System and method for superconducting multi-chip module

Information

  • Patent Grant
  • 12317757
  • Patent Number
    12,317,757
  • Date Filed
    Monday, July 24, 2023
    2 years ago
  • Date Issued
    Tuesday, May 27, 2025
    4 months ago
Abstract
A method for bonding two superconducting integrated circuits (“chips”), such that the bonds electrically interconnect the chips. A plurality of indium-coated metallic posts may be deposited on each chip. The indium bumps are aligned and compressed with moderate pressure at a temperature at which the indium is deformable but not molten, forming fully superconducting connections between the two chips when the indium is cooled down to the superconducting state. An anti-diffusion layer may be applied below the indium bumps to block reaction with underlying layers. The method is scalable to a large number of small contacts on the wafer scale, and may be used to manufacture a multi-chip module comprising a plurality of chips on a common carrier. Superconducting classical and quantum computers and superconducting sensor arrays may be packaged.
Description
FIELD OF THE INVENTION

The present invention relates to the field of manufacturing of superconducting integrated circuit modules, and packages bonding a plurality of such circuits.


BACKGROUND OF THE INVENTION

All references cited herein are expressly incorporated herein by reference, for all purposes.


The technology of superconducting integrated circuits has been developing in recent years, although the integration scale remains somewhat below that of mainstream semiconductor technology. The most advanced superconducting integrated circuits are based on niobium (Nb) thin films, and Josephson junctions comprising a nanometer-thick aluminum oxide insulating layer between two Nb layers. These circuits function at temperatures below 9 K, and preferably below about 4 K. Large-scale integrated circuits have been fabricated with up to 10,000 Josephson junctions on a single chip, and up to 10 superconducting wiring layers. See, for example, the following US patents, incorporated in their entirety by reference:

  • Double masking technique for increasing fabrication yield in superconducting electronics (Tolpygo, U.S. Pat. Nos. 9,595,656; 9,136,457; 8,383,426; 7,615,385).
  • System and Method for Providing Multi-conductive Layer Interconnects for Superconducting Integrated Circuits (Tolpygo, U.S. Pat. Nos. 9,741,920; 9,130,116; 8,301,214).
  • Method for increasing the integration level of superconducting electronic circuits, and a resulting circuit (Yohannes, U.S. Pat. No. 9,741,918).
  • Systems and Methods for Fabrication of Superconducting Integrated Circuits (Ladizinsky, U.S. Pat. Nos. 8,951,808; 9,490,296; 9,978,809).


One developing application of superconducting integrated circuits is for classical computing and memory arrays based on rapid-single-flux-quantum (RSFQ) logic and related technologies, as disclosed in the following US patents, incorporated in their entirety by reference:

  • System and Method for Cryogenic Hybrid Technology Computing and Memory (Mukhanov, U.S. Pat. Nos. 9,887,000; 9,520,180).
  • Superconducting Devices with Ferromagnetic Barrier Junctions (Mukhanov, U.S. Pat. Nos. 9,627,045; 8,971,977).
  • Low Power Biasing Network for Superconducting Integrated Circuits (Mukhanov, U.S. Pat. Nos. 9,853,645; 9,473,124; 9,240,773; 8,571,614).
  • Magnetic RAM Array Architecture (Ohki, U.S. Pat. Nos. 9,552,862; 9,747,968).
  • Josephson magnetic random access memory system and method (Hen, U.S. Pat. No. 8,270,209).
  • See, U.S. patent and U.S. Pat. Nos. 5,140,324; 5,170,080; 5,198,815; 5,233,242; 5,233,243; 5,256,636; 5,289,400; 5,291,035; 5,327,130; 5,341,136; 5,388,068; 5,389,837; 5,598,105; 5,629,889; 5,781,009; 5,793,055; 5,818,373; 5,936,458; 5,963,351; 5,982,219; 6,023,161; 6,115,789; 6,175,749; 6,188,236; 6,242,939; 6,331,805; 6,345,189; 6,345,190; 6,353,330; 6,388,600; 6,420,895; 6,459,097; 6,479,139; 6,486,694; 6,486,756; 6,507,234; 6,509,853; 6,518,786; 6,526,491; 6,549,059; 6,563,310; 6,573,202; 6,576,951; 6,580,102; 6,608,581; 6,614,047; 6,626,995; 6,630,426; 6,703,857; 6,715,118; 6,724,216; 6,725,248; 6,728,131; 6,734,454; 6,734,699; 6,754,823; 6,756,925; 6,759,974; 6,763,363; 6,773,836; 6,781,435; 6,791,109; 6,797,341; 6,803,599; 6,809,734; 6,812,464; 6,812,484; 6,813,056; 6,822,255; 6,826,662; 6,838,749; 6,865,639; 6,909,109; 6,917,216; 6,917,537; 6,936,841; 6,946,428; 7,002,366; 7,049,593; 7,073,087; 7,078,694; 7,090,889; 7,093,104; 7,095,227; 7,124,259; 7,129,869; 7,129,870; 7,139,882; 7,170,960; 7,227,480; 7,231,500; 7,233,998; 7,236,998; 7,268,713; 7,280,623; 7,304,646; 7,313,199; 7,321,958; 7,360,102; 7,362,125; 7,365,663; 7,386,687; 7,389,508; 7,392,511; 7,395,411; 7,409,570; 7,415,703; 7,428,619; 7,437,536; 7,439,208; 7,440,490; 7,443,719; 7,444,525; 7,444,632; 7,457,939; 7,468,630; 7,475,257; 7,478,390; 7,496,673; 7,496,917; 7,498,832; 7,501,877; 7,502,928; 7,505,310; 7,508,230; 7,509,457; 7,516,334; 7,516,456; 7,523,157; 7,526,608; 7,546,405; 7,549,145; 7,554,369; 7,565,653; 7,570,075; 7,576,782; 7,598,897; 7,613,886; 7,614,053; 7,644,255; 7,653,908; 7,676,683; 7,680,474; 7,680,972; 7,685,601; 7,687,938; 7,689,783; 7,689,784; 7,689,814; 7,693,053; 7,694,306; 7,698,473; 7,701,286; 7,707,385; 7,714,605; 7,719,453; 7,720,982; 7,724,020; 7,724,083; 7,728,748; 7,730,456; 7,733,253; 7,748,006; 7,750,664; 7,768,287; 7,772,871; 7,774,512; 7,782,077; 7,783,584; 7,786,748; 7,786,786; 7,788,467; 7,802,023; 7,814,166; 7,816,940; 7,818,507; 7,818,724; 7,852,106; 7,868,645; 7,876,869; 7,882,310; 7,882,379; 7,886,112; 7,893,708; 7,903,456; 7,911,265; 7,917,667; 7,917,798; 7,921,151; 7,926,023; 7,928,875; 7,944,253; 7,956,640; 7,958,371; 7,969,178; 7,977,668; 7,991,013; 7,991,814; 7,999,813; 8,001,294; 8,001,377; 8,001,390; 8,001,592; 8,010,716; 8,022,012; 8,022,722; 8,028,288; 8,028,292; 8,045,660; 8,050,648; 8,055,235; 8,055,318; 8,091,078; 8,098,179; 8,108,564; 8,130,880; 8,138,784; 8,159,825; 8,176,481; 8,179,133; 8,188,901; 8,208,288; 8,219,981; 8,224,639; 8,247,799; 8,249,540; 8,260,143; 8,260,144; 8,260,145; 8,271,805; 8,290,553; 8,301,104; 8,301,214; 8,321,866; 8,347,165; 8,359,186; 8,362,220; 8,401,509; 8,401,600; 8,416,109; 8,434,091; 8,437,818; 8,462,889; 8,514,986; 8,521,117; 8,547,732; 8,549,521; 8,555,127; 8,565,345; 8,569,874; 8,571,614; 8,582,687; 8,593,141; 8,618,799; 8,629,729; 8,670,807; 8,726,041; 8,744,541; 8,751,212; 8,755,220; 8,769,495; 8,786,476; 8,787,873; 8,804,358; 8,806,316; 8,811,536; 8,861,619; 8,867,931; 8,872,690; 8,923,073; 8,930,786; 8,933,695; 8,937,255; 8,970,217; 8,971,977; 8,977,223; 9,020,079; 9,020,362; 9,058,164; 9,065,452; 9,110,771; 9,130,116; 9,160,593; 9,166,625; 9,183,051; 9,203,654; 9,235,811; 9,240,773; 9,252,825; 9,261,573; 9,276,615; 9,282,645; 9,312,878; 9,312,895; 9,344,069; 9,385,293; 9,401,823; 9,425,804; 9,425,838; 9,443,576; 9,455,391; 9,455,707; 9,473,124; 9,476,950; 9,509,315; 9,514,812; 9,520,180; 9,548,878; 9,552,862; 9,554,303; 9,565,045; 9,577,690; 9,582,695; 9,588,191; 9,614,532; 9,618,591; 9,627,045; 9,641,372; 9,647,194; 9,661,596; 9,686,112; 9,692,423; 9,699,266; 9,703,516; 9,710,586; 9,712,172; 9,722,589; 9,739,851; 9,741,918; 9,741,920; 9,742,429; 9,747,968; 9,748,937; 9,780,765; 9,787,312; 9,793,913; 9,793,933; 9,812,836; 9,818,064; 9,838,051; 9,853,645; 9,887,000; 9,906,191; 9,906,248; 9,982,935; 9,998,122; 20020060635; 20020105948; 20020118903; 20020119805; 20020135582; 20020138637; 20020138701; 20020138707; 20020156993; 20020169079; 20020179937; 20020179939; 20020188578; 20020189533; 20030011398; 20030034794; 20030057441; 20030102470; 20030111659; 20030111661; 20030115401; 20030146429; 20030146430; 20030179831; 20030207767; 20030219911; 20030229765; 20040016883; 20040022332; 20040120299; 20040134967; 20040150458; 20040167036; 20040170047; 20040220057; 20040234785; 20040266627; 20050023518; 20050035368; 20050036055; 20050071404; 20050071513; 20050071526; 20050071578; 20050071651; 20050071828; 20050074220; 20050078022; 20050078117; 20050081181; 20050081182; 20050081201; 20050081202; 20050081203; 20050081209; 20050081213; 20050086655; 20050091473; 20050095011; 20050097231; 20050097280; 20050097302; 20050116204; 20050120185; 20050120187; 20050120254; 20050138325; 20050160097; 20050188372; 20050188373; 20050216222; 20050216775; 20050228967; 20050231196; 20050243708; 20050251659; 20050251667; 20050268038; 20050268048; 20050273652; 20060038821; 20060049891; 20060069879; 20060075397; 20060092957; 20060093861; 20060107122; 20060112213; 20060126770; 20060129786; 20060129999; 20060143509; 20060149861; 20060155792; 20060155955; 20060155964; 20060161741; 20060177122; 20060179179; 20060179198; 20060179255; 20060179275; 20060179277; 20060179278; 20060179436; 20060190614; 20060190942; 20060195824; 20060206731; 20060206732; 20060212643; 20060251070; 20060255987; 20060259733; 20060259743; 20060270173; 20070049097; 20070075729; 20070075752; 20070077906; 20070083870; 20070168538; 20070176625; 20070180041; 20070186077; 20070194958; 20070240013; 20070277000; 20070283103; 20070288701; 20070293160; 20080040805; 20080048762; 20080048902; 20080049885; 20080052504; 20080077721; 20080077815; 20080091886; 20080098260; 20080101444; 20080101501; 20080101503; 20080103708; 20080107213; 20080112313; 20080126601; 20080146449; 20080155203; 20080162834; 20080162877; 20080168443; 20080186064; 20080209156; 20080229143; 20080231353; 20080235679; 20080250414; 20080256275; 20080271003; 20080276232; 20080279370; 20080282063; 20080282084; 20080282093; 20080282341; 20080282342; 20080290938; 20080297230; 20080301695; 20090002014; 20090008632; 20090057652; 20090068355; 20090073017; 20090086533; 20090125717; 20090153381; 20090232191; 20090232507; 20090232510; 20090237106; 20090244958; 20090322374; 20100026537; 20100066576; 20100133514; 20100148841; 20100149011; 20100312969; 20100329401; 20110087909; 20110133770; 20110167241; 20110288823; 20110302591; 20110303153; 20120030386; 20120088674; 20120096873; 20120108434; 20120184445; 20120266174; 20120274494; 20120328301; 20130004180; 20130043945; 20130079230; 20130258595; 20130272453; 20130303379; 20140056385; 20140113828; 20140175380; 20140245314; 20140286465; 20150078290; 20150119253; 20150125155; 20150146805; 20150146806; 20150178432; 20150229343; 20150300719; 20160012882; 20160028402; 20160028403; 20160035404; 20160036612; 20160080189; 20160093420; 20160197628; 20160351306; 20170012862; 20170038123; 20170069367; 20170133577; 20170134091; 20170141769; 20170163301; 20170178018; 20170186935; 20170237594; 20170265158; 20170295048; 20170324019; 20170345990; 20170359072; 20180005887; 20180101785; 20180102469; 20180102470; 20180145664; and 20180248103.


Another developing application of these circuits is for sensor arrays based on SQUIDs and similar devices, such as disclosed in the following US patents, incorporated in their entirety by reference:

  • High Linearity Superconducting Magnetic Field Detector (Kornev, U.S. Pat. Nos. 8,933,695; 8,179,133).
  • 2D Arrays of Diamond Shaped Cells Having Multiple Josephson Junctions (Berggren, U.S. Pat. No. 9,664,751).
  • Linear voltage response of non-uniform arrays of Bi-SQUIDs (Longhini, U.S. Pat. No. 9,097,751).
  • Magnetic Resonance System and Method Employing a Digital SQUID (Radparvar, U.S. Pat. Nos. 9,618,591; 9,261,573; 8,618,799; 8,593,141).


Yet another application of superconducting integrated circuits that has been developing more recently is quantum computing using quantum bits (or qubits) made of Josephson junctions, as disclosed in the following patents:

  • System and Method for Controlling Superconducting Quantum Circuits Using Single Flux Quantum Logic Circuits (McDermott, U.S. Pat. No. 9,425,804).
  • System and Method for Circuit Quantum Electrodynamics Measurement (McDermott, U.S. Pat. No. 9,692,423).
  • Method and apparatus for controlling qubits with single flux quantum logic (Przybysz, U.S. Pat. No. 7,969,178).
  • Universal Adiabatic Quantum Computing with Superconducting Qubits (Harris, U.S. Pub. Patent Application No. 2015/0111754).
  • Superconducting quantum bit device based on Josephson junctions (Esteve, U.S. Pat. No. 6,838,694).
  • Superconducting shielding for use with an integrated circuit for quantum computing (Bunyk, U.S. Pat. No. 7,687,938).
  • See, U.S. patent and U.S. Pat. Nos. 5,917,322; 6,369,404; 6,437,413; 6,459,097; 6,472,681; 6,495,854; 6,504,172; 6,537,847; 6,563,310; 6,563,311; 6,573,202; 6,576,951; 6,580,102; 6,605,822; 6,614,047; 6,627,915; 6,627,916; 6,649,929; 6,670,630; 6,728,131; 6,753,546; 6,784,451; 6,791,109; 6,800,837; 6,803,599; 6,812,484; 6,822,255; 6,838,694; 6,879,012; 6,885,325; 6,897,468; 6,900,454; 6,900,456; 6,905,887; 6,910,382; 6,911,664; 6,919,579; 6,926,921; 6,930,318; 6,930,320; 6,936,841; 6,943,368; 6,960,780; 6,979,836; 6,984,846; 6,987,282; 6,988,058; 7,002,174; 7,015,499; 7,018,852; 7,042,005; 7,069,282; 7,109,593; 7,113,967; 7,122,837; 7,135,697; 7,135,701; 7,145,170; 7,180,087; 7,180,645; 7,184,555; 7,203,715; 7,230,266; 7,249,518; 7,250,624; 7,253,654; 7,268,576; 7,307,275; 7,310,623; 7,312,562; 7,321,884; 7,332,738; 7,334,008; 7,335,909; 7,359,928; 7,364,923; 7,394,092; 7,400,282; 7,402,835; 7,410,763; 7,418,283; 7,426,444; 7,428,562; 7,437,533; 7,443,720; 7,453,162; 7,456,702; 7,460,669; 7,474,010; 7,474,095; 7,479,652; 7,498,832; 7,518,138; 7,525,202; 7,529,717; 7,533,068; 7,547,932; 7,550,759; 7,566,896; 7,579,424; 7,579,699; 7,598,514; 7,605,600; 7,613,764; 7,613,765; 7,619,437; 7,624,088; 7,639,035; 7,687,938; 7,700,710; 7,714,605; 7,724,020; 7,724,083; 7,732,804; 7,749,922; 7,764,568; 7,767,976; 7,772,871; 7,779,228; 7,782,077; 7,786,748; 7,788,192; 7,791,430; 7,800,395; 7,836,007; 7,843,209; 7,844,656; 7,847,615; 7,852,106; 7,858,966; 7,863,892; 7,868,645; 7,870,087; 7,875,876; 7,876,145; 7,876,248; 7,877,333; 7,880,529; 7,889,992; 7,893,708; 7,895,142; 7,898,282; 7,899,852; 7,911,265; 7,912,656; 7,920,598; 7,925,614; 7,932,514; 7,932,515; 7,966,549; 7,969,178; 7,969,805; 7,977,668; 7,982,646; 7,984,012; 7,990,662; 8,008,942; 8,008,991; 8,014,424; 8,018,244; 8,022,703; 8,022,722; 8,032,474; 8,035,540; 8,053,754; 8,058,085; 8,058,638; 8,062,841; 8,063,657; 8,073,631; 8,073,795; 8,073,808; 8,089,286; 8,098,179; 8,102,185; 8,103,172; 8,111,083; 8,117,000; 8,138,756; 8,138,784; 8,138,880; 8,142,754; 8,144,589; 8,148,715; 8,159,313; 8,164,082; 8,169,231; 8,174,305; 8,175,995; 8,184,986; 8,190,548; 8,193,808; 8,195,596; 8,195,726; 8,219,871; 8,222,629; 8,222,899; 8,223,625; 8,228,688; 8,229,863; 8,234,103; 8,242,799; 8,244,650; 8,244,662; 8,247,799; 8,254,079; 8,259,848; 8,271,043; 8,275,428; 8,279,022; 8,283,943; 8,284,585; 8,294,138; 8,301,214; 8,304,758; 8,310,230; 8,315,969; 8,355,765; 8,363,606; 8,374,072; 8,386,554; 8,405,468; 8,421,053; 8,423,297; 8,437,168; 8,437,818; 8,441,329; 8,455,278; 8,457,093; 8,461,862; 8,464,542; 8,477,888; 8,485,427; 8,488,487; 8,494,993; 8,498,639; 8,504,497; 8,507,894; 8,508,280; 8,510,618; 8,513,647; 8,536,566; 8,547,090; 8,553,795; 8,560,282; 8,560,470; 8,571,614; 8,581,227; 8,583,903; 8,604,944; 8,605,288; 8,606,341; 8,611,974; 8,620,835; 8,630,256; 8,631,367; 8,642,998; 8,648,331; 8,654,578; 8,655,828; 8,659,007; 8,669,325; 8,670,777; 8,670,807; 8,675,768; 8,676,223; 8,686,751; 8,687,489; 8,700,689; 8,712,424; 8,735,326; 8,738,105; 8,744,075; 8,745,850; 8,748,196; 8,748,950; 8,772,759; 8,781,129; 8,786,476; 8,812,066; 8,816,325; 8,824,601; 8,830,818; 8,841,764; 8,849,580; 8,854,074; 8,861,619; 8,865,537; 8,872,360; 8,874,629; 8,891,489; 8,892,857; 8,897,057; 8,921,473; 8,922,239; 8,923,073; 8,928,391; 8,947,080; 8,951,808; 8,954,125; 8,972,921; 8,975,912; 8,977,576; 8,983,303; 8,995,797; 9,015,215; 9,026,574; 9,040,959; 9,041,427; 9,059,305; 9,059,674; 9,059,707; 9,069,928; 9,094,969; 9,111,230; 9,129,224; 9,130,116; 9,130,598; 9,134,047; 9,143,266; 9,152,923; 9,152,924; 9,159,033; 9,162,881; 9,170,278; 9,177,814; 9,178,154; 9,183,508; 9,192,085; 9,203,466; 9,207,672; 9,208,446; 9,218,567; 9,218,571; 9,219,298; 9,219,605; 9,224,783; 9,231,181; 9,235,811; 9,240,773; 9,256,834; 9,260,289; 9,270,071; 9,270,385; 9,296,609; 9,306,739; 9,331,020; 9,332,475; 9,335,385; 9,344,092; 9,350,460; 9,354,039; 9,355,362; 9,355,364; 9,355,365; 9,361,169; 9,363,766; 9,363,790; 9,367,288; 9,369,133; 9,379,303; 9,384,827; 9,385,293; 9,385,294; 9,396,440; 9,397,283; 9,400,499; 9,401,766; 9,405,876; 9,406,026; 9,420,603; 9,424,526; 9,425,377; 9,425,804; 9,432,024; 9,437,800; 9,438,245; 9,438,246; 9,443,200; 9,444,430; 9,454,061; 9,455,391; 9,455,392; 9,460,397; 9,461,588; 9,471,279; 9,471,280; 9,471,880; 9,473,124; 9,477,796; 9,489,634; 9,490,296; 9,495,644; 9,501,747; 9,501,748; 9,503,063; 9,509,274; 9,509,280; 9,509,478; 9,514,812; 9,515,247; 9,518,336; 9,520,180; 9,520,547; 9,524,470; 9,530,535; 9,530,873; 9,531,055; 9,537,953; 9,547,826; 9,548,742; 9,559,284; 9,564,573; 9,588,940; 9,589,236; 9,594,726; 9,595,969; 9,607,270; 9,613,905; 9,614,270; 9,614,532; 9,622,188; 9,633,314; 9,634,224; 9,634,835; 9,646,259; 9,647,662; 9,660,859; 9,663,358; 9,664,562; 9,665,539; 9,680,452; 9,683,766; 9,685,935; 9,691,962; 9,692,423; 9,692,595; 9,697,473; 9,699,266; 9,705,063; 9,710,758; 9,713,199; 9,716,219; 9,720,055; 9,721,209; 9,727,527; 9,727,823; 9,727,824; 9,729,152; 9,733,327; 9,735,776; 9,741,918; 9,741,920; 9,741,921; 9,748,976; 9,749,893; 9,753,102; 9,754,214; 9,755,133; 9,761,305; 9,762,200; 9,767,238; 9,768,371; 9,768,771; 9,773,208; 9,779,359; 9,779,360; 9,780,764; 9,780,765; 9,786,194; 9,787,278; 9,787,312; 9,791,258; 9,793,913; 9,798,083; 9,798,219; 9,799,817; 9,800,399; 9,806,711; 9,812,836; 9,817,081; 9,818,064; 9,818,796; 9,823,313; 9,823,314; 9,823,381; 9,824,597; 9,829,545; 9,835,693; 9,835,694; 9,836,699; 9,841,484; 9,843,312; 9,845,153; 9,847,121; 9,853,645; 9,853,837; 9,857,509; 9,857,609; 9,858,531; 9,858,532; 9,865,648; 9,870,273; 9,870,277; 9,870,536; 9,875,215; 9,875,444; 9,880,365; 9,881,256; 9,882,112; 9,885,888; 9,887,000; 9,891,297; 9,892,365; 9,893,262; 9,909,460; 9,910,104; 9,910,105; 9,913,414; 9,917,580; 9,922,289; 9,923,538; 9,927,636; 9,928,948; 9,929,334; 9,929,978; 9,934,468; 9,935,252; 9,940,212; 9,940,586; 9,941,459; 9,945,917; 9,946,973; 9,947,856; 9,947,861; 9,948,050; 9,948,254; 9,952,830; 9,953,268; 9,953,269; 9,966,720; 9,966,926; 9,971,970; 9,978,020; 9,978,809; 9,979,400; 9,983,336; 9,984,333; 9,985,193; 9,985,614; 9,991,864; 9,994,956; 9,996,801; 9,998,122; RE44,097; 20010020701; 20010023943; 20020097874; 20020117656; 20020117738; 20020121636; 20020130313; 20020130315; 20020177529; 20020179937; 20020179939; 20020180006; 20020188578; 20030005010; 20030021518; 20030023651; 20030027724; 20030038285; 20030042481; 20030057441; 20030068832; 20030071258; 20030094606; 20030098455; 20030102470; 20030107033; 20030111659; 20030111661; 20030121028; 20030146429; 20030146430; 20030164490; 20030169041; 20030173498; 20030173997; 20030193097; 20030207766; 20030224944; 20040000666; 20040012407; 20040016918; 20040077503; 20040095803; 20040098443; 20040119061; 20040135139; 20040140537; 20040165454; 20040167036; 20040170047; 20040173787; 20040173792; 20040173793; 20040238813; 20050001209; 20050045872; 20050062072; 20050082519; 20050098773; 20050101489; 20050107262; 20050123674; 20050131746; 20050133780; 20050143791; 20050162302; 20050167772; 20050184284; 20050184285; 20050197254; 20050224784; 20050250651; 20050256007; 20050273306; 20060022190; 20060033096; 20060033097; 20060043423; 20060045269; 20060091375; 20060097746; 20060097747; 20060115086; 20060123363; 20060147154; 20060151775; 20060157713; 20060179029; 20060225165; 20060248618; 20060260016; 20070048746; 20070063700; 20070073038; 20070080341; 20070135676; 20070162407; 20070170952; 20070174227; 20070180586; 20070194225; 20070215862; 20070239366; 20070241747; 20070250280; 20070258329; 20070263432; 20070287015; 20070295954; 20080052055; 20080065573; 20080086438; 20080089282; 20080095110; 20080109500; 20080116448; 20080116449; 20080117833; 20080120259; 20080123520; 20080129328; 20080132281; 20080162613; 20080176750; 20080185576; 20080186918; 20080214198; 20080215850; 20080218519; 20080224726; 20080225823; 20080227624; 20080233967; 20080238531; 20080258753; 20080258849; 20080260257; 20080262989; 20080274898; 20080284545; 20080291945; 20080297230; 20080310324; 20080313114; 20080313430; 20090003282; 20090005260; 20090008632; 20090010090; 20090014714; 20090015317; 20090028112; 20090033369; 20090042511; 20090046573; 20090057652; 20090070402; 20090075825; 20090077001; 20090078931; 20090078932; 20090082209; 20090085694; 20090086713; 20090087084; 20090097650; 20090097652; 20090102580; 20090121215; 20090122508; 20090135944; 20090167342; 20090168286; 20090173936; 20090177603; 20090182542; 20090192041; 20090206871; 20090214169; 20090220082; 20090241013; 20090259905; 20090261319; 20090265112; 20090278046; 20090289638; 20090299947; 20090316842; 20090317089; 20090319757; 20090321720; 20090322374; 20100026447; 20100027486; 20100057653; 20100062144; 20100085678; 20100085827; 20100094796; 20100105406; 20100109638; 20100133514; 20100148853; 20100157310; 20100157552; 20100182039; 20100194466; 20100224912; 20100241780; 20100264921; 20100270534; 20100281885; 20100296591; 20100303188; 20100306142; 20100315079; 20110009274; 20110010412; 20110018612; 20110022340; 20110022820; 20110031994; 20110047201; 20110049475; 20110054876; 20110055520; 20110057169; 20110060710; 20110060711; 20110060780; 20110065585; 20110065586; 20110074403; 20110089405; 20110121895; 20110133770; 20110142242; 20110152104; 20110156008; 20110161638; 20110175061; 20110175062; 20110231462; 20110238607; 20110249548; 20110253906; 20110287941; 20110287944; 20110298489; 20120005456; 20120023053; 20120028806; 20120045136; 20120058602; 20120071333; 20120072191; 20120075682; 20120083302; 20120091193; 20120094838; 20120112168; 20120123693; 20120124432; 20120135867; 20120144159; 20120149581; 20120159272; 20120172233; 20120187378; 20120210111; 20120212375; 20120213371; 20120215821; 20120254586; 20120258861; 20120265718; 20120278057; 20120319085; 20120319684; 20120320668; 20120326130; 20120326720; 20120328290; 20130005580; 20130007087; 20130009677; 20130016835; 20130029848; 20130036078; 20130039236; 20130043945; 20130048950; 20130087766; 20130107617; 20130117200; 20130119351; 20130136112; 20130144925; 20130168233; 20130190185; 20130196855; 20130231249; 20130246495; 20130250926; 20130251145; 20130258595; 20130258869; 20130278283; 20130279617; 20130282636; 20130299783; 20130308956; 20130313526; 20130322873; 20140025606; 20140050475; 20140097405; 20140113828; 20140119537; 20140167811; 20140167836; 20140187427; 20140203838; 20140214257; 20140221059; 20140223224; 20140228222; 20140229705; 20140229722; 20140235450; 20140245249; 20140246652; 20140246763; 20140250288; 20140264283; 20140264284; 20140264285; 20140264286; 20140264287; 20140266496; 20140274725; 20140279822; 20140289583; 20140295907; 20140314419; 20140315723; 20140324933; 20140329687; 20140337612; 20140344322; 20140354326; 20140355998; 20140357493; 20140368234; 20150006443; 20150024964; 20150028970; 20150032991; 20150032993; 20150032994; 20150036967; 20150046681; 20150055630; 20150055961; 20150060756; 20150097159; 20150111754; 20150119252; 20150119253; 20150125829; 20150129089; 20150155468; 20150161524; 20150179436; 20150179914; 20150179915; 20150186791; 20150187840; 20150193692; 20150199178; 20150200778; 20150205759; 20150236235; 20150241481; 20150242758; 20150254571; 20150260812; 20150262072; 20150262073; 20150263260; 20150263736; 20150269124; 20150288500; 20150299894; 20150310350; 20150311422; 20150324705; 20150325774; 20150332163; 20150332164; 20150339417; 20150340584; 20150346291; 20150349780; 20150354938; 20150357550; 20150357783; 20150358022; 20150363707; 20150363708; 20150372217; 20150379418; 20160012346; 20160012347; 20160019468; 20160026183; 20160035470; 20160040288; 20160042294; 20160055421; 20160065693; 20160071021; 20160079968; 20160085616; 20160087598; 20160087599; 20160093420; 20160093790; 20160104073; 20160112031; 20160125309; 20160125310; 20160132785; 20160148112; 20160156356; 20160156357; 20160161411; 20160191060; 20160204330; 20160204331; 20160210560; 20160211438; 20160221825; 20160233860; 20160233965; 20160245639; 20160254434; 20160266220; 20160267032; 20160276570; 20160283197; 20160283857; 20160292586; 20160292587; 20160300155; 20160308502; 20160314407; 20160321559; 20160322693; 20160328208; 20160328659; 20160329896; 20160335558; 20160335559; 20160335560; 20160343932; 20160343934; 20160343935; 20160344414; 20160352515; 20160364653; 20160371227; 20160380026; 20160380636; 20170005255; 20170011305; 20170017742; 20170017894; 20170018312; 20170033273; 20170039481; 20170061317; 20170062107; 20170062228; 20170062692; 20170062898; 20170069819; 20170071082; 20170072504; 20170076787; 20170077380; 20170077381; 20170077382; 20170077383; 20170077665; 20170084813; 20170085231; 20170089961; 20170090080; 20170091646; 20170091647; 20170091648; 20170091649; 20170091650; 20170092833; 20170092834; 20170093015; 20170093381; 20170094544; 20170098682; 20170104546; 20170104695; 20170109605; 20170116159; 20170116542; 20170123171; 20170132524; 20170133336; 20170133576; 20170138851; 20170140296; 20170141285; 20170141286; 20170141287; 20170147303; 20170148972; 20170160474; 20170162778; 20170167977; 20170170812; 20170170813; 20170170893; 20170177534; 20170177751; 20170178017; 20170178018; 20170179973; 20170186934; 20170193388; 20170199036; 20170201222; 20170201224; 20170206461; 20170212405; 20170212860; 20170213143; 20170214410; 20170220510; 20170222116; 20170223094; 20170223143; 20170227795; 20170228483; 20170229167; 20170229631; 20170229632; 20170229633; 20170230050; 20170237144; 20170248832; 20170255629; 20170255871; 20170255872; 20170256698; 20170257074; 20170261770; 20170261771; 20170262765; 20170264373; 20170270245; 20170286858; 20170286859; 20170293854; 20170300454; 20170300808; 20170300817; 20170300827; 20170308644; 20170308804; 20170316713; 20170317203; 20170317262; 20170323195; 20170323206; 20170329883; 20170330101; 20170337155; 20170344898; 20170345990; 20170350929; 20170351967; 20170351974; 20170357539; 20170357561; 20170359072; 20170364362; 20170370019; 20170372412; 20170372427; 20170373044; 20170373153; 20170373369; 20170373658; 20180003753; 20180005809; 20180011981; 20180012932; 20180013052; 20180013426; 20180026633; 20180032893; 20180032894; 20180033944; 20180040800; 20180040935; 20180046933; 20180052806; 20180053112; 20180053113; 20180053551; 20180053809; 20180054201; 20180067182; 20180069288; 20180075365; 20180075901; 20180090200; 20180091115; 20180091141; 20180091142; 20180091143; 20180091244; 20180091440; 20180096085; 20180096257; 20180101784; 20180101785; 20180101786; 20180101787; 20180102469; 20180102470; 20180107092; 20180107526; 20180107938; 20180107939; 20180109379; 20180113373; 20180114138; 20180121601; 20180123597; 20180128739; 20180137428; 20180137429; 20180137430; 20180138987; 20180144262; 20180145631; 20180150760; 20180152294; 20180157775; 20180165601; 20180174852; 20180181685; 20180189444; 20180196780; 20180196916; 20180197102; 20180198427; 20180211158; 20180218279; 20180218280; 20180218281; 20180219150; 20180225186; 20180225586; 20180226451; 20180231868; 20180232258; 20180232652; 20180232653; 20180232654; 20180232655; 20180238869; 20180239928; 20180240032; 20180240033; 20180240034; 20180240035; 20180241552; 20180246848; 20180247200; 20180247217; 20180247236; 20180247974; 20180248104; 20180248894; 20180253552; 20180253599; 20180254895; 20180255000; 20180255073; 20180259597; 20180260245; 20180260729; 20180260730; 20180260731; 20180260732; 20180261752; and 20180262276; 20180262489.


