Systems and methods for augmentation of sensor systems and imaging systems with polarization

Information

  • Patent Grant
  • 11982775
  • Patent Number
    11,982,775
  • Date Filed
    Monday, December 12, 2022
    a year ago
  • Date Issued
    Tuesday, May 14, 2024
    16 days ago
Abstract
A multi-modal sensor system includes: an underlying sensor system; a polarization camera system configured to capture polarization raw frames corresponding to a plurality of different polarization states; and a processing system including a processor and memory, the processing system being configured to control the underlying sensor system and the polarization camera system, the memory storing instructions that, when executed by the processor, cause the processor to: control the underlying sensor system to perform sensing on a scene and the polarization camera system to capture a plurality of polarization raw frames of the scene; extract first tensors in polarization representation spaces based on the plurality of polarization raw frames; and compute a characterization output based on an output of the underlying sensor system and the first tensors in polarization representation spaces.
Description
FIELD

Aspects of embodiments of the present disclosure relate to the field of sensor systems, including sensor systems augmented with polarization.


BACKGROUND

Sensor systems and imaging systems such as radar, lidar, cameras (e.g., visible light and/or infrared), and the like detect objects and features in the environment through the interactions of electromagnetic radiation with the environment. For example, camera systems and lidar systems detect light reflected off of objects in a scene or in an environment. Likewise, radar systems transmit lower frequency electromagnetic waves (e.g., radio frequency or microwave frequency) and determine properties of the objects based on the reflections of those signals. Other sensor systems may use other forms of radiation, such as pressure waves or sound waves in the case of ultrasound imaging.


SUMMARY

Aspects of embodiments of the present disclosure relate to systems and methods for augmentation of sensor systems and imaging systems using polarization. According to some aspects of embodiments of the present disclosure, sensors configured to detect the polarization of received electromagnetic radiation is used to augment the performance or behavior of other imaging modalities, such as cameras configured to detect the intensity of light without regard to the polarization of the light. In some aspects of embodiments of the present disclosure, sensors configured to detect the polarization of received electromagnetic radiation are used to form images that would otherwise be formed using comparative imaging systems such as digital cameras. Some aspects of embodiments of the present disclosure relate to camera systems configured to detect the polarization of light.


According to one embodiment of the present disclosure, a multi-modal sensor system includes: an underlying sensor system; a polarization camera system configured to capture polarization raw frames corresponding to a plurality of different polarization states; and a processing system including a processor and memory, the processing system being configured to control the underlying sensor system and the polarization camera system, the memory storing instructions that, when executed by the processor, cause the processor to: control the underlying sensor system to perform sensing on a scene and the polarization camera system to capture a plurality of polarization raw frames of the scene; extract first tensors in polarization representation spaces based on the plurality of polarization raw frames; and compute a characterization output based on an output of the underlying sensor system and the first tensors in polarization representation spaces.


The polarization camera system may include a polarization camera module including: a first polarization camera including a first polarizing filter at a first polarization orientation, the first polarization camera having a first optical axis; a second polarization camera including a second polarizing filter at a second polarization orientation, the second polarization camera having a second optical axis substantially parallel to the first optical axis; and a third polarization camera including a third polarizing filter at a third polarization orientation, the third polarization camera having a third optical axis substantially parallel to the first optical axis.


The polarization camera module may further include a fourth polarization camera including a fourth polarizing filter at a fourth polarization orientation, the fourth polarization camera having a fourth optical axis substantially parallel to the first optical axis.


The first tensors may include a degree of linear polarization (DOLP) and an angle of linear polarization (AOLP), and the memory may further store instructions that, when executed by the processor, cause the processor to compute the DOLP and the AOLP based on polarization raw frames captured by the first polarization camera, the second polarization camera, and the third polarization camera, the instructions including instructions to: initialize an estimated DOLP and an estimated AOLP based on stakes vectors; estimate a scene geometry based on parallax shifts in the polarization raw frames to generate a coarse model; and iteratively: refine the coarse model based on the estimated DOLP and the estimated AOLP to generate an estimated geometry; and update the estimated DOLP and the estimated AOLP based on the estimated geometry, until a change in the estimated DOLP and a change in the estimated AOLP are both less than corresponding threshold values.


