
Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the present invention is not limited to the embodiments shown.
Overview
The present disclosure describes systems and methods that facilitate efficient host memory access from a network interface controller (NIC). The NIC allows a host to communicate with a data-driven network. The network can accommodate dynamic data traffic with fast, effective congestion control by maintaining state information of individual packet streams. More specifically, packets injected into the network of switches can be categorized into streams, which can be mapped to their layer-2, layer-3, or other protocol-specific header information. Each stream can be marked by a distinctive identifier that is local to an input port of a switch, and provided with a stream-specific input buffer so that each stream can be individually flow-controlled. In addition, packets of a respective stream can be acknowledged upon reaching the egress point of the network, and the acknowledgment packets can be sent back to the ingress point of the stream along the same data path in the reverse direction. As a result, each switch can obtain state information of active packet streams it is forwarding and can perform highly responsive, stream-specific flow control. Such flow control can allow the network to operate at higher capacity while providing versatile traffic-engineering capabilities.
The embodiments described herein solve the problem of efficiently processing late operation associated with memory access by (i) maintaining pending operation count of an operation group associated with a memory mapping, and (ii) allowing operations belonging to another operation group of a subsequent memory mapping to proceed when the pending operations are completed.
During operation, the NIC may process a command with an operation that can access the memory of the host device (e.g., a “GET” or a “PUT” command of remote direct memory access (RDMA)). A host interface of the NIC may couple the NIC with the host device and facilitate the communication between the memory of the host device and the NIC. If the command is an RDMA command, the process issuing the command may operate on a source device, and the host device receiving the command can be a target device. The NICs of the source and target devices can be referred to as the source and target NICs. The process may map a local memory address of the source device to a corresponding memory address, which can be virtual memory address, of the target device. This allows the process to issue commands that can directly perform operations in the memory of the target device.
Upon completion of its operations, the process may release the mapping. Consequently, the memory location associated with the memory address of the target device can be released (or freed) from the process and may be reallocated to another process. However, if the process is a distributed process, the operations issued from the process can be issued from different source devices. Consequently, memory release information can be distributed among different source devices. However, the release information may not be globally visible while the information is being distributed. As a result, some operations that access the released memory may still be issued from source devices that have not received the release information. These operations can be referred to late operations because of their late attempts to access the memory (e.g., a late read or write). A packet associated with a late operation can be referred to as a late packet. The late operations can be in the processing pipeline of the target device and may attempt to access the released memory.
To solve this problem, the target NIC can protect the memory from the late operations by flushing the processing pipeline of the target NIC. In some embodiments, the NIC can maintain two epochs. A respective epoch can represent an operation group, which can be associated with the packets with operations that can access the memory of the target device while the corresponding memory mapping may remain valid. The epoch can include a counter that indicates a number (or count) of the packets of the operation group. The epoch can be represented in the NIC based on an epoch identifier. For example, two epochs can be identified by a single bit in the NIC (e.g., using a single-bit register). When the memory mapping is registered at the target NIC, an epoch can be activated (e.g., by setting a corresponding value in a register). The corresponding epoch identifier is then distributed among the elements or units in the NIC.
When a packet enters the packet processing pipeline of the target NIC, the target NIC can tag the packet with the current epoch and subsequently, increment the counter of the current epoch. On the other hand, when the packet leaves the packet processing pipeline, the target NIC can decrement the counter of the epoch indicated in the packet. As a result, the counter can indicate the number of packets of the current epoch (i.e., the current operation group) that are in the packet processing pipeline of the target NIC. If the process issues a request to release the memory, upon obtaining the release information, the target NIC can switch (or toggle) the epochs. As a result, the epoch that has been associated with the released memory can become the previous epoch, and the new epoch can become the current epoch. The counter associated with the previous epoch can be referred to as the previous counter, and the counter associated with the current epoch can be referred to as the current counter.
All subsequent packets with memory access can then be tracked based on the current counter. However, the late packets, which are associated with the previous epoch and in the processing pipeline, can still be tracked based on the counter of the previous epoch. The target NIC can continue to decrement the previous counter when a late packet associated with the previous epoch leaves the processing pipeline. The memory may not be released until the previous counter becomes zero. This can allow the packets in the pipeline to complete their respective operations. When the previous counter becomes zero, the target NIC can determine that the late packets are flushed from the processing pipeline. The target NIC can then notify the target device that the memory can be released so that the operations associated with the current epoch can access the memory. Since the current counter has been incremented for the packets of these operations, the target NIC can decrement the current counter when a memory access operation is completed, and the associated packet can leave the processing pipeline.
One embodiment of the present invention provides a NIC that can be equipped with an operation logic block, a signaling logic block, and a tracking logic block. The operation logic block can maintain a first operation group associated with packets requesting an operation on a memory segment of a host device of the NIC. The signaling logic block can determine whether a packet associated with the first operation group has arrived at or departed from the NIC. Furthermore, the tracking logic block can determine that a request for releasing the memory segment has been issued. The tracking logic block can then determine whether at least one packet associated with the first operation group is under processing in the NIC. If no packet associated with the first operation group is under processing in the NIC, tracking logic block can notify the host device that the memory segment can be released.
In a variation on this embodiment, the tracking logic block can increment a first counter associated with the first operation group in response to a packet associated with the first operation group arriving at the NIC. On the other hand, the tracking logic block can decrement the first counter in response to a packet associated with the first operation group departing the NIC.
In a further variation, the tracking logic block can determine that no packet associated with the first operation group is under processing in the NIC based on the value of the first counter.
In a further variation, the signaling logic block can generate a signal to increment or decrement the first counter based on detecting an initiation or completion of an operation on the memory segment, respectively. The operation can be indicated in a packet of the first operation group.
In a further variation, the completion of the operation can include detecting an error for the operation.
In a variation on this embodiment, upon detecting a request for releasing the memory segment, the operation logic block can switch from a first operation group to a second operation group associated with packets requesting an operation on the memory segment after the release.
In a further variation, the tracking logic block can increment a second counter associated with the second operation group in response to a packet associated with the second operation group arriving at the NIC.
In a variation on this embodiment, if at least one packet associated with the first operation group is under processing in the NIC, the tracking logic block may refrain from notifying the host device that the memory segment can be released.
In a variation on this embodiment, a respective packet associated with the first operation group can correspond to an operation issued from a process running on a remote device. The memory segment can be allocated to the process.
In a variation on this embodiment, the tracking logic block can determine that the request for releasing the memory segment has been issued based on a command issued to the NIC via one of: a peripheral component interconnect express (PCIe) interface and a compute express link (CXL) interface.
In this disclosure, the description in conjunction with
Exemplary NIC Architecture
In some embodiments, HI 210 can be a peripheral component interconnect (PCI), a peripheral component interconnect express (PCIe), or a compute express link (CXL) interface. HI 210 can be coupled to a host via a host connection 201, which can include N (e.g., N can be 16 in some chips) PCle Gen 4 lanes capable of operating at signaling rates up to 25 Gbps per lane. HNI 210 can facilitate a high-speed network connection 203, which can communicate with a link in switch fabric 100 of
NIC 202 can support one or more of: point-to-point message passing based on Message Passing Interface (MPI), remote memory access (RMA) operations, offloading and progression of bulk data collective operations, and Ethernet packet processing. When the host issues an MPI message, NIC 202 can match the corresponding message type. Furthermore, NIC 202 can implement both eager protocol and rendezvous protocol for MPI, thereby offloading the corresponding operations from the host.