All of these superconducting systems, both classical and quantum, require careful packaging, particularly as the scale of the system increases, and cannot generally be disposed on, or confined to, a single integrated circuit device (“chip”). Furthermore, one might have different cryogenic chips optimized for different system applications, such as a quantum computing chip and a digital control chip, which must be closely interfaced during operation. These include flip-chip configurations and multi-chip modules.


There are several special requirements for bonding superconducting circuits. First, the voltage levels in superconducting circuits are very low, so that all contact resistances must be extremely low. Indeed, for some applications such as quantum computing, the contacts must be fully superconducting at the operating temperature. Second, a Josephson junction generally comprises an ultrathin tunnel barrier approximately 1 nm thick, which is very sensitive to diffusion at elevated temperatures, e.g., of impurities or volatile components in adjacent layers. Indeed, the superconducting critical current L at the operating temperature of a Josephson junction may be permanently shifted if the processing temperature is raised above about 150° C. for an extended period of time. This has long been known by some in the prior art, but perhaps not widely appreciated, or avoided during fabrication or processing. And third, superconducting circuits are fabricated close to room temperature, but operate at deep cryogenic temperatures around 4 K or below, and all contacts and packaging must withstand thermal cycling, ideally for multiple thermal cycles between 300 K and 4 K, without degradation of contacts mechanically or electrically. Thus, brittle materials with mismatched coefficients of thermal expansion should be avoided.


Several distinct approaches to boding superconducting circuit modules have been developed, with varying degrees of reliability, scalability, and optimization to superconducting circuits. See the following US Patents, incorporated in their entirety by reference:

  • Superconductive Multi-Chip Module for High Speed Digital Circuits (Dotsenko, U.S. Pat. No. 9,647,194).
  • Method for Fabrication of Electrical Contacts to Superconducting Circuits (Dotsenko, U.S. Pat. No. 8,159,825).
  • Method of Forming an Electronic Multichip Module (Dotsenko, U.S. Pat. No. 8,804,358).
  • Systems and Methods for Testing and Packaging a Superconducting Chip (Bunyk, U.S. Pat. No. 9,865,648).
  • Interconnect structures for assembly of semiconductor structures including superconducting integrated circuits (Oliver, U.S. Pub. Patent Application No. 2018/0012932).
  • Cryogenic electronic packages and methods for fabricating cryogenic electronic packages, (Das, U.S. Pub. Patent Application No. 2018/0102469).
  • Cryogenic electronic packages and assemblies (Das, U.S. Pub. Patent Application No. 2018/0102470).
  • Modular array of vertically integrated superconducting qubit devices for scaling quantum computing (Chow, U.S. Pat. No. 9,524,470).
  • There are also several recent articles in the non-patent literature that bear upon packaging of superconducting circuits. Note in particular the following:
  • Foxen, et al, “Qubit compatible superconducting interconnects”, Quantum Science and Technology, vol. 3, no. 1, November 2017, available online at iopscience.iop.org/article/10.1088/2058-9565/aa94fc/meta, which discloses the use of pressed indium (In) bumps to form a cold weld at room temperature without heating. The indium bumps are partially compressed, without the use of any posts. It also discloses using a diffusion barrier layer of titanium nitride (TiN) between indium and superconducting aluminum.
  • McRae et al, “Thermocompression bonding technology for multilayer superconducting quantum circuits”, Applied Physics Letters, vol. 111, 123501, September 2017. Available online at arxiv.org/pdf/1705.02435.pdf, which also discloses indium bump bonds, but here the bonds are heated to 190° C., above the melting temperature of the indium, for 100 minutes.
  • Reviewing the key aspects of this prior art in packaging of superconducting circuits, Dotsenko (U.S. Pat. Nos. 9,647,194; 8,159,825; 8,804,358) uses epoxy bonding, but contacts do not exhibit zero resistance, and repeated thermal cycling may degrade the quality of the contacts.
  • Bunyk (U.S. Pat. No. 9,865,648) discloses using metallic pillars and solder bumps, but does not address the issue of avoiding high temperatures in processing, and teaches the use of solder reflow based on lead-tin (Pb/Sn) solder, which would require temperatures of at least 190° C. Such a temperature should be avoided, to avoid changing the properties of the Josephson junctions.
  • Oliver (U.S. Pub. Patent Application No. 2018/0012932) and Das (U.S. Pub. Patent Application Nos. 2018/0102469; 2018/0102469) also teach the use of solder bumps with an underbump metal, using solder reflow. While a variety of solder compositions are disclosed, no specific processing temperatures are given, and there is no teaching of avoidance of high temperatures due to the sensitivity of Josephson junctions.
  • Chow (U.S. Pat. No. 9,524,470) discloses superconducting quantum computing components using spring-loading and clamps, as well as wire bonds, which do not correspond to a robust scalable technology.
  • There have also been earlier patents on indium bump bonding, not focused on superconducting circuits. See, for example, the following U.S. Patents, incorporated in their entirety by reference:
  • Reworkable Microelectronic Multichip Module (Yokoyama, U.S. Pat. No. 5,920,464). Yokoyama discloses cold-welding indium alloys of different compositions, in such a way that the weld breaks in a predictable manner, enabling rework.
  • Alloy Bonded Indium Bumps and Methods of Processing Same (Williams U.S. Pat. No. 4,930,001). Williams discloses cold welding at room temperature or up to 100° C., using indium bumps against gold layers. Interdiffusion of indium and gold creates the bond.
  • Indium alloy cold weld bumps (Helber, U.S. Pat. No. 5,186,379). Helber discloses welding an indium bump with an alloying material at an elevated temperature of about 150° C., just below the melting temperature of indium (157° C.), but above that of a mixed alloy, so that the two materials interdiffuse.
  • See also: U.S. patent and U.S. Pat. Nos. 4,039,833; 4,354,109; 4,447,291; 4,479,139; 4,551,629; 4,573,627; 4,614,960; 4,672,737; 4,706,166; 4,718,028; 4,740,700; 4,782,028; 4,803,363; 4,804,132; 4,807,000; 4,817,850; 4,833,515; 4,845,540; 4,865,245; 4,868,902; 4,905,265; 4,910,154; 4,912,545; 4,929,913; 4,930,001; 4,935,627; 4,956,695; 4,964,701; 4,965,649; 4,980,555; 4,998,688; 4,999,486; 5,001,532; 5,015,858; 5,021,854; 5,043,582; 5,045,681; 5,070,241; 5,075,201; 5,075,553; 5,091,288; 5,092,036; 5,111,050; 5,113,076; 5,120,960; 5,128,534; 5,132,763; 5,141,334; 5,146,302; 5,149,671; 5,149,954; 5,168,338; 5,185,613; 5,186,379; 5,201,582; 5,227,656; 5,235,176; 5,236,871; 5,245,191; 5,264,699; 5,269,453; 5,279,974; 5,290,423; 5,293,036; 5,294,789; 5,296,384; 5,300,777; 5,304,500; 5,306,386; 5,308,980; 5,311,010; 5,322,816; 5,327,005; 5,336,879; 5,340,984; 5,347,086; 5,365,088; 5,376,558; 5,376,793; 5,379,336; 5,380,669; 5,381,784; 5,382,542; 5,382,977; 5,384,267; 5,386,128; 5,389,792; 5,391,868; 5,393,696; 5,399,206; 5,401,986; 5,404,006; 5,406,701; 5,414,294; 5,426,072; 5,426,303; 5,426,304; 5,432,374; 5,436,450; 5,440,130; 5,444,280; 5,446,529; 5,449,908; 5,449,944; 5,457,318; 5,475,224; 5,477,173; 5,483,088; 5,485,010; 5,488,504; 5,489,776; 5,494,483; 5,495,114; 5,502,300; 5,512,750; 5,519,529; 5,523,570; 5,523,628; 5,525,867; 5,539,206; 5,541,914; 5,543,641; 5,559,332; 5,559,336; 5,561,593; 5,567,942; 5,567,975; 5,568,574; 5,572,029; 5,574,282; 5,578,826; 5,581,084; 5,582,485; 5,591,678; 5,604,977; 5,608,208; 5,621,227; 5,627,112; 5,629,524; 5,633,203; 5,646,426; 5,652,150; 5,661,267; 5,661,590; 5,672,545; 5,696,577; 5,701,010; 5,708,269; 5,721,429; 5,731,621; 5,732,706; 5,734,156; 5,742,060; 5,742,089; 5,751,049; 5,754,009; 5,773,831; 5,786,597; 5,794,331; 5,801,681; 5,808,329; 5,811,808; 5,825,033; 5,827,771; 5,832,599; 5,847,396; 5,880,010; 5,880,510; 5,900,630; 5,900,799; 5,904,495; 5,912,942; 5,930,330; 5,936,268; 5,949,081; 5,952,646; 5,959,339; 5,965,899; 5,985,692; 6,045,614; 6,054,718; 6,057,552; 6,068,818; 6,069,935; 6,080,984; 6,091,070; 6,104,046; 6,107,619; 6,121,618; 6,133,989; 6,157,042; 6,159,149; 6,166,370; 6,166,438; 6,172,362; 6,175,611; 6,184,538; 6,194,715; 6,194,726; 6,198,101; 6,211,529; 6,216,941; 6,225,059; 6,254,827; 6,255,643; 6,315,953; 6,320,177; 6,325,757; 6,328,421; 6,331,274; 6,335,622; 6,342,700; 6,346,700; 6,355,939; 6,393,327; 6,410,917; 6,417,514; 6,450,615; 6,455,908; 6,465,344; 6,501,092; 6,525,387; 6,531,700; 6,538,445; 6,540,961; 6,541,763; 6,545,289; 6,550,665; 6,552,343; 6,555,890; 6,566,679; 6,621,097; 6,630,735; 6,642,537; 6,647,297; 6,657,194; 6,689,628; 6,727,702; 6,734,452; 6,740,864; 6,743,657; 6,777,312; 6,803,557; 6,819,463; 6,821,729; 6,852,976; 6,864,552; 6,875,975; 6,885,002; 6,897,447; 6,926,190; 6,927,383; 6,930,319; 6,949,748; 6,967,345; 6,970,745; 7,001,794; 7,015,715; 7,052,927; 7,054,410; 7,095,028; 7,129,104; 7,129,489; 7,135,698; 7,145,721; 7,164,702; 7,180,066; 7,180,579; 7,190,165; 7,206,062; 7,217,926; 7,217,982; 7,218,184; 7,223,981; 7,241,419; 7,268,081; 7,333,181; 7,339,246; 7,351,972; 7,408,572; 7,425,308; 7,436,494; 7,453,129; 7,465,661; 7,468,504; 7,474,005; 7,492,399; 7,511,753; 7,512,297; 7,521,224; 7,531,809; 7,532,242; 7,541,584; 7,544,532; 7,551,059; 7,579,594; 7,586,074; 7,589,326; 7,592,593; 7,605,050; 7,608,824; 7,608,906; 7,626,460; 7,634,061; 7,652,252; 7,671,341; 7,723,815; 7,755,023; 7,777,186; 7,795,640; 7,795,650; 7,800,067; 7,808,528; 7,811,855; 7,820,971; 7,858,034; 7,863,741; 7,868,665; 7,919,762; 7,928,473; 7,972,885; 7,973,377; 7,999,869; 8,004,012; 8,009,420; 8,021,914; 8,022,349; 8,030,925; 8,035,184; 8,044,435; 8,097,857; 8,097,904; 8,107,777; 8,115,152; 8,120,683; 8,125,367; 8,143,687; 8,154,099; 8,163,094; 8,163,644; 8,179,296; 8,198,576; 8,243,876; 8,283,632; 8,296,940; 8,314,446; 8,343,807; 8,362,520; 8,399,910; 8,421,015; 8,441,089; 8,456,004; 8,471,204; 8,491,190; 8,514,284; 8,530,264; 8,547,170; 8,552,479; 8,552,480; 8,567,658; 8,586,936; 8,592,301; 8,610,171; 8,624,968; 8,629,726; 8,637,824; 8,653,461; 8,659,664; 8,664,739; 8,692,176; 8,709,949; 8,759,873; 8,772,729; 8,780,418; 8,780,420; 8,816,268; 8,829,452; 8,835,851; 8,847,202; 8,847,409; 8,872,159; 8,900,986; 8,933,832; 8,946,638; 8,969,851; 8,970,706; 9,020,095; 9,024,359; 9,029,259; 9,029,833; 9,054,247; 9,064,992; 9,069,080; 9,105,548; 9,106,056; 9,110,169; 9,121,953; 9,123,607; 9,134,439; 9,142,585; 9,146,157; 9,184,194; 9,190,377; 9,225,920; 9,276,030; 9,276,161; 9,277,204; 9,294,690; 9,318,517; 9,324,745; 9,349,889; 9,385,738; 9,420,264; 9,426,397; 9,453,914; 9,491,389; 9,525,831; 9,530,820; 9,537,027; 9,549,158; 9,575,184; 9,593,907; 9,596,421; 9,613,924; 9,613,999; 9,618,648; 9,627,563; 9,635,284; 9,640,680; 9,664,562; 9,685,477; 9,698,134; 9,712,771; 9,716,085; 9,723,233; 9,743,024; 9,746,376; 9,748,214; 9,761,751; 9,774,795; 9,780,240; 9,797,995; 9,834,209; 9,843,741; 9,847,441; 9,866,773; 9,911,774; 9,923,013; 9,935,138; 9,935,151; RE36315; RE40249; RE43722; 20010025928; 20010026778; 20010026935; 20010029061; 20020001015; 20020008191; 20020011640; 20020011642; 20020028503; 20020106867; 20020111655; 20020125472; 20020135373; 20020135869; 20020144548; 20020146919; 20020148957; 20020161417; 20020179921; 20030000454; 20030015737; 20030020075; 20030102432; 20030160172; 20030178474; 20030183855; 20030194054; 20030199113; 20030205704; 20040008397; 20040016872; 20040017224; 20040021466; 20040031968; 20040061056; 20040063322; 20040095492; 20040106966; 20040108461; 20040108564; 20040124431; 20040142504; 20040144927; 20040169753; 20040172100; 20040188596; 20040189328; 20040195516; 20040195640; 20040228436; 20040240257; 20040241965; 20050044054; 20050045910; 20050070018; 20050082488; 20050116260; 20050167606; 20050189943; 20050205954; 20050255631; 20050261135; 20050263888; 20060038128; 20060056759; 20060108528; 20060118721; 20060118722; 20060181627; 20060232674; 20060232760; 20070001119; 20070012948; 20070025504; 20070052947; 20070075224; 20070075888; 20070131868; 20070197022; 20070209437; 20070210244; 20070224722; 20070235656; 20070235758; 20080019872; 20080032895; 20080079704; 20080089637; 20080090319; 20080111152; 20080135757; 20080231719; 20080277784; 20090001278; 20090004760; 20090050786; 20090051796; 20090072284; 20090078872; 20090079956; 20090101919; 20090108942; 20090109582; 20090121307; 20090122173; 20090173883; 20090244342; 20090256231; 20090290680; 20090321642; 20100025588; 20100035052; 20100038539; 20100101840; 20100116999; 20100140732; 20100226495; 20100246754; 20100295095; 20100295141; 20110011531; 20110032130; 20110042772; 20110079894; 20110084212; 20110101483; 20110114705; 20110147707; 20110147877; 20110156097; 20110169117; 20110169160; 20110176577; 20110198719; 20110215222; 20110218432; 20110221024; 20110221025; 20110233394; 20110233709; 20110248316; 20110253430; 20110261191; 20110272589; 20110315429; 20120001288; 20120028401; 20120043637; 20120068225; 20120068295; 20120138774; 20120161001; 20120161314; 20120187297; 20120205541; 20120262322; 20120273951; 20120285923; 20120306039; 20130000963; 20130028372; 20130044248; 20130076910; 20130082241; 20130107243; 20130126746; 20130153856; 20130175430; 20130187028; 20130193308; 20130214373; 20130244417; 20130250272; 20130250273; 20130270329; 20130273730; 20130341594; 20140061472; 20140061838; 20140061911; 20140063306; 20140091218; 20140102594; 20140160278; 20140173926; 20140175286; 20140197303; 20140217297; 20140225214; 20140263955; 20140267852; 20140291479; 20140312303; 20140340487; 20140350836; 20140367824; 20150115132; 20150123831; 20150136954; 20150136955; 20150163419; 20150202939; 20150243825; 20150258990; 20150280035; 20150287870; 20150301180; 20150319391; 20150331113; 20150355369; 20150364515; 20160003946; 20160043268; 20160087001; 20160104696; 20160142657; 20160148965; 20160150165; 20160155892; 20160181458; 20160195616; 20160218139; 20160220814; 20160231083; 20160255284; 20160266242; 20160295151; 20160307956; 20160341818; 20160344965; 20160372443; 20170006236; 20170010223; 20170025453; 20170026603; 20170033253; 20170040368; 20170041571; 20170062400; 20170069780; 20170077329; 20170084764; 20170084773; 20170133336; 20170179185; 20170179327; 20170211200; 20170250209; 20170299763; 20170330986; 20170372602; 20170373044; 20180013022; 20180013052; 20180019269; 20180024232; 20180024254; 20180035067; 20180056993; 20180067075; 20180094980; 20180114713; 20180122851; 20180132393; 20180132394; 20180132395; 20180132396; 20180132397; 20180132398; 20180132399; 20180151764; 20180160059; 20180160068; 20180175230; 20180175476; 20180190705; 20180198016; 20180212091; 20180247974; and 20180254369.


