System and method of sensing actuation and release voltages of an interferometric modulator

Information

  • Patent Grant
  • 7551159
  • Patent Number
    7,551,159
  • Date Filed
    Friday, January 28, 2005
    19 years ago
  • Date Issued
    Tuesday, June 23, 2009
    15 years ago
Abstract
A method for sensing the actuation and/or release voltages of a microelectromechanical device include applying a varying voltage to the device and sensing its state and different voltage levels. In one embodiment, the device is part of a system comprising an array of interferometric modulators suitable for a display. The method can be used to compensate for temperature dependent changes in display pixel characteristics.
Description
BACKGROUND

1. Field


The field of the invention relates to microelectromechanical systems (MEMS).


2. Description of the Related Technology


Microelectromechanical systems (MEMS) include micro mechanical elements, actuators, and electronics. Micromechanical elements may be created using deposition, etching, and or other micromachining processes that etch away parts of substrates and/or deposited material layers or that add layers to form electrical and electromechanical devices. One type of MEMS device is called an interferometric modulator. An interferometric modulator may comprise a pair of conductive plates, one or both of which may be partially transparent and capable of relative motion upon application of an appropriate electrical signal. One plate may comprise a stationary layer deposited on a substrate, the other plate may comprise a metallic membrane suspended over the stationary layer. Such devices have a wide range of applications, and it would be beneficial in the art to utilize and/or modify the characteristics of these types of devices so that their features can be exploited in improving existing products and creating new products that have not yet been developed.


SUMMARY

The system, method, and devices of the invention each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this invention, its more prominent features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description of Certain Embodiments” one will understand how the features of this invention provide advantages over other display devices.


In one embodiment, the invention includes method of determining one or both of an actuation voltage and a release voltage of a microelectromechanical device. Such a method may include applying at least two different electric potentials to at least one electrode coupled to the device and detecting at least one capacitance dependent response of the device at the at least two different electric potentials. Based at least in part on the response, a state of the device at the at least two different electric potentials may be determined. From this measurement, one or both of the actuation voltage and release voltages may be determined.


In another embodiment, a display system includes an array of microelectromechanical pixels configured to present display data to a user of the display system. In addition, at least one additional microelectromechanical pixel is provided. Furthermore, a sensor is provided that is configured to sense one or both of an actuation voltage or a release voltage of the additional microelectromechanical pixel


In another embodiment, the invention includes a method for compensating for shifts in one or both of the release and actuation voltage display pixels. In this embodiment, determining the actuation and or release state of at least one pixel is determined, and in response, driving voltage levels are modified. The method may be used for compensating for a temperature dependence of a display device.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an isometric view depicting a portion of one embodiment of an interferometric modulator display in which a movable mirror of a first interferometric modulator is in a reflective, or “on,” position at a predetermined distance from a fixed mirror and the movable mirror of a second interferometric modulator is in a non-reflective, or “off” position.



FIG. 2 is a system block diagram illustrating one embodiment of an electronic device incorporating a 3×3 interferometric modulator display.



FIG. 3A is a diagram of movable mirror position versus applied voltage for one exemplary embodiment of an interferometric modulator of FIG. 1.



FIG. 3B is an illustration of sets of row and column voltages that may be used to drive an interferometric modulator display.



FIGS. 4A and 4B illustrate one exemplary timing diagram for row and column signals that may be used to write a frame of display data to the 3×3 interferometric modulator display of FIG. 2.



FIG. 5A is a cross section of the device of FIG. 1.



FIG. 5B is a cross section of an alternative embodiment of an interferometric modulator.



FIG. 5C is a cross section of an alternative embodiment of an interferometric modulator



FIG. 6 is a schematic/block diagram of one embodiment of a state sensing circuit.



FIG. 7 is graph illustrating a voltage vs. time response to a voltage pulse for an interferometric modulator.



FIG. 8 is a schematic/block diagram of another embodiment of a state sensing circuit



FIG. 9 is graph illustrating a current vs. time response to a voltage pulse for an interferometric modulator.



FIG. 10 is a flow chart of a state sensing process.



FIG. 11 is a timing diagram illustrating row and column voltages for setting and testing a row of interferometric modulators.



FIG. 12 is a block diagram of a state sensing apparatus for modulators embedded in arrays.



FIG. 13 is a flow chart of another embodiment of a state sensing process.



FIG. 14 is a block diagram of a display incorporating test pixels.



FIG. 15 is a graph of voltage versus time applied to a pixel which may be used to determine the actuation and release voltages of an interferometric modulator.



FIG. 16 is a schematic of a circuit which may be used to determine the actuation and release voltages used with the voltage versus time voltage application of FIG. 15.



FIG. 17 is a graph illustrating the timing of the circuit of FIG. 16.



FIG. 18 is a graph of another embodiment of a voltage versus time applied to a pixel and current versus time response which may be used to determine the actuation and release voltages of an interferometric modulator



FIG. 19 is a schematic of a circuit which may be used to determine the actuation and release voltages with the voltage versus time voltage application of FIG. 18.



FIG. 20 is a schematic of another embodiment of a circuit which may be used to determine the actuation and release voltages of an interferometric modulator.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The following detailed description is directed to certain specific embodiments of the invention. However, the invention can be embodied in a multitude of different ways as defined and covered by the claims. In this description, reference is made to the drawings wherein like parts are designated with like numerals throughout.


Embodiments of the invention may be implemented in any device that is configured to display an image, whether in motion (e.g., video) or stationary (e.g., still image), and whether textual or pictorial. More particularly, it is contemplated that the invention may be implemented in or associated with a variety of electronic devices such as, but not limited to, mobile telephones, wireless devices, personal data assistants (PDAs), hand-held or portable computers, electronic books, GPS receivers/navigators, cameras, MP3 players, camcorders, game consoles, wrist watches, clocks, calculators, television monitors, flat panel displays, computer monitors, auto displays (e.g., odometer display, etc.), cockpit controls and/or displays, display of camera views (e.g., display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, architectural structures, packaging, and aesthetic structures (e.g., display of images on a piece of jewelry).


MEMS devices of similar structure to those described herein can also be used in non-display applications such as in electronic switching devices.


One interferometric modulator display embodiment comprising an interferometric MEMS display element is illustrated in FIG. 1. In these devices, the pixels are in either a bright or dark state. In the bright (“on” or “open”) state, the display element reflects a large portion of incident visible light to a user. When in the dark (“off” or “closed”) state, the display element reflects little incident visible light to the user. Depending on the embodiment, the light reflectance properties of the “on” and “off” states may be reversed. MEMS pixels can be configured to reflect predominantly at selected colors, allowing for a color display in addition to black and white.