Furthermore, the RMA operations supported by NIC 202 can include PUT, GET, and Atomic Memory Operations (AMO). NIC 202 can provide reliable transport. For example, if NIC 202 is a source NIC, NIC 202 can provide a retry mechanism for idempotent operations. Furthermore, connection-based error detection and retry mechanism can be used for ordered operations that may manipulate a target state. The hardware of NIC 202 can maintain the state necessary for the retry mechanism. In this way, NIC 202 can remove the burden from the host (e.g., the software). The policy that dictates the retry mechanism can be specified by the host via the driver software, thereby ensuring flexibility in NIC 202.
Furthermore, NIC 202 can facilitate triggered operations, a general-purpose mechanism for offloading, and progression of dependent sequences of operations, such as bulk data collectives. NIC 202 can support an application programming interface (API) (e.g., libfabric API) that facilitates fabric communication services provided by switch fabric 100 of
NIC 202 can include a Command Queue (CQ) unit 230. CQ unit 230 can be responsible for fetching and issuing host side commands. CQ unit 230 can include command queues 232 and schedulers 234. Command queues 232 can include two independent sets of queues for initiator commands (PUT, GET, etc.) and target commands (Append, Search, etc.), respectively. Command queues 232 can be implemented as circular buffers maintained in the memory of NIC 202. Applications running on the host can write to command queues 232 directly. Schedulers 234 can include two separate schedulers for initiator commands and target commands, respectively. The initiator commands are sorted into flow queues 236 based on a hash function. One of flow queues 236 can be allocated to a unique flow. Furthermore, CQ unit 230 can further include a triggered operations module 238, which is responsible for queuing and dispatching triggered commands.
Outbound transfer engine (OXE) 240 can pull commands from flow queues 236 in order to process them for dispatch. OXE 240 can include an address translation request unit (ATRU) 244 that can send address translation requests to address translation unit (ATU) 212. ATU 212 can provide virtual to physical address translation on behalf of different engines, such as OXE 240, inbound transfer engine (IXE) 250, and event engine (EE) 216. ATU 212 can maintain a large translation cache 214. ATU 212 can either perform translation itself or may use host-based address translation services (ATS). OXE 240 can also include message chopping unit (MCU) 246, which can fragment a large message into packets of sizes corresponding to a maximum transmission unit (MTU). MCU 246 can include a plurality of MCU modules. When an MCU module becomes available, the MCU module can obtain the next command from an assigned flow queue. The received data can be written into data buffer 242. The MCU module can then send the packet header, the corresponding traffic class, and the packet size to traffic shaper 248. Shaper 248 can determine which requests presented by MCU 246 can proceed to the network.
Subsequently, the selected packet can be sent to packet and connection tracking (PCT) 270. PCT 270 can store the packet in a queue 274. PCT 270 can also maintain state information for outbound commands and update the state information as responses are returned. PCT 270 can also maintain packet state information (e.g., allowing responses to be matched to requests), message state information (e.g., tracking the progress of multi-packet messages), initiator completion state information, and retry state information (e.g., maintaining the information required to retry a command if a request or response is lost). If a response is not returned within a threshold time, the corresponding command can be stored in retry buffer 272. PCT 270 can facilitate connection management for initiator and target commands based on source tables 276 and target tables 278, respectively. For example, PCT 270 can update its source tables 276 to track the necessary state for reliable delivery of the packet and message completion notification. PCT 270 can forward outgoing packets to HNI 220, which stores the packets in outbound queue 222.
NIC 202 can also include an IXE 250, which provides packet processing if NIC 202 is a target or a destination. IXE 250 can obtain the incoming packets from HNI 220. Parser 256 can parse the incoming packets and pass the corresponding packet information to a List Processing Engine (LPE) 264 or a Message State Table (MST) 266 for matching. LPE 264 can match incoming messages to buffers. LPE 264 can determine the buffer and start address to be used by each message. LPE 264 can also manage a pool of list entries 262 used to represent buffers and unexpected messages. MST 266 can store matching results and the information required to generate target side completion events. MST 266 can be used by unrestricted operations, including multi-packet PUT commands, and single-packet and multi-packet GET commands.
Subsequently, parser 256 can store the packets in packet buffer 254. IXE 250 can obtain the results of the matching for conflict checking. DMA write and AMO module 252 can then issue updates to the memory generated by write and AMO operations. If a packet includes a command that generates target side memory read operations (e.g., a GET response), the packet can be passed to the OXE 240. NIC 202 can also include an EE 216, which can receive requests to generate event notifications from other modules or units in NIC 202. An event notification can specify that either a fill event or a counting event is generated. EE 216 can manage event queues, located within host processor memory, to which it writes full events. EE 216 can forward counting events to CQ unit 230.
Efficient Memory Access from NIC
Upon completion of its operations, the process may release the mapping. Consequently, the memory segment 304 can be released (or freed) from the process and can be reallocated to another process. However, for a distributed process, the release information may not be globally visible. As a result, some late operations that access memory segment 304 may still be issued. NIC 320, therefore, can have a number of packets in the processing pipeline when the process releases memory segment 304. The associated late operations may attempt to access memory segment 304 that may have been reassigned to another process.
To solve this problem, NIC 320 can protect memory segment 304 from the late operations by flushing the processing pipeline of NIC 320. NIC 320 can maintain two epochs 342 and 346. Epochs 342 and 346 can include counters 344 and 348, respectively. A respective epoch can be represented in NIC 320 based on an epoch identifier. For example, epochs 342 and 346 can be identified by a single bit in NIC 320. Accordingly, identifiers of epochs 342 and 346 can be 0 and 1, respectively. When memory segment 304 is allocated to the process, NIC 320 may receive a registration request for the mapping between the local memory addresses of the process and the memory addresses of memory segment 304.
Upon receiving the request, ATU 328 can activate epoch 342 for an operation group, which can be associated with the packets with operations that can access memory segment 304 while the corresponding memory mapping remains valid. The activation of epoch 342 can also be specific to the process. The activation of epoch 342 can include tagging subsequent packets with an identifier of epoch 342. Counter 344 can indicate a number of the packets of the operation group. When epoch 342 is activated, the epoch identifier can be distributed among the elements or units, such as OXE 324 and IXE 326, in NIC 320. Upon receiving a packet, NIC 320 can increment counter 344. On the other hand, when the packet leaves the packet processing pipeline, NIC 320 can decrement counter 344. As a result, counter 344 can indicate the number of packets of epoch 342 that are in the packet processing pipeline of NIC 320.