What is needed is a method to bond superconducting integrated circuits that is mechanically and electrically reliable, avoids damage to superconducting devices, and is scalable to large arrays of small contacts. Furthermore, a method that maintains fully superconducting contacts between superconducting circuits may be essential for quantum computing systems. A method with all of these characteristics does not seem to be present in the prior art.


SUMMARY OF THE INVENTION

The invention provides a method for manufacturing an array of superconducting bonds between superconducting circuits on different chips, such that the operating system of the superconducting circuits can comprise a plurality of chips in an extended three-dimensional package or multi-chip module (MCM).


In a preferred embodiment, the superconducting circuits comprise niobium Josephson junctions, and the superconducting bonds comprise indium. The superconducting critical temperature Tc of Nb is 9.2° K, and that of In is 3.4° K, so that for combined superconducting operation, the MCM must be cooled below 3.4° K.


In a further preferred embodiment, each chip is manufactured with an array of copper posts covered with indium bumps, and the chips are pressed together in such a way that the compression of the indium bumps is stopped by the copper posts, corresponding to a chip separation of order 4 microns (μm) (see FIGS. 10-12).


In a still further preferred embodiment, a diffusion stopping layer (DSL) is present to prevent interaction of the indium with the copper or the niobium. This diffusion stopping layer is preferentially also superconducting, so that the conducting path between the chips Nb/DSL/In/DSL/Nb is fully superconducting.


Indium is well known for its unusual mechanical properties; in its pure form, it is a metal with a low melting point, only 157° C., which is somewhat soft and deformable at room temperature, and becomes increasingly softer as the temperature is increased toward the melting point. It is also a highly reactive metal at moderate temperatures, which tends to form alloys with even lower melting points, but these alloys tend to be brittle and less deformable.


The use of indium or indium alloys as low-temperature solders is well known in the prior art. However, the present invention teaches that processing temperatures should be kept less than 150° C., and preferably less than 130° C., to avoid altering the properties of the tunnel barrier that defines the critical current of the Nb Josephson junctions. As such, the indium (or indium alloy) preferably should not reach its melting temperature or liquification point.


In a preferred embodiment, compression is carried out at a temperature of about 75-125° C., whereby the indium is sufficiently soft that pressures of less than several thousand bars (1 bar=14.7 psi=100 kPa) can compress the package in a controlled and reliable manner in a time that is less than one hour, even for an assembly with thousands of bump bonds.


The use of the term “indium” in the present application does not necessarily require 100% purity, but rather that the electrical, thermal, and mechanical properties are substantially the same as those of pure indium. For example, addition of up to 1% of tin into indium goes in substitutionally on the atomic level, and remains soft with a similar melting point, resistivity, and superconducting critical temperature. In contrast, significant oxidation of indium leads to a material that is hard with poor electrical conduction.


A module made in this way is robust and stable, and can withstand thermal cycling and mechanical mounting multiple times between room temperature and an operating temperature of about 3 K. The superconducting critical current of a single indium bond of order 10-30 μm in diameter is typically about 10 mA or larger, sufficient to distribute bias currents among Josephson junction circuits. Further, an indium bond can also function to transport signals associated with single-flux-quantum (SFQ) voltage pulses, typically 1 mV high by 2 ps wide. In addition to small (zero) resistance, this also requires that the indium bonds do not have a large inductance (greater than a few pH, consistent with the short interchip spacing), so that these pulses are not substantially dispersed.


Bonding of chips with several thousand indium bonds has been fabricated and tested, showing that this process is scalable to higher levels of integration. This may be particularly valuable for application to a system for quantum computing, as shown conceptually in FIG. 16. One chip could comprise an array of superconducting quantum bits (qubits), while the bonded chip could comprise a matched array of SFQ-based control and readout circuitry. This represents an embodiment of a quantum-classical MCM assembly, comprising, for example, at least one quantum chip and at least one classical chip.



FIGS. 17A-17D show several preferred embodiments of configurations for bonding a quantum circuit (comprising qubits) to a classical circuit (comprising, e.g., SFQ circuits). The circuits from the two chips may be in close contact, or alternatively they may be located on opposite sides of their respective chips. In the latter case, through-chip vias (which may comprise superconducting connections) may provide coupling to the electrical contacts between the chips. Furthermore, high-frequency signal connections between the two chips may be enabled with inductive or capacitive coupling, rather than just direct electrical (galvanic) coupling.


There may be a further advantage for the use of copper posts in the context of quantum circuits. It is known in the literature that when a superconductor (such as niobium or indium) is in good electrical contact with a normal metal such as copper, hot electrons (also known as excited quasiparticles) may be trapped in the normal metal. This is particularly true at very low temperatures, when the superconducting energy gap is much greater than thermal energy kBT. Such excited quasiparticles may be generated by classical SFQ circuits, which include electrical resistors. It is also known in the literature that such excited quasiparticles may act to reduce the coherence time of qubits, thus limiting their functionality. The presence of copper posts in the electrical contacts between classical and quantum circuits may act to trap excited quasiparticles, thus reducing the leakage of such quasiparticles from the classical to the quantum circuits. This may tend to improve the performance of the quantum circuits, as compared to quantum circuits with bonds that do not include copper posts.


While the intention of preferred embodiments is generally to bond chips together permanently, in an alternative embodiment, the process may be altered slightly so that the two chips may be detached after preliminary testing, without significant damage to either chip. Such an alternative process may comprise slightly reduced temperature, pressure, and/or processing time. Furthermore, detachment (debonding) may be assisted by relatively gentle mechanical means such as a localized burst of high-pressure air, which would also not cause significant damage to the chips.


Further embodiments of the system and method for bonding superconducting chips are presented later in the Detailed Description section, together with a more complete explanation of the figures. These examples represent preferred embodiments of the invention, but the invention is not restricted to these examples, and other embodiments and applications that follow the same principles are also covered.


It is therefore an object to provide a method for interconnecting electronic circuits, comprising: depositing a plurality of metallic posts on each electronic circuit; depositing a respective indium bump on each respective metallic post; aligning the indium bumps of the respective electronic circuits; and applying heat at a temperature below a melting temperature of the indium, and sufficient pressure between the respective electronic circuits, to deform and cold-weld the plurality of aligned indium bumps on the respective electronic circuits, to form a bonded circuit having a plurality of cold-welded indium bonds.


The indium between the aligned metallic posts is plastically deformed and at least a portion is displaced from the space between the tips of the metallic posts. The indium forms a continuous sleeve around the metallic posts between the two electronic circuits. The heat softens the indium, to reduce its resistance to plastic deformation. The amount of compression is limited to avoid cracking of the indium film or undue pressure on the electronic circuits. The compression may continue until the aligned metallic posts contact, and the tips of the metallic posts may be shaped to facilitate such contact. The impedance between respective metallic posts may be measured to determine their contact status.


The heat may be applied at a temperature of between 50° C. and 150° C.


The sufficient pressure may be applied by a fixture configured to maintain the alignment of the indium bumps during application of the sufficient pressure. The fixture may be a flip chip bonder. The method may further comprise removing the bonded circuit from the fixture. The bonded circuit may be cooled to a temperature at which the indium is superconductive.


At least one electronic circuit may comprise a Josephson junction, the method further comprising cooling the at least one electronic circuit, and producing at least one pulse with the Josephson junction.


A diffusion barrier may be deposited under each respective indium bump. The diffusion barrier may comprise a superconducting compound, e.g., niobium nitride or titanium nitride.


The electronic circuits may be fabricated on a wafer, with at least one electronic circuit located on the opposite side of the wafer from the indium bumps. A through-wafer via may be provided which enables electrical connection from the electronic circuit to the indium bumps on the opposite side of the wafer.


The metallic post may comprise copper. Alternates are gold alloy (for hardness), silver, niobium, or other metals. In general, the metallic post should have substantially lower deformation under the compression, so that it remains dimensionally stable.


One of the electronic circuits may comprise a carrier for a multi-chip module. A plurality of electronic circuits may be bonded to the same carrier.


At least one of the electronic circuits may comprise niobium, aluminum, niobium-titanium, or niobium nitride.


At least one of the indium bonds may be electrically connected to a ground layer. The ground layer may be a superconducting ground layer.


At least one indium bump may be about 30 micrometers or less in diameter. For example, it may be 30, 25, 20, 15, 10, or 5 μm in diameter.


The method may further comprise cooling the bonded circuit to a deep cryogenic temperature less than or equal to 3.4° K, e.g., 3.4° K, 3.3° K, 3.2° K, 3.1° K, 3.0° K, 2.75° K, 2.5° K, 2.25° K, 2.0° K, 1.0° K, 0.5° K, 0.25° K, 0.1° K, etc.


The bonded circuit may comprise a superconducting electronic device, and the cold-welded indium bonds may be configured to carry an electrical current without resistance of at least about 10 mA.


At least one of the electronic circuits may comprise at least one qubit. At least one of the electronic circuits may comprise a single-flux-quantum logic circuit. At least one of the electronic circuits may comprise at least one superconducting electromagnetic sensor.


The heating at the temperature below the melting temperature of the indium may comprise heating the aligned bumps to a temperature less than about 150° C., e.g., 150° C., 140° C., 130° C., 120° C., 110° C., 100° C., 90° C., 80° C., 70° C., or 60° C.


The applying a sufficient pressure may comprise applying a uniaxial pressure less than five thousand bars applied across the plurality of bumps for a period of less than one hour. For example, the pressure may be 5000 bars, 4000 bars, 3000 bars, 2500 bars, 2000 bars, 1500 bars, 1200 bars, 1000 bars, or lower. The time of compression may be 100 minutes, 75 minutes, 60 minutes, 45 minutes, 30 minutes, 20 minutes, 15 minutes, 10 minutes, 8 minutes, 5 minutes, 4 minutes, 3 minutes, 2 minutes, or 1 minute.


The alignment of the indium bumps may be achieved using alignment marks in a flip-chip bonder.


The plurality of metallic posts may serve to maintain a uniform separation between the two electronic circuits after compression.


A respective pair of aligned metallic posts may be compressed to displace the indium on top of each respective metallic post.


The number of functional cold-welded indium bonds on at least one electronic circuit may exceed 1,000.


The electrical properties of the cold-welded indium bonds may permit the transmission between the electronic circuits of fast pulse trains of picosecond single-flux-quantum voltage pulses below a superconducting temperature of the indium.


The bonded circuits are adapted to be fully debonded without damaging the electronic circuits.


Another object provides a multi-chip module comprising at least two superconducting electronic chips bonded to a superconducting carrier via a plurality of indium bumps, each indium bump comprising an indium coating on a metallic post, wherein opposing indium bumps are compressed and heated below a melting temperature of the indium to form a cold-welded bond that functions as a superconducting interconnect between superconducting circuits on the respective electronic chips and carrier, when cooled to deep cryogenic temperatures. A diffusion barrier layer may be provided between the indium and the metallic post. The cold-welded bond permits the transmission of picosecond single-flux-quantum voltage pulses between the superconducting carrier and a superconducting chip bonded to the carrier.


In order to assist in maintaining the integrity of the cold-welded bonds, a cryogenically stable adhesive, such as an epoxy may be provided in a gap between the electronic circuits.


The module may comprise at least one quantum circuit and at least one classical circuit, wherein the at least one classical circuit functions, e.g., to control the quantum circuit and read out signals from the quantum circuit.


Other objects will become apparent through a review of the description provided herein.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1-7 illustrate a preferred embodiment of the steps to fabricate an array of indium bumps on a superconducting circuit.



FIG. 1 shows the deposition of a superconducting ground plane.



FIG. 2 shows the deposition of an insulating layer above the ground plane shown in FIG. 1, with holes through to the ground plane.



FIG. 3 shows the deposition of a superconducting wiring layer on the insulating layer of FIG. 2, forming vias to the ground plane, and a large contact pad.



FIG. 4 shows the deposition of a gold contact pad connecting to the superconducting wiring layer of FIG. 3.



FIG. 5 shows the deposition of copper posts on top of the superconducting vias of FIG. 4.



FIG. 6 shows the deposition of a diffusion stopping layer on top of the copper posts of FIG. 5.



FIG. 7 shows the deposition of indium bumps on top of the diffusion stopping layer of FIG. 6.



FIG. 8 shows the cross section of two bump bonds before bonding.



FIG. 9 shows a photograph of a carrier chip and a matching flip chip, each with an array of 2066 bumps.



FIG. 10 shows the flip-chip alignment configuration for bonding to the carrier chip.



FIG. 11 shows a cross-sectional view of two aligned bonds before full compression.



FIG. 12 shows a cross-sectional view of two aligned bonds after full compression.



FIG. 13 shows a measurement of the resistance of a series of bonds as a function of cryogenic temperature.



FIG. 14 shows a measurement of V(I) for a series of superconducting indium bonds, showing a large critical current.



FIG. 15 shows a measurement of the superconducting critical current of a series of bonds as a function of cryogenic temperature.



FIG. 16 shows a conceptual picture of a set of two bonded chips for a quantum computing application.



FIGS. 17A-17D show four alternative configurations for bonding a quantum circuit to a classical circuit.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS


FIGS. 1 through 7 show steps of a preferred embodiment of the method for preparing indium bump bonds on superconducting Nb chips, integrated into a prior-art method for fabricating superconducting integrated circuits. All of these are designed to be carried out on an entire 150 mm silicon wafer, although only a 2-mm portion of a single chip is shown for simplicity.



FIG. 1 shows Step 1, the deposition of a superconducting Nb ground plane comprising 100 nm of sputtered Nb on top of an oxidized silicon wafer, known in the Hypres standard process (www.hypres.com/foundry/niobium-process/; www.hypres.com/wp-content/uploads/2010/11/DesignRules-6.pdf; Yohannes, D., et al., “Parametric Testing of HYPRES Superconducting Integrated Circuit Fabrication Processes”, IEEE Trans. Applied Superconductivity, V. 17, No. 2, June 2007, pp. 181-186, www.hypres.com/wp-content/uploads/2010/12/Parameter-Testing.pdf) as the layer MO. The small circles show the ultimate locations of the indium bumps, which are not yet present.



FIG. 2 shows Step 2, the deposition of 150 nm of insulating silicon dioxide (SiO2, typically deposited using plasma-enhanced chemical vapor deposition, or PECVD) on top of the Nb, with an array of patterned holes to establish electrical conducting vias to the next conducting layer. The holes have diameters of about 30 μm or less.



FIG. 3 shows Step 3, the deposition of 300 nm of superconducting Nb that can represent a superconducting signal or a via to ground. Also shown is a large pad on the right that connects to this layer.



FIG. 4 shows Step 4, the deposition of a large contact pad for external connections, comprising 100 nm Ti and 100 nm Pd followed by 200 nm Au. This establishes a well-adhering pad for external contacts from gold-plated pins.


Steps 1 through 4 comprise steps similar to the fabrication of a prior-art superconducting integrated circuit. Not shown are other standard steps of the prior-art methods, including depositing and defining Josephson junctions of Nb/Al/AlOx/Nb, using controlled oxidation and anodization, depositing a resistive layer such as Mo, additional wiring layers, and steps of planarization. Also, in each case whenever a conducting film is deposited on a sample that has been patterned outside the vacuum system, an initial cleaning step in an argon plasma may be used to ensure unoxidized interfaces.



FIG. 5 shows Step 5, the evaporation deposition of an array of 2 μm thick Cu posts on top of the small Nb contacts. Note that the Cu post has a slightly smaller diameter than the Nb contact, leaving a Nb ring around it. These Cu posts can be on ground contacts or signal contacts. The use of Cu is not unique; another metal that is not deformable (or less deformable that the indium under the compression conditions) would also be acceptable, such as Nb, Mo, Ti, Au, etc.



FIG. 6 show Step 6, the deposition of 100 nm of a diffusion stopping layer (DSL) on top of the Cu posts and the Nb ring around each post. Preferred DSL materials include NbN and TiN, both of which can be prepared by reactive sputtering in a gas that includes nitrogen.



FIG. 7 shows Step 7, the evaporation deposition of 2 μm of indium on top of the DSL. Pure indium is preferred, since indium alloys tend to have a multi-phase microstructure that is harder and more brittle. The metallized patterns may be etched after deposition to form the isolated regions on top of other features.



FIG. 8 shows the cross section of two of the bumps prepared according to Steps 5 through 7 above, before the chips are pressed together, showing the indium bump, diffusion stopping layer, and copper post on top of the Nb contact. The numbers on the left indicate the approximate layer thicknesses in nm for a preferred embodiment.



FIG. 9 shows a photograph of a 10 mm carrier chip and a 5 mm flip chip, each with 2,066 bumps, matching on both chips. These bumps comprise 1,000 signal bumps (25 rows of 40 bumps each, 30 μm in diameter with 80 μm pitch) alternating with 1,066 ground bumps. The carrier chip has gold-plated ground and signal contacts around its periphery, for external biasing and signal measurement. All 1,000 signal bumps could be measured at the same time, or any of the 25 rows could be measured independently. Two other similar test structures were also tested using carrier and flip chips of the same size: The first structure had 300 signal bumps (15 rows of 20 bumps each, 30 μm in diameter with 130 μm pitch) alternating with 366 ground bumps, where all signal bumps could be measured together, or with independent rows. The second structure had 2,691 signal bumps (39 rows of 69 bumps each, 15 μm in diameter with 50 μm pitch) alternating with 3,353 ground bumps.


After removal of the wafer from the deposition system, the individual chips are separated (diced) using a commercial dicing machine. If there will be a significant delay before flip-chip bonding, the chips should be maintained in an environment that minimizes oxidation of the indium surfaces. The presence of significant oxide layers on indium surfaces may reduce the reliability of the method. For example, the chips may be immersed in a bath of methanol. Alternatively, just before bonding, the indium bumps may be subjected to an argon plasma etch to remove an accumulated surface oxide.



FIG. 10 shows how the bumps on the flip chip are aligned with the corresponding bumps on the carrier chip, with the help of the small alignment marks noted. This may be carried out using a commercial flip-chip bonder, such as the Karl Suss MicroTec FC-150, which permits micron alignment resolution. This bonder also allows controlled compression and temperature. For each structure, the chips were heated to about 75-125° C., using a force up to 20 kg (i.e., 200 Nt or 44 lb) for a period of about 15 minutes. Given the contact area of the bonds, this force corresponded to a uniaxial pressure up to several thousand bars.



FIG. 11 provides a cross-sectional view of aligned indium bumps as compression is initiated, with a thick layer of In between the two DSL/copper posts. Thicknesses of layers are not drawn to scale.



FIG. 12 provides a cross-section of aligned bumps as compression is completed, with most of the indium between the two DSL/copper posts squeezed out. Since the DSL/Cu is not compressed, this provides a hard stop for the separation of the two chips, about 4 μm for the steps presented. While current can flow through the Cu posts in the resistive state, the superconducting indium shorts out the Cu below 3.4° K, providing a fully superconducting current path. Thicknesses of layers are not drawn to scale.



FIG. 13 shows the resistance of a series of In bonds as a function of temperature. The resistance drops sharply when the Nb goes superconducting at 9° K, and drops to zero when the In goes superconducting at 3.4° K.



FIG. 14 shows the current-voltage curve V(I) for a series of In bonds at 3° K, showing a sharp rise in voltage at the critical current of 15 mA. The large local power dissipation then heats up the In above its critical temperature 3.4° K, until the current is lowered down to 3 mA, when the voltage drops to zero. This sort of hysteresis related to local heating is characteristic of current-driven transitions in superconducting wires.



FIG. 15 shows the critical current of In bonds as a function of temperature below 3.4° K, showing a typical dependence rising as the temperature is cooled further. Any operating temperature at about 3° K or below would be compatible with fully superconducting interconnects.


These tests were carried out for chips mounted on a cryocooler, a cryogenic refrigerator that uses helium as a working fluid, designed to cool down to temperatures as low as 3° K. Even lower temperatures can be achieved if the working fluid comprises the isotope helium-3, especially if the refrigerator is configured as a helium dilution refrigerator, which can achieve temperatures less than 0.1° K.


The tests based on the chips fabricated according to the disclosed optimized processes and parameters demonstrated very high yields on multiple chips, each with thousands of bonds. Further, the results were duplicated with multiple thermal cycles between room temperature and 3° K, indicating robust and reproducible contacts.



FIG. 16 provides a conceptual picture of a two-chip package, where one chip comprises superconducting quantum bits (qubits), and the other comprises single-flux-quantum control and readout circuits. Each of these chips might be manufactured with a distinct process, as long as both may be combined with indium bump bonds and copper posts. For example, the qubit chip might be prepared using aluminum Josephson junctions and NbTi wiring for transmon qubits, while the control chip might be prepared with Nb Josephson junctions and Nb wiring for energy-efficient SFQ circuits. The entire package could operate at very low temperatures (much less than 1° K) typical of superconducting quantum computing. Further, a three-dimensional quantum computing package need not be limited to two chips. One could also have a multi-chip module comprising a plurality of flip chips on a single carrier.


A further set of preferred embodiments for quantum-classical MCMs is illustrated in FIGS. 17A-17D. The simplest of the configurations is shown in FIG. 17A, where the quantum circuits at the bottom of the quantum chip are in close proximity to the classical circuits of the classical chip. There may be a concern that classical SFQ circuits may generate some hot electrons (excited quasiparticles), which may migrate to the quantum circuits and degrade their performance. However, as mentioned above, the presence of the copper posts in the bonds between the classical and quantum circuits may tend to trap at least a significant fraction of the excited quasiparticles, keeping them from contaminating the quantum circuits.