FIG. 1 is an isometric view depicting two adjacent pixels in a series of pixels of a visual display, wherein each pixel comprises a MEMS interferometric modulator. In some embodiments, an interferometric modulator display comprises a row/column array of these interferometric modulators. Each interferometric modulator includes a pair of reflective layers positioned at a variable and controllable distance from each other to form a resonant optical cavity with at least one variable dimension. In one embodiment, one of the reflective layers may be moved between two positions. In the first position, referred to herein as the released state, the movable layer is positioned at a relatively large distance from a fixed partially reflective layer. In the second position, the movable layer is positioned more closely adjacent to the partially reflective layer. Incident light that reflects from the two layers interferes constructively or destructively depending on the position of the movable reflective layer, producing either an overall reflective or non-reflective state for each pixel.


The depicted portion of the pixel array in FIG. 1 includes two adjacent interferometric modulators 12a and 12b. In the interferometric modulator 12a on the left, a movable and highly reflective layer 14a is illustrated in a released position at a predetermined distance from a fixed partially reflective layer 16a. In the interferometric modulator 12b on the right, the movable highly reflective layer 14b is illustrated in an actuated position adjacent to the fixed partially reflective layer 16b.


The fixed layers 16a, 16b are electrically conductive, partially transparent and partially reflective, and may be fabricated, for example, by depositing one or more layers each of chromium and indium-tin-oxide onto a transparent substrate 20. The layers are patterned into parallel strips, and may form row electrodes in a display device as described further below. The movable layers 14a, 14b may be formed as a series of parallel strips of a deposited metal layer or layers (orthogonal to the row electrodes 16a, 16b) deposited on top of posts 18 and an intervening sacrificial material deposited between the posts 18. When the sacrificial material is etched away, the deformable metal layers are separated from the fixed metal layers by a defined air gap 19. A highly conductive and reflective material such as aluminum may be used for the deformable layers, and these strips may form column electrodes in a display device.


With no applied voltage, the cavity 19 remains between the layers 14a, 16a and the deformable layer is in a mechanically relaxed state as illustrated by the pixel 12a in FIG. 1. However, when a potential difference is applied to a selected row and column, the capacitor formed at the intersection of the row and column electrodes at the corresponding pixel becomes charged, and electrostatic forces pull the electrodes together. If the voltage is high enough, the movable layer is deformed and is forced against the fixed layer (a dielectric material which is not illustrated in this Figure may be deposited on the fixed layer to prevent shorting and control the separation distance) as illustrated by the pixel 12b on the right in FIG. 1. The behavior is the same regardless of the polarity of the applied potential difference. In this way, row/column actuation that can control the reflective vs. non-reflective pixel states is analogous in many ways to that used in conventional LCD and other display technologies.



FIGS. 2 through 4 illustrate one exemplary process and system for using an array of interferometric modulators in a display application. FIG. 2 is a system block diagram illustrating one embodiment of an electronic device that may incorporate aspects of the invention. In the exemplary embodiment, the electronic device includes a processor 21 which may be any general purpose single- or multi-chip microprocessor such as an ARM, Pentium®, Pentium II®, Pentium III®, Pentium IV®, Pentium® Pro, an 8051, a MIPS®, a Power PC®, an ALPHA®, or any other suitable processor. In addition, the processor 21 may comprise any special purpose microprocessor such as a digital signal processor, microcontroller, or a programmable gate array. As is conventional in the art, the processor 21 may be configured to execute one or more software modules. In addition to executing an operating system (not shown), the processor may be configured to execute one or more software applications, including a web browser, a telephone application, an email program, or any other software application. It will be appreciated that all of the functionality described herein may be implemented in whole or part in hardware, software, or a combination thereof.


In one embodiment, the processor 21 is also configured to communicate with an array controller 22. In one embodiment, the array controller 22 includes a row driver circuit 24 and a column driver circuit 26 that provide signals to the array 30. The cross section of the array illustrated in FIG. 1 is shown by the lines 1-1 in FIG. 2. The array control 22 may also include a boost circuit 32 for converting control signals to a voltage or voltages sufficient for driving the array 30. In one embodiment, the display control 22 also includes a frame buffer 34. The frame buffer typically includes sufficient memory to store the current displayed frame for refresh purposes.


A plurality of tri-state buffers 36 are advantageously provided on each of the columns and each of the rows of array 30. The tri-state buffers 36 are connected to hold-mode signals which open the connection to the respective row or column of the array when they are asserted. When the hold-mode select lines are asserted, lines from the driver to the array are opened, substantially eliminating any leakage path for the charge stored on each pixel capacitance. The pixels are thus held in the previously charged or discharged state without any driver input, until the charge slowly dissipates, either through leakage across the pixel or through a non-infinite tri-state open resistance. It will be appreciated that any controllable series switch such as a series FET could be used to implement this display/driver decoupling.


For MEMS interferometric modulators, the row/column actuation protocol may take advantage of a hysteresis property of these devices illustrated in FIG. 3A. It may require, for example, a 10 volt potential difference to cause a movable layer to deform from the released state to the actuated state. However, when the voltage is reduced from that value, the movable layer maintains its state as the voltage drops back below 10 volts. In the exemplary embodiment of FIG. 3A, the movable layer does not release completely until the voltage drops below 2 volts. There is thus a range of voltage, about 3 to 7 V in the example illustrated in FIG. 3A, where there exists a window of applied voltage within which the device is stable in either the released or actuated state. This is referred to herein as the “hysteresis window” or “stability window.” For a display array having the hysteresis characteristics of FIG. 3A, the row/column actuation protocol can be designed such that during row strobing, pixels in the strobed row that are to be actuated are exposed to a voltage difference of about 10 volts, and pixels that are to be released are exposed to a voltage difference of close to zero volts. After the strobe, the pixels are exposed to a steady state voltage difference of about 5 volts such that they remain in whatever state the row strobe put them. After being written, each pixel sees a potential difference within the “stability window” of 3-7 volts in this example. This feature makes the pixel design illustrated in FIG. 1 stable under the same applied voltage conditions in either an actuated or released pre-existing state. Since each pixel of the interferometric modulator, whether in the actuated or released state, is essentially a capacitor formed by the fixed and moving reflective layers, this stable state can be held at a voltage within the hysteresis window with almost no power dissipation. Essentially no current flows into the pixel if the applied potential is fixed.


