1. Field of the Invention
The present invention relates to integrated circuits, and more particularly, to using TAP controllers.
2. Background
Conventional computer systems typically include several functional components. These components may include a central processing unit (CPU), main memory, input/output (“I/O”) devices, and storage devices (for example, tape drives, disk drives etc.) (referred to herein as “storage device”)
In conventional systems, the main memory is coupled to the CPU via a system bus or a local memory bus. The main memory is used to provide the CPU access to data and/or program information that is stored in main memory at execution time. Typically, the main memory is composed of random access memory (RAM) circuits. A computer system with the CPU and main memory is often referred to as a host system.
The storage device is coupled to the host system via a storage device controller that handles complex details of interfacing the storage device(s) to the host system. Communications between the host system and the controller is usually provided using one of a variety of standard input/output (“I/O”) bus interfaces.
Storage controllers are coupled using various standards, for example, the fibre channel standard incorporated herein by reference in its entirety.
As bandwidth increases, host systems and storage devices must transfer data efficiently. Because of high demand, it is desirable that the internal register files of integrated circuits (also referred to as “chips”) used in (or as) storage controllers be accessed real-time without disrupting normal chip operation for de-bugging or any other purpose.
A standard, IEEE 11491.1 and 11491A was developed (referred to as the JTAG standard) for testing of integrated circuits after assembly onto a printed circuit board, incorporated herein by reference in its entirety. The JTAG standard provides for testing numerous integrated circuits on a board as well as the interconnection of those circuits to the printed conductors of the board. Testing is performed using pins associated with a test access port (“TAP”).
TAP controllers are used to access chip information at a tap controller clock (tclk). In traditional systems, all chip operations stop when a chip is debugged using the JTAG standard. This is commercially undesirable because engineers may want to access the internal registers of a chip while it is operational.
Therefore, there is a need for a method and system that allows dynamic access to a chip via a TAP port during normal chip operation.
In one aspect of the present invention, a method for dynamically writing to an internal register space of a chip using a test access port (“TAP”) controller without interfering with the normal operation of the chip is provided. The method includes, loading write instructions and address of the internal register where data is to be written; and gaining access through arbitration to the internal register space.
Data that is to be written is loaded into a data register in the TAP controller before being written in the internal register space and the write instructions are loaded into an instruction register of the TAP controller.
In another aspect of the present invention, a method for dynamically reading from an internal register space of a chip without interfering with the normal operation of the chip is provided. The method includes, loading an address of the internal register space from where data is to be read, to the data register; gaining access to the internal register; and transferring information to a register in the TAP controller.
In yet another aspect of the present invention, a system for accessing an internal register space of a chip without interfering with the normal operation of the chip is provided. The system includes, an instruction register in the TAP controller to which read and/or write instructions are written; and an arbitration module that receives an input from the TAP controller when the TAP controller needs to access the internal register space.
In yet another aspect of the present invention, a TAP controller for dynamically accessing an internal register space in a chip without interfering the normal operation of the chip is provided. The TAP controller includes, an instruction register in the TAP controller to which read and/or write instructions are written; and a data register where data is stored after the TAP controller reads it from the internal register space, and/or data that is to be written into the internal register is first written to the data register.
In one aspect of the present invention, debugging can be performed dynamically because the internal registers of a chip can be accessed without interrupting the normal operation of the entire chip. This provides flexibility in debugging chips while using the JTAG standard.
This brief summary has been provided so that the nature of the invention may be understood quickly. A more complete understanding of the invention can be obtained by reference to the following detailed description of the preferred embodiments thereof in connection with the attached drawings.
The foregoing features and other features of the present invention will now be described with reference to the drawings of a preferred embodiment. In the drawings, the same components have the same reference numerals. The illustrated embodiment is intended to illustrate, but not to limit the invention. The drawings include the following Figures:
To facilitate an understanding of the preferred embodiment, the general architecture and operation of a controller will initially be described. The specific architecture and operation of the preferred embodiment will then be described with reference to the general architecture.
System 100A of
As shown in
Controller 101 can be an integrated circuit (IC) that comprises of various functional modules, which provide for the writing and reading of data stored on storage device 115 or to other devices through fibre channel ports 102 and 103.
Microprocessor 100 is coupled to controller 101 via interface 116 to facilitate transfer of data, address, timing and control information. Buffer memory 114 is coupled to controller 101 via ports to facilitate transfer of data, timing and address information.
Data flow controller 117 is connected to microprocessor bus 107 and to buffer controller 118.
Disk formatter 110 formats data that is flowing through system 100A, either from storage device 115 or from fibre channel ports 102/103.