Furthermore, the classical and quantum circuits may be further separated by placing them on opposite sides of the chips, as shown in FIGS. 17B, 17C, and 17D. This would likely reduce further any remaining deleterious effects of the excited quasiparticles. These latter structures may be somewhat more complex to manufacture, requiring etching through-wafer vias, but similar vias are well known in silicon chip manufacturing. These through-wafer vias can be coated with a superconducting film, such as Nb, Al, or In, enabling a superconducting bias current or electrical signal to be transmitted from one side of the chip to the other, without loss or dissipation. Depending on the desired configuration, the through vias may be present in either the classical chip, or the quantum chip, or both. In some cases, it may be desirable to include circuits on both sides of one or more chips.


An alternative application of this packaging technology might be for classical supercomputers, with large numbers of superconducting microprocessors operating in parallel at frequencies of 50-100 GHz. This would also require close integration with cryogenic fast cache memory chips in the same cryogenic environment. One can envision, for example, a set of multi-chip modules, each comprising both cryogenic processors and memory, as well as cryogenic input-output chips that communicate to slower processors and memory at higher temperatures.


A further alternative application of this packaging technology might be for superconducting sensor arrays, which have been demonstrated for magnetic field detection, imaging arrays for astronomy and high-energy physics, and biomedical imaging. Such sensor arrays may further be integrated with superconducting digitizers, digital signal processors, and digital controllers, preferably in the same cryogenic environment as the sensors. This would require a set of multi-chip modules combining sensor chips with digital processing chips.


While superconducting multichip modules and indium bonding have been disclosed in the prior art, the present technology presents a substantial improvement. Much of the prior art focuses on solder reflow at moderately high temperatures, which would alter the precise parameters of the sensitive Josephson junctions on the chips. Other prior art uses unheated cold-welding of indium, which we have found is impractical for scaling to large numbers of bonds, because that would require pressures that are so large as to risk damaging or cracking the chips or substrates. We have found that a good compromise is an intermediate processing temperature about 75-125° C., but preferably less than 150° C., where the indium is somewhat softer, and neither the temperature nor the pressure risks damage to the chips.


Another aspect of the prior art of indium bonding is that diffusion and alloying was favored, because the alloy is harder and achieves a more rigid bond. On the contrary, the present invention attempts to reduce or eliminate diffusion and alloying using a diffusion stopping layer (DSL) between the indium and all other metals. This suppresses the formation of brittle intermetallics that would limit plastic flow of the In around the Cu post. Also, the preferred DSL is also superconducting (such as NbN and TiN), so that it may form a sharp superconducting interface between the In and the Nb.


Other devices, apparatus, systems, methods, features and advantages of the invention will be or will become apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the invention, and be protected by the accompanying claims.

Claims
  • 1. A superconducting multi-chip module, comprising: a first chip comprising a plurality of coupled superconducting qubits, superconducting electromagnetic sensors, or cryogenic memory elements;a second chip comprising a plurality of Josephson junctions configured to generate single-flux-quantum pulses to control and read out the qubits, sensors, or memory elements on the first chip; anda plurality of alignment posts and deformable metal contacts configured to form electrical bump bonds coupling the first chip and the second chip, the electrical bump bonds being formed by pressure on the deformable metal contacts below a melting temperature of the deformable metal,wherein the bonds remain stable with respect to repeated cycling between room temperature and a cryogenic operating temperature of the plurality of coupled superconducting qubits, superconducting electromagnetic sensors, or cryogenic memory elements.
  • 2. The superconducting multi-chip module of claim 1, wherein the first chip comprises a quantum computing circuit.
  • 3. The superconducting multi-chip module of claim 2, wherein the first chip comprises transmon qubits.
  • 4. The superconducting multi-chip module of claim 2, wherein the first chip is configured to operate at a temperature less than 1 K.
  • 5. The superconducting multi-chip module of claim 2, wherein the alignments posts are not superconducting at an operating temperature of the quantum computing circuit, and serve to thermalize excited quasiparticles in the quantum computing circuit.
  • 6. The superconducting multi-chip module of claim 1, wherein the first chip comprises a cryogenic imaging array, and the second chip comprises a digital readout system matched to the cryogenic imaging array.
  • 7. The superconducting multi-chip module of claim 6, wherein the cryogenic imaging array comprises a plurality of SQUIDs.
  • 8. The superconducting multi-chip module of claim 6, wherein the cryogenic imaging array comprises an electromagnetic imaging sensor for astronomy or high-energy physics.
  • 9. The superconducting multi-chip module of claim 1, wherein the first chip comprises a cryogenic memory array, and the second chip comprises a superconducting digital processor.
  • 10. The superconducting multi-chip module of claim 1, wherein the second chip is mounted in a flip-chip configuration on the first chip.
  • 11. The superconducting multi-chip module of claim 1, wherein at least one of the first chip and the second chip comprises through-chip superconducting vias, configured to bond without direct contact of the circuits on the first chip and the second chip.
  • 12. The superconducting multi-chip module of claim 1, wherein the deformable metal contact comprises indium and the alignment posts comprise at least one of copper, gold, and silver.
  • 13. The superconducting multi-chip module of claim 1, further comprising a superconducting diffusion-stopping layer deposited between the alignment posts and the deformable metal contact.
  • 14. The superconducting multi-chip module of claim 13, wherein the superconducting diffusion-stopping layer comprises niobium nitride or titanium nitride.
  • 15. The superconducting multi-chip module of claim 1, wherein the second chip comprises Josephson junctions comprising at least one of niobium, niobium nitride, niobium-titanium, aluminum, molybdenum, and titanium.
  • 16. The superconducting multi-chip module of claim 1, wherein the plurality of alignment posts and deformable metal contacts comprise thousand of bonds, each less than 30 micrometers in diameter.
  • 17. The superconducting multi-chip module of claim 1, wherein the electrical bump bonds are strengthened with epoxy.
  • 18. The superconducting multi-chip module of claim 1, where the deformable metal contacts have a critical current of at least 10 mA at an operating temperature of less than 3 K.
  • 19. A superconducting multi-chip module, comprising: a first chip comprising a plurality of coupled superconducting qubits, superconducting electromagnetic sensors, or cryogenic memory elements;a second chip comprising a plurality of Josephson junctions configured to generate single-flux-quantum pulses to control and read out the qubits, sensors, or memory elements on the first chip; anda plurality of bonds on alignment posts,wherein the plurality of bonds each comprise a deformable metal bonded under pressure at a temperature under 150° C. without melting of the deformable metal,wherein the bonds remain stable with respect to repeated cycling between room temperature and a cryogenic operating temperature of the a plurality of coupled superconducting qubits, superconducting electromagnetic sensors, or cryogenic memory elements.
  • 20. The superconducting multi-chip module of claim 19, wherein the chips are reversibly unbonded and rebonded without damage to the first chip or the second chip.
  • 21. The superconducting multi-chip module of claim 19, wherein the plurality of coupled superconducting qubits, superconducting electromagnetic sensors, or cryogenic memory elements comprise a plurality of transmon qubits configured to operate at a temperature less than 1 K; and the alignments posts are not superconducting at 1 K, and serve to thermalize excited quasiparticles in the first chip.
  • 22. A method of forming a superconducting multi-chip module, comprising: providing a first chip comprising a plurality of coupled superconducting qubits, superconducting electromagnetic sensors, or cryogenic memory elements, and having a plurality of first alignment posts capped with a deformable metal;providing a second chip comprising a plurality of Josephson junctions configured to generate single-flux-quantum pulses to control and read out the qubits, sensors, or memory elements on the first chip, and having a plurality of second alignment posts capped with a deformable metal;aligning the first alignment posts with the second alignment posts; andcompressing the first chip against the second chip, with the first alignment posts with the second alignment posts aligned, at a temperature of less than 150° C., to form a bondwherein the plurality of electrically conductive mechanical bonds, each comprise a deformable metal bonded under pressure at a temperature under 150° C. without melting of the deformable metal, andwherein the plurality of electrically conductive mechanical bonds remain stable with respect to repeated cycling between room temperature and a cryogenic operating temperature of the a plurality of coupled superconducting qubits, superconducting electromagnetic sensors, or cryogenic memory elements.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a Continuation of U.S. patent application Ser. No. 17/472,821, filed Sep. 13, 2021, now U.S. Pat. No. 11,711,985, issued Jul. 25, 2023, which is aContinuation of U.S. patent application Ser. No. 16/599,985, filed Oct. 11, 2019, now U.S. Pat. No. 11,121,302, issued Sep. 14, 2021, which is aNon-provisional of, and claims benefit of priority under 35 U.S.C. § 119(e) of, U.S. Provisional Patent Application No. 62/744,494, filed Oct. 11, 2018, the entirety of which are expressly incorporated herein by reference.