If the process requests to release memory segment 304, the process can provide the release information to NIC 320. In some embodiments, the release information can include a command, which can be issued by the process. The command may initiate a “wait” for the packets in the processing pipeline to flush. Upon receiving the release information, ATU 328 can switch (or toggle) epochs and activate epoch 346. As a result, epoch 346 can become the current epoch, and epoch 342 can become the previous epoch. All subsequent packets with memory access can then be tracked based on counter 348. However, the late packets, which are associated with the previous epoch and in the processing pipeline, can still be tracked based on counter 344. ATU 328 can continue to decrement counter 344 when a late packet associated with epoch 342 leaves the processing pipeline of NIC 320. When counter 344 becomes zero, ATU 328 can notify device 300 via HI 322 (e.g., based on a PCIe write) that the processing pipeline has been flushed.
Device 300 can then release memory segment 304. A portion of memory segment 304 (or in its entirety) can then be included in memory segment 306 allocated to another process. Counter 348 can then represent the packets issued from this other process. Since counter 348 has been incremented for the packets of the other process, ATU 328 can decrement counter 348 when a memory access operation is completed, and the associated packet leaves the processing pipeline. When the other process releases memory segment 306, ATU 328 can repeat the switchover process by switching to epoch 342. In this way, ATU 328 can toggle between epochs 342 and 346 to identify and track late packets in NIC 320, thereby facilitating the release of a memory segment when the pipeline is flushed.
IXE 326 can include a parser 332 and a dispatcher 334, as described in conjunction with
Dispatcher 334 can identify epoch 342 based on the epoch identifier in the header of a packet received from other modules or units of NIC 320, such as MST and LPE. Dispatcher 344 can send an epoch-specific decrement signal to ATU 328 for a respective packet that may include a write operation for memory segment 304. Such an operation can include a PUT request if NIC 320 is a target NIC or a GET response if NIC 320 is a source NIC. Dispatcher 334 may send the signal even if the packet experiences a failure. Examples of an error can include an error detected by another unit or an operational error, such as an address translation error.
Dispatcher 334 may generate the decrement signal due to a read or a write operation. Dispatcher 334 can add the respective decrement signals associated with read and write operations to generate a combined decrement signal for ATU 328. OXE 324 can identify epoch 342 based on the epoch identifier in the header of a packet received from IXE 326. OXE 324 can send an epoch-specific decrement signal to ATU 328 for a respective packet that may include a read operation for memory segment 304. OXE 324 may send the signal even if the packet experiences a failure. In this way, ATU 328 can receive increment and decrement signals from OXE 324 and IXE 326, and adjust the values of counter 344 accordingly to track the packets of epoch 342.
Subsequently, the NIC can determine whether a wait has been triggered (operation 410). If the wait has not been triggered, the NIC can continue to determine packet operation signals (operation 404). If the wait has been triggered, the NIC can toggle the epochs (operation 412). The toggling can cause the current epoch to become a previous epoch and the other epoch to become the new current epoch. The NIC can then determine the packet operation signal during the wait period (operation 414). If the signal is for an arrival, the NIC can increment the new current counter (i.e., associated with the newly activated epoch) (operation 416).
On the other hand, if the signal is for a departure, the NIC can decrement the previous counter (operation 418). Subsequently, the NIC can determine whether the processing pipeline has been flushed (i.e., the value of the previous counter has become zero) (operation 420). If the processing pipeline is not flushed, the NIC can continue to determine packet operation signals during the wait period (operation 414). On the other hand, if the processing pipeline is flushed, the NIC can notify the host device that the memory segment can be released for a subsequent allocation (operation 422). The NIC can continue to determine packet operation signals (operation 404).
Exemplary Computer System
Computer system 550 can be equipped with a host interface coupling a NIC 520 that facilitates efficient data request management. NIC 520 can provide one or more HNIs to computer system 550. NIC 520 can be coupled to a switch 502 via one of the HNIs. NIC 520 can include an operation logic block 530 (e.g., in an ATU of NIC 520) and a signaling logic block 540 (e.g., in an OXE or IXE of NIC 520). Operation logic block 530 can maintain epochs or operation groups for NIC 520, and may include a tracking logic block 532, a counter logic block 534, and a waiting logic block 536.
Signaling logic block 540 can send a signal to operation logic block 530, indicating the arrival or departure of a packet from the processing pipeline of NIC 520. Tacking logic block 532 can track the packets associated with an epoch in a packet processing pipeline. Counter logic block 534 can increment or decrement a counter based on a signal from signaling logic block 540. Waiting logic block 536 can determine that a wait instruction has been triggered. Accordingly, waiting logic block 536 can toggle the epochs of NIC 520. Counter logic block 534 can then increment the counter of the new epoch and decrement the counter of the previous epoch based on the signal from signaling logic block 540. When the counter of the previous epoch becomes zero, tacking logic block 532 can notify computer system 550 that the processing pipeline has been flushed.
In summary, the present disclosure describes a NIC that facilitates efficient memory access from the NIC. The NIC can be equipped with an operation logic block, a signaling logic block, and a tracking logic block. The operation logic block can maintain a first operation group associated with packets requesting an operation on a memory segment of a host device of the NIC. The signaling logic block can determine whether a packet associated with the first operation group has arrived at or departed from the NIC. Furthermore, the tracking logic block can determine that a request for releasing the memory segment has been issued. The tracking logic block can then determine whether at least one packet associated with the first operation group is under processing in the NIC. If no packet associated with the first operation group is under processing in the NIC, tracking logic block can notify the host device that the memory segment can be released.
The methods and processes described above can be performed by hardware logic blocks, modules, logic blocks, or apparatus. The hardware logic blocks, modules, logic blocks, or apparatus can include, but are not limited to, application-specific integrated circuit (ASIC) chips, field-programmable gate arrays (FPGAs), dedicated or shared processors that execute a piece of code at a particular time, and other programmable-logic devices now known or later developed. When the hardware logic blocks, modules, or apparatus are activated, they perform the methods and processes included within them.
The methods and processes described herein can also be embodied as code or data, which can be stored in a storage device or computer-readable storage medium. When a processor reads and executes the stored code or data, the processor can perform these methods and processes.