Fibre channel controllers 104 and 108 include programmable registers and state machine sequencers that interface with ports 102 and 103. The fibre channel controllers 104 and 108 provide fibre channel control for ports 102 and 103.
Microcontrollers 105 and 106 allow customization of fibre channel sequences and control Fibre channel controllers 104 and 108 through a microcontroller interface module 123 (
ECC engine 111 provides error correction for system 100A.
TAP controller 119, described in more detail below, is used to dynamically access the internal registers (for read and/or write) of system 100A, without interfering with the normal operation of system 100A. This enhances the overall debugging capabilities of system 100A. Information from TAP controller 119 is sent to TAP controller port 120 and can be accessed outside system 100A.
An arbitration module (“arbiter”) 122 receives requests from various modules including microprocessor interface 116 and microcontroller interface 123 to access internal registers 121. Other components, for example, buffer controller 118 may also access the register space via arbiter 122.
TAP controller 119 also includes a Multiplexer 215 whose output 209 is sent to TAP FSM 207.
In one aspect of the present invention, TAP controller 119 uses plural registers; including an instruction register 208 and data register 210 to dynamically access internal register space 121 while system 100A is functional.
Instruction register 208 and data register 210 are used to access internal register space 121. Internal registers 121 can be accessed from outside system 100A using microprocessor interface 116 or Microcontroller interface 123.
If system 100A is not fully functional or goes to an unknown state, and if it is not able to recover, microprocessor interface 116 or microcontroller interface 123 are not be able to access registers 121. In such a case, TAP controller 119, which runs on tck clock 206 and has its own I/O pins can be used to access internal register space 121. This solution uses very little of the total logic and functions of system 100A.
Instruction from data register 210 can be loaded using TAP controller 119. The other registers of TAP controller 119 can also be loaded this way. The bits in data register 210 are used to define a cycle type (read command). One bit determines if it is a Read (1) or Write (0) cycle, and the other bit determines if it is a Byte (1) access or Word (0) access. The address of the register to be accessed is loaded into data register 210 and the data to be written (during a Write operation) is also stored in data register 210.
For a Read operation the returned data is stored in data register 210, which is then shifted out through tdo output port 202. To ensure the validity of the data, a Data ready signal (which indicates that the read Data is ready), is also stored and shifted out.
Turning in detail to
In step S301, a read command is loaded into instruction register 208.
In step S302, a request is sent to arbiter 122 to gain access to internal register space 121, as specified by the address.
In step S303, after the request is granted, data is moved to data register 210 and then shifted out in step S304, via tdo output 202.
Turning in detail to step S400, the write address and data that needs to be written into internal register space 121 is loaded into data register 210.
In step S401, a write command is loaded into instruction register 208.
In step S402, a request to gain access to internal register space 121 is sent to arbiter 122. Thereafter, in step S403, data is sent to internal register space 121.
In one aspect of the present invention, debugging can be performed dynamically because the internal registers of a chip can be accessed without interrupting the normal operation of the entire chip. This provides flexibility in debugging chips while using the JTAG standard.
It is noteworthy that although the foregoing aspects have been described with respect to the JTAG standard, the adaptive aspects of the present invention are not limited to the JTAG standard. The foregoing process/system may be used to test any chip or integrated circuit, using any other standard.
Although the present invention has been described with reference to specific embodiments, these embodiments are illustrative only and not limiting. Many other applications and embodiments of the present invention will be apparent in light of this disclosure.