US Referenced Citations (2513)
Number Name Date Kind
4039833 Thom Aug 1977 A
4354109 White Oct 1982 A
4447291 Schulte May 1984 A
4479139 Parrish Oct 1984 A
4551629 Carson Nov 1985 A
4573627 Miller Mar 1986 A
4614960 Bluzer Sep 1986 A
4672737 Carson Jun 1987 A
4706166 Go Nov 1987 A
4718028 Gussin Jan 1988 A
4740700 Shaham Apr 1988 A
4782028 Farrier Nov 1988 A
4803363 Gaalema Feb 1989 A
4804132 DiFrancesco Feb 1989 A
4807000 Gurnee Feb 1989 A
4817850 Wiener-Avnear Apr 1989 A
4833515 Baker May 1989 A
4845540 Baker Jul 1989 A
4865245 Schulte Sep 1989 A
4868902 Sato Sep 1989 A
4905265 Cox Feb 1990 A
4910154 Zanio Mar 1990 A
4912545 Go Mar 1990 A
4929913 Sato May 1990 A
4930001 Williams May 1990 A
4935627 Zimmermann Jun 1990 A
4956695 Robinson Sep 1990 A
4964701 Dorschner Oct 1990 A
4965649 Zanio Oct 1990 A
4980555 Hartley Dec 1990 A
4998688 Longerich Mar 1991 A
4999486 Falk Mar 1991 A
5001532 Petroff Mar 1991 A
5015858 Augustine May 1991 A
5021854 Huth Jun 1991 A
5043582 Cox Aug 1991 A
5045681 Elrod Sep 1991 A
5070241 Jack Dec 1991 A
5075201 Koh Dec 1991 A
5075553 Noble Dec 1991 A
5091288 Zappella Feb 1992 A
5092036 Hu Mar 1992 A
5111050 Maassen May 1992 A
5113076 Schulte May 1992 A
5120960 Halvis Jun 1992 A
5128534 Wyles Jul 1992 A
5132763 Maserjian Jul 1992 A
5140324 Przybysz Aug 1992 A
5141334 Castles Aug 1992 A
5146302 Kumada Sep 1992 A
5149671 Koh Sep 1992 A
5149954 Pettijohn Sep 1992 A
5168338 Kumada Dec 1992 A
5170080 Murphy Dec 1992 A
5185613 Whatmore Feb 1993 A
5186379 Helber, Jr. Feb 1993 A
5198815 Przybysz Mar 1993 A
5201582 Lesniak Apr 1993 A
5227656 Timlin Jul 1993 A
5233242 Murphy Aug 1993 A
5233243 Murphy Aug 1993 A
5235176 Noble Aug 1993 A
5236871 Fossum Aug 1993 A
5245191 Barber Sep 1993 A
5256636 Wellstood Oct 1993 A
5264699 Barton Nov 1993 A
5269453 Melton Dec 1993 A
5279974 Walsh Jan 1994 A
5289400 Przybysz Feb 1994 A
5290423 Helber, Jr. Mar 1994 A
5291035 Wellstood Mar 1994 A
5293036 Norton Mar 1994 A
5294789 Kruger Mar 1994 A
5296384 Cockrum Mar 1994 A
5300777 Goodwin Apr 1994 A
5304500 Timlin Apr 1994 A
5306386 de Lyon Apr 1994 A
5308980 Barton May 1994 A
5311010 Kruger May 1994 A
5322816 Pinter Jun 1994 A
5327005 Granneman Jul 1994 A
5327130 Kang Jul 1994 A
5336879 Sauer Aug 1994 A
5340984 Evans Aug 1994 A
5341136 Przybysz Aug 1994 A
5347086 Potter Sep 1994 A
5365088 Myrosznyk Nov 1994 A
5376558 Sudo Dec 1994 A
5376793 Lesniak Dec 1994 A
5379336 Kramer Jan 1995 A
5380669 Norton Jan 1995 A
5381784 Adair Jan 1995 A
5382542 Zinck Jan 1995 A
5382977 Kozlowski Jan 1995 A
5384267 Hutchins Jan 1995 A
5386128 Fossum Jan 1995 A
5388068 Ghoshal Feb 1995 A
5389792 DiMarzio Feb 1995 A
5389837 Hietala Feb 1995 A
5391868 Vampola Feb 1995 A
5393696 Koh Feb 1995 A
5399206 de Lyon Mar 1995 A
5401986 Cockrum Mar 1995 A
5404006 Schaffner Apr 1995 A
5406701 Pepe Apr 1995 A
5414294 Granneman May 1995 A
5426072 Finnila Jun 1995 A
5426303 Owen Jun 1995 A
5426304 Belcher Jun 1995 A
5432374 Norton Jul 1995 A
5436450 Belcher Jul 1995 A
5440130 Cox Aug 1995 A
5444280 Blouke Aug 1995 A
5446529 Stettner Aug 1995 A
5449908 Wadsworth Sep 1995 A
5449944 Sudo Sep 1995 A
5457318 Robinson Oct 1995 A
5475224 Koh Dec 1995 A
5477173 Schlesselmann Dec 1995 A
5483088 Chen Jan 1996 A
5485010 Owen Jan 1996 A
5488504 Worchesky Jan 1996 A
5489776 Lung Feb 1996 A
5494483 Adair Feb 1996 A
5495114 Adair Feb 1996 A
5502300 McKeag Mar 1996 A
5512750 Yanka Apr 1996 A
5519529 Ahearn May 1996 A
5523570 Hairston Jun 1996 A
5523628 Williams Jun 1996 A
5525867 Williams Jun 1996 A
5539206 Schimert Jul 1996 A
5541914 Krishnamoorthy Jul 1996 A
5543641 Wadsworth Aug 1996 A
5559332 Meissner Sep 1996 A
5559336 Kosai Sep 1996 A
5561593 Rotolante Oct 1996 A
5567942 Lee Oct 1996 A
5567975 Walsh Oct 1996 A
5568574 Tanguay, Jr. Oct 1996 A
5572029 Walker Nov 1996 A
5574282 Walker Nov 1996 A
5578826 Walker Nov 1996 A
5581084 Chapman Dec 1996 A
5582485 Lesniak Dec 1996 A
5591678 Bendik Jan 1997 A
5598105 Kurosawa Jan 1997 A
5604977 Robinson Feb 1997 A
5608208 Nemirovsky Mar 1997 A
5621227 Joshi Apr 1997 A
5627112 Tennant May 1997 A
5629524 Stettner May 1997 A
5629889 Chandra May 1997 A
5633203 Adair May 1997 A
5646426 Cockrum Jul 1997 A
5652150 Wadsworth Jul 1997 A
5661267 Isaak Aug 1997 A
5661590 Almogy Aug 1997 A
5672545 Trautt Sep 1997 A
5696577 Stettner Dec 1997 A
5701010 Martin Dec 1997 A
5708269 Meissner Jan 1998 A
5721429 Radford Feb 1998 A
5731621 Kosai Mar 1998 A
5732706 White Mar 1998 A
5734156 Dahlin Mar 1998 A
5742060 Ashburn Apr 1998 A
5742089 Rajavel Apr 1998 A
5751049 Goodwin May 1998 A
5754009 Hayes May 1998 A
5773831 Brouns Jun 1998 A
5781009 Lee Jul 1998 A
5786597 Lingren Jul 1998 A
5793055 Kastalsky Aug 1998 A
5794331 Ravetto Aug 1998 A
5801681 Sayag Sep 1998 A
5808329 Jack Sep 1998 A
5811808 Cannata Sep 1998 A
5818373 Semenov Oct 1998 A
5825033 Barrett Oct 1998 A
5827771 Ginn Oct 1998 A
5832599 Isaak Nov 1998 A
5847396 Lingren Dec 1998 A
5880010 Davidson Mar 1999 A
5880510 Cockrum Mar 1999 A
5900630 Tang May 1999 A
5900799 Morris May 1999 A
5904495 Burke May 1999 A
5912942 Schick Jun 1999 A
5917322 Gershenfeld Jun 1999 A
5920464 Yokoyama Jul 1999 A
5930330 Wolfe Jul 1999 A
5936268 Cockrum Aug 1999 A
5936458 Rylov Aug 1999 A
5949081 Ashley Sep 1999 A
5952646 Spartiotis Sep 1999 A
5959339 Chapman Sep 1999 A
5963351 Kaplounenko Oct 1999 A
5965899 Little, Jr. Oct 1999 A
5982219 Kirichenko Nov 1999 A
5985692 Poenisch Nov 1999 A
6023161 Dantsker Feb 2000 A
6045614 de Lyon Apr 2000 A
6054718 Dodd Apr 2000 A
6057552 Stettner May 2000 A
6068818 Ackley May 2000 A
6069935 Schick May 2000 A
6080984 Friesenhahn Jun 2000 A
6091070 Lingren Jul 2000 A
6104046 Borenstain Aug 2000 A
6107619 Cunningham Aug 2000 A
6115789 Durham Sep 2000 A
6121618 Morris Sep 2000 A
6133989 Stettner Oct 2000 A
6157042 Dodd Dec 2000 A
6159149 Erikson Dec 2000 A
6166370 Sayag Dec 2000 A
6166438 Davidson Dec 2000 A
6172362 Lingren Jan 2001 B1
6175611 Melen Jan 2001 B1
6175749 Wordenweber Jan 2001 B1
6184538 Bandara Feb 2001 B1
6188236 Wikborg Feb 2001 B1
6194715 Lingren Feb 2001 B1
6194726 Pi Feb 2001 B1
6198101 Brown Mar 2001 B1
6211529 Gunapala Apr 2001 B1
6216941 Yokoyama Apr 2001 B1
6225059 Ackley May 2001 B1
6242939 Nagasawa Jun 2001 B1
6254827 Ackley Jul 2001 B1
6255643 Sayag Jul 2001 B1
6315953 Ackley Nov 2001 B1
6320177 Sayag Nov 2001 B1
6325757 Erikson Dec 2001 B1
6328421 Kojima Dec 2001 B1
6331274 Ackley Dec 2001 B1
6331805 Gupta Dec 2001 B1
6335622 James Jan 2002 B1
6342700 Izumi Jan 2002 B1
6345189 Wördenweber Feb 2002 B1
6345190 Wördenweber Feb 2002 B1
6346700 Cunningham Feb 2002 B1
6353330 Kanda Mar 2002 B1
6355939 Dodd Mar 2002 B1
6369404 Kane Apr 2002 B1
6388600 Johnson May 2002 B1
6393327 Scribner May 2002 B1
6410917 Choi Jun 2002 B1
6417514 Eneim Jul 2002 B1
6420895 Herr Jul 2002 B1
6437413 Yamaguchi Aug 2002 B1
6450615 Kojima Sep 2002 B2
6455908 Johnson Sep 2002 B1
6459097 Zagoskin Oct 2002 B1
6465344 Barton Oct 2002 B1
6472681 Kane Oct 2002 B1
6479139 Claeson Nov 2002 B1
6486694 Kirichenko Nov 2002 B1
6486756 Tarutani Nov 2002 B2
6495854 Newns Dec 2002 B1
6501092 Nikonov Dec 2002 B1
6504172 Zagoskin Jan 2003 B2
6507234 Johnson Jan 2003 B1
6509853 Gupta Jan 2003 B2
6518786 Herr Feb 2003 B2
6525387 Bauer Feb 2003 B2
6526491 Suzuoki Feb 2003 B2
6531700 Brown Mar 2003 B1
6537847 Zagoskin Mar 2003 B2
6538445 James Mar 2003 B2
6540961 Ackley Apr 2003 B1
6541763 Lingren Apr 2003 B2
6545289 Gunapala Apr 2003 B1
6549059 Johnson Apr 2003 B1
6550665 Parrish Apr 2003 B1
6552343 Linder Apr 2003 B1
6555890 Dries Apr 2003 B2
6563310 Zagoskin May 2003 B2
6563311 Zagoskin May 2003 B2
6566679 Nikonov May 2003 B2
6573202 Ivanov Jun 2003 B2
6576951 Ivanov Jun 2003 B2
6580102 Ivanov Jun 2003 B2
6605822 Blais Aug 2003 B1
6608581 Semenov Aug 2003 B1
6614047 Tzalenchuk Sep 2003 B2
6621097 Nikonov Sep 2003 B2
6626995 Kim Sep 2003 B2
6627915 Ustinov Sep 2003 B1
6627916 Amin Sep 2003 B2
6630426 Ference Oct 2003 B1
6630735 Carlson Oct 2003 B1
6642537 Gunapala Nov 2003 B1
6647297 Scribner Nov 2003 B2
6649929 Newns Nov 2003 B2
6657194 Ashokan Dec 2003 B2
6670630 Blais Dec 2003 B2
6689628 DePaulis Feb 2004 B1
6703857 Kameda Mar 2004 B2
6715118 Kaiser Mar 2004 B2
6724216 Suzuki Apr 2004 B2
6725248 Hasegawa Apr 2004 B1
6727702 Hammond Apr 2004 B2
6728131 Ustinov Apr 2004 B2
6734452 Gunapala May 2004 B2
6734454 Van Duzer May 2004 B2
6734699 Herr May 2004 B1
6740864 Dries May 2004 B1
6743657 Dries Jun 2004 B2
6753546 Tzalenchuk Jun 2004 B2
6754823 Kurzweil Jun 2004 B1
6756925 Leung Jun 2004 B1
6759974 Herr Jul 2004 B1
6763363 Driscoll Jul 2004 B1
6773836 Kim Aug 2004 B2
6777312 Yang Aug 2004 B2
6781435 Gupta Aug 2004 B1
6784451 Amin Aug 2004 B2
6791109 Tzalenchuk Sep 2004 B2
6797341 Zeng Sep 2004 B2
6800837 Ichimura Oct 2004 B1
6803557 Taylor Oct 2004 B1
6803599 Amin Oct 2004 B2
6809734 Suzuoki Oct 2004 B2
6812464 Sobolewski Nov 2004 B1
6812484 Tzalenchuk Nov 2004 B2
6813056 Cottrell Nov 2004 B2
6819463 Noonan Nov 2004 B2
6821729 Ackley Nov 2004 B2
6822255 Tzalenchuk Nov 2004 B2
6826662 Suzuoki Nov 2004 B2
6838694 Esteve Jan 2005 B2
6838749 Ference Jan 2005 B2
6852976 Barton Feb 2005 B2
6864552 Razeghi Mar 2005 B2
6865639 Herr Mar 2005 B2
6875975 Faska Apr 2005 B2
6879012 Tang Apr 2005 B2
6885002 Finch Apr 2005 B1
6885325 Omelyanchouk Apr 2005 B2
6897447 Mitra May 2005 B2
6897468 Blais May 2005 B2
6900454 Blais May 2005 B2
6900456 Blais May 2005 B2
6905887 Amin Jun 2005 B2
6909109 Herr Jun 2005 B2
6910382 Tang Jun 2005 B2
6911664 Il'ichev et al. Jun 2005 B2
6917216 Herr Jul 2005 B2
6917537 Bunyk Jul 2005 B2
6919579 Amin Jul 2005 B2
6926190 Jiang Aug 2005 B2
6926921 Stasiak Aug 2005 B2
6927383 Toth Aug 2005 B2
6930318 Vion Aug 2005 B2
6930319 DePaulis Aug 2005 B2
6930320 Blais Aug 2005 B2
6936841 Amin Aug 2005 B2
6943368 Amin Sep 2005 B2
6946428 Rey Sep 2005 B2
6949748 Ziock Sep 2005 B2
6960780 Blais Nov 2005 B2
6967345 Gunapala Nov 2005 B1
6970745 Scribner Nov 2005 B2
6979836 Zagoskin Dec 2005 B2
6984846 Newns Jan 2006 B2
6987282 Amin Jan 2006 B2
6988058 Sherwin Jan 2006 B1
7001794 Razeghi Feb 2006 B2
7002174 Il'ichev et al. Feb 2006 B2
7002366 Eaton Feb 2006 B2
7015499 Zagoskin Mar 2006 B1
7015715 Parrish Mar 2006 B2
7018852 Wu Mar 2006 B2
7042005 Il'ichev et al. May 2006 B2
7049593 Sobolewski May 2006 B2
7052927 Fletcher May 2006 B1
7054410 Zentai May 2006 B2
7069282 Rizzotto Jun 2006 B2
7073087 Horie Jul 2006 B2
7078694 Polonsky Jul 2006 B2
7090889 Liu Aug 2006 B2
7093104 Suzuoki Aug 2006 B2
7095028 Mollov Aug 2006 B2
7095227 Tarutani Aug 2006 B2
7109593 Freedman Sep 2006 B2
7113967 Cleve Sep 2006 B2
7122837 Linares Oct 2006 B2
7124259 Yasue Oct 2006 B2
7129104 Gunapala Oct 2006 B2
7129489 Pham Oct 2006 B2
7129869 Furuta Oct 2006 B2
7129870 Hirano Oct 2006 B2
7135697 Friesen Nov 2006 B2
7135698 Mitra Nov 2006 B2
7135701 Amin Nov 2006 B2
7139882 Suzuoki Nov 2006 B2
7145170 Yamamoto Dec 2006 B2
7145721 Banish Dec 2006 B2
7164702 Liu Jan 2007 B1
7170960 Herr Jan 2007 B2
7180066 Qiu Feb 2007 B2
7180087 Loss Feb 2007 B1
7180579 Ludwig Feb 2007 B1
7180645 Azuma Feb 2007 B2
7184555 Whaley Feb 2007 B2
7190165 Hammond Mar 2007 B2
7203715 Rizzotto Apr 2007 B2
7206062 Asbrock Apr 2007 B2
7217926 Choi May 2007 B1
7217982 Taylor May 2007 B2
7218184 Yamanaka May 2007 B2
7223981 Capote May 2007 B1
7227480 Furuta Jun 2007 B2
7230266 Hilton Jun 2007 B2
7231500 Suzuoki Jun 2007 B2
7233998 Suzuoki Jun 2007 B2
7236998 Nutter Jun 2007 B2
7241419 Ackley Jul 2007 B2
7249518 Tang Jul 2007 B2
7250624 Freedman Jul 2007 B1
7253654 Amin Aug 2007 B2
7268081 Yang Sep 2007 B2
7268576 Amin Sep 2007 B2
7268713 Suzuki Sep 2007 B2
7280623 Gupta Oct 2007 B2
7304646 Iwata Dec 2007 B2
7307275 Lidar Dec 2007 B2
7310623 Beausoleil Dec 2007 B2
7312562 Dahl Dec 2007 B2
7313199 Gupta Dec 2007 B2
7321884 Burkard Jan 2008 B2
7321958 Hofstee Jan 2008 B2
7332738 Blais Feb 2008 B2
7333181 Scott Feb 2008 B1
7334008 Branciforte Feb 2008 B2
7335909 Amin Feb 2008 B2
7339246 Nascetti Mar 2008 B2
7351972 D'Souza et al. Apr 2008 B2
7359928 Porto Apr 2008 B2
7360102 Inoue Apr 2008 B2
7362125 Gupta Apr 2008 B2
7364923 Lidar Apr 2008 B2
7365663 Rylov Apr 2008 B2
7386687 Inoue Jun 2008 B2
7389508 Aguilar, Jr. Jun 2008 B2
7392511 Brokenshire Jun 2008 B2
7394092 Freedman Jul 2008 B2
7395411 Kasahara Jul 2008 B2
7400282 Tanaka Jul 2008 B2
7402835 Liu Jul 2008 B2
7408572 Baxter Aug 2008 B2
7409570 Suzuoki Aug 2008 B2
7410763 Su Aug 2008 B2
7415703 Aguilar, Jr. Aug 2008 B2
7418283 Amin Aug 2008 B2
7425308 Ackley Sep 2008 B2
7426444 Beausoleil Sep 2008 B2
7428562 Beausoleil Sep 2008 B2
7428619 Yasue Sep 2008 B2
7436494 Kennedy Oct 2008 B1
7437533 Ichimura Oct 2008 B2
7437536 Iwamoto Oct 2008 B2
7439208 Moeckly Oct 2008 B2
7440490 Kidiyarova-Shevchenko Oct 2008 B2
7443719 Kirichenko Oct 2008 B2
7443720 Astafiev Oct 2008 B2
7444525 Yoshihara Oct 2008 B2
7444632 Minor Oct 2008 B2
7453129 King Nov 2008 B2
7453162 Freedman Nov 2008 B2
7456702 Keefe Nov 2008 B2
7457939 Suzuoki Nov 2008 B2
7460669 Foden Dec 2008 B2
7465661 Merritt Dec 2008 B2
7468504 Halvis Dec 2008 B2
7468630 Inamdar Dec 2008 B2
7474005 Aksyuk Jan 2009 B2
7474010 Freedman Jan 2009 B2
7474095 Levitt Jan 2009 B2
7475257 Aguilar, Jr. Jan 2009 B2
7478390 Brokenshire Jan 2009 B2
7479652 Greentree Jan 2009 B2
7492399 Gulbransen Feb 2009 B1
7496673 Gschwind Feb 2009 B2
7496917 Brokenshire Feb 2009 B2
7498832 Baumgardner Mar 2009 B2
7501877 Furuta Mar 2009 B2
7502928 Suzuoki Mar 2009 B2
7505310 Nagasawa Mar 2009 B2
7508230 Kirichenko Mar 2009 B2
7509457 Altman Mar 2009 B2
7511753 Hollier Mar 2009 B2
7512297 Farah Mar 2009 B2
7516334 Suzuoki Apr 2009 B2
7516456 Aguilar, Jr. Apr 2009 B2
7518138 Freedman Apr 2009 B2
7521224 Johnson Apr 2009 B2
7523157 Aguilar, Jr. Apr 2009 B2
7525202 Freedman Apr 2009 B2
7526608 Yasue Apr 2009 B2
7529717 Vala May 2009 B2
7531809 Capote May 2009 B2
7532242 Chen May 2009 B1
7533068 Maassen van den Brink May 2009 B2
7541584 Antoszewski Jun 2009 B2
7544532 Ginn Jun 2009 B2
7546405 Terakawa Jun 2009 B2
7547932 Zhang Jun 2009 B2
7549145 Aguilar, Jr. Jun 2009 B2
7550759 Hakonen Jun 2009 B2
7551059 Farrier Jun 2009 B2
7554369 Kirichenko Jun 2009 B2
7565653 Inoue Jul 2009 B2
7566896 Freedman Jul 2009 B2
7570075 Gupta Aug 2009 B2
7576782 Nakasuji Aug 2009 B2
7579424 Keller Aug 2009 B2
7579594 D'Souza et al. Aug 2009 B2
7579699 Freedman Aug 2009 B2
7586074 Gulbransen Sep 2009 B2
7589326 Mollov Sep 2009 B2
7592593 Kauffman Sep 2009 B2
7598514 Freedman Oct 2009 B2
7598897 Kirichenko Oct 2009 B2
7605050 Bureau Oct 2009 B2
7605600 Harris Oct 2009 B2
7608824 Korsah Oct 2009 B2
7608906 Tennant Oct 2009 B2
7613764 Hilton Nov 2009 B1
7613765 Hilton Nov 2009 B1
7613886 Yamazaki Nov 2009 B2
7614053 Inoue Nov 2009 B2
7615385 Tolpygo Nov 2009 B2
7619437 Thom Nov 2009 B2
7624088 Johnson Nov 2009 B2
7626460 Liu Dec 2009 B2
7634061 Tümer Dec 2009 B1
7639035 Berkley Dec 2009 B2
7644255 Totsuka Jan 2010 B2
7652252 Rajavel Jan 2010 B1
7653908 Aguilar, Jr. Jan 2010 B2
7671341 Jones Mar 2010 B2
7676683 Tsuji Mar 2010 B2
7680474 Kirichenko Mar 2010 B2
7680972 Inoue Mar 2010 B2
7685601 Iwamoto Mar 2010 B2
7687938 Bunyk Mar 2010 B2
7689783 Hofstee Mar 2010 B2
7689784 Suzuoki Mar 2010 B2
7689814 Okawa Mar 2010 B2
7693053 Terakawa Apr 2010 B2
7694306 Minor Apr 2010 B2
7698473 Yamazaki Apr 2010 B2
7700710 Keller Apr 2010 B2
7701286 Gupta Apr 2010 B2
7707385 Yamazaki Apr 2010 B2
7714605 Baumgardner May 2010 B2
7719453 Kim May 2010 B2
7720982 Suzuoki May 2010 B2
7723815 Peterson May 2010 B1
7724020 Herr May 2010 B2
7724083 Herring May 2010 B2
7728748 Kirichenko Jun 2010 B1
7730456 Okawa Jun 2010 B2
7732804 Hollenberg Jun 2010 B2
7733253 Kirichenko Jun 2010 B2
7748006 Aguilar, Jr. Jun 2010 B2
7749922 Bezryadin Jul 2010 B2
7750664 Kirichenko Jul 2010 B2
7755023 Rajavel Jul 2010 B1
7764568 Lloyd Jul 2010 B2
7767976 Allen Aug 2010 B2
7768287 Hayashi Aug 2010 B2
7772871 Herr Aug 2010 B2
7774512 Suzuoki Aug 2010 B2
7777186 Endres Aug 2010 B2
7779228 Ichimura Aug 2010 B2
7782077 Herr Aug 2010 B2
7783584 Hoppensteadt Aug 2010 B1
7786748 Herr Aug 2010 B1
7786786 Kirichenko Aug 2010 B2
7788192 Amin Aug 2010 B2
7788467 Hatakeyama Aug 2010 B2
7791430 Keefe Sep 2010 B2
7795640 Klipstein Sep 2010 B2
7795650 Eminoglu Sep 2010 B2
7800067 Rajavel Sep 2010 B1
7800395 Johnson Sep 2010 B2
7802023 Yamazaki Sep 2010 B2
7808528 Massie Oct 2010 B2
7811855 Pitault Oct 2010 B2
7814166 Suzuoki Oct 2010 B2
7816940 Gupta Oct 2010 B1
7818507 Yamazaki Oct 2010 B2
7818724 Suzuoki Oct 2010 B2
7820971 Velicu Oct 2010 B2
7836007 Beausoleil Nov 2010 B2
7843209 Berkley Nov 2010 B2
7844656 Macready Nov 2010 B2
7847615 Yorozu Dec 2010 B2
7852106 Herr Dec 2010 B2
7858034 Ackley Dec 2010 B2
7858966 Kitaev Dec 2010 B2
7863741 Ozaki Jan 2011 B2
7863892 Morley Jan 2011 B2
7868645 Herr Jan 2011 B2
7868665 Tumer Jan 2011 B2
7870087 Macready Jan 2011 B2
7875876 Wandzura Jan 2011 B1
7876145 Koch Jan 2011 B2
7876248 Berkley Jan 2011 B2
7876869 Gupta Jan 2011 B1
7877333 Macready Jan 2011 B2
7880529 Amin Feb 2011 B2
7882310 Inoue Feb 2011 B2
7882379 Kanakogi Feb 2011 B2
7886112 Ohtsuka Feb 2011 B2
7889992 DiVincenzo Feb 2011 B1
7893708 Baumgardner Feb 2011 B2
7895142 Neigovzen Feb 2011 B2
7898282 Harris Mar 2011 B2
7899852 Amin Mar 2011 B2
7903456 Kirichenko Mar 2011 B2
7911265 Dzurak Mar 2011 B2
7912656 Berns Mar 2011 B2
7917667 Hayashi Mar 2011 B2
7917798 Inamdar Mar 2011 B2
7919762 Trupke Apr 2011 B2
7920598 Luo Apr 2011 B2
7921151 Aguilar, Jr. Apr 2011 B2
7925614 Burkard Apr 2011 B2
7926023 Okawa Apr 2011 B2
7928473 Klipstein Apr 2011 B2
7928875 Kirichenko Apr 2011 B2
7932514 Farinelli Apr 2011 B2
7932515 Bunyk Apr 2011 B2
7944253 Kirichenko May 2011 B1
7956640 Gupta Jun 2011 B2
7958371 Hatakeyama Jun 2011 B2
7966549 Hollenberg Jun 2011 B2
7969178 Przybysz Jun 2011 B2
7969805 Thom Jun 2011 B2
7972885 Dutta Jul 2011 B1
7973377 King Jul 2011 B2
7977668 Nevirkovets Jul 2011 B2
7982646 Herr Jul 2011 B2
7984012 Coury Jul 2011 B2
7990662 Berkley Aug 2011 B2
7991013 Gupta Aug 2011 B2
7991814 Filippov Aug 2011 B2
7999813 Suzuoki Aug 2011 B2
7999869 Hollier Aug 2011 B2
8001294 Inoue Aug 2011 B2
8001377 Suzuoki Aug 2011 B2
8001390 Hatakeyama Aug 2011 B2
8001592 Hatakeyama Aug 2011 B2
8004012 Klipstein Aug 2011 B2
8008942 van den Brink Aug 2011 B2
8008991 Tcaciuc Aug 2011 B2
8009420 Hill Aug 2011 B1
8010716 Yamazaki Aug 2011 B2
8014424 Luo Sep 2011 B2
8018244 Berkley Sep 2011 B2
8021914 Hails Sep 2011 B2
8022012 Moeckly Sep 2011 B2
8022349 Baiko Sep 2011 B2
8022703 Huang Sep 2011 B1
8022722 Pesetski Sep 2011 B1
8028288 Suzuoki Sep 2011 B2
8028292 Inoue Sep 2011 B2
8030925 Hammond Oct 2011 B2
8032474 Macready Oct 2011 B2
8035184 Dutta Oct 2011 B1