In typical applications, a display frame may be created by asserting the set of column electrodes in accordance with the desired set of actuated pixels in the first row. A row pulse is then applied to the row 1 electrode, actuating the pixels corresponding to the asserted column lines. The asserted set of column electrodes is then changed to correspond to the desired set of actuated pixels in the second row. A pulse is then applied to the row 2 electrode, actuating the appropriate pixels in row 2 in accordance with the asserted column electrodes. The row 1 pixels are unaffected by the row 2 pulse, and remain in the state they were set to during the row 1 pulse. This may be repeated for the entire series of rows in a sequential fashion to produce the frame. Generally, the frames are refreshed and/or updated with new display data by continually repeating this process at some desired number of frames per second. A wide variety of protocols for driving row and column electrodes of pixel arrays to produce display frames are also well known and may be used in conjunction with the present invention.



FIGS. 3B and 4 illustrate one possible actuation protocol for creating a display frame on the 3×3 array of FIG. 2. FIG. 3B illustrates a possible set of column and row voltage levels that may be used for pixels exhibiting the hysteresis curves of FIG. 3A. In the FIG. 3B embodiment, actuating a pixel involves setting the appropriate column to −Vbias, and the appropriate row to +ΔV, which may correspond to −5 volts and +5 volts respectively Releasing the pixel is accomplished by setting the appropriate column to +Vbias, and the appropriate row to the same +ΔV, producing a zero volt potential difference across the pixel. In those rows where the row voltage is held at zero volts, the pixels are stable in whatever state they were originally in, regardless of whether the column is at +Vbias, or −Vbias.



FIG. 4B is a timing diagram showing a series of row and column signals applied to the 3×3 array of FIG. 2 which will result in the display arrangement illustrated in FIG. 4A, where actuated pixels are non-reflective. Prior to writing the frame illustrated in FIG. 4A, the pixels can be in any state, and in this example, all the rows are at 0 volts, and all the columns are at +5 volts. With these applied voltages, all pixels are stable in their existing actuated or released states.


In the FIG. 4A frame, pixels (1,1), (1,2), (2,2), (3,2) and (3,3) are actuated. To accomplish this, during a “line time” for row 1, columns 1 and 2 are set to −5 volts, and column 3 is set to +5 volts. This does not change the state of any pixels, because all the pixels remain in the 3-7 volt stability window. Row 1 is then strobed with a pulse that goes from 0, up to 5 volts, and back to zero. This actuates the (1,1) and (1,2) pixels and releases the (1,3) pixel. No other pixels in the array are affected. To set row 2 as desired, column 2 is set to −5 volts, and columns 1 and 3 are set to +5 volts. The same strobe applied to row 2 will then actuate pixel (2,2) and release pixels (2,1) and (2,3). Again, no other pixels of the array are affected. Row 3 is similarly set by setting columns 2 and 3 to −5 volts, and column 1 to +5 volts. The row 3 strobe sets the row 3 pixels as shown in FIG. 5A. After writing the frame, the row potentials are zero, and the column potentials can remain at either +5 or −5 volts, and the display is then stable in the arrangement of FIG. 4A. It will be appreciated that the same procedure can be employed for arrays of dozens or hundreds of rows and columns. It will also be appreciated that the timing, sequence, and levels of voltages used to perform row and column actuation can be varied widely within the general principles outlined above, and the above example is exemplary only, and any actuation voltage method can be used with the present invention.


The details of the structure of interferometric modulators that operate in accordance with the principles set forth above may vary widely. For example, FIGS. 5A-5C illustrate three different embodiments of the moving mirror structure. FIG. 5A is a cross section of the embodiment of FIG. 1, where a strip of metal material 14 is deposited on orthogonally extending supports 18. In FIG. 5B, the moveable reflective material 14 is attached to supports at the corners only, on tethers 38. In FIG. 5C, the moveable reflective material 14 is suspended from a deformable layer 40. This embodiment has benefits because the structural design and materials used for the reflective material 14 can be optimized with respect to the optical properties, and the structural design and materials used for the deformable layer 40 can be optimized with respect to desired mechanical properties. The production of various types of interferometric devices is described in a variety of published documents, including, for example, U.S. Published Application 2004/0051929. A wide variety of well known techniques may be used to produce the above described structures involving a series of material deposition, patterning, and etching steps.


After a pixel is written, it can be advantageous to sense its state. For the bi-stable display of FIG. 1, the state of a pixel can be determined by taking advantage of the fact that the capacitance across the pixel mirrors is much larger, often about ten times larger, when the pixels are in the actuated state than when they are in the released state. This pixel capacitance value can be sensed in a variety of ways by sensing capacitance dependent electrical properties of the pixel, some of which are described in more detail below.


The principles of pixel state sensing will be described first with reference to a single pixel in isolation as illustrated in FIGS. 6-10. Referring now to FIG. 6, after pixel writing, whether the whole frame is complete or prior to that time, all the column tri-state buffers can be placed in the open (decoupled) configuration except one column containing the pixel to be tested. The row driver then applies a low amplitude pulse to the row electrode containing the pixel to be tested, which charges up in response to the increased voltage. As shown in FIG. 7, the voltage across the pixel will increase in response to this applied voltage in accordance with the RC time constant (τ) of the circuit. For a single pixel in isolation, the capacitance is the capacitance of the pixel 54, and the resistance of the circuit may include the row driver output impedance and/or any filter resistor 56 that might be placed in series with the row electrode. The voltage at the test point 58 when the pixel 54 is in a low capacitance state (e.g. in the released state) will increase faster as illustrated by curve 60 than when the pixel 54 is in a high capacitance state (e.g. in the actuated state) as illustrated by curve 62. If the voltage across the pixel is determined at a certain time during this charging period, at τ/3 for example, the state of the pixel can be determined. This voltage can be detected and measured by a voltage sensing circuit 64. If a pulse having a duration of τ/3 is applied to the pixel, the voltage across the pixel will increase and decrease as shown in the trace 66 (also shown in FIG. 7). If this signal is applied to the input of a comparator 68 with Vthresh applied to the negative input, a pulse will be output from the comparator only if the voltage across the pixel exceeded Vthresh at some time during the pulse, where Vthresh is defined as shown in FIG. 7. The output of the comparator 68 can be latched to produce an indication of whether that pixel is actuated (latch low) or released (latch high).