The polarization camera system may include a stereo polarization camera system including: a first polarization camera module having a first optical axis, the first polarization camera module being configured to capture a first plurality of polarization raw frames corresponding to a first plurality of different polarization states; and a second polarization camera module having a second optical axis and spaced apart from the first polarization camera module along a baseline, the second polarization camera module being configured to capture a second plurality of polarization raw frames corresponding to a second plurality of different polarization states, the first optical axis being substantially parallel to the second optical axis.


The first polarization camera module may include a first plurality of color filters configured to transmit light in three or more different first color spectra, and the second polarization camera module may include a second plurality of color filters configured to transmit light in three or more different second color spectra, wherein the three or more second color spectra may be different from the three or more first color spectra.


The memory may further store instructions that, when executed by the processor, cause the processor to: control the stereo polarization camera system to capture multi-spectral stereo polarization imaging data in the first color spectra and in the second color spectra; and extract first tensors in polarization representation spaces from the multi-spectral stereo polarization imaging data.


The underlying sensor system may include an active scanning system including an active emitter and a detector. The active scanning system may include a radar system. The active scanning system may include a lidar system. The active scanning system may include an active stereo depth camera system.


The multi-modal sensor system may be mounted on a vehicle.


The memory may further store instructions that, when executed by the processor of the processing system, cause the processor to: compute a sparse point cloud based on the output of the underlying sensor system; compute surface normals from the polarization raw frames; compute a 3-D surface based on the surface normals; and correct the 3-D surface based on the sparse point cloud to compute a 3-D model of the scene.


The memory may further store instructions that, when executed by the processor of the processing system, cause the processor to: compute a segmentation map based on the first tensors in the polarization representation spaces, the segmentation map identifying one or more regions of interest in the scene; steer the active emitter to emit beams toward the one or more regions of interest; and detect a reflection of the beams emitted by the active emitter using the detector of the active scanning system.


The memory may further store instructions that cause the processor to implement a convolutional neural network trained to compute a segmentation map based on the first tensors.


The underlying sensor system may include a color camera system.


The color camera system may be a digital single lens reflex camera or a video camera.


The output of the color camera of the underlying sensor system may include a color image, and the memory may further store instructions that, when executed by the processor, cause the processor to: compute a plurality of surface normals of the scene based on the first tensors; and store the computed surface normals of the scene in a same file as the color image captured by the color camera.


According to one embodiment of the present disclosure, a polarization camera system includes: a polarization camera configured to capture polarization raw frames of a scene, the polarization raw frames corresponding to a plurality of different polarization states; and a processing system having a processor and memory, the processing system being configured to control the polarization camera, the memory storing instructions that, when executed by the processor, cause the processor to: control the polarization camera to capture a plurality of polarization raw frames; and synthesize a high dynamic range (HDR) image based on the polarization raw frames.


Each of the polarization raw frames may be captured based on a same set of exposure settings, at least one of the polarization raw frames may include saturated pixels in a portion of the polarization raw frame due to specular reflection from a surface in the scene, the memory may further stores instructions that, when executed by the processor, cause the processor to synthesize the HDR image without saturated pixels in a portion of the HDR image corresponding to the portion of the polarization raw frame based on data from corresponding portions of other ones of the polarization raw frames.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, together with the specification, illustrate exemplary embodiments of the present invention, and, together with the description, serve to explain the principles of the present invention.



FIG. 1A is a schematic block diagram of an imaging system augmented with a polarization camera system according to embodiments of the present disclosure.



FIG. 1B is a schematic block diagram of a system using a polarization camera according to one embodiment of the present invention.



FIG. 1C is a perspective view of a polarization camera module according to one embodiment of the present disclosure.



FIG. 1D is a cross sectional view of a portion of a polarization camera module according to one embodiment of the present disclosure.



FIG. 1E is a perspective view of a stereo polarization camera system according to one embodiment of the present disclosure.



FIGS. 2A, 2B, 2C, and 2D provide background for illustrating the segmentation maps computed by a comparative approach and semantic segmentation or instance segmentation based on polarization raw frames according to aspects of embodiments of the present disclosure.



FIG. 3 is a high-level depiction of the interaction of light with transparent objects and non-transparent (e.g., diffuse and/or reflective) objects.



FIG. 4 is a flowchart of a method for estimating polarization cues under parallax ambiguities according to one embodiment of the present disclosure.



FIG. 5A is a perspective view of a multi-spectral stereo polarization camera system according to one embodiment of the present disclosure.



FIG. 5B is a view of a multi-spectral stereo polarization camera system according to one embodiment of the present disclosure, along a direction parallel to the optical axis of the multi-spectral stereo polarization camera system.