8035540 Berkley Oct 2011 B2
8044435 Scott Oct 2011 B2
8045660 Gupta Oct 2011 B1
8050648 Kirichenko Nov 2011 B1
8053754 Freedman Nov 2011 B2
8055235 Gupta Nov 2011 B1
8055318 Kadin Nov 2011 B1
8058085 Linares Nov 2011 B2
8058638 Freedman Nov 2011 B2
8062841 Su Nov 2011 B2
8063657 Rose Nov 2011 B2
8073631 Wilber Dec 2011 B2
8073795 Honisch Dec 2011 B2
8073808 Rose Dec 2011 B2
8089286 Silva Jan 2012 B2
8091078 Brokenshire Jan 2012 B2
8097857 Cochran Jan 2012 B2
8097904 Eminoglu Jan 2012 B2
8098179 Bunyk Jan 2012 B2
8102185 Johansson Jan 2012 B2
8103172 Peters Jan 2012 B2
8107777 Farah Jan 2012 B2
8108564 Hofstee Jan 2012 B2
8111083 Pesetski Feb 2012 B1
8115152 Martin Feb 2012 B1
8117000 DiVincenzo Feb 2012 B2
8120683 Tumer Feb 2012 B1
8125367 Ludwig Feb 2012 B2
8130880 Gupta Mar 2012 B1
8138756 Barclay Mar 2012 B2
8138784 Przybysz Mar 2012 B2
8138880 Keefe Mar 2012 B2
8142754 Lanzara Mar 2012 B2
8143687 Wehner Mar 2012 B2
8144589 Meylan Mar 2012 B2
8148715 Hollenberg Apr 2012 B2
8154099 Hampp Apr 2012 B2
8159313 Uchaykin Apr 2012 B2
8159825 Dotsenko Apr 2012 B1
8163094 Greer Apr 2012 B1
8163644 Markunas Apr 2012 B2
8164082 Friesen Apr 2012 B2
8169231 Berkley May 2012 B2
8174305 Harris May 2012 B2
8175995 Amin May 2012 B2
8176481 Kasahara May 2012 B2
8179133 Kornev May 2012 B1
8179296 Kelly May 2012 B2
8184986 Cornwall May 2012 B2
8188901 Inamdar May 2012 B1
8190548 Choi May 2012 B2
8193808 Fu Jun 2012 B2
8195596 Rose Jun 2012 B2
8195726 Macready Jun 2012 B2
8198576 Kennedy Jun 2012 B2
8208288 Bulzacchelli Jun 2012 B2
8219871 Roetteler Jul 2012 B2
8219981 Aguilar, Jr. Jul 2012 B2
8222629 Pioro-Ladriere Jul 2012 B2
8222899 Horng Jul 2012 B2
8223625 Malladi Jul 2012 B2
8224639 Inoue Jul 2012 B2
8228688 Uchaykin Jul 2012 B2
8229863 Amin Jul 2012 B2
8234103 Biamonte Jul 2012 B2
8242799 Pesetski Aug 2012 B2
8243876 Morton Aug 2012 B2
8244650 Rose Aug 2012 B2
8244662 Coury Aug 2012 B2
8247799 Bunyk Aug 2012 B2
8249540 Gupta Aug 2012 B1
8254079 Jefferson Aug 2012 B2
8259848 Malladi Sep 2012 B2
8260143 Gupta Sep 2012 B2
8260144 Gupta Sep 2012 B2
8260145 Gupta Sep 2012 B2
8270209 Herr Sep 2012 B2
8271043 Kim Sep 2012 B2
8271805 Yasue Sep 2012 B2
8275428 Bonderson Sep 2012 B2
8279022 Thom Oct 2012 B2
8283632 Joshi Oct 2012 B2
8283943 van den Brink Oct 2012 B2
8284585 Maekawa Oct 2012 B2
8290553 Moeckly Oct 2012 B2
8294138 Farinelli Oct 2012 B2
8296940 Woychik Oct 2012 B2
8301104 Gupta Oct 2012 B1
8301214 Tolpygo Oct 2012 B1
8304758 Fang Nov 2012 B2
8310230 Haensch Nov 2012 B2
8314446 Yao Nov 2012 B2
8315969 Roetteler Nov 2012 B2
8321866 Suzuoki Nov 2012 B2
8343807 Aksyuk Jan 2013 B2
8347165 Johnson Jan 2013 B2
8355765 Uchaykin Jan 2013 B2
8359186 Ganesan Jan 2013 B2
8362220 Girolami Jan 2013 B2
8362520 Scott Jan 2013 B2
8363606 Montojo Jan 2013 B2
8374072 Gaal Feb 2013 B2
8383426 Tolpygo Feb 2013 B1
8386554 Macready Feb 2013 B2
8399910 Scott Mar 2013 B2
8401509 Gupta Mar 2013 B1
8401600 Filippov Mar 2013 B1
8405468 Uchaykin Mar 2013 B2
8416109 Kirichenko Apr 2013 B2
8421015 Scott Apr 2013 B1
8421053 Bunyk Apr 2013 B2
8423297 Wilber Apr 2013 B2
8434091 Suzuoki Apr 2013 B2
8437168 Maekawa May 2013 B2
8437818 Tolpygo May 2013 B1
8441089 Gravrand May 2013 B2
8441329 Thom May 2013 B2
8455278 Linares Jun 2013 B2
8456004 Markunas Jun 2013 B2
8457093 Tenny Jun 2013 B2
8461862 Pesetski Jun 2013 B2
8462889 Gupta Jun 2013 B2
8464542 Hilton Jun 2013 B2
8471204 Bornfreund Jun 2013 B2
8477888 Lu Jul 2013 B2
8485427 Gavinsky Jul 2013 B2
8488487 Borran Jul 2013 B2
8491190 Glasser Jul 2013 B2
8494993 Harris Jul 2013 B2
8498639 Chen Jul 2013 B2
8504497 Amin Aug 2013 B2
8507894 Morello Aug 2013 B2
8508280 Naaman Aug 2013 B2
8510618 Pesetski Aug 2013 B1
8513647 Bacon Aug 2013 B1
8514284 Byren Aug 2013 B2
8514986 Gupta Aug 2013 B2
8521117 Gupta Aug 2013 B1
8530264 De Munck Sep 2013 B2
8536566 Johansson Sep 2013 B2
8547090 Lukin Oct 2013 B2
8547170 Stobie Oct 2013 B1
8547732 Bulzacchelli Oct 2013 B2
8549521 Brokenshire Oct 2013 B2
8552479 Bornfreund Oct 2013 B2
8552480 Bornfreund Oct 2013 B2
8553795 Xu Oct 2013 B2
8555127 Johnson Oct 2013 B2
8560282 Macready Oct 2013 B2
8560470 Amin Oct 2013 B2
8565345 Gupta Oct 2013 B2
8567658 Schulte Oct 2013 B2
8569874 Colgan Oct 2013 B2
8571614 Mukhanov Oct 2013 B1
8581227 Freedman Nov 2013 B2
8582687 Terry Nov 2013 B2
8583903 Freedman Nov 2013 B2
8586936 Yang Nov 2013 B2
8592301 Markunas Nov 2013 B2
8593141 Radparvar Nov 2013 B1
8604944 Berkley Dec 2013 B2
8605288 Bennett Dec 2013 B2
8606341 Bonderson Dec 2013 B2
8610171 Bois Dec 2013 B2
8611974 Maibaum Dec 2013 B2
8618799 Radparvar Dec 2013 B1
8620835 Freedman Dec 2013 B2
8624968 Hersee Jan 2014 B1
8629726 Madison Jan 2014 B1
8629729 Hoppensteadt Jan 2014 B2
8630256 Tinnakornsrisuphap Jan 2014 B2
8631367 Pesetski Jan 2014 B2
8637824 Mullins Jan 2014 B2
8642998 Gambetta Feb 2014 B2
8648331 Bonderson Feb 2014 B2
8653461 Benson Feb 2014 B1
8654578 Lewis Feb 2014 B2
8655828 Rose Feb 2014 B2
8659007 Bonderson Feb 2014 B2
8659664 Benson Feb 2014 B2
8664739 King Mar 2014 B2
8669325 Hyman Mar 2014 B1
8670777 Borran Mar 2014 B2
8670807 Rose Mar 2014 B2
8675768 Xu Mar 2014 B2
8676223 Montojo Mar 2014 B2
8686751 van den Brink Apr 2014 B2
8687489 Chaponniere Apr 2014 B2
8692176 Kelly Apr 2014 B2
8700689 Macready Apr 2014 B2
8709949 Hampp Apr 2014 B2
8712424 Luo Apr 2014 B2
8726041 Hatakeyama May 2014 B2
8735326 Folk May 2014 B2
8738105 Berkley May 2014 B2
8744075 Tanaka Jun 2014 B2
8744541 Filippov Jun 2014 B1
8745850 Farinelli Jun 2014 B2
8748196 Bonderson Jun 2014 B2
8748950 Levy Jun 2014 B2
8751212 Inoue Jun 2014 B2
8755220 Bulzacchelli Jun 2014 B2
8759873 Gravrand Jun 2014 B2
8769495 Gupta Jul 2014 B1
8772729 Brown Jul 2014 B1
8772759 Bunyk Jul 2014 B2
8780418 Bluzer Jul 2014 B1
8780420 Bluzer Jul 2014 B1
8781129 Bush Jul 2014 B2
8786476 Bunyk Jul 2014 B2
8787873 Hitt Jul 2014 B1
8804358 Dotsenko Aug 2014 B1
8806316 Hwang Aug 2014 B2
8811536 Gupta Aug 2014 B2
8812066 Lanting Aug 2014 B2
8816268 Stobie Aug 2014 B1
8816325 Schenkel Aug 2014 B2
8824601 Malladi Sep 2014 B2
8829452 Brown Sep 2014 B1
8830818 Damnjanovic Sep 2014 B2
8835851 Lee Sep 2014 B2
8841764 Poletto Sep 2014 B2
8847202 Nosho Sep 2014 B1
8847409 DeNatale Sep 2014 B1
8849580 Kauffman Sep 2014 B2
8854074 Berkley Oct 2014 B2
8861619 McDermott Oct 2014 B2
8865537 Abraham Oct 2014 B2
8867931 Gupta Oct 2014 B2
8872159 Kub Oct 2014 B2
8872360 Chow Oct 2014 B2
8872690 Inamdar Oct 2014 B1
8874629 Macready Oct 2014 B2
8891489 Attar Nov 2014 B2
8892857 Ozols Nov 2014 B2
8897057 Skold Nov 2014 B2
8900986 Huang Dec 2014 B2
8921473 Hyman Dec 2014 B1
8922239 Pesetski Dec 2014 B2
8923073 Brooks Dec 2014 B2
8928391 Naaman Jan 2015 B2
8930786 Johnson Jan 2015 B2
8933695 Kornev Jan 2015 B1
8933832 Kelly Jan 2015 B2
8937255 Dotsenko Jan 2015 B1
8946638 Scott Feb 2015 B2
8947080 Lukin Feb 2015 B2
8951808 Ladizinsky Feb 2015 B2
8954125 Corcoles Gonzalez Feb 2015 B2
8969851 Inada Mar 2015 B2
8970217 Kadin Mar 2015 B1
8970706 Scott Mar 2015 B2
8971977 Mukhanov Mar 2015 B2
8972921 Abraham Mar 2015 B2
8975912 Chow Mar 2015 B2
8977223 Gupta Mar 2015 B1
8977576 Macready Mar 2015 B2
8983303 Meyers Mar 2015 B2
8995797 Smith Mar 2015 B2
9015215 Berkley Apr 2015 B2
9020079 Gupta Apr 2015 B2
9020095 Morton Apr 2015 B2
9020362 Gupta Apr 2015 B2
9024359 Scott May 2015 B2
9026574 Macready May 2015 B2
9029259 Stupar May 2015 B2
9029833 Kub May 2015 B2
9040959 Lutchyn May 2015 B2
9041427 Gambetta May 2015 B2
9054247 Mohseni Jun 2015 B2
9058164 Kanakogi Jun 2015 B2
9059305 Abraham Jun 2015 B2
9059674 Chow Jun 2015 B2
9059707 Gambetta Jun 2015 B2
9064992 Nosho Jun 2015 B1
9065452 Inamdar Jun 2015 B1
9069080 Stettner Jun 2015 B2
9069928 van den Brink Jun 2015 B2
9094969 Montojo Jul 2015 B2
9097751 Longhini Aug 2015 B1
9105548 Cunningham Aug 2015 B2
9106056 Hersee Aug 2015 B1
9110169 Stettner Aug 2015 B2
9110771 Hoppensteadt Aug 2015 B2
9111230 Gambetta Aug 2015 B2
9121953 Bolotnikov Sep 2015 B2
9123607 Hatcher Sep 2015 B1
9129224 Lanting Sep 2015 B2
9130116 Tolpygo Sep 2015 B1
9130598 Goto Sep 2015 B2
9134047 Black Sep 2015 B2
9134439 Bolotnikov Sep 2015 B2
9136457 Tolpygo Sep 2015 B2
9142585 King Sep 2015 B2
9143266 Mower Sep 2015 B2
9146157 Rajavel Sep 2015 B1
9152923 Harris Oct 2015 B2
9152924 Bonderson Oct 2015 B2
9159033 Abraham Oct 2015 B2
9160593 Terry Oct 2015 B2
9162881 Biamonte Oct 2015 B2
9166625 Hwang Oct 2015 B2
9170278 Neufeld Oct 2015 B2
9177814 Chang Nov 2015 B2
9178154 Bunyk Nov 2015 B2
9183051 Inoue Nov 2015 B2
9183508 King Nov 2015 B2
9184194 Cellek Nov 2015 B2
9190377 Chen Nov 2015 B2
9192085 Chavez Nov 2015 B2
9203466 Gorokhov Dec 2015 B2
9203654 Terry Dec 2015 B2
9207672 Williams Dec 2015 B2
9208446 Pesetski Dec 2015 B2
9218567 Macready Dec 2015 B2
9218571 Abraham Dec 2015 B2
9219298 Abraham Dec 2015 B2
9219605 Niskanen Dec 2015 B2
9224783 Greer Dec 2015 B2
9225920 Bluzer Dec 2015 B2
9231181 Thom Jan 2016 B2
9235811 Stoltz Jan 2016 B2
9240773 Mukhanov Jan 2016 B1
9252825 Gupta Feb 2016 B2
9256834 Bonderson Feb 2016 B2
9260289 Park Feb 2016 B2
9261573 Radparvar Feb 2016 B1
9270071 Abraham Feb 2016 B2
9270385 Meyers Feb 2016 B2
9276030 Dixon Mar 2016 B2
9276161 Benson Mar 2016 B2
9276615 Filippov Mar 2016 B1
9277204 Gilliland Mar 2016 B2
9282645 Ciou Mar 2016 B2
9294690 Caulfield Mar 2016 B1
9296609 Park Mar 2016 B2
9306739 Troupe Apr 2016 B1
9312878 Inamdar Apr 2016 B1
9312895 Gupta Apr 2016 B1
9318517 Montoya Apr 2016 B1
9324745 Yazici Apr 2016 B2
9331020 Yazdani May 2016 B2
9332475 Attar May 2016 B2
9335385 Lanting May 2016 B2
9344069 Inamdar May 2016 B1
9344092 Abraham May 2016 B2
9349889 Rihani May 2016 B2
9350460 Paik May 2016 B2
9354039 Mower May 2016 B2
9355362 Shea May 2016 B2
9355364 Miller May 2016 B2
9355365 Berkley May 2016 B2
9361169 Berkley Jun 2016 B2
9363766 Zhou Jun 2016 B2
9363790 Tenny Jun 2016 B2
9367288 Wilber Jun 2016 B2
9369133 Naaman Jun 2016 B2
9379303 Gambetta Jun 2016 B2
9384827 Reohr Jul 2016 B1
9385293 Nayfeh Jul 2016 B1
9385294 Rigetti Jul 2016 B2
9385738 Kelly Jul 2016 B2
9396440 Macready Jul 2016 B2
9397283 Abraham Jul 2016 B2
9400499 Williams Jul 2016 B2
9401766 Yuan Jul 2016 B2
9401823 Terry Jul 2016 B2
9405876 Macready Aug 2016 B2
9406026 Bunyk Aug 2016 B2
9420264 Gilliland Aug 2016 B2
9420603 Ji Aug 2016 B2
9424526 Ranjbar Aug 2016 B2
9425377 Moyerman Aug 2016 B2
9425804 McDermott, III Aug 2016 B2
9425838 Gupta Aug 2016 B1
9426397 Wein Aug 2016 B2
9432024 Chow Aug 2016 B2
9437800 McDermott, III Sep 2016 B1
9438245 Bronn Sep 2016 B2
9438246 Naaman Sep 2016 B1
9443200 Schroff Sep 2016 B2
9443576 Miller Sep 2016 B1
9444430 Abdo Sep 2016 B1
9453914 Stettner Sep 2016 B2
9454061 Abdo Sep 2016 B1
9455391 Nayfeh Sep 2016 B1
9455392 Abraham Sep 2016 B2
9455707 Herr Sep 2016 B2
9460397 Apalkov Oct 2016 B2
9461588 Naaman Oct 2016 B1
9471279 Shi Oct 2016 B2
9471280 Shi Oct 2016 B2
9471880 Williams Oct 2016 B2
9473124 Mukhanov Oct 2016 B1
9476950 Faley Oct 2016 B2
9477796 Garcia-Ramirez Oct 2016 B2
9489634 Bonderson Nov 2016 B2
9490296 Ladizinsky Nov 2016 B2
9491389 Kelly Nov 2016 B2
9495644 Chudak Nov 2016 B2
9501747 Roy Nov 2016 B2
9501748 Naaman Nov 2016 B2
9503063 Abraham Nov 2016 B1
9509274 Naaman Nov 2016 B2
9509280 Abdo Nov 2016 B1
9509315 McCaughan Nov 2016 B2
9509478 Montojo Nov 2016 B2
9514812 Brooks Dec 2016 B2
9515247 Chang Dec 2016 B1
9518336 Markham Dec 2016 B2
9520180 Mukhanov Dec 2016 B1
9520547 Abraham Dec 2016 B2
9524470 Chow Dec 2016 B1
9525831 Scott Dec 2016 B2
9530535 Liu Dec 2016 B2
9530820 Douglas Dec 2016 B1
9530873 Carroll Dec 2016 B1
9531055 Abraham Dec 2016 B2
9537027 Lu Jan 2017 B2
9537953 Dadashikelayeh Jan 2017 B1
9547826 King Jan 2017 B2
9548742 Abdo Jan 2017 B1
9548878 Gupta Jan 2017 B2
9549158 Grauer Jan 2017 B2
9552862 Ohki Jan 2017 B2
9554303 Hitt Jan 2017 B1
9559284 Chang Jan 2017 B2
9564573 Chang Feb 2017 B1
9565045 Terry Feb 2017 B2
9575184 Gilliland Feb 2017 B2
9577690 Gupta Feb 2017 B2
9582695 Hoppensteadt Feb 2017 B2
9588191 Kornev Mar 2017 B1
9588940 Hamze Mar 2017 B2
9589236 Abdo Mar 2017 B1
9593907 Regan Mar 2017 B2
9594726 Macready Mar 2017 B2
9595656 Tolpygo Mar 2017 B2
9595969 Miller Mar 2017 B2
9596421 Itzler Mar 2017 B1
9607270 Harris Mar 2017 B2
9613905 Yazdani Apr 2017 B2
9613924 Aliane Apr 2017 B2
9613999 Klipstein Apr 2017 B2
9614270 Chang Apr 2017 B2
9614532 Bulzacchelli Apr 2017 B1
9618591 Radparvar Apr 2017 B1
9618648 Morton Apr 2017 B2
9622188 Luo Apr 2017 B2
9627045 Mukhanov Apr 2017 B1
9627563 Klipstein Apr 2017 B2
9633314 Kwon Apr 2017 B2
9634224 Ladizinsky Apr 2017 B2
9634835 Legré Apr 2017 B2
9635284 Benson Apr 2017 B2
9640680 Son May 2017 B1
9641372 Terry May 2017 B2
9646259 Shea May 2017 B2
9647194 Dotsenko May 2017 B1
9647662 Abutaleb May 2017 B1
9660859 Dadashikelayeh May 2017 B1
9661596 Gupta May 2017 B2
9663358 Cory May 2017 B1
9664562 Goodnough May 2017 B1
9664751 Berggren May 2017 B1
9665539 Macready May 2017 B1
9680452 Abdo Jun 2017 B1
9683766 Kreider Jun 2017 B1
9685477 Tennant Jun 2017 B2
9685935 Strand Jun 2017 B2
9686112 Terry Jun 2017 B2
9691962 Abdo Jun 2017 B2
9692423 McDermott, III Jun 2017 B2
9692595 Lowans Jun 2017 B2
9697473 Abdo Jul 2017 B2
9698134 Li Jul 2017 B2
9699266 Rose Jul 2017 B2
9703516 Hofstee Jul 2017 B2
9705063 Chang Jul 2017 B2
9710586 Muller Jul 2017 B2
9710758 Bunyk Jul 2017 B2
9712172 Shauck Jul 2017 B2
9712771 Kelly Jul 2017 B2
9713199 Freedman Jul 2017 B2
9716085 Li Jul 2017 B2
9716219 Chang Jul 2017 B2
9720055 Hahn Aug 2017 B1
9721209 Kliuchnikov Aug 2017 B2
9722589 Talanov Aug 2017 B1
9723233 Grauer Aug 2017 B2
9727527 van den Brink Aug 2017 B2
9727823 Amin Aug 2017 B2
9727824 Rose Aug 2017 B2
9729152 Bronn Aug 2017 B2
9733327 Sasaki Aug 2017 B2
9735776 Abdo Aug 2017 B1
9739851 Hoppensteadt Aug 2017 B2
9741918 Yohannes Aug 2017 B2
9741920 Tolpygo Aug 2017 B1
9741921 Liu Aug 2017 B2
9742429 Inamdar Aug 2017 B1
9743024 Tyrrell Aug 2017 B2
9746376 Wein Aug 2017 B2
9747968 Ohki Aug 2017 B2
9748214 LaVeigne Aug 2017 B2
9748937 Inamdar Aug 2017 B1
9748976 Naaman Aug 2017 B2
9749893 Zhou Aug 2017 B2
9753102 Karaiskaj Sep 2017 B1
9754214 Glaser Sep 2017 B1
9755133 Nayfeh Sep 2017 B1
9761305 Reohr Sep 2017 B2
9761751 Klipstein Sep 2017 B2
9762200 Thom Sep 2017 B2
9767238 Oberg Sep 2017 B2
9768371 Ladizinsky Sep 2017 B2
9768771 Naaman Sep 2017 B2
9773208 Betz Sep 2017 B2
9774795 Thorne Sep 2017 B2
9779359 Svore Oct 2017 B2
9779360 Bunyk Oct 2017 B2
9780240 Lu Oct 2017 B2
9780764 Pesetski Oct 2017 B2
9780765 Naaman Oct 2017 B2
9786194 Hyman Oct 2017 B2
9787278 Abdo Oct 2017 B1
9787312 Herr Oct 2017 B2
9791258 Mower Oct 2017 B2
9793913 Bulzacchelli Oct 2017 B2
9793933 Gupta Oct 2017 B1
9797995 Gilliland Oct 2017 B2
9798083 Mahmoodian Oct 2017 B2
9798219 Pant Oct 2017 B2
9799817 Fong Oct 2017 B2
9800399 Tanzilli Oct 2017 B2
9806711 Abdo Oct 2017 B1
9812836 Osborn Nov 2017 B1
9817081 Hahn Nov 2017 B2
9818064 Abdo Nov 2017 B1
9818796 Abraham Nov 2017 B2
9823313 Hahn Nov 2017 B2
9823314 Hahn Nov 2017 B2
9823381 Meyer Nov 2017 B2
9824597 Sekelsky Nov 2017 B2
9829545 Stetson, Jr. Nov 2017 B2
9834209 Stettner Dec 2017 B2
9835693 Coar Dec 2017 B2
9835694 Coar Dec 2017 B2
9836699 Rigetti Dec 2017 B1
9838051 Gupta Dec 2017 B1
9841484 Mohebbi Dec 2017 B2
9843312 Abdo Dec 2017 B2
9843741 French Dec 2017 B2
9845153 Sekelsky Dec 2017 B2
9847121 Frank Dec 2017 B2
9847441 Huntington Dec 2017 B2
9853645 Mukhanov Dec 2017 B1
9853837 Krause Dec 2017 B2
9857509 Abdo Jan 2018 B2
9857609 Bishop Jan 2018 B2
9858531 Monroe Jan 2018 B1
9858532 Abdo Jan 2018 B2
9865648 Bunyk Jan 2018 B2
9866773 Caulfield Jan 2018 B2
9870273 Dadashikelayeh Jan 2018 B2
9870277 Berkley Jan 2018 B2
9870536 Abdo Jan 2018 B1
9875215 Macready Jan 2018 B2
9875444 King Jan 2018 B2
9880365 Goutzoulis Jan 2018 B2
9881256 Hamze Jan 2018 B2
9882112 Kwon Jan 2018 B2
9885888 Bishop Feb 2018 B2
9887000 Mukhanov Feb 2018 B1
9891297 Sushkov Feb 2018 B2
9892365 Rigetti Feb 2018 B2
9893262 Thompson Feb 2018 B2
9906191 Filippov Feb 2018 B1
9906248 Gupta Feb 2018 B2
9909460 Allen Mar 2018 B2
9910104 Boesch Mar 2018 B2
9910105 Boesch Mar 2018 B2
9911774 Grzesik Mar 2018 B2
9913414 Sadleir Mar 2018 B2
9917580 Naaman Mar 2018 B2
9922289 Abdo Mar 2018 B2
9923013 Yamashita Mar 2018 B1
9923538 Abdo Mar 2018 B2
9927636 Bishop Mar 2018 B2
9928948 Naaman Mar 2018 B2
9929334 Chang Mar 2018 B2
9929978 Naaman Mar 2018 B2
9934468 Mohseni Apr 2018 B2
9935138 Piccione Apr 2018 B2
9935151 Ettenberg Apr 2018 B2
9935252 Abraham Apr 2018 B2
9940212 Kelly Apr 2018 B2
9940586 Epstein Apr 2018 B1
9941459 Abdo Apr 2018 B2
9945917 Drake Apr 2018 B2
9946973 Biercuk Apr 2018 B2
9947856 Abdo Apr 2018 B2
9947861 Newman Apr 2018 B2
9948050 Abraham Apr 2018 B2
9948254 Narla Apr 2018 B2
9952830 Tomaru Apr 2018 B2
9953268 Abdo Apr 2018 B2
9953269 Chow Apr 2018 B2
9966720 Liu May 2018 B2
9966926 Abdo May 2018 B2
9971970 Rigetti May 2018 B1
9978020 Gambetta May 2018 B1
9978809 Ladizinsky May 2018 B2
9979400 Sete May 2018 B1
9982935 Webber May 2018 B2
9983336 Abdo May 2018 B2
9984333 Biamonte May 2018 B2
9985193 Dial May 2018 B2
9985614 Abdo May 2018 B2
9991864 Strong Jun 2018 B2
9994956 Wu Jun 2018 B2
9996801 Shim Jun 2018 B2
9998122 Hamilton Jun 2018 B2
11121302 Yohannes Sep 2021 B2
11711985 Yohannes Jul 2023 B2
20010020701 Zagoskin Sep 2001 A1
20010023943 Zagoskin Sep 2001 A1
20010025928 Lingren Oct 2001 A1
20010026778 Ackley Oct 2001 A1
20010026935 Ackley Oct 2001 A1
20010029061 Carlson Oct 2001 A1
20020001015 Kojima Jan 2002 A1
20020008191 Faska Jan 2002 A1
20020011640 Bauer Jan 2002 A1
20020011642 Dries Jan 2002 A1
20020028503 Ackley Mar 2002 A1
20020060635 Gupta May 2002 A1
20020097874 Foden Jul 2002 A1
20020105948 Glomb Aug 2002 A1
20020106867 Yang Aug 2002 A1
20020111655 Scribner Aug 2002 A1
20020117656 Amin Aug 2002 A1
20020117738 Amin Aug 2002 A1
20020118903 Cottrell Aug 2002 A1
20020119805 Smith Aug 2002 A1
20020121636 Amin Sep 2002 A1
20020125472 Johnson Sep 2002 A1
20020130313 Zagoskin Sep 2002 A1
20020130315 Zagoskin Sep 2002 A1
20020135373 James Sep 2002 A1
20020135582 Suzuoki Sep 2002 A1
20020135869 Banish Sep 2002 A1
20020138637 Suzuoki Sep 2002 A1
20020138701 Suzuoki Sep 2002 A1
20020138707 Suzuoki Sep 2002 A1
20020144548 Cohn Oct 2002 A1
20020146919 Cohn Oct 2002 A1
20020148957 Lingren Oct 2002 A1
20020156993 Suzuoki Oct 2002 A1
20020161417 Scribner Oct 2002 A1
20020169079 Suzuki Nov 2002 A1
20020177529 Ustinov Nov 2002 A1
20020179921 Cohn Dec 2002 A1
20020179937 Ivanov Dec 2002 A1
20020179939 Ivanov Dec 2002 A1
20020180006 Franz Dec 2002 A1
20020188578 Amin Dec 2002 A1
20020189533 Kim Dec 2002 A1
20030000454 Suh Jan 2003 A1
20030005010 Cleve Jan 2003 A1