FIGS. 8 and 9 illustrate an alternative method of detecting pixel state. In FIG. 8, a current sensing circuit 70 is used rather than a voltage sensing circuit. A voltage pulse is applied as above, which causes a current pulse as the pixel capacitance charges. As illustrated in FIG. 9, this current pulse decays slower (curve 75) for a larger capacitance of pixel 54 than for a smaller capacitance (curve 77). The current pulse can be converted to a voltage pulse by measuring the voltage across a series resistance 72 in the column line (amplifiers configured as current to voltage converters could also be used). The voltage across the resistor can be sensed by an amplifier configured as an integrator 74 illustrated in FIG. 8. The output of the integrator can be routed to a similar comparator 76 and latch as in FIG. 6. The comparator 76 will only produce an output pulse if the current pulse through the circuit is sufficient (given the value of the resistor 72 and the time constant/amplification of the integrator 74) to produce a voltage at the comparator input greater than a threshold voltage Vthresh2 shown in FIG. 8. FIG. 8 shows a switch 78 used to switch resistance 72 into the column line, but it will be appreciated that this would not be necessary if a suitable filter resistor, for example, was already present.


Current sensing requires a slightly more complicated circuit than voltage sensing, but one advantage would be that all the pixels in a row could be probed by a single pulse since the charging current could be separately measured for each pixel along a row simultaneously with separate current sensors. In these embodiments, there may be a sensor dedicated to each column, or a set of current sensors could be sequentially switched between different groups of columns such that a portion, but not all of the column currents are sensed concurrently. This last embodiment would be slower than an embodiment with a sensor for every row, but faster than one at a time sensing.


In accordance with the principles above, FIG. 10 is a flowchart illustrating an exemplary process for determining an open or closed state of an interferometric modulator. A test pulse is applied to the pixel at step 80. At step 82, a capacitance dependent response to the pulse is measured. At step 84, the response is compared to a threshold to determine the state of the pixel.


Pixel state sensing can be advantageous for a variety of reasons. For example, on the next frame update or refresh, only those pixels that are different from the next desired frame need be updated. For a static display, the pixel states may be monitored to detect which pixels have relaxed from an actuated state to a released state due to charge leakage. Selective updating could be performed in a variety of ways. For example, once one or more pixels change from the desired state, the driver circuitry could be turned back on, the tri-state buffers closed, and row strobing could be limited to only those rows which include pixels in an undesired state. Other rows could be skipped. This reduces the total energy required to update the display. Pixel state sensing could also be advantageous during the frame writing process, because as rows of pixels are written, they could be checked to determine if they were written correctly or not. If not, the row could be written again until correct. Pixel state sensing can also advantageously minimize the peak memory requirements for the frame buffer.


An implementation of this last process is illustrated in FIG. 11. After writing row 1 during the row 1 line time 90, a row 1 test time 92 is entered. In the first portion of this time period, only row 1 and column 1 are connected to the drive circuitry, and a test pulse 94 of about 1 volt or less is applied to row 1. As described above, the capacitance dependent response of pixel (1,1) is monitored to be sure it is in the actuated state as shown in FIG. 5A. This is repeated for pixels (1,2) and (1,3) during subsequent portions of the row 1 test time. The system then enters the row 2 line time, or alternatively, repeats the row 1 line time if it is determined that one or more pixels in row 1 have not been correctly written. For purposes of illustration, the test voltage amplitude is shown larger than generally desired and the test time period is shown much longer than would normally be necessary, as the pulse time periods for testing can be very short compared to the pulse periods used to actuate the pixels during the write process. When the pixel 54 being tested is part of a large array of tightly packed pixels, the testing process may be somewhat more complex. This is because the test pulse is applied to an entire row of pixels. Thus, the time constant of the charging process is dependent on the capacitance between the entire row electrode and the return column electrode, and this can be affected by the relative states of all the pixels in the row, not just on the state of the pixel being tested 54, shown again in FIG. 12. The dominant factor in the capacitance will be the state of the pixel being tested, but since there may be hundreds of pixels in the row, the combined effect of the remainder can be significant. There can also be capacitive coupling between pixels in different rows that share the same column electrode. The practical effect of this is that it may be advantageous to vary the pulse time period τ/3, the Vthresh value, or both, when testing pixels in a given row, depending on the states of the other pixels in the row.


This determination can be done in several ways. One embodiment illustrated in FIG. 12 can include in each row, at the end of the row outside the viewed area of the display, a test pixel 98. This pixel can be switched between states, and the rise times for the test pulse can be determined for both the actuated and released states. In this way, the time period having the maximum voltage difference between states, and the voltage values between which Vthresh should be located could be determined based on the test pixel response. These values could then be used to test the state of the other pixels in the row.


Alternatively, a filter resistor could be placed at the end of the row instead of a test pixel. A collective capacitance measurement for the whole row electrode could then be made. The drive control circuitry could use this information to compute or look up an appropriate value for τ/3, Vthresh, or both, to test the pixels in that row.


A general state sensing process using these principles for pixels embedded in arrays of rows and columns is illustrated in FIG. 13. At step 102, row measurement signals are applied to a row containing a pixel to be sensed. These signals could involve testing a test pixel or an overall row capacitance measurement as described above. At step 104, appropriate test parameters such as period τ/3 and/or Vthresh are determined for later pixel testing in the row. As in FIG. 10, a test pulse is then applied to the row at step 106. At step 108, a capacitance dependent response to the pulse is measured. At step 110, the response is compared to a threshold to determine the state of a selected pixel in the row.


Pulse amplitudes and durations for the pixel state sensing process may be selected based on a variety of desired factors. The pulse may be shaped to control the total charge injected into the row. For isolated pixels, the pulse current and time profile can be defined such that a pre-selected charge is injected into the pixel regardless of its capacitance value. In this case, the resulting voltage across the pixel will be inversely proportional to the pixel capacitance. It may be possible to use this method for pixels in an array as well, but its usefulness may be limited since the charge injected into the row may be distributed throughout the hundreds of row pixels in a way that is complicated and difficult to predict. Pulse durations may be selected based on the circuit τ value, with short pulses preferred for time savings. It is of course desirable that the potential applied to the pixel during this process remains at all times within the hysteresis window so that the state sensing process does not itself change the state of the pixel being sensed. Thus, the driver will advantageously supply the appropriate bias voltage when not applying a charging pulse and when not decoupled by the tri-state amplifiers, and will generate pulses deviating from this bias voltage that are small enough (e.g. no more than 1 or 2 volts typically) such that the applied pixel voltages are never outside of the hysteresis window.