Number | Name | Date | Kind |
---|---|---|---|
3800281 | Devore et al. | Mar 1974 | A |
3988716 | Fletcher et al. | Oct 1976 | A |
4001883 | Strout et al. | Jan 1977 | A |
4016368 | Apple, Jr. | Apr 1977 | A |
4050097 | Miu et al. | Sep 1977 | A |
4080649 | Calle et al. | Mar 1978 | A |
4156867 | Bench et al. | May 1979 | A |
4225960 | Masters | Sep 1980 | A |
4275457 | Leighou et al. | Jun 1981 | A |
4390969 | Hayes | Jun 1983 | A |
4451898 | Palermo et al. | May 1984 | A |
4486750 | Aoki | Dec 1984 | A |
4500926 | Yoshimaru et al. | Feb 1985 | A |
4587609 | Boudreau et al. | May 1986 | A |
4603382 | Cole | Jul 1986 | A |
4625321 | Pechar et al. | Nov 1986 | A |
4667286 | Young et al. | May 1987 | A |
4777635 | Glover | Oct 1988 | A |
4805046 | Kuroki et al. | Feb 1989 | A |
4807116 | Katzman et al. | Feb 1989 | A |
4807253 | Hagenauer et al. | Feb 1989 | A |
4809091 | Miyazawa et al. | Feb 1989 | A |
4811282 | Masina | Mar 1989 | A |
4812769 | Agoston | Mar 1989 | A |
4860333 | Bitzinger et al. | Aug 1989 | A |
4866606 | Kopetz | Sep 1989 | A |
4881232 | Sako et al. | Nov 1989 | A |
4920535 | Watanabe et al. | Apr 1990 | A |
4949342 | Shimbo et al. | Aug 1990 | A |
4970418 | Masterson | Nov 1990 | A |
4972417 | Sako et al. | Nov 1990 | A |
4975915 | Sako et al. | Dec 1990 | A |
4989190 | Kuroe et al. | Jan 1991 | A |
5014186 | Chisholm | May 1991 | A |
5023612 | Liu | Jun 1991 | A |
5027357 | Yu et al. | Jun 1991 | A |
5050013 | Holsinger | Sep 1991 | A |
5051998 | Murai et al. | Sep 1991 | A |
5068755 | Hamilton et al. | Nov 1991 | A |
5068857 | Yoshida | Nov 1991 | A |
5072420 | Conley et al. | Dec 1991 | A |
5088093 | Storch et al. | Feb 1992 | A |
5109500 | Iseki et al. | Apr 1992 | A |
5117442 | Hall | May 1992 | A |
5127098 | Rosenthal et al. | Jun 1992 | A |
5133062 | Joshi et al. | Jul 1992 | A |
5136592 | Weng | Aug 1992 | A |
5146585 | Smith, III | Sep 1992 | A |
5157669 | Yu et al. | Oct 1992 | A |
5162954 | Miller et al. | Nov 1992 | A |
5193197 | Thacker | Mar 1993 | A |
5204859 | Paesler et al. | Apr 1993 | A |
5218564 | Haines et al. | Jun 1993 | A |
5220569 | Hartness | Jun 1993 | A |
5237593 | Fisher et al. | Aug 1993 | A |
5243471 | Shinn | Sep 1993 | A |
5249271 | Hopkinson | Sep 1993 | A |
5257143 | Zangenehpour | Oct 1993 | A |
5261081 | White et al. | Nov 1993 | A |
5271018 | Chan | Dec 1993 | A |
5274509 | Buch | Dec 1993 | A |
5276564 | Hessing et al. | Jan 1994 | A |
5276662 | Shaver, Jr. et al. | Jan 1994 | A |
5276807 | Kodama et al. | Jan 1994 | A |
5280488 | Glover et al. | Jan 1994 | A |
5285327 | Hetzler | Feb 1994 | A |
5285451 | Henson et al. | Feb 1994 | A |
5301333 | Lee | Apr 1994 | A |
5307216 | Cook et al. | Apr 1994 | A |
5315708 | Eidler et al. | May 1994 | A |
5339443 | Lockwood | Aug 1994 | A |
5361266 | Kodama et al. | Nov 1994 | A |
5361267 | Godiwala et al. | Nov 1994 | A |
5408644 | Schneider et al. | Apr 1995 | A |
5420984 | Good et al. | May 1995 | A |
5428627 | Gupta | Jun 1995 | A |
5440751 | Santeler et al. | Aug 1995 | A |
5465343 | Henson et al. | Nov 1995 | A |
5487170 | Bass et al. | Jan 1996 | A |
5488688 | Gonzales et al. | Jan 1996 | A |
5491701 | Zook | Feb 1996 | A |
5500848 | Best et al. | Mar 1996 | A |
5506989 | Boldt et al. | Apr 1996 | A |
5507005 | Kojima et al. | Apr 1996 | A |
5519837 | Tran | May 1996 | A |
5523903 | Hetzler et al. | Jun 1996 | A |
5544180 | Gupta | Aug 1996 | A |
5544346 | Amini | Aug 1996 | A |