20030011398 Herr Jan 2003 A1
20030015737 Nikonov Jan 2003 A1
20030020075 Nikonov Jan 2003 A1
20030021518 Smirnov Jan 2003 A1
20030023651 Whaley Jan 2003 A1
20030027724 Rose Feb 2003 A1
20030034794 Kameda Feb 2003 A1
20030038285 Amin Feb 2003 A1
20030042481 Tzalenchuk Mar 2003 A1
20030057441 Ivanov Mar 2003 A1
20030068832 Koval Apr 2003 A1
20030071258 Zagoskin Apr 2003 A1
20030094606 Newns May 2003 A1
20030098455 Amin May 2003 A1
20030102432 Boieriu Jun 2003 A1
20030102470 Il'ichev et al. Jun 2003 A1
20030107033 Tzalenchuk Jun 2003 A1
20030111659 Tzalenchuk Jun 2003 A1
20030111661 Tzalenchuk Jun 2003 A1
20030115401 Herr Jun 2003 A1
20030121028 Coury Jun 2003 A1
20030146429 Tzalenchuk Aug 2003 A1
20030146430 Tzalenchuk Aug 2003 A1
20030160172 Ashokan Aug 2003 A1
20030164490 Blais Sep 2003 A1
20030169041 Coury Sep 2003 A1
20030173498 Blais Sep 2003 A1
20030173997 Blais Sep 2003 A1
20030178474 Jiang Sep 2003 A1
20030179831 Gupta Sep 2003 A1
20030183855 Dries Oct 2003 A1
20030193097 Il'ichev et al. Oct 2003 A1
20030194054 Ziock Oct 2003 A1
20030199113 Gunapala Oct 2003 A1
20030205704 Gunapala Nov 2003 A1
20030207766 Esteve Nov 2003 A1
20030207767 Kim Nov 2003 A1
20030219911 Zeng Nov 2003 A1
20030224944 Il'ichev et al. Dec 2003 A1
20030229765 Suzuoki Dec 2003 A1
20040000666 Lidar Jan 2004 A1
20040008397 Noonan Jan 2004 A1
20040012407 Amin Jan 2004 A1
20040016872 Toth Jan 2004 A1
20040016883 Polonsky Jan 2004 A1
20040016918 Amin Jan 2004 A1
20040017224 Tumer Jan 2004 A1
20040021466 Hammond Feb 2004 A1
20040022332 Gupta Feb 2004 A1
20040031968 F. DePaulis Feb 2004 A1
20040061056 Barton Apr 2004 A1
20040063322 Yang Apr 2004 A1
20040077503 Blais Apr 2004 A1
20040095492 Baxter May 2004 A1
20040095803 Ustinov May 2004 A1
20040098443 Omelyanchouk May 2004 A1
20040106966 Scribner Jun 2004 A1
20040108461 Mitra Jun 2004 A1
20040108564 Mitra Jun 2004 A1
20040119061 Wu Jun 2004 A1
20040120299 Kidiyarova-Shevchenko Jun 2004 A1
20040124431 DePaulis Jul 2004 A1
20040134967 Moeckly Jul 2004 A1
20040135139 Koval Jul 2004 A1
20040140537 Il'ichev et al. Jul 2004 A1
20040142504 Razeghi Jul 2004 A1
20040144927 Auner Jul 2004 A1
20040150458 Gupta Aug 2004 A1
20040165454 Amin Aug 2004 A1
20040167036 Amin Aug 2004 A1
20040169753 Gulbransen Sep 2004 A1
20040170047 Amin Sep 2004 A1
20040172100 Humayun Sep 2004 A1
20040173787 Blais Sep 2004 A1
20040173792 Blais Sep 2004 A1
20040173793 Blais Sep 2004 A1
20040188596 Ludwig Sep 2004 A1
20040189328 Parrish Sep 2004 A1
20040195516 Matthews Oct 2004 A1
20040195640 Nascetti Oct 2004 A1
20040220057 Ference Nov 2004 A1
20040228436 Zentai Nov 2004 A1
20040234785 Liu Nov 2004 A1
20040238813 Lidar Dec 2004 A1
20040240257 Hollier Dec 2004 A1
20040241965 Merritt Dec 2004 A1
20040266627 Moeckly Dec 2004 A1
20050001209 Hilton Jan 2005 A1
20050023518 Herr Feb 2005 A1
20050035368 Bunyk Feb 2005 A1
20050036055 Nakasuji Feb 2005 A1
20050044054 Helmick Feb 2005 A1
20050045872 Newns Mar 2005 A1
20050045910 Taylor Mar 2005 A1
20050062072 Yamamoto Mar 2005 A1
20050070018 Johnson Mar 2005 A1
20050071404 Nutter Mar 2005 A1
20050071513 Aguilar Mar 2005 A1
20050071526 Brokenshire Mar 2005 A1
20050071578 Day Mar 2005 A1
20050071651 Aguilar Mar 2005 A1
20050071828 Brokenshire Mar 2005 A1
20050074220 Rey Apr 2005 A1
20050078022 Hirano Apr 2005 A1
20050078117 Suzuoki Apr 2005 A1
20050081181 Brokenshire Apr 2005 A1
20050081182 Minor Apr 2005 A1
20050081201 Aguilar Apr 2005 A1
20050081202 Brokenshire Apr 2005 A1
20050081203 Aguilar Apr 2005 A1
20050081209 Suzuoki Apr 2005 A1
20050081213 Suzuoki Apr 2005 A1
20050082488 Mollov Apr 2005 A1
20050082519 Amin Apr 2005 A1
20050086655 Aguilar Apr 2005 A1
20050091473 Aguilar Apr 2005 A1
20050095011 Cottrell May 2005 A1
20050097231 Hofstee May 2005 A1
20050097280 Hofstee May 2005 A1
20050097302 Suzuoki May 2005 A1
20050098773 Vion May 2005 A1
20050101489 Blais May 2005 A1
20050107262 Tanaka May 2005 A1
20050116204 Moeckly Jun 2005 A1
20050116260 Razeghi Jun 2005 A1
20050120185 Yamazaki Jun 2005 A1
20050120187 Suzuoki Jun 2005 A1
20050120254 Suzuoki Jun 2005 A1
20050123674 Stasiak Jun 2005 A1
20050131746 Beausoleil Jun 2005 A1
20050133780 Azuma Jun 2005 A1
20050138325 Hofstee Jun 2005 A1
20050143791 Hameroff Jun 2005 A1
20050160097 Gschwind Jul 2005 A1
20050162302 Omelyanchouk Jul 2005 A1
20050167606 Harrison Aug 2005 A1
20050167772 Stoneham Aug 2005 A1
20050184284 Burkard Aug 2005 A1
20050184285 Friesen Aug 2005 A1
20050188372 Inoue Aug 2005 A1
20050188373 Inoue Aug 2005 A1
20050189943 Hammond Sep 2005 A1
20050197254 Stasiak Sep 2005 A1
20050205954 King Sep 2005 A1
20050216222 Inoue Sep 2005 A1
20050216775 Inoue Sep 2005 A1
20050224784 Amin Oct 2005 A1
20050228967 Hirairi Oct 2005 A1
20050231196 Tarutani Oct 2005 A1
20050243708 Bunyk Nov 2005 A1
20050250651 Amin Nov 2005 A1
20050251659 Yasue Nov 2005 A1
20050251667 Iwamoto Nov 2005 A1
20050255631 Bureau Nov 2005 A1
20050256007 Amin Nov 2005 A1
20050261135 Yamanaka Nov 2005 A1
20050263888 Jiang Dec 2005 A1
20050268038 Yasue Dec 2005 A1
20050268048 Hofstee Dec 2005 A1
20050273306 Hilton Dec 2005 A1
20050273652 Okawa Dec 2005 A1
20060022190 Freedman Feb 2006 A1
20060033096 Astafiev Feb 2006 A1
20060033097 Freedman Feb 2006 A1
20060038128 D'Souza et al. Feb 2006 A1
20060038821 Iwata Feb 2006 A1
20060043423 Freedman Mar 2006 A1
20060045269 Freedman Mar 2006 A1
20060049891 Crete Mar 2006 A1
20060056759 Farah Mar 2006 A1
20060069879 Inoue Mar 2006 A1
20060075397 Kasahara Apr 2006 A1
20060091375 Freedman May 2006 A1
20060092957 Yamazaki May 2006 A1
20060093861 Pogrebnyakov May 2006 A1
20060097746 Amin May 2006 A1
20060097747 Amin May 2006 A1
20060107122 Kasahara May 2006 A1
20060108528 Qiu May 2006 A1
20060112213 Suzuoki May 2006 A1
20060115086 Beausoleil Jun 2006 A1
20060118721 Antoszewski Jun 2006 A1
20060118722 Pham Jun 2006 A1
20060123363 Williams Jun 2006 A1
20060126770 Yamazaki Jun 2006 A1
20060129786 Yamazaki Jun 2006 A1
20060129999 Hiraoka Jun 2006 A1
20060143509 Okawa Jun 2006 A1
20060147154 Thom Jul 2006 A1
20060149861 Yamazaki Jul 2006 A1
20060151775 Hollenberg Jul 2006 A1
20060155792 Inoue Jul 2006 A1
20060155955 Gschwind Jul 2006 A1
20060155964 Totsuka Jul 2006 A1
20060157713 Linares Jul 2006 A1
20060161741 Yasue Jul 2006 A1
20060177122 Yasue Aug 2006 A1
20060179029 Vala Aug 2006 A1
20060179179 Suzuoki Aug 2006 A1
20060179198 Inoue Aug 2006 A1
20060179255 Yamazaki Aug 2006 A1
20060179275 Yamazaki Aug 2006 A1
20060179277 Flachs Aug 2006 A1
20060179278 Suzuoki Aug 2006 A1
20060179436 Yasue Aug 2006 A1
20060181627 Farrier Aug 2006 A1
20060190614 Altman Aug 2006 A1
20060190942 Inoue Aug 2006 A1
20060195824 Iwamoto Aug 2006 A1
20060206731 Kasahara Sep 2006 A1
20060206732 Kasahara Sep 2006 A1
20060212643 Suzuoki Sep 2006 A1
20060225165 van den Brink Oct 2006 A1
20060232674 Cochran Oct 2006 A1
20060232760 Asbrock Oct 2006 A1
20060248618 Berkley Nov 2006 A1
20060251070 Yamazaki Nov 2006 A1
20060255987 Nagasawa Nov 2006 A1
20060259733 Yamazaki Nov 2006 A1
20060259743 Suzuoki Nov 2006 A1
20060260016 Greentree Nov 2006 A1
20060270173 Yoshihara Nov 2006 A1
20070001119 Mollov Jan 2007 A1
20070012948 Dries Jan 2007 A1
20070025504 Tumer Feb 2007 A1
20070048746 Su Mar 2007 A1
20070049097 Hirano Mar 2007 A1
20070052947 Ludwig Mar 2007 A1
20070063700 Levitt Mar 2007 A1
20070073038 Keller Mar 2007 A1
20070075224 Jones Apr 2007 A1
20070075729 Kirichenko Apr 2007 A1
20070075752 Kirichenko Apr 2007 A1
20070075888 Kelly Apr 2007 A1
20070077906 Kirichenko Apr 2007 A1
20070080341 MacReady Apr 2007 A1
20070083870 Kanakogi Apr 2007 A1
20070131868 Capote Jun 2007 A1
20070135676 How Jun 2007 A1
20070162407 Freedman Jul 2007 A1
20070168538 Suzuoki Jul 2007 A1
20070170952 Freedman Jul 2007 A1
20070174227 Johnson Jul 2007 A1
20070176625 Hayashi Aug 2007 A1
20070180041 Suzuoki Aug 2007 A1
20070180586 Amin Aug 2007 A1
20070186077 Gschwind Aug 2007 A1
20070194225 Zorn Aug 2007 A1
20070194958 Kirichenko Aug 2007 A1
20070197022 Hails Aug 2007 A1
20070209437 Xue Sep 2007 A1
20070210244 Halvis Sep 2007 A1
20070215862 Beausoleil Sep 2007 A1
20070224722 Matthews Sep 2007 A1
20070235656 Capote Oct 2007 A1
20070235758 Klipstein Oct 2007 A1
20070239366 Hilton Oct 2007 A1
20070240013 Hayashi Oct 2007 A1
20070241747 Morley Oct 2007 A1
20070250280 Beausoleil Oct 2007 A1
20070258329 Winey Nov 2007 A1
20070263432 Pertti Nov 2007 A1
20070277000 Ohtsuka Nov 2007 A1
20070283103 Hofstee Dec 2007 A1
20070287015 Naaman Dec 2007 A1
20070288701 Hofstee Dec 2007 A1
20070293160 Gupta Dec 2007 A1
20070295954 Burkard Dec 2007 A1
20080019872 Ackley Jan 2008 A1
20080032895 Hammond Feb 2008 A1
20080040805 Yasue Feb 2008 A1
20080048762 Inamdar Feb 2008 A1
20080048902 Rylov Feb 2008 A1
20080049885 Inamdar Feb 2008 A1
20080052055 Rose Feb 2008 A1
20080052504 Tsuji Feb 2008 A1
20080065573 Macready Mar 2008 A1
20080077721 Terakawa Mar 2008 A1
20080077815 Kanakogi Mar 2008 A1
20080079704 Joshi Apr 2008 A1
20080086438 Amin Apr 2008 A1
20080089282 Malladi Apr 2008 A1
20080089637 Farah Apr 2008 A1
20080090319 Ginn Apr 2008 A1
20080091886 Terakawa Apr 2008 A1
20080095110 Montojo Apr 2008 A1
20080098260 Okawa Apr 2008 A1
20080101444 Gupta May 2008 A1
20080101501 Gupta May 2008 A1
20080101503 Gupta May 2008 A1
20080103708 Inoue May 2008 A1
20080107213 Gupta May 2008 A1
20080109500 Macready May 2008 A1
20080111152 Scott May 2008 A1
20080112313 Terakawa May 2008 A1
20080116448 Kitaev May 2008 A1
20080116449 Macready May 2008 A1
20080117833 Borran May 2008 A1
20080120259 Freedman May 2008 A1
20080123520 Ji May 2008 A1
20080126601 Hayashi May 2008 A1
20080129328 Freedman Jun 2008 A1
20080132281 Kim Jun 2008 A1
20080135757 D'Souza et al. Jun 2008 A1
20080146449 Lesueur Jun 2008 A1
20080155203 Aguilar Jun 2008 A1
20080162613 Amin Jul 2008 A1
20080162834 Brokenshire Jul 2008 A1
20080162877 Altman Jul 2008 A1
20080168443 Brokenshire Jul 2008 A1
20080176750 Rose Jul 2008 A1
20080185576 Hollenberg Aug 2008 A1
20080186064 Kirichenko Aug 2008 A1
20080186918 Tinnakornsrisuphap Aug 2008 A1
20080209156 Inoue Aug 2008 A1
20080214198 Chen Sep 2008 A1
20080215850 Berkley Sep 2008 A1
20080218519 Coury Sep 2008 A1
20080224726 Freedman Sep 2008 A1
20080225823 Tenny Sep 2008 A1
20080227624 Keller Sep 2008 A1
20080229143 Muraki Sep 2008 A1
20080231353 Filippov Sep 2008 A1
20080231719 Benson Sep 2008 A1
20080233967 Montojo Sep 2008 A1
20080235679 Aguilar Sep 2008 A1
20080238531 Harris Oct 2008 A1
20080250414 Brokenshire Oct 2008 A1
20080256275 Hofstee Oct 2008 A1
20080258753 Harris Oct 2008 A1
20080258849 Keefe Oct 2008 A1
20080260257 Rose Oct 2008 A1
20080262989 Su Oct 2008 A1
20080271003 Minor Oct 2008 A1
20080274898 Johnson Nov 2008 A1
20080276232 Aguilar Nov 2008 A1
20080277784 Ozaki Nov 2008 A1
20080279370 Hatakeyama Nov 2008 A1
20080282063 Hatakeyama Nov 2008 A1
20080282084 Hatakeyama Nov 2008 A1
20080282093 Hatakeyama Nov 2008 A1
20080282341 Hatakeyama Nov 2008 A1
20080282342 Hatakeyama Nov 2008 A1
20080284545 Keefe Nov 2008 A1
20080290938 Gupta Nov 2008 A1
20080291945 Luo Nov 2008 A1
20080297230 Dzurak Dec 2008 A1
20080301695 Aguilar, Jr. Dec 2008 A1
20080310324 Chaponniere Dec 2008 A1
20080313114 Rose Dec 2008 A1
20080313430 Bunyk Dec 2008 A1
20090001278 Jones Jan 2009 A1
20090002014 Gupta Jan 2009 A1
20090003282 Meylan Jan 2009 A1
20090004760 Pitault Jan 2009 A1
20090005260 Su Jan 2009 A1
20090008632 Bunyk Jan 2009 A1
20090010090 Lloyd Jan 2009 A1
20090014714 Koch Jan 2009 A1
20090015317 DiVincenzo Jan 2009 A1
20090028112 Attar Jan 2009 A1
20090033369 Baumgardner Feb 2009 A1
20090042511 Malladi Feb 2009 A1
20090046573 Damnjanovic Feb 2009 A1
20090050786 Baiko Feb 2009 A1
20090051796 Massie Feb 2009 A1
20090057652 Nevirkovets Mar 2009 A1
20090068355 Moeckly Mar 2009 A1
20090070402 Rose Mar 2009 A1
20090072284 King Mar 2009 A1
20090073017 Kim Mar 2009 A1
20090075825 Rose Mar 2009 A1
20090077001 Macready Mar 2009 A1
20090078872 Korsah Mar 2009 A1
20090078931 Berkley Mar 2009 A1
20090078932 Amin Mar 2009 A1
20090079956 Kennedy Mar 2009 A1
20090082209 Bunyk Mar 2009 A1
20090085694 Keefe Apr 2009 A1
20090086533 Kirichenko Apr 2009 A1
20090086713 Luo Apr 2009 A1
20090087084 Neigovzen Apr 2009 A1
20090097650 Cornwall Apr 2009 A1
20090097652 Freedman Apr 2009 A1
20090101919 Yao Apr 2009 A1
20090102580 Uchaykin Apr 2009 A1
20090108942 Liu Apr 2009 A1
20090109582 Jack Apr 2009 A1
20090121215 Choi May 2009 A1
20090121307 Tennant May 2009 A1
20090122173 Tennant May 2009 A1
20090122508 Uchaykin May 2009 A1
20090125717 Suzuoki May 2009 A1
20090135944 Dyer May 2009 A1
20090153381 Kirichenko Jun 2009 A1
20090167342 van den Brink Jul 2009 A1
20090168286 Berkley Jul 2009 A1
20090173883 Kauffman Jul 2009 A1
20090173936 Bunyk Jul 2009 A1
20090177603 Honisch Jul 2009 A1
20090182542 Hilton Jul 2009 A9
20090192041 Johansson Jul 2009 A1
20090206871 Baumgardner Aug 2009 A1
20090214169 Linares Aug 2009 A1
20090220082 Freedman Sep 2009 A1
20090232191 Gupta Sep 2009 A1
20090232507 Gupta Sep 2009 A1
20090232510 Gupta Sep 2009 A1
20090237106 Kirichenko Sep 2009 A1
20090241013 Roetteler Sep 2009 A1
20090244342 Hollier Oct 2009 A1
20090244958 Bulzacchelli Oct 2009 A1
20090256231 Klipstein Oct 2009 A1
20090259905 Silva Oct 2009 A1
20090261319 Maekawa Oct 2009 A1
20090265112 Wilber Oct 2009 A1
20090278046 Allen Nov 2009 A1
20090289638 Farinelli Nov 2009 A1
20090290680 Tumer Nov 2009 A1
20090299947 Amin Dec 2009 A1
20090316842 Lu Dec 2009 A1
20090317089 Peters Dec 2009 A1
20090319757 Berkley Dec 2009 A1
20090321642 Velicu Dec 2009 A1
20090321720 Rose Dec 2009 A1
20090322374 Przybysz Dec 2009 A1
20100025588 Trupke Feb 2010 A1
20100026447 Keefe Feb 2010 A1
20100026537 Kirichenko Feb 2010 A1
20100027486 Gorokhov Feb 2010 A1
20100035052 Farah Feb 2010 A1
20100038539 Endres Feb 2010 A1
20100057653 Wilber Mar 2010 A1
20100062144 Zibrov Mar 2010 A1
20100066576 Kirichenko Mar 2010 A1
20100085678 Jefferson Apr 2010 A1
20100085827 Thom Apr 2010 A1
20100094796 Roetteler Apr 2010 A1
20100101840 Hampp Apr 2010 A1
20100105406 Luo Apr 2010 A1
20100109638 Berns May 2010 A1
20100116999 Tümer May 2010 A1
20100133514 Bunyk Jun 2010 A1
20100140732 Eminoglu Jun 2010 A1
20100148841 Kirichenko Jun 2010 A1
20100148853 Harris Jun 2010 A1
20100149011 Kirichenko Jun 2010 A1
20100157310 Bennett Jun 2010 A1
20100157552 Thom Jun 2010 A1
20100182039 Baumgardner Jul 2010 A1
20100194466 Yorozu Aug 2010 A1
20100224912 Singh Sep 2010 A1
20100226495 Kelly Sep 2010 A1
20100241780 Friesen Sep 2010 A1
20100246754 Morton Sep 2010 A1
20100264921 Horng Oct 2010 A1
20100270534 Pioro-Ladriere Oct 2010 A1
20100281885 Black Nov 2010 A1
20100295095 Klipstein Nov 2010 A1
20100295141 Abbott Nov 2010 A1
20100296591 Xu Nov 2010 A1
20100303188 Lawandy Dec 2010 A1
20100306142 Amin Dec 2010 A1
20100312969 Yamazaki Dec 2010 A1
20100315079 Lukin Dec 2010 A1
20100329401 Terry Dec 2010 A1
20110009274 Uchaykin Jan 2011 A1
20110010412 Macready Jan 2011 A1
20110011531 Schulte Jan 2011 A1
20110018612 Harris Jan 2011 A1
20110022340 DiVincenzo Jan 2011 A1
20110022820 Bunyk Jan 2011 A1
20110031994 Berkley Feb 2011 A1
20110032130 Ludwig Feb 2011 A1
20110042772 Hampp Feb 2011 A1
20110047201 Macready Feb 2011 A1
20110049475 Hollenberg Mar 2011 A1
20110054876 Biamonte Mar 2011 A1
20110055520 Berkley Mar 2011 A1
20110057169 Harris Mar 2011 A1
20110060710 Amin Mar 2011 A1
20110060711 Macready Mar 2011 A1
20110060780 Berkley Mar 2011 A1
20110065585 Lanting Mar 2011 A1
20110065586 Maibaum Mar 2011 A1
20110074403 Horng Mar 2011 A1
20110079894 Markunas Apr 2011 A1
20110084212 Clark Apr 2011 A1
20110087909 Kanakogi Apr 2011 A1
20110089405 Ladizinsky Apr 2011 A1
20110101483 Jones May 2011 A1
20110114705 Matis May 2011 A1
20110121895 Morello May 2011 A1
20110133770 Przybysz Jun 2011 A1
20110142242 Tanaka Jun 2011 A1
20110147707 Inada Jun 2011 A1
20110147877 Wehner Jun 2011 A1
20110152104 Farinelli Jun 2011 A1
20110156008 Freedman Jun 2011 A1
20110156097 Maimon Jun 2011 A1
20110161638 Freedman Jun 2011 A1
20110167241 Kirichenko Jul 2011 A1
20110169117 McIntosh Jul 2011 A1
20110169160 Greer Jul 2011 A1
20110175061 Berkley Jul 2011 A1
20110175062 Farinelli Jul 2011 A1
20110176577 Bandara Jul 2011 A1
20110198719 Burgaud Aug 2011 A1
20110215222 Eminoglu Sep 2011 A1
20110218432 Tumer Sep 2011 A1
20110221024 Bornfreund Sep 2011 A1
20110221025 Bornfreund Sep 2011 A1
20110231462 Macready Sep 2011 A1
20110233394 Glasser Sep 2011 A1
20110233709 Scott Sep 2011 A1
20110238607 Coury Sep 2011 A1
20110248316 Bois Oct 2011 A1
20110249548 Gaal Oct 2011 A1
20110253430 Woychik Oct 2011 A1
20110253906 Solano Oct 2011 A1
20110261191 Byren Oct 2011 A1
20110272589 Yang Nov 2011 A1
20110287941 Bonderson Nov 2011 A1
20110287944 Folk Nov 2011 A1
20110288823 Gupta Nov 2011 A1
20110298489 van den Brink Dec 2011 A1
20110302591 Suzuoki Dec 2011 A1
20110303153 Moeckly Dec 2011 A1
20110315429 Chen Dec 2011 A1
20120001288 Scott Jan 2012 A1
20120005456 Berkley Jan 2012 A1
20120023053 Harris Jan 2012 A1
20120028401 De Munck Feb 2012 A1
20120028806 Bonderson Feb 2012 A1
20120030386 Hofstee Feb 2012 A1
20120043637 King Feb 2012 A1
20120045136 Rose Feb 2012 A1
20120058602 Linares Mar 2012 A1
20120068225 Gravrand Mar 2012 A1
20120068295 Gravrand Mar 2012 A1
20120071333 Kauffman Mar 2012 A1
20120072191 Freedman Mar 2012 A1
20120075682 Amoroso Mar 2012 A1
20120083302 Borran Apr 2012 A1
20120088674 Faley Apr 2012 A1
20120091193 Gavinsky Apr 2012 A1
20120094838 Bunyk Apr 2012 A1
20120096873 Webber Apr 2012 A1
20120108434 Bulzacchelli May 2012 A1
20120112168 Bonderson May 2012 A1
20120123693 Wilber May 2012 A1
20120124432 Pesetski May 2012 A1
20120135867 Thom May 2012 A1
20120138774 Kelly Jun 2012 A1
20120144159 Pesetski Jun 2012 A1
20120149581 Fang Jun 2012 A1
20120159272 Pesetski Jun 2012 A1
20120161001 Bornfreund Jun 2012 A1
20120161314 Markunas Jun 2012 A1
20120172233 Uchaykin Jul 2012 A1
20120184445 Mukhanov Jul 2012 A1
20120187297 Mullins Jul 2012 A1
20120187378 Bonderson Jul 2012 A1
20120205541 Lee Aug 2012 A1
20120210111 Ozols Aug 2012 A1
20120212375 Depree, Iv Aug 2012 A1
20120213371 Bush Aug 2012 A1
20120215821 Macready Aug 2012 A1
20120254586 Amin Oct 2012 A1
20120258861 Bonderson Oct 2012 A1
20120262322 Kelly Oct 2012 A1
20120265718 Amin Oct 2012 A1
20120266174 Inoue Oct 2012 A1
20120273951 Getty Nov 2012 A1
20120274494 Kirichenko Nov 2012 A1
20120278057 Biamonte Nov 2012 A1
20120285923 Hampp Nov 2012 A1
20120306039 Scott Dec 2012 A1
20120319085 Gambetta Dec 2012 A1
20120319684 Gambetta Dec 2012 A1
20120320668 Lewis Dec 2012 A1
20120326130 Maekawa Dec 2012 A1
20120326720 Gambetta Dec 2012 A1
20120328290 Yuan Dec 2012 A1
20120328301 Gupta Dec 2012 A1