The foregoing descriptions of embodiments of the present invention have been presented for purposes of illustration and description only. They are not intended to be exhaustive or to limit the present invention to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. Additionally, the above disclosure is not intended to limit the present invention. The scope of the present invention is defined by the appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/024258 | 3/23/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/236281 | 11/26/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4807118 | Lin et al. | Feb 1989 | A |
5138615 | Lamport et al. | Aug 1992 | A |
5457687 | Newman | Oct 1995 | A |
5937436 | Watkins | Aug 1999 | A |
5960178 | Cochinwala et al. | Sep 1999 | A |
5970232 | Passint et al. | Oct 1999 | A |
5983332 | Watkins | Nov 1999 | A |
6112265 | Harriman et al. | Aug 2000 | A |
6230252 | Passint et al. | May 2001 | B1 |
6246682 | Roy et al. | Jun 2001 | B1 |
6493347 | Sindhu et al. | Dec 2002 | B2 |
6545981 | Garcia et al. | Apr 2003 | B1 |
6633580 | Toerudbakken et al. | Oct 2003 | B1 |
6674720 | Passint et al. | Jan 2004 | B1 |
6714553 | Poole et al. | Mar 2004 | B1 |
6728211 | Peris et al. | Apr 2004 | B1 |
6732212 | Sugahara et al. | May 2004 | B2 |
6735173 | Lenoski et al. | May 2004 | B1 |
6894974 | Aweva et al. | May 2005 | B1 |
7023856 | Washabaugh et al. | Apr 2006 | B1 |
7133940 | Blightman et al. | Nov 2006 | B2 |
7218637 | Best et al. | May 2007 | B1 |
7269180 | Bly et al. | Sep 2007 | B2 |
7305487 | Blumrich et al. | Dec 2007 | B2 |
7337285 | Tanoue | Feb 2008 | B2 |
7397797 | Alfieri et al. | Jul 2008 | B2 |
7430559 | Lomet | Sep 2008 | B2 |
7441006 | Biran et al. | Oct 2008 | B2 |
7464174 | Ngai | Dec 2008 | B1 |
7483442 | Torudbakken et al. | Jan 2009 | B1 |
7562366 | Pope et al. | Jul 2009 | B2 |
7593329 | Kwan et al. | Sep 2009 | B2 |
7596628 | Aloni et al. | Sep 2009 | B2 |
7620791 | Wentzlaff et al. | Nov 2009 | B1 |
7633869 | Morris et al. | Dec 2009 | B1 |
7639616 | Manula et al. | Dec 2009 | B1 |
7734894 | Wentzlaff et al. | Jun 2010 | B1 |
7774461 | Tanaka et al. | Aug 2010 | B2 |
7782869 | Chitlur Srinivasa | Aug 2010 | B1 |
7796579 | Bruss | Sep 2010 | B2 |
7856026 | Finan et al. | Dec 2010 | B1 |
7933282 | Gupta et al. | Apr 2011 | B1 |
7953002 | Opsasnick | May 2011 | B2 |
7975120 | Sabbatini, Jr. et al. | Jul 2011 | B2 |
8014278 | Subramanian et al. | Sep 2011 | B1 |
8023521 | Woo et al. | Sep 2011 | B2 |
8050180 | Judd | Nov 2011 | B2 |
8077606 | Litwack | Dec 2011 | B1 |
8103788 | Miranda | Jan 2012 | B1 |
8160085 | Moruganti et al. | Apr 2012 | B2 |
8175107 | Yalagandula et al. | May 2012 | B1 |
8249072 | Sugumar et al. | Aug 2012 | B2 |
8281013 | Mundkur | Oct 2012 | B2 |
8352727 | Chen et al. | Jan 2013 | B2 |
8353003 | Noehring et al. | Jan 2013 | B2 |
8443151 | Tang et al. | May 2013 | B2 |
8473783 | Andrade et al. | Jun 2013 | B2 |
8543534 | Alves et al. | Sep 2013 | B2 |
8619793 | Lavian et al. | Dec 2013 | B2 |
8626957 | Blumrich et al. | Jan 2014 | B2 |
8650582 | Archer et al. | Feb 2014 | B2 |
8706832 | Blocksome | Apr 2014 | B2 |
8719543 | Kaminski et al. | May 2014 | B2 |
8811183 | Anand et al. | Aug 2014 | B1 |
8948175 | Bly et al. | Feb 2015 | B2 |
8971345 | Mccanne et al. | Mar 2015 | B1 |
9001663 | Attar et al. | Apr 2015 | B2 |
9053012 | Northcott et al. | Jun 2015 | B1 |
9088496 | Vaidya et al. | Jul 2015 | B2 |
9094327 | Jacobs et al. | Jul 2015 | B2 |
9178782 | Matthews et al. | Nov 2015 | B2 |
9208071 | Talagala et al. | Dec 2015 | B2 |
9218278 | Talagala et al. | Dec 2015 | B2 |
9231876 | Mir et al. | Jan 2016 | B2 |
9231888 | Bogdanski et al. | Jan 2016 | B2 |
9239804 | Kegel et al. | Jan 2016 | B2 |
9269438 | Nachimuthu et al. | Feb 2016 | B2 |
9276864 | Pradeep | Mar 2016 | B1 |
9436651 | Underwood et al. | Sep 2016 | B2 |
9455915 | Sinha et al. | Sep 2016 | B2 |
9460178 | Bashyam et al. | Oct 2016 | B2 |
9479426 | Munger et al. | Oct 2016 | B2 |
9496991 | Plamondon et al. | Nov 2016 | B2 |
9544234 | Markine | Jan 2017 | B1 |
9548924 | Pettit et al. | Jan 2017 | B2 |
9594521 | Blagodurov et al. | Mar 2017 | B2 |
9635121 | Mathew et al. | Apr 2017 | B2 |
9742855 | Shuler | Aug 2017 | B2 |
9762488 | Previdi et al. | Sep 2017 | B2 |
9762497 | Kishore et al. | Sep 2017 | B2 |
9830273 | Bk et al. | Nov 2017 | B2 |
9838500 | Ilan et al. | Dec 2017 | B1 |
9853900 | Mula et al. | Dec 2017 | B1 |
9887923 | Chorafakis et al. | Feb 2018 | B2 |
10003544 | Liu et al. | Jun 2018 | B2 |
10009270 | Stark et al. | Jun 2018 | B1 |
10031857 | Menachem et al. | Jul 2018 | B2 |
10050896 | Yang et al. | Aug 2018 | B2 |
10061613 | Brooker et al. | Aug 2018 | B1 |
10063481 | Jiang et al. | Aug 2018 | B1 |
10089220 | Mckelvie et al. | Oct 2018 | B1 |
10169060 | Mncent et al. | Jan 2019 | B1 |
10178035 | Dillon | Jan 2019 | B2 |
10200279 | Aljaedi | Feb 2019 | B1 |
10218634 | Aldebert et al. | Feb 2019 | B2 |
10270700 | Burnette et al. | Apr 2019 | B2 |
10305772 | Zur et al. | May 2019 | B2 |
10331590 | Macnamara et al. | Jun 2019 | B2 |
10353833 | Hagspiel et al. | Jul 2019 | B2 |
10454835 | Contavalli et al. | Oct 2019 | B2 |
10498672 | Graham et al. | Dec 2019 | B2 |
10567307 | Fairhurst et al. | Feb 2020 | B2 |
10728173 | Agrawal et al. | Jul 2020 | B1 |
10802828 | Volpe et al. | Oct 2020 | B1 |
10817502 | Talagala et al. | Oct 2020 | B2 |
11128561 | Matthews et al. | Sep 2021 | B1 |
11271869 | Agrawal et al. | Mar 2022 | B1 |
11416749 | Bshara et al. | Aug 2022 | B2 |
11444886 | Stawitzky et al. | Sep 2022 | B1 |
20010010692 | Sindhu et al. | Aug 2001 | A1 |
20010047438 | Forin | Nov 2001 | A1 |