Another advantageous application of pixel state sensing is for determining the actuation and release voltages of a pixel. This can be useful because these voltages are temperature dependent, and may shift over time as well. Higher temperatures tend to shift the stability window of FIG. 3A closer to zero for metal mirrors on glass substrates. Depending on the relative coefficients of thermal expansion of the material layers, shifts of either direction as a function of temperature can occur. If pixel actuation and release voltages can be determined electrically, the drive voltages used to write image data to an array of pixels can be modified to match the current pixel behavior. A display incorporating this feature is illustrated in FIG. 14. In this embodiment, extra test pixels 112 are placed around the actual viewing area of the display 114. These test pixels may be fabricated during the same process that produces the display so that the physical characteristics are similar if not essentially identical with the physical characteristics of the pixels in the viewed display area 114. One or more sense circuits 118 that apply variable bias voltages and test voltages are coupled to the test pixels. It will be appreciated that some or all of the sense circuitry could be shared among multiple test pixels.


With separate test pixels, a variety of sensing protocols can be implemented to determine the actuation and/or the release voltages of a capacitive MEMS pixel. For example, this determination can be performed by applying a series of voltages across a pixel, and sensing the state at each applied voltage. This is illustrated in FIG. 15. The voltage can be stepped up from zero to a voltage that is above the expected actuation voltage under all conditions. At each voltage level, a pixel state test as described above may be performed to determine the pixel state. At some voltage level, the pixel will actuate, and this will be detected during the test. Pixel voltage can then be stepped down and tested at each level back down to zero. At some voltage level, the pixel will release, and this will again be detected by the test results.


In FIG. 15, the voltage step is one volt for each step, but it will be appreciated that any step size may be used. During each step, after the pixel has charged from the previous voltage transition, a test pulse 120 is applied as described above. The appropriate voltages or currents are monitored as desired, and the pixel state is determined at each voltage level. Ranges for the actuation and release voltages can be determined by determining which step caused a state change. Advantageously, the amplitude and duration of the test pulses are less than the step size and duration.



FIGS. 16 and 17 illustrate a circuit and its operation that can implement the method of FIG. 15. In this embodiment, a test pulse is added to a series of stepped up and stepped down voltages and the signal sum is applied to one side of a pixel. The other side is grounded with an inverting current to voltage converter 124. A switch 126 connects the output of the current to voltage converter to the input of a comparator 128. As shown in FIG. 17, the CLK1 signal attached to the test pulse generator produces the test pulse duration. As illustrated in FIG. 9 and described above, the test pulse produces a current pulse through the test pixel that decays much slower for an actuated pixel than for a released pixel. The CLK2 signal controls the connection between the output of the current to voltage converter 124 and the input to the comparator 128. The input to the comparator is pulled low by resistor 130 when the switch 126 is open. The CLK2 signal is timed to have a rising edge delayed from the rising edge of CLK1 and have a short duration to sample the voltage output from the current to voltage converter 124 at a selected point in time during the charging process. This voltage will be higher for an actuated pixel than for a released pixel. If the voltage is more negative than −Vthresh3 (negative because of the inverting amplifier 124) during the CLK2 sample period, this indicates an actuated pixel, and the output of the comparator 128 will be high during the sample period. This is repeated sequentially for each test pulse, and the series of comparator outputs are shifted into a shift register 136 at times determined by signal CLK3 which is within the assertion time of CLK2. The outputs of the shift register 136 then form a record of the actuated vs. released state of the pixel at each level on the way up and back down.



FIGS. 18 and 19 illustrate another circuit implementation that can be used to determine actuation and release voltages of a bistable pixel. If the voltage on the pixel is increased at a rate that is slow compared to the pixel RC charging time constant and the time it takes for a pixel to switch between states, the current will be very low while the voltage is ramped up. This will be true until the pixel changes to the actuated state and the capacitance quickly increases. This will cause a current pulse to flow during the transition to a high capacitance state. On the ramp back downward, a second current pulse in the opposite direction (quickly reducing the charge on the pixel capacitance) will occur.


These current pulses can be detected by the circuit of FIG. 19. In this embodiment, the output of the current to voltage converter 124 is coupled to a pair of comparators 140 and 142. Both comparator outputs will both be low when the charging current is small. During the first current pulse, the output of comparator 140 will go high. During the second current pulse, the output of comparator 142 will go high. The time at which these pulses occur can be determined by having each output pulse from the comparators stop a respective counter 144, 146 that is started at the same time the ramp is started. The counter values can be associated with the actuation and release voltages because the voltage as a function of time of the applied voltage ramp is known.


Another possible test circuit is illustrated in FIG. 20. In this embodiment, an AC signal is placed on top of a DC bias voltage and is applied to the pixel at node 150. More AC current will flow through the pixel when the pixel is actuated than when it is released. This AC current can be detected by including both a DC coupled path to ground and an AC coupled path to ground on the other plate of the pixel. The DC voltage across capacitor 154 will increase with increasing AC current through the pixel and through capacitor 156. This voltage is routed to a comparator 158, which goes high if this value is above Vthresh6, which is determined based on the component values. In this embodiment, the DC bias voltage can be varied in any manner, and the output 160 of the comparator 158 will be high when the pixel is actuated, and low when the pixel is released.