FIG. 5C depicts cut-away side views of example individual polarization cameras of a multi-spectral stereo polarization camera system according to one embodiment of the present disclosure.



FIG. 6A is a block diagram of processing circuit 100 for computing surface characterization outputs based on polarization data according to one embodiment of the present invention.



FIG. 6B is a flowchart of a method 600 for performing surface characterization based on input images to compute a surface characterization output according to one embodiment of the present invention.



FIG. 7A is a block diagram of a feature extractor 700 according to one embodiment of the present invention.



FIG. 7B is a flowchart depicting a method according to one embodiment of the present invention for extracting features from polarization raw frames.



FIG. 8A is an illustration of a Greek bust statue being scanned by an exemplary implementation of the imaging setup proposed in this invention.



FIG. 8B is a flowchart of a method for 3-D surface reconstruction using polarization according to one embodiment of the present disclosure.



FIG. 9A is an illustration of a flat surface of refractive index n, being scanned by an exemplary implementation of the imaging setup according to one embodiment of the present invention.



FIG. 9B is a flowchart of a method for 3-D surface reconstruction of flat or geometrically simple surfaces using polarization according to one embodiment of the present disclosure.



FIG. 10A is a schematic diagram of a system in which an active scanning system is augmented with a polarization camera system according to one embodiment of the present disclosure.



FIG. 10B is a flowchart depicting a method for fusing the 3-D model captured by an active 3-D scanning system with surface normals captured by a polarization camera according to one embodiment of the present disclosure.



FIG. 10C is a flowchart illustrating a method for augmenting an active sensing system using polarization according to one embodiment of the present disclosure.



FIG. 11 is a flowchart illustrating a method for synthesizing a high dynamic range (HDR) image from polarization raw frames.





DETAILED DESCRIPTION

In the following detailed description, only certain exemplary embodiments of the present invention are shown and described, by way of illustration. As those skilled in the art would recognize, the invention may be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein.


Optically challenging objects such as transparent objects occur in many real-world applications of computer vision or machine vision systems, including automation and analysis for manufacturing, life sciences, and automotive industries. For example, in manufacturing, computer vision systems may be used to automate: sorting, selection, and placement of parts; verification of placement of components during manufacturing; and final inspection and defect detection. As additional examples, in life sciences, computer vision systems may be used to automate: measurement of reagents; preparation of samples; reading outputs of instruments; characterization of samples; and picking and placing container samples. Further examples in automotive industries include detecting transparent objects in street scenes for assisting drivers or for operating self-driving vehicles. Additional examples may include assistive technologies, such as self-navigating wheelchairs capable of detecting glass doors and other transparent barriers and devices for assisting people with vision impairment that are capable of detecting transparent drinking glasses and to distinguish between real objects and print-out spoofs.


In contrast to opaque objects, transparent objects lack texture of their own (e.g., surface color information, as the term is used in the field of computer graphics, such as in “texture mapping”). As a result, comparative systems generally fail to correctly identify instances of transparent objects that are present in scenes captured using standard imaging systems (e.g., cameras configured to capture monochrome intensity images or color intensity images such as red, green, and blue or RGB images). This may be because the transparent objects do not have a consistent texture (e.g., surface color) for the algorithms to latch on to or to learn to detect (e.g., during the training process of a machine learning algorithm). Similar issues may arise from partially transparent or translucent objects, as well as some types of reflective objects (e.g., shiny metal) and very dark objects (e.g., matte black objects).


Accordingly, aspects of embodiments of the present disclosure relate to using polarization imaging to provide additional information for augmenting sensor systems to detect transparent objects and other optically challenging objects and features in scenes. In addition, aspects of embodiments of the present disclosure also apply to detecting other optically challenging objects such as transparent, translucent, and reflective objects as well as dark objects.


As used herein, the term “optically challenging” refers to objects made of materials that satisfy one or more of the following four characteristics at a sufficient threshold level or degree: non-Lambertian (e.g., not matte); translucent; multipath inducing; and/or non-reflective. In some circumstances an object exhibiting only one of the four characteristics may be optically challenging to detect. In addition, objects or materials may exhibit multiple characteristics simultaneously. For example, a translucent object may have a surface reflection and background reflection, so it is challenging both because of translucency and the multipath. In some circumstances, an object may exhibit one or more of the four characteristics listed above, yet may not be optically challenging to detect because these conditions are not exhibited at a level or degree that would pose a problem to a comparative computer vision systems. For example, an object may be translucent, but still exhibit enough surface texture to be detectable and segmented from other instances of objects in a scene. As another example, a surface must be sufficiently non-Lambertian to introduce problems to other vision systems. In some embodiments, the degree or level to which an object is optically challenging is quantified using the full-width half max (FWHM) of the specular lobe of the bidirectional reflectance distribution function (BRDF) of the object. If this FWHM is below a threshold, the material is considered optically challenging.