20020174279 | Wynne et al. | Nov 2002 | A1 |
20030016808 | Hu et al. | Jan 2003 | A1 |
20030041168 | Musoll | Feb 2003 | A1 |
20030110455 | Baumgartner et al. | Jun 2003 | A1 |
20030174711 | Shankar | Sep 2003 | A1 |
20030200363 | Futral | Oct 2003 | A1 |
20030223420 | Ferolito | Dec 2003 | A1 |
20040008716 | Stiliadis | Jan 2004 | A1 |
20040059828 | Hooper et al. | Mar 2004 | A1 |
20040095882 | Hamzah et al. | May 2004 | A1 |
20040133634 | Luke et al. | Jul 2004 | A1 |
20040223452 | Santos et al. | Nov 2004 | A1 |
20050021837 | Haselhorst et al. | Jan 2005 | A1 |
20050047334 | Paul et al. | Mar 2005 | A1 |
20050088969 | Carlsen et al. | Apr 2005 | A1 |
20050091396 | Nilakantan et al. | Apr 2005 | A1 |
20050108444 | Flauaus et al. | May 2005 | A1 |
20050108518 | Pandya | May 2005 | A1 |
20050152274 | Simpson | Jul 2005 | A1 |
20050182854 | Pinkerton et al. | Aug 2005 | A1 |
20050270974 | Mayhew | Dec 2005 | A1 |
20050270976 | Yang et al. | Dec 2005 | A1 |
20060023705 | Zoranovic et al. | Feb 2006 | A1 |
20060067347 | Naik et al. | Mar 2006 | A1 |
20060075480 | Noehring et al. | Apr 2006 | A1 |
20060174251 | Pope et al. | Aug 2006 | A1 |
20060203728 | Kwan et al. | Sep 2006 | A1 |
20070061433 | Reynolds et al. | Mar 2007 | A1 |
20070070901 | Aloni et al. | Mar 2007 | A1 |
20070198804 | Moyer | Aug 2007 | A1 |
20070211746 | Oshikiri et al. | Sep 2007 | A1 |
20070242611 | Archer et al. | Oct 2007 | A1 |
20070268825 | Corwin et al. | Nov 2007 | A1 |
20080013453 | Chiang et al. | Jan 2008 | A1 |
20080013549 | Okagawa et al. | Jan 2008 | A1 |
20080071757 | Ichiriu et al. | Mar 2008 | A1 |
20080084864 | Archer et al. | Apr 2008 | A1 |
20080091915 | Moertl et al. | Apr 2008 | A1 |
20080147881 | Krishnamurthy et al. | Jun 2008 | A1 |
20080159138 | Shepherd et al. | Jul 2008 | A1 |
20080253289 | Naven et al. | Oct 2008 | A1 |
20090003212 | Kwan et al. | Jan 2009 | A1 |
20090010157 | Holmes et al. | Jan 2009 | A1 |
20090013175 | Elliott | Jan 2009 | A1 |
20090055496 | Garg et al. | Feb 2009 | A1 |
20090092046 | Naven et al. | Apr 2009 | A1 |
20090141621 | Fan et al. | Jun 2009 | A1 |
20090198958 | Arimilli et al. | Aug 2009 | A1 |
20090259713 | Blumrich et al. | Oct 2009 | A1 |
20090285222 | Hoover et al. | Nov 2009 | A1 |
20100061241 | Sindhu et al. | Mar 2010 | A1 |
20100169608 | Kuo et al. | Jul 2010 | A1 |
20100172260 | Kwan et al. | Jul 2010 | A1 |
20100183024 | Gupta | Jul 2010 | A1 |
20100220595 | Petersen | Sep 2010 | A1 |
20100274876 | Kagan et al. | Oct 2010 | A1 |
20100302942 | Shankar et al. | Dec 2010 | A1 |
20100316053 | Miyoshi et al. | Dec 2010 | A1 |
20110051724 | Scott et al. | Mar 2011 | A1 |
20110066824 | Bestler | Mar 2011 | A1 |
20110072179 | Lacroute et al. | Mar 2011 | A1 |
20110099326 | Jung et al. | Apr 2011 | A1 |
20110110383 | Yang et al. | May 2011 | A1 |
20110128959 | Bando et al. | Jun 2011 | A1 |
20110158096 | Leung et al. | Jun 2011 | A1 |
20110158248 | Vorunganti et al. | Jun 2011 | A1 |
20110164496 | Loh et al. | Jul 2011 | A1 |
20110173370 | Jacobs et al. | Jul 2011 | A1 |
20110264822 | Ferguson et al. | Oct 2011 | A1 |
20110276699 | Pedersen | Nov 2011 | A1 |
20110280125 | Jayakumar | Nov 2011 | A1 |
20110320724 | Mejdrich et al. | Dec 2011 | A1 |
20120093505 | Yeap et al. | Apr 2012 | A1 |
20120102506 | Hopmann et al. | Apr 2012 | A1 |
20120117423 | Andrade et al. | May 2012 | A1 |
20120137075 | Vorbach | May 2012 | A1 |
20120144064 | Parker et al. | Jun 2012 | A1 |
20120144065 | Parker et al. | Jun 2012 | A1 |
20120147752 | Ashwood-Smith et al. | Jun 2012 | A1 |
20120170462 | Sinha | Jul 2012 | A1 |
20120170575 | Mehra | Jul 2012 | A1 |
20120213118 | Lindsay et al. | Aug 2012 | A1 |
20120250512 | Jagadeeswaran et al. | Oct 2012 | A1 |
20120287821 | Godfrey et al. | Nov 2012 | A1 |
20120297083 | Ferguson et al. | Nov 2012 | A1 |
20120300669 | Zahavi | Nov 2012 | A1 |
20120314707 | Epps et al. | Dec 2012 | A1 |
20130010636 | Regula | Jan 2013 | A1 |
20130039169 | Schlansker et al. | Feb 2013 | A1 |
20130060944 | Archer et al. | Mar 2013 | A1 |
20130103777 | Kagan et al. | Apr 2013 | A1 |
20130121178 | Mainaud et al. | May 2013 | A1 |
20130136090 | Liu et al. | May 2013 | A1 |
20130182704 | Jacobs et al. | Jul 2013 | A1 |
20130194927 | Yamaguchi et al. | Aug 2013 | A1 |
20130203422 | Masputra et al. | Aug 2013 | A1 |
20130205002 | Wang et al. | Aug 2013 | A1 |
20130208593 | Nandagopal | Aug 2013 | A1 |
20130246552 | Underwood et al. | Sep 2013 | A1 |
20130290673 | Archer et al. | Oct 2013 | A1 |
20130301645 | Bogdanski et al. | Nov 2013 | A1 |
20130304988 | Totolos et al. | Nov 2013 | A1 |
20130311525 | Neerincx et al. | Nov 2013 | A1 |
20130329577 | Suzuki et al. | Dec 2013 | A1 |
20130336164 | Yang et al. | Dec 2013 | A1 |
20140019661 | Hormuth et al. | Jan 2014 | A1 |
20140032695 | Michels et al. | Jan 2014 | A1 |
20140036680 | Lih et al. | Feb 2014 | A1 |
20140064082 | Yeung et al. | Mar 2014 | A1 |
20140095753 | Crupnicoff et al. | Apr 2014 | A1 |
20140098675 | Frost et al. | Apr 2014 | A1 |
20140119367 | Han et al. | May 2014 | A1 |
20140122560 | Ramey et al. | May 2014 | A1 |
20140129664 | Mcdaniel et al. | May 2014 | A1 |
20140133292 | Yamatsu et al. | May 2014 | A1 |
20140136646 | Tamir et al. | May 2014 | A1 |
20140169173 | Naouri et al. | Jun 2014 | A1 |
20140185621 | Decusatis et al. | Jul 2014 | A1 |
20140189174 | Ajanovic et al. | Jul 2014 | A1 |
20140207881 | Nussle et al. | Jul 2014 | A1 |
20140211804 | Makikeni et al. | Jul 2014 | A1 |
20140226488 | Shamis et al. | Aug 2014 | A1 |
20140241164 | Cociglio et al. | Aug 2014 | A1 |
20140258438 | Ayoub | Sep 2014 | A1 |
20140301390 | Scott et al. | Oct 2014 | A1 |
20140307554 | Basso et al. | Oct 2014 | A1 |