While the above detailed description has shown, described, and pointed out novel features of the invention as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the device or process illustrated may be made by those skilled in the art without departing from the spirit of the invention. As one example, it will be appreciated that the test voltage driver circuitry could be separate from the array driver circuitry used to create the display. As with current sensors, separate voltage sensors could be dedicated to separate row electrodes. The scope of the invention is indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims
  • 1. A method of determining one or both of an actuation voltage and a release voltage of a microelectromechanical device, the method comprising: applying at least two different electric potentials to at least one electrode coupled to said device;detecting at least one capacitance dependent response of said device at said at least two different electric potentials;determining, based at least in part on said response, a state of said device at said at least two different electric potentials; anddetermining one or both of said actuation voltage and release voltage based at least in part on said determining a state of said device.
  • 2. The method of claim 1, wherein said determining comprises determining whether said response is greater than a threshold.
  • 3. The method of claim 2, wherein said detecting comprises sensing a voltage generated on said electrode.
  • 4. The method of claim 2, wherein said detecting comprises sensing a current flow generated through said pixel.
  • 5. A display system comprising: an array of microelectromechanical pixels configured to present display data to a user of said display system;at least one additional microelectromechanical pixel that is not one of said microelectromechanical pixels configured to present display data; anda sensor, configured to sense an actuated state or a released state or both, of said at least one additional microelectromechanical pixel.
  • 6. The display system of claim 5, wherein said sensor senses a capacitance dependent response of said additional microelectromechanical pixels.
  • 7. The display system of claim 6, wherein said sensors comprise current sensors.
  • 8. The system of claim 5, wherein at least some of said pixels configured to present display data comprise interferometric modulators.
  • 9. The system of claim 5, wherein said sensor comprises a comparator.
  • 10. A method for compensating for shifts in one or both of the release and actuation voltage display pixels, the method comprising: determining the actuation and or release state of at least one pixel; andmodifying driving voltage levels in response to said determining.
  • 11. The method of claim 10, wherein said determining comprises determining the actuation and or release state of a test pixel.
  • 12. A method of compensating for a temperature dependence of a display device, said method comprising determining one or both of an actuation and release voltage for at least one pixel associated with said display device and modifying device operational parameters based at least in part on said determining.
  • 13. The method of claim 12, wherein said determining comprises determining a capacitance dependent electrical response of said at least one pixel.
  • 14. The method of claim 12, wherein said at least one pixel comprises a test pixel that is not part of a viewable display.
  • 15. A display device comprising: an array of microelectromechanical pixels;at least one test microelectromechanical pixel; andmeans for determining one or both of an actuation voltage and release voltage of said test microelectromechanical pixel.
  • 16. The display system of claim 5, wherein said at least one additional micromechanical pixel is separate from said array of micromechanical pixels.
  • 17. The display system of claim 5, wherein said at least one additional micromechanical pixel comprises two or more micromechanical pixels placed around the actual viewing are of the display.
  • 18. The display system of claim 5, wherein said at least one additional micromechanical pixel is fabricated during the same process that produces said array such that the physical characteristics are similar if not essentially identical with the physical characteristics of the pixels in the viewable array.
  • 19. The display system of claim 17, wherein some or all of the sense circuitry is shared among said two of more micromechanical pixels.
  • 20. The display system of claim 17, where said at least one additional micromechanical pixel comprises four micromechanical pixels each being disposed near a corner of said array.
  • 21. A display system comprising: an array of microelectromechanical pixels configured to present display data to a user of said display system; anda test circuit configured to apply at least two different electric potentials to at least one electrode coupled to a microelectromechanical pixel in said array, detect at least one capacitance dependent response of said device at said at least two different electric potentials, determine based at least in part on said response, a state of said device at said at least two different electric potentials, and determine one or both of said actuation voltage and release voltage based at least in part on said determining a state of said device.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 60/604,892, titled “SENSING STATUS OF A MEMS MEMORY DEVICE”, filed Aug. 27, 2004 which is hereby incorporated by reference, in its entirety.