FIG. 1A is a schematic block diagram of an imaging system augmented with a polarization camera system according to embodiments of the present disclosure. FIG. 1B is a schematic block diagram of a system using a polarization camera according to one embodiment of the present invention. In the arrangement shown in FIG. 1A and FIG. 1B, a scene 1 includes transparent objects 2 (e.g., depicted as a ball such as a glass marble, a cylinder such as a drinking glass or tumbler, and a plane such as a pane of transparent acrylic) that are placed in front of opaque matte objects 3 (e.g., a baseball and a tennis ball). A polarization camera 10 has a lens 12 with a field of view, where the lens 12 and the camera 10 are oriented such that the field of view encompasses the scene 1. The lens 12 is configured to direct light (e.g., focus light) from the scene 1 onto a light sensitive medium such as an image sensor 14 (e.g., a complementary metal oxide semiconductor (CMOS) image sensor or charge-coupled device (CCD) image sensor). As shown in FIG. 1A, the polarization camera 10 may be used to augment the sensor data captured by another imaging system 11.


The polarization camera 10 further includes a polarizer or polarizing filter or polarization mask 16 placed in the optical path between the scene 1 and the image sensor 14. According to various embodiments of the present disclosure, the polarizer or polarization mask 16 is configured to enable the polarization camera 10 to capture images of the scene 1 with the polarizer set at various specified angles (e.g., at 45° rotations or at 60° rotations or at non-uniformly spaced rotations).


As one example, FIG. 1B depicts an embodiment where the polarization mask 16 is a polarization mosaic aligned with the pixel grid of the image sensor 14 in a manner similar to a red-green-blue (RGB) color filter (e.g., a Bayer filter) of a color camera. In a manner similar to how a color filter mosaic filters incoming light based on wavelength such that each pixel in the image sensor 14 receives light in a particular portion of the spectrum (e.g., red, green, or blue) in accordance with the pattern of color filters of the mosaic, a polarization mask 16 using a polarization mosaic filters light based on linear polarization such that different pixels receive light at different angles of linear polarization (e.g., at 0°, 45°, 90°, and 135°, or at 0°, 60° degrees, and 120°). Accordingly, the polarization camera 10 using a polarization mask 16 such as that shown in FIG. 1B is capable of concurrently or simultaneously capturing light at four different linear polarizations. One example of a polarization camera is the Blackfly® S Polarization Camera produced by FLIR® Systems, Inc. of Wilsonville, Oregon.


While the above description relates to some possible implementations of a polarization camera using a polarization mosaic, embodiments of the present disclosure are not limited thereto and encompass other types of polarization cameras that are capable of capturing images at multiple different polarizations. For example, the polarization mask 16 may have fewer than four polarizations or more than four different polarizations, or may have polarizations at different angles than those stated above (e.g., at angles of polarization of: 0°, 60°, and 120° or at angles of polarization of 0°, 30°, 60°, 90°, 120°, and 150°). As another example, the polarization mask 16 may be implemented using an electronically controlled polarization mask, such as an electro-optic modulator (e.g., may include a liquid crystal layer), where the polarization angles of the individual pixels of the mask may be independently controlled, such that different portions of the image sensor 14 receive light having different polarizations. As another example, the electro-optic modulator may be configured to transmit light of different linear polarizations when capturing different frames, e.g., so that the camera captures images with the entirety of the polarization mask set to, sequentially, to different linear polarizer angles (e.g., sequentially set to: 0 degrees; 45 degrees; 90 degrees; or 135 degrees). As another example, the polarization mask 16 may include a polarizing filter that rotates mechanically, such that different polarization raw frames are captured by the polarization camera 10 with the polarizing filter mechanically rotated with respect to the lens 12 to transmit light at different angles of polarization to image sensor 14. Furthermore, while the above examples relate to the use of a linear polarizing filter, embodiments of the present disclosure are not limited thereto and also include the use of polarization cameras that include circular polarizing filters (e.g., linear polarizing filters with a quarter wave plate). Accordingly, in various embodiments of the present disclosure, a polarization camera uses a polarizing filter to capture multiple polarization raw frames at different polarizations of light, such as different linear polarization angles and different circular polarizations (e.g., handedness).