20140325013 | Tamir et al. | Oct 2014 | A1 |
20140328172 | Kumar et al. | Nov 2014 | A1 |
20140347997 | Bergamasco et al. | Nov 2014 | A1 |
20140362698 | Arad | Dec 2014 | A1 |
20140369360 | Carlstrom | Dec 2014 | A1 |
20140379847 | Williams | Dec 2014 | A1 |
20150003247 | Mejia et al. | Jan 2015 | A1 |
20150006849 | Xu et al. | Jan 2015 | A1 |
20150009823 | Ganga et al. | Jan 2015 | A1 |
20150026361 | Matthews et al. | Jan 2015 | A1 |
20150029848 | Jain | Jan 2015 | A1 |
20150055476 | Decusatis et al. | Feb 2015 | A1 |
20150055661 | Boucher et al. | Feb 2015 | A1 |
20150067095 | Gopal et al. | Mar 2015 | A1 |
20150089495 | Persson et al. | Mar 2015 | A1 |
20150103667 | Elias et al. | Apr 2015 | A1 |
20150124826 | Edsall et al. | May 2015 | A1 |
20150146527 | Kishore et al. | May 2015 | A1 |
20150154004 | Aggarwal | Jun 2015 | A1 |
20150161064 | Pope | Jun 2015 | A1 |
20150180782 | Rimmer et al. | Jun 2015 | A1 |
20150186318 | Kim et al. | Jul 2015 | A1 |
20150193262 | Archer et al. | Jul 2015 | A1 |
20150195388 | Snyder et al. | Jul 2015 | A1 |
20150208145 | Parker et al. | Jul 2015 | A1 |
20150220449 | Stark et al. | Aug 2015 | A1 |
20150237180 | Swartzentruber et al. | Aug 2015 | A1 |
20150244617 | Nakil et al. | Aug 2015 | A1 |
20150244804 | Warfield et al. | Aug 2015 | A1 |
20150261434 | Kagan et al. | Sep 2015 | A1 |
20150263955 | Talaski et al. | Sep 2015 | A1 |
20150263994 | Haramaty et al. | Sep 2015 | A1 |
20150288626 | Aybay | Oct 2015 | A1 |
20150365337 | Pannell | Dec 2015 | A1 |
20150370586 | Cooper et al. | Dec 2015 | A1 |
20160006664 | Sabato et al. | Jan 2016 | A1 |
20160012002 | Arimilli et al. | Jan 2016 | A1 |
20160028613 | Haramaty et al. | Jan 2016 | A1 |
20160065455 | Wang et al. | Mar 2016 | A1 |
20160094450 | Ghanwani et al. | Mar 2016 | A1 |
20160134518 | Callon et al. | May 2016 | A1 |
20160134535 | Callon | May 2016 | A1 |
20160134559 | Abel et al. | May 2016 | A1 |
20160134573 | Gagliardi et al. | May 2016 | A1 |
20160142318 | Beecroft | May 2016 | A1 |
20160154756 | Dodson et al. | Jun 2016 | A1 |
20160182383 | Pedersen | Jun 2016 | A1 |
20160205023 | Janardhanan | Jul 2016 | A1 |
20160226797 | Aravinthan et al. | Aug 2016 | A1 |
20160254991 | Eckert et al. | Sep 2016 | A1 |
20160259394 | Ragavan | Sep 2016 | A1 |
20160283422 | Crupnicoff | Sep 2016 | A1 |
20160285545 | Schmidtke et al. | Sep 2016 | A1 |
20160285677 | Kashyap et al. | Sep 2016 | A1 |
20160294694 | Parker et al. | Oct 2016 | A1 |
20160294926 | Zur et al. | Oct 2016 | A1 |
20160301610 | Amit et al. | Oct 2016 | A1 |
20160344620 | Santos et al. | Nov 2016 | A1 |
20160381189 | Caulfield et al. | Dec 2016 | A1 |
20170024263 | Verplanken | Jan 2017 | A1 |
20170039063 | Gopal et al. | Feb 2017 | A1 |
20170041239 | Goldenberg et al. | Feb 2017 | A1 |
20170048144 | Liu | Feb 2017 | A1 |
20170054633 | Underwood et al. | Feb 2017 | A1 |
20170091108 | Arellano et al. | Mar 2017 | A1 |
20170097840 | Bridgers | Apr 2017 | A1 |
20170103108 | Datta et al. | Apr 2017 | A1 |
20170118090 | Pettit et al. | Apr 2017 | A1 |
20170118098 | Littlejohn et al. | Apr 2017 | A1 |
20170153852 | Ma et al. | Jun 2017 | A1 |
20170177541 | Berman et al. | Jun 2017 | A1 |
20170220500 | Tong | Aug 2017 | A1 |
20170237654 | Turner et al. | Aug 2017 | A1 |
20170237671 | Rimmer et al. | Aug 2017 | A1 |
20170242753 | Sherlock et al. | Aug 2017 | A1 |
20170250914 | Caulfield et al. | Aug 2017 | A1 |
20170251394 | Johansson et al. | Aug 2017 | A1 |
20170270051 | Chen et al. | Sep 2017 | A1 |
20170272331 | Lissack | Sep 2017 | A1 |
20170272370 | Ganga et al. | Sep 2017 | A1 |
20170286316 | Doshi et al. | Oct 2017 | A1 |
20170289066 | Haramaty et al. | Oct 2017 | A1 |
20170295098 | Watkins et al. | Oct 2017 | A1 |
20170324664 | Xu et al. | Nov 2017 | A1 |
20170371778 | Mckelvie et al. | Dec 2017 | A1 |
20180004705 | Menachem et al. | Jan 2018 | A1 |
20180019948 | Patwardhan et al. | Jan 2018 | A1 |
20180026878 | Zahavi et al. | Jan 2018 | A1 |
20180077064 | Wang | Mar 2018 | A1 |
20180083868 | Cheng | Mar 2018 | A1 |
20180097645 | Rajagopalan et al. | Apr 2018 | A1 |
20180097912 | Chumbalkar et al. | Apr 2018 | A1 |
20180113618 | Chan et al. | Apr 2018 | A1 |
20180115469 | Erickson et al. | Apr 2018 | A1 |
20180131602 | Civanlar et al. | May 2018 | A1 |
20180131678 | Agarwal et al. | May 2018 | A1 |
20180150374 | Ratcliff | May 2018 | A1 |
20180152317 | Chang et al. | May 2018 | A1 |
20180152357 | Natham et al. | May 2018 | A1 |
20180173557 | Nakil et al. | Jun 2018 | A1 |
20180183724 | Callard et al. | Jun 2018 | A1 |
20180191609 | Caulfield et al. | Jul 2018 | A1 |
20180198736 | Labonte et al. | Jul 2018 | A1 |
20180212876 | Bacthu et al. | Jul 2018 | A1 |
20180212902 | Steinmacher-Burow | Jul 2018 | A1 |
20180219804 | Graham et al. | Aug 2018 | A1 |
20180225238 | Karguth et al. | Aug 2018 | A1 |
20180234343 | Zdornov et al. | Aug 2018 | A1 |
20180254945 | Bogdanski et al. | Sep 2018 | A1 |
20180260324 | Marathe et al. | Sep 2018 | A1 |
20180278540 | Shalev et al. | Sep 2018 | A1 |
20180287928 | Levi et al. | Oct 2018 | A1 |
20180323898 | Dods | Nov 2018 | A1 |
20180335974 | Simionescu et al. | Nov 2018 | A1 |
20180341494 | Sood et al. | Nov 2018 | A1 |
20190007349 | Wang et al. | Jan 2019 | A1 |
20190018808 | Beard et al. | Jan 2019 | A1 |
20190036771 | Sharpless et al. | Jan 2019 | A1 |
20190042337 | Dinan et al. | Feb 2019 | A1 |
20190042518 | Marolia | Feb 2019 | A1 |
20190044809 | Willis | Feb 2019 | A1 |
20190044827 | Ganapathi et al. | Feb 2019 | A1 |
20190044863 | Mula et al. | Feb 2019 | A1 |
20190044872 | Ganapathi et al. | Feb 2019 | A1 |
20190044875 | Murty et al. | Feb 2019 | A1 |