US Referenced Citations (320)
Number Name Date Kind
3982239 Sherr Sep 1976 A
4403248 te Velde Sep 1983 A
4441791 Hornbeck Apr 1984 A
4459182 te Velde Jul 1984 A
4482213 Piliavin et al. Nov 1984 A
4500171 Penz et al. Feb 1985 A
4519676 te Velde May 1985 A
4566935 Hornbeck Jan 1986 A
4571603 Hornbeck et al. Feb 1986 A
4596992 Hornbeck Jun 1986 A
4615595 Hornbeck Oct 1986 A
4662746 Hornbeck May 1987 A
4681403 te Velde et al. Jul 1987 A
4709995 Kuribayashi et al. Dec 1987 A
4710732 Hornbeck Dec 1987 A
4856863 Sampsell et al. Aug 1989 A
4859060 Katagiri et al. Aug 1989 A
4954789 Sampsell Sep 1990 A
4956619 Hornbeck Sep 1990 A
4982184 Kirkwood Jan 1991 A
5018256 Hornbeck May 1991 A
5028939 Hornbeck et al. Jul 1991 A
5037173 Sampsell et al. Aug 1991 A
5055833 Hehlen et al. Oct 1991 A
5061049 Hornbeck Oct 1991 A
5078479 Vuilleumier Jan 1992 A
5079544 DeMond et al. Jan 1992 A
5083857 Hornbeck Jan 1992 A
5096279 Hornbeck et al. Mar 1992 A
5099353 Hornbeck Mar 1992 A
5124834 Cusano et al. Jun 1992 A
5142405 Hornbeck Aug 1992 A
5142414 Koehler et al. Aug 1992 A
5162787 Thompson et al. Nov 1992 A
5168406 Nelson Dec 1992 A
5170156 DeMond et al. Dec 1992 A
5172262 Hornbeck Dec 1992 A
5179274 Sampsell Jan 1993 A
5192395 Boysel et al. Mar 1993 A
5192946 Thompson et al. Mar 1993 A
5206629 DeMond et al. Apr 1993 A
5212582 Nelson May 1993 A
5214419 DeMond et al. May 1993 A
5214420 Thompson et al. May 1993 A
5216537 Hornbeck Jun 1993 A
5226099 Mignardi et al. Jul 1993 A
5227900 Inaba et al. Jul 1993 A
5231532 Magel et al. Jul 1993 A
5233385 Sampsell Aug 1993 A
5233456 Nelson Aug 1993 A
5233459 Bozler et al. Aug 1993 A
5254980 Hendrix et al. Oct 1993 A
5272473 Thompson et al. Dec 1993 A
5278652 Urbanus et al. Jan 1994 A
5280277 Hornbeck Jan 1994 A
5287096 Thompson et al. Feb 1994 A
5287215 Warde et al. Feb 1994 A
5296950 Lin et al. Mar 1994 A
5305640 Boysel et al. Apr 1994 A
5312513 Florence et al. May 1994 A
5323002 Sampsell et al. Jun 1994 A
5325116 Sampsell Jun 1994 A
5327286 Sampsell et al. Jul 1994 A
5331454 Hornbeck Jul 1994 A
5339116 Urbanus et al. Aug 1994 A
5365283 Doherty et al. Nov 1994 A
5411769 Hornbeck May 1995 A
5444566 Gale et al. Aug 1995 A
5446479 Thompson et al. Aug 1995 A
5448314 Heimbuch et al. Sep 1995 A
5452024 Sampsell Sep 1995 A
5454906 Baker et al. Oct 1995 A
5457493 Leddy et al. Oct 1995 A
5457566 Sampsell et al. Oct 1995 A
5459602 Sampsell Oct 1995 A
5461411 Florence et al. Oct 1995 A
5488505 Engle Jan 1996 A
5489952 Gove et al. Feb 1996 A
5497172 Doherty et al. Mar 1996 A
5497197 Gove et al. Mar 1996 A
5499062 Urbanus Mar 1996 A
5506597 Thompson et al. Apr 1996 A
5515076 Thompson et al. May 1996 A
5517347 Sampsell May 1996 A
5523803 Urbanus et al. Jun 1996 A
5526051 Gove et al. Jun 1996 A
5526172 Kanack Jun 1996 A
5526688 Boysel et al. Jun 1996 A
5535047 Hornbeck Jul 1996 A
5548301 Kornher et al. Aug 1996 A
5550373 Cole et al. Aug 1996 A
5551293 Boysel et al. Sep 1996 A
5552924 Tregilgas Sep 1996 A
5552925 Worley Sep 1996 A
5563398 Sampsell Oct 1996 A
5567334 Baker et al. Oct 1996 A
5570135 Gove et al. Oct 1996 A
5578976 Yao Nov 1996 A
5581272 Conner et al. Dec 1996 A
5583688 Hornbeck Dec 1996 A
5589852 Thompson et al. Dec 1996 A
5597736 Sampsell Jan 1997 A
5598565 Reinhardt Jan 1997 A
5600383 Hornbeck Feb 1997 A
5602671 Hornbeck Feb 1997 A
5606441 Florence et al. Feb 1997 A
5608468 Gove et al. Mar 1997 A
5610438 Wallace et al. Mar 1997 A
5610624 Bhuva Mar 1997 A
5610625 Sampsell Mar 1997 A
5612713 Bhuva et al. Mar 1997 A
5619061 Goldsmith et al. Apr 1997 A
5619365 Rhoads et al. Apr 1997 A
5619366 Rhoads et al. Apr 1997 A
5629790 Neukermans et al. May 1997 A
5633652 Kanbe et al. May 1997 A
5636052 Arney et al. Jun 1997 A
5638084 Kalt Jun 1997 A
5638946 Zavracky Jun 1997 A
5646768 Kaeriyama Jul 1997 A
5650881 Hornbeck Jul 1997 A
5654741 Sampsell et al. Aug 1997 A
5657099 Doherty et al. Aug 1997 A
5659374 Gale, Jr. et al. Aug 1997 A
5665997 Weaver et al. Sep 1997 A
5745193 Urbanus et al. Apr 1998 A
5745281 Yi et al. Apr 1998 A
5754160 Shimizu et al. May 1998 A
5771116 Miller et al. Jun 1998 A
5784189 Bozler et al. Jul 1998 A
5784212 Hornbeck Jul 1998 A
5808780 McDonald Sep 1998 A
5818095 Sampsell Oct 1998 A
5835255 Miles Nov 1998 A
5835256 Huibers Nov 1998 A
5842088 Thompson Nov 1998 A
5867302 Fleming et al. Feb 1999 A
5912758 Knipe et al. Jun 1999 A
5943158 Ford et al. Aug 1999 A
5959763 Bozler et al. Sep 1999 A
5966235 Walker et al. Oct 1999 A
5986796 Miles Nov 1999 A
6028690 Carter et al. Feb 2000 A
6038056 Florence et al. Mar 2000 A
6040937 Miles Mar 2000 A
6049317 Thompson et al. Apr 2000 A
6055090 Miles Apr 2000 A
6061075 Nelson et al. May 2000 A
6099132 Kaeriyama Aug 2000 A
6100872 Aratani et al. Aug 2000 A
6113239 Sampsell et al. Sep 2000 A
6147790 Meier et al. Nov 2000 A
6160833 Floyd et al. Dec 2000 A
6180428 Peeters et al. Jan 2001 B1
6201633 Peeters et al. Mar 2001 B1
6232936 Gove et al. May 2001 B1
6275326 Bhalla et al. Aug 2001 B1
6282010 Sulzbach et al. Aug 2001 B1
6295154 Laor et al. Sep 2001 B1
6304297 Swan Oct 2001 B1
6320394 Tartagni Nov 2001 B1
6323982 Hornbeck Nov 2001 B1
6327071 Kimura Dec 2001 B1
6356085 Ryat et al. Mar 2002 B1
6356254 Kimura Mar 2002 B1
6392233 Channin et al. May 2002 B1
6407560 Walraven et al. Jun 2002 B1
6429601 Friend et al. Aug 2002 B1
6433917 Mei et al. Aug 2002 B1
6447126 Hornbeck Sep 2002 B1
6465355 Horsley Oct 2002 B1
6466358 Tew Oct 2002 B2
6473274 Maimone et al. Oct 2002 B1
6480177 Doherty et al. Nov 2002 B2
6496122 Sampsell Dec 2002 B2
6501107 Sinclair et al. Dec 2002 B1
6507330 Handschy et al. Jan 2003 B1
6507331 Schlangen et al. Jan 2003 B1
6529654 Wong et al. Mar 2003 B1
6545335 Chua et al. Apr 2003 B1
6545495 Warmack et al. Apr 2003 B2
6548908 Chua et al. Apr 2003 B2