20130000963 Woychick Jan 2013 A1
20130004180 Gupta Jan 2013 A1
20130005580 Bunyk Jan 2013 A1
20130007087 van den Brink Jan 2013 A1
20130009677 Naaman Jan 2013 A1
20130016835 Zbinden Jan 2013 A1
20130028372 Morton Jan 2013 A1
20130029848 Gonzalez Jan 2013 A1
20130036078 Wilber Feb 2013 A9
20130039236 Malladi Feb 2013 A1
20130043945 McDermott Feb 2013 A1
20130044248 Tumer Feb 2013 A1
20130048950 Levy Feb 2013 A1
20130076910 Scott Mar 2013 A1
20130079230 Poppe Mar 2013 A1
20130082241 Kub Apr 2013 A1
20130087766 Schenkel Apr 2013 A1
20130107243 Ludwig May 2013 A1
20130107617 Skold May 2013 A1
20130117200 Thom May 2013 A1
20130119351 Shea May 2013 A1
20130126746 Bolotnikov May 2013 A1
20130136112 Montojo May 2013 A1
20130144925 Macready Jun 2013 A1
20130153856 Das Jun 2013 A1
20130168233 Eom Jul 2013 A1
20130175430 Cunningham Jul 2013 A1
20130187028 Salvestrini Jul 2013 A1
20130190185 Chavez Jul 2013 A1
20130193308 Cellek Aug 2013 A1
20130196855 Poletto Aug 2013 A1
20130214373 Scott Aug 2013 A9
20130231249 Black Sep 2013 A1
20130244417 Markunas Sep 2013 A1
20130246495 Svore Sep 2013 A1
20130250272 Ludwig Sep 2013 A1
20130250273 Ludwig Sep 2013 A1
20130250926 Tenny Sep 2013 A1
20130251145 Lowans Sep 2013 A1
20130258595 Tuckerman Oct 2013 A1
20130258869 Zhou Oct 2013 A1
20130270329 Schulte Oct 2013 A1
20130272453 Gupta Oct 2013 A1
20130273730 Huang Oct 2013 A1
20130278283 Berkley Oct 2013 A1
20130279617 Xu Oct 2013 A1
20130282636 Macready Oct 2013 A1
20130299783 Lutchyn Nov 2013 A1
20130303379 Bulzacchelli Nov 2013 A1
20130308956 Meyers Nov 2013 A1
20130313526 Harris Nov 2013 A1
20130322873 Stevenson Dec 2013 A1
20130341594 Mohseni Dec 2013 A1
20140025606 Macready Jan 2014 A1
20140050475 Bonderson Feb 2014 A1
20140056385 Terry Feb 2014 A1
20140061472 Salvestrini Mar 2014 A1
20140061838 Stupar Mar 2014 A1
20140061911 Cooper Mar 2014 A1
20140063306 Scott Mar 2014 A1
20140091218 Thorne Apr 2014 A1
20140097405 Bunyk Apr 2014 A1
20140102594 Schulte Apr 2014 A1
20140113828 Gilbert Apr 2014 A1
20140119537 Legre May 2014 A1
20140160278 Benson Jun 2014 A1
20140167811 Gambetta Jun 2014 A1
20140167836 Gambetta Jun 2014 A1
20140173926 Hampp Jun 2014 A1
20140175286 Vaillancourt Jun 2014 A1
20140175380 Suzuki Jun 2014 A1
20140187427 Macready Jul 2014 A1
20140197303 Kelly Jul 2014 A1
20140203838 Pesetski Jul 2014 A1
20140214257 Williams Jul 2014 A1
20140217297 Bolotnikov Aug 2014 A1
20140221059 Freedman Aug 2014 A1
20140223224 Berkley Aug 2014 A1
20140225214 King Aug 2014 A1
20140228222 Berkley Aug 2014 A1
20140229705 van den Brink Aug 2014 A1
20140229722 Harris Aug 2014 A1
20140235450 Chow Aug 2014 A1
20140245249 Macready Aug 2014 A1
20140245314 Inoue Aug 2014 A1
20140246652 Abraham Sep 2014 A1
20140246763 Bunyk Sep 2014 A1
20140250288 Roy Sep 2014 A1
20140263955 Dixon Sep 2014 A1
20140264283 Gambetta Sep 2014 A1
20140264284 Abraham Sep 2014 A1
20140264285 Chow Sep 2014 A1
20140264286 Chang Sep 2014 A1
20140264287 Abraham Sep 2014 A1
20140266496 Abraham Sep 2014 A1
20140267852 Bluzer Sep 2014 A1
20140274725 Abraham Sep 2014 A1
20140279822 Bonderson Sep 2014 A1
20140286465 Gupta Sep 2014 A1
20140289583 Goto Sep 2014 A1
20140291479 Lu Oct 2014 A1
20140295907 Luo Oct 2014 A1
20140312303 Klipstein Oct 2014 A1
20140314419 Paik Oct 2014 A1
20140315723 Moyerman Oct 2014 A1
20140324933 Macready Oct 2014 A1
20140329687 Bunyk Nov 2014 A1
20140337612 Williams Nov 2014 A1
20140340487 Gilliland Nov 2014 A1
20140344322 Ranjbar Nov 2014 A1
20140350836 Stettner Nov 2014 A1
20140354326 Bonderson Dec 2014 A1
20140355998 Tanzilli Dec 2014 A1
20140357493 Shea Dec 2014 A1
20140367824 Kub Dec 2014 A1
20140368234 Chow Dec 2014 A1
20150006443 Rose Jan 2015 A1
20150024964 Kauffman Jan 2015 A1
20150028970 Chow Jan 2015 A1
20150032991 Lanting Jan 2015 A1
20150032993 Amin Jan 2015 A1
20150032994 Chudak Jan 2015 A1
20150036967 Smith Feb 2015 A1
20150046681 King Feb 2015 A1
20150055630 Attar Feb 2015 A1
20150055961 Meyers Feb 2015 A1
20150060756 Park Mar 2015 A1
20150078290 Gupta Mar 2015 A1
20150097159 Apalkov Apr 2015 A1
20150111754 Harris Apr 2015 A1
20150115132 Hirsch Apr 2015 A1
20150119252 Ladizinsky Apr 2015 A1
20150119253 Yohannes Apr 2015 A1
20150123831 Kelly May 2015 A1
20150125155 Gupta May 2015 A1
20150125829 Hyman May 2015 A1
20150129089 Liu May 2015 A1
20150136954 Wein May 2015 A1
20150136955 Wein May 2015 A1
20150146805 Terry May 2015 A1
20150146806 Terry May 2015 A1
20150155468 Abraham Jun 2015 A1
20150161524 Hamze Jun 2015 A1
20150163419 Scott Jun 2015 A1
20150178432 Muller Jun 2015 A1
20150179436 Greer Jun 2015 A1
20150179914 Greer Jun 2015 A1
20150179915 Greer Jun 2015 A1
20150186791 Pesetski Jul 2015 A1
20150187840 Ladizinsky Jul 2015 A1
20150193692 Israel Jul 2015 A1
20150199178 Shi Jul 2015 A1
20150200778 Shi Jul 2015 A1
20150202939 Stettner Jul 2015 A1
20150205759 Israel Jul 2015 A1
20150229343 Gupta Aug 2015 A1
20150236235 Ladizinsky Aug 2015 A1
20150241481 Narla Aug 2015 A1
20150242758 Bonderson Aug 2015 A1
20150243825 Keasler Aug 2015 A1
20150254571 Miller Sep 2015 A1
20150258990 Stettner Sep 2015 A1
20150260812 Drake Sep 2015 A1
20150262072 Stoltz Sep 2015 A1
20150262073 Lanting Sep 2015 A1
20150263260 Thom Sep 2015 A1
20150263736 Herr Sep 2015 A1
20150269124 Hamze Sep 2015 A1
20150280035 Rihani Oct 2015 A1
20150287870 Mohseni Oct 2015 A1
20150288500 Montojo Oct 2015 A1
20150299894 Markham Oct 2015 A1
20150300719 Strickland Oct 2015 A1
20150301180 Stettner Oct 2015 A1
20150310350 Niskanen Oct 2015 A1
20150311422 Chang Oct 2015 A1
20150319391 Yazici Nov 2015 A1
20150324705 Biercuk Nov 2015 A1
20150325774 Abraham Nov 2015 A1
20150331113 Stettner Nov 2015 A1
20150332163 Schroff Nov 2015 A1
20150332164 van den Brink Nov 2015 A1
20150339417 Garcia- Ramirez Nov 2015 A1
20150340584 Chang Nov 2015 A1
20150346291 Lanting Dec 2015 A1
20150349780 Naaman Dec 2015 A1
20150354938 Mower Dec 2015 A1
20150355369 Morton Dec 2015 A1
20150357550 Schoelkopf, III Dec 2015 A1
20150357783 Abraham Dec 2015 A1
20150358022 McDermott, III Dec 2015 A1
20150363707 Abraham Dec 2015 A1
20150363708 Amin Dec 2015 A1
20150364515 King Dec 2015 A1
20150372217 Schoelkopf, III Dec 2015 A1
20150379418 Harris Dec 2015 A1
20160003946 Gilliland Jan 2016 A1
20160012346 Biamonte Jan 2016 A1
20160012347 King Jan 2016 A1
20160012882 Bleloch Jan 2016 A1
20160019468 Bunyk Jan 2016 A1
20160026183 Williams Jan 2016 A1
20160028402 McCaughan Jan 2016 A1
20160028403 McCaughan Jan 2016 A1
20160035404 Ohki Feb 2016 A1
20160035470 Yazdani Feb 2016 A1
20160036612 Terry Feb 2016 A1
20160040288 Wu Feb 2016 A1
20160042294 Macready Feb 2016 A1
20160043268 Bai Feb 2016 A1
20160055421 Adachi Feb 2016 A1
20160065693 Rose Mar 2016 A1
20160071021 Raymond Mar 2016 A1
20160079968 Strand Mar 2016 A1
20160080189 Terry Mar 2016 A1
20160085616 Berkley Mar 2016 A1
20160087001 Tennant Mar 2016 A1
20160087598 Thom Mar 2016 A1
20160087599 Naaman Mar 2016 A1
20160093420 Urzhumov Mar 2016 A1
20160093790 Rigetti Mar 2016 A1
20160104073 Sandberg Apr 2016 A1
20160104696 Veigne Apr 2016 A1
20160112031 Abraham Apr 2016 A1
20160125309 Naaman May 2016 A1
20160125310 Hollenberg May 2016 A1
20160132785 Amin May 2016 A1
20160142657 Caulfield May 2016 A1
20160148112 Kwon May 2016 A1
20160148965 Clayton May 2016 A1
20160150165 Grauer May 2016 A1
20160155892 Li Jun 2016 A1
20160156356 Bronn Jun 2016 A1
20160156357 Miller Jun 2016 A1
20160161411 Hudson Jun 2016 A1
20160181458 McIntosh Jun 2016 A1
20160191060 McDermott, III Jun 2016 A1
20160195616 Gilliland Jul 2016 A1
20160197628 Gupta Jul 2016 A1
20160204330 Abraham Jul 2016 A1
20160204331 Abraham Jul 2016 A1
20160210560 Alboszta Jul 2016 A1
20160211438 Chang Jul 2016 A1
20160218139 Ettenberg Jul 2016 A1
20160220814 Chiao Aug 2016 A1
20160221825 Allen Aug 2016 A1
20160231083 Regan Aug 2016 A1
20160233860 Naaman Aug 2016 A1
20160233965 Medford Aug 2016 A1
20160245639 Mower Aug 2016 A1
20160254434 McDermott, III Sep 2016 A1
20160255284 Benson Sep 2016 A1
20160266220 Sushkov Sep 2016 A1
20160266242 Gilliland Sep 2016 A1
20160267032 Rigetti Sep 2016 A1
20160276570 Chang Sep 2016 A1
20160283197 Wilber Sep 2016 A1
20160283857 Babbush Sep 2016 A1
20160292586 Rigetti Oct 2016 A1
20160292587 Rigetti Oct 2016 A1
20160295151 Kelly Oct 2016 A1
20160300155 Betz Oct 2016 A1
20160307956 Klipstein Oct 2016 A1
20160308502 Abdo Oct 2016 A1
20160314407 Bunyk Oct 2016 A1
20160321559 Rose Nov 2016 A1
20160322693 Chang Nov 2016 A1
20160328208 Tomaru Nov 2016 A1
20160328659 Mohseni Nov 2016 A1
20160329896 Bronn Nov 2016 A1
20160335558 Bunyk Nov 2016 A1
20160335559 Pereverzev Nov 2016 A1
20160335560 Mohseni Nov 2016 A1
20160341818 Gilliland Nov 2016 A1
20160343932 Mohseni Nov 2016 A1
20160343934 Chang Nov 2016 A1
20160343935 Chang Nov 2016 A1
20160344414 Naaman Nov 2016 A1
20160344965 Grauer Nov 2016 A1
20160351306 Faley Dec 2016 A1
20160352515 Bunandar Dec 2016 A1
20160364653 Chow Dec 2016 A1
20160371227 Macready Dec 2016 A1
20160372443 Aliane Dec 2016 A1
20160380026 Abraham Dec 2016 A1
20160380636 Abdo Dec 2016 A1
20170005255 Dial Jan 2017 A1
20170006236 French Jan 2017 A1
20170010223 Tumer Jan 2017 A1
20170011305 Williams Jan 2017 A1
20170012862 Terry Jan 2017 A1
20170017742 Oberg Jan 2017 A1
20170017894 Lanting Jan 2017 A1
20170018312 Benjamin Jan 2017 A1
20170025453 Bornfreund Jan 2017 A1
20170026603 Kelly Jan 2017 A1
20170033253 Huntington Feb 2017 A1
20170033273 Chang Feb 2017 A1
20170038123 Strickland Feb 2017 A1
20170039481 Abdo Feb 2017 A1
20170040368 Grzesik Feb 2017 A1
20170041571 Tyrrell Feb 2017 A1
20170061317 Chow Mar 2017 A1
20170062107 Naaman Mar 2017 A1
20170062228 Chang Mar 2017 A1
20170062400 Li Mar 2017 A1
20170062692 Dial Mar 2017 A1
20170062898 Chang Mar 2017 A1
20170069367 Ohki Mar 2017 A1
20170069780 Grzesik Mar 2017 A1
20170069819 Liu Mar 2017 A1
20170071082 Sadleir Mar 2017 A1
20170072504 Abraham Mar 2017 A1
20170076787 Frank Mar 2017 A1
20170077329 Wichman Mar 2017 A1
20170077380 Uchaykin Mar 2017 A1
20170077381 Abdo Mar 2017 A1
20170077382 Abraham Mar 2017 A1
20170077383 Chang Mar 2017 A1
20170077665 Liu Mar 2017 A1
20170084764 Lu Mar 2017 A1
20170084773 Piccione Mar 2017 A1
20170084813 Chang Mar 2017 A1
20170085231 Abdo Mar 2017 A1
20170089961 Abdo Mar 2017 A1
20170090080 Abdo Mar 2017 A1
20170091646 Abdo Mar 2017 A1
20170091647 Abdo Mar 2017 A1
20170091648 Abdo Mar 2017 A1
20170091649 Clarke Mar 2017 A1
20170091650 King Mar 2017 A1
20170092833 Abdo Mar 2017 A1
20170092834 Fong Mar 2017 A1
20170093015 Abdo Mar 2017 A1
20170093381 Abdo Mar 2017 A1
20170094544 Zhou Mar 2017 A1
20170098682 Ladizinsky Apr 2017 A1
20170104546 Bitauld Apr 2017 A1
20170104695 Naaman Apr 2017 A1
20170109605 Ahn Apr 2017 A1
20170116159 Hamze Apr 2017 A1
20170116542 Shim Apr 2017 A1
20170123171 Goutzoulis May 2017 A1
20170132524 Abdo May 2017 A1
20170133336 Oliver May 2017 A1
20170133576 Marcus May 2017 A1
20170133577 Cybart May 2017 A1
20170134091 Gupta May 2017 A1
20170138851 Ashrafi May 2017 A1
20170140296 Kerman May 2017 A1
20170141285 Krogstrup May 2017 A1
20170141286 Kerman May 2017 A1
20170141287 Barkeshli May 2017 A1
20170141769 Miller May 2017 A1
20170147303 Amy May 2017 A1
20170148972 Thompson May 2017 A1
20170160474 Mahmoodian Jun 2017 A1
20170162778 Harris Jun 2017 A1
20170163301 Gupta Jun 2017 A1
20170167977 Rivera Jun 2017 A1
20170170812 Abdo Jun 2017 A1
20170170813 Abdo Jun 2017 A1
20170170893 Sanguinetti Jun 2017 A1
20170177534 Mohseni Jun 2017 A1
20170177751 Macready Jun 2017 A1
20170178017 Roy Jun 2017 A1
20170178018 Tcaciuc Jun 2017 A1
20170179185 Klipstein Jun 2017 A1
20170179327 Klipstein Jun 2017 A1
20170179973 Bulzacchelli Jun 2017 A1
20170186934 Kwon Jun 2017 A1
20170186935 Bonetti Jun 2017 A1
20170193388 Filipp Jul 2017 A1
20170199036 Moxley, III Jul 2017 A1
20170201222 Abdo Jul 2017 A1
20170201224 Strong Jul 2017 A1
20170206461 Friesen Jul 2017 A1
20170211200 Winn Jul 2017 A1
20170212405 Pant Jul 2017 A1
20170212860 Naaman Jul 2017 A1
20170213143 Chow Jul 2017 A1
20170214410 Hincks Jul 2017 A1
20170220510 Hilton Aug 2017 A1
20170222116 Abdo Aug 2017 A1
20170223094 Johnson Aug 2017 A1
20170223143 Johnson Aug 2017 A1
20170227795 Bishop Aug 2017 A1
20170228483 Rigetti Aug 2017 A1
20170229167 Reohr Aug 2017 A1
20170229631 Abdo Aug 2017 A1
20170229632 Abdo Aug 2017 A1
20170229633 Abdo Aug 2017 A1
20170230050 Rigetti Aug 2017 A1
20170237144 Tobar Aug 2017 A1
20170237594 Terry Aug 2017 A1
20170248832 Kippenberg Aug 2017 A1
20170250209 Piccione Aug 2017 A1
20170255629 Thom Sep 2017 A1
20170255871 Macready Sep 2017 A1
20170255872 Hamze Sep 2017 A1
20170256698 Nayfeh Sep 2017 A1
20170257074 Yeh Sep 2017 A1
20170261770 Bishop Sep 2017 A1
20170261771 Bishop Sep 2017 A1
20170262765 Bourassa Sep 2017 A1
20170264373 Krovi Sep 2017 A1
20170265158 Gupta Sep 2017 A1
20170270245 Van Rooyen Sep 2017 A1
20170286858 La Cour Oct 2017 A1
20170286859 Harris Oct 2017 A1
20170293854 Freedman Oct 2017 A1
20170295048 Terry Oct 2017 A1
20170299763 Morton Oct 2017 A1
20170300454 van den Brink Oct 2017 A1
20170300808 Ronagh Oct 2017 A1
20170300817 King Oct 2017 A1
20170300827 Amin Oct 2017 A1
20170308644 Van Rooyen Oct 2017 A1
20170308804 Wabnig Oct 2017 A1
20170316713 Hyman Nov 2017 A1
20170317203 Petta Nov 2017 A1
20170317262 Abraham Nov 2017 A1
20170323195 Crawford Nov 2017 A1
20170323206 Alipour Khayer Nov 2017 A1
20170324019 Ware Nov 2017 A1
20170329883 Oberg Nov 2017 A1
20170330101 Hastings Nov 2017 A1
20170330986 Bedair Nov 2017 A1
20170337155 Novotny Nov 2017 A1
20170344898 Karimi Nov 2017 A1
20170345990 Yohannes Nov 2017 A1
20170350929 Vampa Dec 2017 A1
20170351967 Babbush Dec 2017 A1
20170351974 Rose Dec 2017 A1
20170357539 Dadashikelayeh Dec 2017 A1
20170357561 Kelly Dec 2017 A1
20170359072 Hamilton Dec 2017 A1
20170364362 Lidar Dec 2017 A1
20170370019 Narayan Dec 2017 A1
20170372412 Johnson Dec 2017 A1
20170372427 Johnson Dec 2017 A1
20170372602 Gilliland Dec 2017 A1
20170373044 Das Dec 2017 A1
20170373153 Narayan Dec 2017 A1
20170373369 Abdo Dec 2017 A1
20170373658 Thom Dec 2017 A1
20180003753 Bishop Jan 2018 A1
20180005809 Roukes Jan 2018 A1
20180005887 Abraham Jan 2018 A1
20180011981 El Naqa Jan 2018 A1
20180012932 Oliver Jan 2018 A1
20180013022 Lu Jan 2018 A1
20180013052 Oliver Jan 2018 A1
20180013426 Deurloo Jan 2018 A1
20180019269 Klipstein Jan 2018 A1
20180024232 Gilliland Jan 2018 A1
20180024254 Roy Jan 2018 A1
20180026633 Naaman Jan 2018 A1
20180032893 Epstein Feb 2018 A1
20180032894 Epstein Feb 2018 A1
20180033944 Ladizinsky Feb 2018 A1
20180035067 Tyrrell Feb 2018 A1
20180040800 Chang Feb 2018 A1
20180040935 Sliwa Feb 2018 A1
20180046933 La Cour Feb 2018 A1
20180052806 Hastings Feb 2018 A1
20180053112 Bravyi Feb 2018 A1
20180053113 Lutchyn Feb 2018 A1
20180053551 Dayan Feb 2018 A1
20180053809 Freedman Feb 2018 A1
20180054201 Reagor Feb 2018 A1
20180056993 Stettner Mar 2018 A1
20180067075 Racz Mar 2018 A1
20180067182 Clerk Mar 2018 A1
20180069288 Minev Mar 2018 A1
20180075365 Glaser Mar 2018 A1
20180075901 Frank Mar 2018 A1
20180090200 Soykal Mar 2018 A1
20180091115 Abdo Mar 2018 A1
20180091141 Abdo Mar 2018 A1
20180091142 Abdo Mar 2018 A1
20180091143 Abdo Mar 2018 A1
20180091244 Abdo Mar 2018 A1
20180091440 Dadashikelayeh Mar 2018 A1
20180094980 Pezzaniti Apr 2018 A1
20180096085 Rubin Apr 2018 A1
20180096257 Lucarelli Apr 2018 A1
20180101784 Rolfe Apr 2018 A1
20180101785 Abdo Apr 2018 A1
20180101786 Boothby Apr 2018 A1
20180101787 Abdo Apr 2018 A1
20180102469 Das Apr 2018 A1
20180102470 Das Apr 2018 A1
20180107092 Abdo Apr 2018 A1
20180107526 Dadashikelayeh Apr 2018 A1
20180107938 Morello Apr 2018 A1
20180107939 Schoennenbeck Apr 2018 A1
20180109379 Bitauld Apr 2018 A1
20180113373 Witmer Apr 2018 A1
20180114138 Monroe Apr 2018 A1
20180114713 Drab Apr 2018 A1
20180121601 Hahm May 2018 A1
20180122851 Ettenberg May 2018 A1
20180123597 Sete May 2018 A1
20180128739 Ashrafi May 2018 A9
20180132393 Schulte May 2018 A1
20180132394 Schulte May 2018 A1
20180132395 Schulte May 2018 A1
20180132396 Schulte May 2018 A1
20180132397 Schulte May 2018 A1
20180132398 Schulte May 2018 A1
20180132399 Schulte May 2018 A1
20180137428 Abdo May 2018 A1
20180137429 Chow May 2018 A1
20180137430 Chow May 2018 A1
20180138987 Sliwa May 2018 A1
20180144262 Roetteler May 2018 A1
20180145631 Berkley May 2018 A1
20180145664 Herr May 2018 A1
20180150760 Sarpeshkar May 2018 A1
20180151764 Auroux May 2018 A1
20180152294 Legre May 2018 A1
20180157775 Ronagh Jun 2018 A1
20180160059 Caulfield Jun 2018 A1
20180160068 Kelly Jun 2018 A1
20180165601 Wiebe Jun 2018 A1
20180174852 Chang Jun 2018 A1
20180175230 Droz Jun 2018 A1
20180175476 Teshiba Jun 2018 A1
20180181685 Roetteler Jun 2018 A1
20180189444 Van Rooyen Jul 2018 A1
20180190705 Kilcoyne Jul 2018 A1
20180196780 Amin Jul 2018 A1
20180196916 Van Rooyen Jul 2018 A1
20180197102 Mohseni Jul 2018 A1
20180198016 Piccione Jul 2018 A1
20180198427 Narla Jul 2018 A1
20180211158 Shainline Jul 2018 A1
20180212091 Escarra Jul 2018 A1
20180218279 Lechner Aug 2018 A1
20180218280 Harris Aug 2018 A1
20180218281 Reinhardt Aug 2018 A1
20180219150 Lanting Aug 2018 A1
20180225186 Kelly Aug 2018 A1
20180225586 Chow Aug 2018 A1
20180226451 Dzurak Aug 2018 A1
20180231868 Grice Aug 2018 A1
20180232258 Kendall Aug 2018 A1
20180232652 Curtis Aug 2018 A1
20180232653 Selvanayagam Aug 2018 A1
20180232654 Epstein Aug 2018 A1
20180232655 Chow Aug 2018 A1
20180238869 Kauffman Aug 2018 A1
20180239928 Kurian Aug 2018 A1
20180240032 Van Rooyen Aug 2018 A1
20180240033 Leek Aug 2018 A1
20180240034 Harris Aug 2018 A1
20180240035 Scheer Aug 2018 A1
20180241552 Kurian Aug 2018 A1
20180246848 Douglass Aug 2018 A1
20180247200 Rolfe Aug 2018 A1
20180247217 Heeres Aug 2018 A1
20180247236 Castinado Aug 2018 A1
20180247974 Oliver Aug 2018 A1
20180248103 Ivry Aug 2018 A1
20180248104 Bouzdine Aug 2018 A1
20180248894 Greeter Aug 2018 A1
20180253552 Castinado Sep 2018 A1
20180253599 Shepard Sep 2018 A1
20180254369 Droz Sep 2018 A1
20180254895 Castinado Sep 2018 A1
20180255000 Castinado Sep 2018 A1
20180255073 Sifford Sep 2018 A1
20180259597 Jeske Sep 2018 A1
20180260245 Smith Sep 2018 A1
20180260729 Abdo Sep 2018 A1
20180260730 Reagor Sep 2018 A1
20180260731 Zeng Sep 2018 A1
20180260732 Bloom Sep 2018 A1
20180261752 Ferguson Sep 2018 A1
20180262276 Bishop Sep 2018 A1
20180262489 Wadley Sep 2018 A1
20190229094 White Jul 2019 A1
Related Publications (1)
Number Date Country
20230380302 A1 Nov 2023 US
Provisional Applications (1)
Number Date Country
62744494 Oct 2018 US
Continuations (2)
Number Date Country
Parent 17472821 Sep 2021 US
Child 18357814 US
Parent 16599985 Oct 2019 US
Child 17472821 US