5546545 | Rich | Aug 1996 | A |
5546548 | Chen et al. | Aug 1996 | A |
5563896 | Nakaguchi | Oct 1996 | A |
5572148 | Lytle et al. | Nov 1996 | A |
5574867 | Khaira | Nov 1996 | A |
5581715 | Verinsky et al. | Dec 1996 | A |
5583999 | Sato et al. | Dec 1996 | A |
5592404 | Zook | Jan 1997 | A |
5600662 | Zook et al. | Feb 1997 | A |
5602857 | Zook et al. | Feb 1997 | A |
5615190 | Best et al. | Mar 1997 | A |
5623672 | Popat | Apr 1997 | A |
5627695 | Prins et al. | May 1997 | A |
5629949 | Zook | May 1997 | A |
5640602 | Takase | Jun 1997 | A |
5649230 | Lentz | Jul 1997 | A |
5664121 | Cerauskis | Sep 1997 | A |
5689656 | Baden et al. | Nov 1997 | A |
5691994 | Acosta et al. | Nov 1997 | A |
5692135 | Alvarez, II et al. | Nov 1997 | A |
5692165 | Jeddeloh et al. | Nov 1997 | A |
5719516 | Sharpe-Geisler | Feb 1998 | A |
5729718 | Au | Mar 1998 | A |
5740466 | Geldman | Apr 1998 | A |
5745793 | Atsatt et al. | Apr 1998 | A |
5754759 | Clarke et al. | May 1998 | A |
5758188 | Applebaum et al. | May 1998 | A |
5784569 | Miller et al. | Jul 1998 | A |
5794073 | Ramakrishnan et al. | Aug 1998 | A |
5801998 | Choi | Sep 1998 | A |
5818886 | Castle | Oct 1998 | A |
5822142 | Hicken | Oct 1998 | A |
5831922 | Choi | Nov 1998 | A |
5835930 | Dobbek | Nov 1998 | A |
5841722 | Willenz | Nov 1998 | A |
5844844 | Bauer et al. | Dec 1998 | A |
5850422 | Chen | Dec 1998 | A |
5854918 | Baxter | Dec 1998 | A |
5890207 | Sne et al. | Mar 1999 | A |
5890210 | Ishii et al. | Mar 1999 | A |
5907717 | Ellis | May 1999 | A |
5912906 | Wu et al. | Jun 1999 | A |
5925135 | Trieu et al. | Jul 1999 | A |
5937435 | Dobbek et al. | Aug 1999 | A |
5950223 | Chiang et al. | Sep 1999 | A |
5968180 | Baco | Oct 1999 | A |
5983293 | Murakami | Nov 1999 | A |
5991911 | Zook | Nov 1999 | A |
6029226 | Ellis et al. | Feb 2000 | A |
6029250 | Keeth | Feb 2000 | A |
6041417 | Hammond et al. | Mar 2000 | A |
6065053 | Nouri et al. | May 2000 | A |
6067206 | Hull et al. | May 2000 | A |
6070200 | Gates et al. | May 2000 | A |
6078447 | Sim | Jun 2000 | A |
6081849 | Born et al. | Jun 2000 | A |
6085275 | Gallup et al. | Jul 2000 | A |
6092231 | Sze | Jul 2000 | A |
6094320 | Ahn | Jul 2000 | A |
6124994 | Malone, Sr. | Sep 2000 | A |
6134063 | Weston-Lewis et al. | Oct 2000 | A |
6145100 | Madduri | Nov 2000 | A |
6157984 | Fisher | Dec 2000 | A |
6178486 | Gill et al. | Jan 2001 | B1 |
6192499 | Yang | Feb 2001 | B1 |
6201655 | Watanabe et al. | Mar 2001 | B1 |
6223303 | Billings et al. | Apr 2001 | B1 |
6279089 | Schibilla et al. | Aug 2001 | B1 |
6297926 | Ahn | Oct 2001 | B1 |
6330626 | Dennin et al. | Dec 2001 | B1 |
6381659 | Proch et al. | Apr 2002 | B2 |
6401149 | Dennin et al. | Jun 2002 | B1 |
6415393 | Satoh | Jul 2002 | B2 |
6470461 | Pinvidic et al. | Oct 2002 | B1 |
6487631 | Dickinson et al. | Nov 2002 | B2 |
6490635 | Holmes | Dec 2002 | B1 |
6530000 | Krantz et al. | Mar 2003 | B1 |
6574676 | Megiddo | Jun 2003 | B1 |
6662334 | Stenfort | Dec 2003 | B1 |
6826650 | Krantz et al. | Nov 2004 | B1 |
20010044873 | Wilson et al. | Nov 2001 | A1 |
20020062466 | Noguchi | May 2002 | A1 |
20030037225 | Deng et al. | Feb 2003 | A1 |
20030110344 | Szczepanek et al. | Jun 2003 | A1 |
Number | Date | Country |
---|---|---|
0528273 | Feb 1993 | EP |
0622726 | Nov 1994 | EP |
0718827 | Jun 1996 | EP |
2285166 | Jun 1995 | GB |
63-292462 | Nov 1988 | JP |
01-315071 | Dec 1989 | JP |
03183067 | Aug 1991 | JP |
9814861 | Apr 1998 | WO |