As a result, the polarization camera 10 captures multiple input images 18 (or polarization raw frames) of the scene including the surface under inspection 2 of the object under inspection 1. In some embodiments, each of the polarization raw frames 18 corresponds to an image taken behind a polarization filter or polarizer at a different angle of polarization ϕpol (e.g., 0 degrees, 45 degrees, 90 degrees, or 135 degrees). Each of the polarization raw frames 18 is captured from substantially the same pose with respect to the scene 1 (e.g., the images captured with the polarization filter at 0 degrees, 45 degrees, 90 degrees, or 135 degrees are all captured by a same polarization camera 10 located at a same location and orientation), as opposed to capturing the polarization raw frames from disparate locations and orientations with respect to the scene. The polarization camera 10 may be configured to detect light in a variety of different portions of the electromagnetic spectrum, such as the human-visible portion of the electromagnetic spectrum, red, green, and blue portions of the human-visible spectrum, as well as invisible portions of the electromagnetic spectrum such as infrared and ultraviolet.


In some embodiments of the present disclosure, such as some of the embodiments described above, the different polarization raw frames are captured by a same polarization camera 10 and therefore may be captured from substantially the same pose (e.g., position and orientation) with respect to the scene 1. However, embodiments of the present disclosure are not limited thereto. For example, a polarization camera 10 may move with respect to the scene 1 between different polarization raw frames (e.g., when different raw polarization raw frames corresponding to different angles of polarization are captured at different times, such as in the case of a mechanically rotating polarizing filter), either because the polarization camera 10 has moved or because objects 3 have moved (e.g., if the object is on a moving conveyor system). In some embodiments, different polarization cameras capture images of the object at different times, but from substantially the same pose with respect to the object (e.g., different cameras capturing images of the same surface of the object at different points in the conveyor system). Accordingly, in some embodiments of the present disclosure different polarization raw frames are captured with the polarization camera 10 at different poses or the same relative pose with respect to the objects 2 and 3 being imaged in the scene 1.


The polarization raw frames 18 are supplied to a processing circuit 100, described in more detail below, which computes a processing output 20 based on the polarization raw frames 18. In the embodiment shown in FIG. 1B, the processing output 20 is an instance segmentation map identifying instances of different objects 2 and 3 that are present in the scene 1, but embodiments of the present disclosure are not limited thereto. Specific examples of processing outputs 20 that are computed based on polarization raw frames will be described in more detail below. In the embodiment shown in FIG. 1A, the processing circuit 100 is configured to control both the polarization camera 10 and the additional imaging system 11.



FIG. 1C is a perspective view of a polarization camera module according to one embodiment of the present disclosure. FIG. 1D is a cross sectional view of a portion of a polarization camera module according to one embodiment of the present disclosure. Some aspects of embodiments of the present disclosure relate to a polarization camera module in which multiple polarization cameras (e.g., multiple cameras, where each camera has a polarizing filter in its optical path) are arranged adjacent to one another and in an array and may be controlled to capture images in a group (e.g., a single trigger may be used to control all of the cameras in the system to capture images concurrently or substantially simultaneously). The polarizing filters in the optical paths of each of the cameras in the array cause differently polarized light to reach the image sensors of the cameras. The individual polarization cameras in the camera system have optical axes that are substantially perpendicular to one another, are placed adjacent to one another, and have substantially the same field of view, such that the cameras in the camera system capture substantially the same view of a scene 1, but with different polarizations. In some embodiments, the individual polarization cameras are arranged such that parallax shift between cameras is substantially negligible based on the designed operating distance of the camera system to objects in the scene, where larger spacings between the cameras may be tolerated if the designed operating distance is large. In some embodiments of the present disclosure, the polarization camera module includes at least three polarization cameras, each having a polarizing filter with a different polarization state (e.g., each at a different angle of linear polarization, such as 0°, 60°, and 120°).


For example, in the embodiment of the polarization camera module 10′ shown in FIG. 1C, four cameras 10A′, 10B′, 10C′, and 10D′ are arranged in a 2×2 grid to form a camera array, where the four cameras have substantially parallel optical axes. The four cameras may be controlled together such that they capture images substantially simultaneously and using the same exposure settings (e.g., same aperture, length of exposure, and gain or “ISO” settings). In various embodiments of the present disclosure, each of the separate cameras 10A′, 10B′, 10C′, and 10D′ includes a different polarizing filter.