20190052327 | Motozuka et al. | Feb 2019 | A1 |
20190058663 | Song | Feb 2019 | A1 |
20190068501 | Schneider et al. | Feb 2019 | A1 |
20190081903 | Kobayashi et al. | Mar 2019 | A1 |
20190095134 | Li | Mar 2019 | A1 |
20190104057 | Goel et al. | Apr 2019 | A1 |
20190104206 | Goel et al. | Apr 2019 | A1 |
20190108106 | Aggarwal et al. | Apr 2019 | A1 |
20190108332 | Glew et al. | Apr 2019 | A1 |
20190109791 | Mehra et al. | Apr 2019 | A1 |
20190121781 | Kasichainula | Apr 2019 | A1 |
20190140979 | Levi et al. | May 2019 | A1 |
20190146477 | Cella et al. | May 2019 | A1 |
20190171612 | Shahar et al. | Jun 2019 | A1 |
20190196982 | Rozas et al. | Jun 2019 | A1 |
20190199646 | Singh et al. | Jun 2019 | A1 |
20190253354 | Caulfield et al. | Aug 2019 | A1 |
20190280978 | Schmatz et al. | Sep 2019 | A1 |
20190294575 | Dennison et al. | Sep 2019 | A1 |
20190306134 | Shanbhogue et al. | Oct 2019 | A1 |
20190332314 | Zhang et al. | Oct 2019 | A1 |
20190334624 | Bernard | Oct 2019 | A1 |
20190356611 | Das et al. | Nov 2019 | A1 |
20190361728 | Kumar et al. | Nov 2019 | A1 |
20190379610 | Srinivasan et al. | Dec 2019 | A1 |
20200036644 | Belogolovy et al. | Jan 2020 | A1 |
20200084150 | Burstein et al. | Mar 2020 | A1 |
20200145725 | Eberle et al. | May 2020 | A1 |
20200177505 | Li | Jun 2020 | A1 |
20200177521 | Blumrich et al. | Jun 2020 | A1 |
20200259755 | Wang et al. | Aug 2020 | A1 |
20200272579 | Humphrey et al. | Aug 2020 | A1 |
20200274832 | Humphrey et al. | Aug 2020 | A1 |
20200334195 | Chen et al. | Oct 2020 | A1 |
20200349098 | Caulfield et al. | Nov 2020 | A1 |
20210081410 | Chavan et al. | Mar 2021 | A1 |
20210152494 | Johnsen et al. | May 2021 | A1 |
20210263779 | Haghighat et al. | Aug 2021 | A1 |
20210334206 | Colgrove et al. | Oct 2021 | A1 |
20210377156 | Michael et al. | Dec 2021 | A1 |
20210409351 | Das et al. | Dec 2021 | A1 |
20220131768 | Ganapathi et al. | Apr 2022 | A1 |
20220166705 | Froese | May 2022 | A1 |
20220197831 | Gorodetsky | Jun 2022 | A1 |
20220200900 | Roweth | Jun 2022 | A1 |
20220210058 | Bataineh et al. | Jun 2022 | A1 |
20220217078 | Ford et al. | Jul 2022 | A1 |
20220217101 | Yefet et al. | Jul 2022 | A1 |
20220245072 | Roweth et al. | Aug 2022 | A1 |
20220278941 | Shalev et al. | Sep 2022 | A1 |
20220309025 | Chen et al. | Sep 2022 | A1 |
20220329521 | Roweth | Oct 2022 | A1 |
20230035420 | Sankaran et al. | Feb 2023 | A1 |
20230046221 | Pismenny et al. | Feb 2023 | A1 |
Number | Date | Country |
---|---|---|
101729609 | Jun 2010 | CN |
102932203 | Feb 2013 | CN |
110324249 | Oct 2019 | CN |
110601888 | Dec 2019 | CN |
0275135 | Jul 1988 | EP |
2187576 | May 2010 | EP |
2219329 | Aug 2010 | EP |
2947832 | Nov 2015 | EP |
3445006 | Feb 2019 | EP |
2003-244196 | Aug 2003 | JP |
3459653 | Oct 2003 | JP |
10-2012-0062864 | Jun 2012 | KR |
10-2012-0082739 | Jul 2012 | KR |
10-2014-0100529 | Aug 2014 | KR |
10-2015-0026939 | Mar 2015 | KR |
10-2015-0104056 | Sep 2015 | KR |
10-2017-0110106 | Oct 2017 | KR |
10-1850749 | Apr 2018 | KR |
2001069851 | Sep 2001 | WO |
0247329 | Jun 2002 | WO |
2003019861 | Mar 2003 | WO |
2004001615 | Dec 2003 | WO |
2005094487 | Oct 2005 | WO |
2007034184 | Mar 2007 | WO |
2009010461 | Jan 2009 | WO |
2009018232 | Feb 2009 | WO |
2014092780 | Jun 2014 | WO |
2014137382 | Sep 2014 | WO |
2014141005 | Sep 2014 | WO |
2018004977 | Jan 2018 | WO |
2018046703 | Mar 2018 | WO |
2019072072 | Apr 2019 | WO |
Entry |
---|
International Search Report and Written Opinion received for PCT Application No. PCT/US20/24258, dated Jul. 7, 2020, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US20/24340, dated Oct. 26, 2020, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US20/24342, dated Oct. 27, 2020, 10 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2020/024192, dated Oct. 23, 2020, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2020/024221, dated Oct. 26, 2020, 9 pages. |
International Search Report cited in PCT/US2020/024170 dated Dec. 16, 2020; 3 pages. |
Maabi, S., et al.; “ERFAN: Efficient reconfigurable fault-tolerant deflection routing algorithm for 3-D Network-on-Chip”; Sep. 6-9, 2016. |
Maglione-Mathey, G., et al.; “Scalable Deadlock-Free Deterministic Minimal-Path Routing Engine for InfiniBand-Based Dragonfly Networks”; Aug. 21, 2017; 15 pages. |
Mamidala, A.R., et al.; “Efficient Barrier and Allreduce on Infiniband clusters using multicast and adaptive algorithms”; Sept. 20-23, 2004; 10 pages. |
Mammeri, Z; “Reinforcement Learning Based Routing in Networks: Review and Classification of Approaches”; Apr. 29, 2019; 35 pages. |
Mollah; M. A., et al.; “High Performance Computing Systems. Performance Modeling, Benchmarking, and Simulation: 8th International Workshop”; Nov. 13, 2017. |
Open Networking Foundation; “OpenFlow Switch Specification”; Mar. 26, 2015; 283 pages. |
Prakash, P., et al.; “The TCP Outcast Problem: Exposing Unfairness in Data Center Networks”; 2011; 15 pages. |
Ramakrishnan, K., et al.; “The Addition of Explicit Congestion Notification (ECN) to IP”; Sep. 2001; 63 pages. |
Roth, P. C., et al; “MRNet: A Software-Based Multicast/Reduction Network for Scalable Tools1”; Nov. 15-21, 2003; 16 pages. |
Silveira, J., et al.; “Preprocessing of Scenarios for Fast and Efficient Routing Reconfiguration in Fault-Tolerant NoCs”; Mar. 4-6, 2015. |
Tsunekawa, K.; “Fair bandwidth allocation among LSPs for AF class accommodating TCP and UDP traffic in a Diffserv-capable MPLS network”; Nov. 17, 2005; 9 pages. |
Underwood, K.D., et al.; “A hardware acceleration unit for MPI queue processing”; Apr. 18, 2005; 10 pages. |
Wu, J.; “Fault-tolerant adaptive and minimal routing in mesh-connected multicomputers using extended safety levels”; Feb. 2000; 11 pages. |