6549338 Wolverton et al. Apr 2003 B1
6552840 Knipe Apr 2003 B2
6574033 Chui et al. Jun 2003 B1
6589625 Kothari et al. Jul 2003 B1
6593934 Liaw et al. Jul 2003 B1
6600201 Hartwell et al. Jul 2003 B2
6606175 Sampsell et al. Aug 2003 B1
6625047 Coleman, Jr. Sep 2003 B2
6630786 Cummings et al. Oct 2003 B2
6632698 Ives Oct 2003 B2
6643069 Dewald Nov 2003 B2
6650455 Miles Nov 2003 B2
6666561 Blakley Dec 2003 B1
6674090 Chua et al. Jan 2004 B1
6674562 Miles Jan 2004 B1
6680792 Miles Jan 2004 B2
6710908 Miles et al. Mar 2004 B2
6741377 Miles May 2004 B2
6741384 Martin et al. May 2004 B1
6741503 Farris et al. May 2004 B1
6747785 Chen et al. Jun 2004 B2
6762873 Coker et al. Jul 2004 B1
6771851 Yang Aug 2004 B1
6775174 Huffman et al. Aug 2004 B2
6778155 Doherty et al. Aug 2004 B2
6781643 Watanabe et al. Aug 2004 B1
6787384 Okumura Sep 2004 B2
6787438 Nelson Sep 2004 B1
6788520 Behin et al. Sep 2004 B1
6794119 Miles Sep 2004 B2
6811267 Allen et al. Nov 2004 B1
6813060 Garcia et al. Nov 2004 B1
6819469 Koba Nov 2004 B1
6822628 Dunphy et al. Nov 2004 B2
6829132 Martin et al. Dec 2004 B2
6853129 Cummings et al. Feb 2005 B1
6855610 Tung et al. Feb 2005 B2
6859218 Luman et al. Feb 2005 B1
6861277 Monroe et al. Mar 2005 B1
6862022 Slupe Mar 2005 B2
6862029 D'Souza et al. Mar 2005 B1
6867896 Miles Mar 2005 B2
6870581 Li et al. Mar 2005 B2
6903860 Ishii Jun 2005 B2
6940285 Montrose et al. Sep 2005 B2
7026821 Martin et al. Apr 2006 B2
7123216 Miles Oct 2006 B1
7161728 Sampsell et al. Jan 2007 B2
7348946 Booth et al. Mar 2008 B2
20010003487 Miles Jun 2001 A1
20010034075 Onoya Oct 2001 A1
20010043171 Van Gorkom et al. Nov 2001 A1
20010046081 Hayashi et al. Nov 2001 A1
20010051014 Behin et al. Dec 2001 A1
20020000959 Colgan et al. Jan 2002 A1
20020005827 Kobayashi Jan 2002 A1
20020012159 Tew Jan 2002 A1
20020015215 Miles Feb 2002 A1
20020024711 Miles Feb 2002 A1
20020036304 Ehmke et al. Mar 2002 A1
20020050882 Hyman et al. May 2002 A1
20020054424 Miles et al. May 2002 A1
20020075226 Lippincott Jun 2002 A1
20020075555 Miles Jun 2002 A1
20020093722 Chan et al. Jul 2002 A1
20020097133 Charvet et al. Jul 2002 A1
20020126364 Miles Sep 2002 A1
20020179421 Williams et al. Dec 2002 A1
20020186108 Hallbjorner Dec 2002 A1
20030004272 Power Jan 2003 A1
20030043157 Miles Mar 2003 A1
20030072070 Miles Apr 2003 A1
20030122773 Washio et al. Jul 2003 A1
20030137215 Cabuz Jul 2003 A1
20030137521 Zehner et al. Jul 2003 A1
20030142043 Matsueda Jul 2003 A1
20030189536 Ruigt Oct 2003 A1
20030201777 Gogoi et al. Oct 2003 A1
20030202264 Weber et al. Oct 2003 A1
20030202265 Reboa et al. Oct 2003 A1
20030202266 Ring et al. Oct 2003 A1
20040008396 Stappaerts Jan 2004 A1
20040022044 Yasuoka et al. Feb 2004 A1
20040027701 Ishikawa Feb 2004 A1
20040051929 Sampsell et al. Mar 2004 A1
20040058532 Miles et al. Mar 2004 A1
20040070400 van Spengen Apr 2004 A1
20040080807 Chen et al. Apr 2004 A1
20040145049 McKinnell et al. Jul 2004 A1
20040147056 McKinnell et al. Jul 2004 A1
20040160143 Shreeve et al. Aug 2004 A1
20040174583 Chen et al. Sep 2004 A1
20040179281 Reboa Sep 2004 A1
20040212026 Van Brocklin et al. Oct 2004 A1
20040217378 Martin et al. Nov 2004 A1
20040217919 Piehl et al. Nov 2004 A1
20040218251 Piehl et al. Nov 2004 A1
20040218334 Martin et al. Nov 2004 A1
20040218341 Martin et al. Nov 2004 A1
20040223204 Mao et al. Nov 2004 A1
20040227493 Van Brocklin et al. Nov 2004 A1
20040240032 Miles Dec 2004 A1
20040240138 Martin et al. Dec 2004 A1
20040245588 Nikkel et al. Dec 2004 A1
20040263944 Miles et al. Dec 2004 A1
20050001828 Martin et al. Jan 2005 A1
20050012577 Pillans et al. Jan 2005 A1
20050038950 Adelmann Feb 2005 A1
20050057442 Way Mar 2005 A1
20050068583 Gutkowski et al. Mar 2005 A1
20050069209 Damera-Venkata et al. Mar 2005 A1
20050116924 Sauvante et al. Jun 2005 A1
20050152015 Anderson et al. Jul 2005 A1
20050206991 Chui et al. Sep 2005 A1
20050286113 Miles Dec 2005 A1
20050286114 Miles Dec 2005 A1
20060007249 Reddy et al. Jan 2006 A1
20060044246 Mignard Mar 2006 A1
20060044928 Chui et al. Mar 2006 A1
20060056000 Mignard Mar 2006 A1
20060057754 Cummings Mar 2006 A1
20060066542 Chui Mar 2006 A1
20060066553 Deane Mar 2006 A1
20060066559 Chui et al. Mar 2006 A1
20060066560 Gally et al. Mar 2006 A1
20060066561 Chui et al. Mar 2006 A1
20060066594 Tyger Mar 2006 A1
20060066597 Sampsell Mar 2006 A1
20060066598 Floyd Mar 2006 A1
20060066601 Kothari Mar 2006 A1
20060066937 Chui Mar 2006 A1
20060066938 Chui Mar 2006 A1
20060067648 Chui et al. Mar 2006 A1
20060067653 Gally et al. Mar 2006 A1
20060077127 Sampsell et al. Apr 2006 A1
20060077505 Chui et al. Apr 2006 A1
20060077520 Chui et al. Apr 2006 A1
20060103613 Chui May 2006 A1
Foreign Referenced Citations (40)
Number Date Country
0295802 Dec 1988 EP
0300754 Jan 1989 EP
0306308 Mar 1989 EP
0318050 May 1989 EP
0 417 523 Mar 1991 EP
0 467 048 Jan 1992 EP
0570906 Nov 1993 EP
0608056 Jul 1994 EP
0655725 May 1995 EP
0 667 548 Aug 1995 EP
0725380 Aug 1996 EP
0852371 Jul 1998 EP
0911794 Apr 1999 EP
1 004 910 May 2000 EP
1 017 038 Jul 2000 EP
1 146 533 Oct 2001 EP
1343190 Sep 2003 EP
1345197 Sep 2003 EP
1381023 Jan 2004 EP
1473691 Nov 2004 EP
2401200 Nov 2004 GB
2004-29571 Jan 2004 JP
WO 9530924 Nov 1995 WO
WO 9717628 May 1997 WO
WO 9952006 Oct 1999 WO
WO 0173934 Oct 2001 WO
WO 0173937 Oct 2001 WO
WO 0173937 Oct 2001 WO
WO 02086582 Oct 2002 WO
WO 03007049 Jan 2003 WO
WO 2003015071 Feb 2003 WO
WO 2003044765 May 2003 WO
WO 03060940 Jul 2003 WO
WO 03069413 Aug 2003 WO
WO 03073151 Sep 2003 WO
WO 03079323 Sep 2003 WO
WO 2003090199 Oct 2003 WO
WO 2004006003 Jan 2004 WO
WO 2004026757 Apr 2004 WO
WO 2004049034 Jun 2004 WO
Related Publications (1)
Number Date Country
20060044298 A1 Mar 2006 US
Provisional Applications (1)
Number Date Country
60604892 Aug 2004 US