Xiang, D., et al.; “Fault-Tolerant Adaptive Routing in Dragonfly Networks”; Apr. 12, 2017; 15 pages. |
Xiang, D., et al.; “Deadlock-Free Broadcast Routing in Dragonfly Networks without Virtual Channels”, submission to IEEE transactions on Parallel and Distributed Systems, 2015, 15 pages. |
Awerbuch, B., et al.; “An On-Demand Secure Routing Protocol Resilient to Byzantine Failures”; Sep. 2002; 10 pages. |
Belayneh L.W., et al.; “Method and Apparatus for Routing Data in an Inter-Nodal Communications Lattice of a Massively Parallel Computer System by Semi-Randomly Varying Routing Policies for Different Packets”; 2019; 3 pages. |
Bhatele, A., et al.; “Analyzing Network Health and Congestion in Dragonfly-based Supercomputers”; May 23-27, 2016; 10 pages. |
Blumrich, M.A., et al.; “Exploiting Idle Resources in a High-Radix Switch for Supplemental Storage”; Nov. 2018; 13 pages. |
Chang, F., et al.; “PVW: Designing Vir PVW: Designing Virtual World Ser orld Server Infr er Infrastructur astructure”; 2010; 8 pages. |
Chang, F., et al.; “PVW: Designing Virtual World Server Infrastructure”; 2010; 8 pages. |
Chen, F., et al.; “Requirements for RoCEv3 Congestion Management”; Mar. 21, 2019; 8 pages. |
Cisco Packet Tracer; “packet-tracer;—ping”; https://www.cisco.com/c/en/us/td/docs/security/asa/asa-command-reference/I-R/cmdref2/p1.html; 2017. |
Cisco; “Understanding Rapid Spanning Tree Protocol (802.1w)”; Aug. 1, 2017; 13 pages. |
Eardley, ED, P; “Pre-Congestion Notification (PCN) Architecture”; Jun. 2009; 54 pages. |
Escudero-Sahuquillo, J., et al.; “Combining Congested-Flow Isolation and Injection Throttling in HPC Interconnection Networks”; Sep. 13-16, 2011; 3 pages. |
Hong, Y.; “Mitigating the Cost, Performance, and Power Overheads Induced by Load Variations in Multicore Cloud Servers”; Fall 2013; 132 pages. |
Huawei; “The Lossless Network For Data Centers”; Nov. 7, 2017; 15 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024248, dated Jul. 8, 2020, 11 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US20/024332, dated Jul. 8, 2020, 13 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US20/24243, dated Jul. 9, 2020, 10 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US20/24253, dated Jul. 6, 2020, 12 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US20/24256, dated Jul. 7, 2020, 11 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US20/24257, dated Jul. 7, 2020, 10 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US20/24259, dated Jul. 9, 2020, 13 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US20/24260, dated Jul. 7, 2020, 11 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US20/24268, dated Jul. 9, 2020, 11 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US20/24269, dated Jul. 9, 2020, 11 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US20/24339, dated Jul. 8, 2020, 11 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024125, dated Jul. 10, 2020, 5 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024129, dated Jul. 10, 2020, 11 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024237, dated Jul. 14, 2020, 5 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024239, dated Jul. 14, 2020, 11 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024241, dated Jul. 14, 2020, 13 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024242, dated Jul. 6, 2020, 11 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024244, dated Jul. 13, 2020, 10 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024245, dated Jul. 14, 2020, 11 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024246, dated Jul. 14, 2020, 10 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024250, dated Jul. 14, 2020, 12 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024254, dated Jul. 13, 2020, 10 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024262, dated Jul. 13, 2020, 10 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024266, dated Jul. 9, 2020, 10 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024270, dated Jul. 10, 2020, 13 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024271, dated Jul. 9, 2020, 10 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024272, dated Jul. 9, 2020, 10 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024276, dated Jul. 13, 2020, 9 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024304, dated Jul. 15, 2020, 11 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024311, dated Jul. 17, 2020, 8 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024321, dated Jul. 9, 2020, 9 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024324, dated Jul. 14, 2020, 10 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/024327, dated Jul. 10, 2020, 15 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/24158, dated Jul. 6, 2020, 18 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/24251, dated Jul. 6, 2020, 11 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2020/24267, dated Jul. 6, 2020, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US20/24303, dated Oct. 21, 2020, 9 pages. |
Ramakrishnan et al., RFC 3168, “The addition of Explicit Congestion Notification (ECN) to IP”, Sep. 2001 (Year 2001). |
Extended European Search Report and Search Opinion received for EP Application No. 20809930.9, dated Mar. 2, 2023, 9 pages. |
Extended European Search Report and Search Opinion received for EP Application No. 20810784.7, dated Mar. 9, 2023, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20220197831 A1 | Jun 2022 | US |
Number | Date | Country | |
---|---|---|---|
62852273 | May 2019 | US | |
62852203 | May 2019 | US | |
62852289 | May 2019 | US |