FIG. 1D shows a cross sectional view of two of the polarization cameras 10A′ and 10B′ shown in FIG. 1C. As seen in FIG. 1D, each a polarization camera (10A′ and 10B′) system includes a corresponding lens, a corresponding image sensor, and a corresponding polarizing filter. In particular, polarization camera 10A′ includes lens 12A′, image sensor 14A′, and polarizing filter 16A′. Likewise, polarization camera 10B′ includes lens 12B′, image sensor 14B′, and polarizing filter 16B′. In some embodiments of the present disclosure, the image sensors four cameras 10A′, 10B′, 10C′, and 10D′ are monolithically formed on a same semiconductor die, and the four cameras are located in a same housing with separate apertures for the lenses 12 corresponding to the different image sensors. Similarly, the polarizing filters 16 may correspond to different portions of a single physical layer that has different polarizing filters (e.g., different linear polarizing angles) in different regions of the layer (corresponding to the different cameras).


In some embodiments of the present disclosure, each of the cameras in the camera system 10′ has a corresponding polarizing filter that is configured to filter differently polarized light. For example, in the embodiment shown in FIGS. 1C and 1D, polarizing filter 16A′ of camera 10A′ may be a linear polarizing filter oriented at an angle of 0°, polarizing filter 16B′ of camera 10B′ may be a linear polarizing filter oriented at an angle of 45°, polarizing filter 16C′ of camera 10C′ may be a linear polarizing filter oriented at an angle of 90°, and polarizing filter 16D′ of camera 10D′ may be a linear polarizing filter oriented at an angle of 135°. In some embodiments, one or more of the cameras may include a circular polarizer. In some embodiments of the present disclosure, the camera system 10′ includes polarizing filters configured to filter light in at least two different polarizations. In some embodiments of the present disclosure, the camera system 10′ includes polarizing filters configured to filter light in at least three different polarizations. In the embodiment shown in FIG. 1D, the polarizing filter 16 is located behind the lens 12 (e.g., between the lens 12 and the image sensor 14), but embodiments of the present disclosure are not limited thereto. In some embodiments, the polarizing filter is located in front of the lens 12.


In some embodiments, the various individual cameras of the camera array are registered with one another by determining their relative poses (or relative positions and orientations) by capturing multiple images of a calibration target, such as a checkerboard pattern, an ArUco target (see, e.g., Garrido-Jurado, Sergio, et al. “Automatic generation and detection of highly reliable fiducial markers under occlusion.” Pattern Recognition 47.6 (2014): 2280-2292.) or a ChArUco target (see, e.g., An, Gwon Hwan, et al. “Charuco board-based omnidirectional camera calibration method.” Electronics 7.12 (2018): 421.). In particular, the process of calibrating the targets may include computing intrinsic matrices characterizing the internal parameters of each camera (e.g., matrices characterizing the focal length, image sensor format, and principal point of the camera) and extrinsic matrices characterizing the pose of each camera with respect to world coordinates (e.g., matrices for performing transformations between camera coordinate space and world or scene coordinate space).


While not shown in FIG. 1D, in some embodiments of the present disclosure, each polarization camera may also include a color filter having in a mosaic pattern such as a Bayer filter, such that individual pixels of the image sensors 14 receive light corresponding to, for example, red (R), green (G), and blue (B) portions of the spectrum, such that each camera captures light in a visible portion of the electromagnetic spectrum in accordance with a mosaic pattern. In some embodiments, a demosaicing process is used to compute separate red, green, and blue channels from the raw data. In some embodiments of the present disclosure, each polarization camera may be used without a color filter or with filters used to transmit or selectively transmit various other portions of the electromagnetic spectrum, such as infrared light.



FIG. 1E is a perspective view of a stereo polarization camera system according to one embodiment of the present disclosure. In some applications, stereo vision techniques are used to capture multiple images of scene from different perspectives. As noted above, in some embodiments of the present disclosure, individual polarization cameras within a camera system are placed adjacent to one another such that parallax shifts between the cameras is substantially negligible based on the designed operating distance of the camera system to the subjects being imaged. In stereo polarization camera systems, some of the individual polarization cameras are spaced apart such that parallax shifts are significant and detectable for objects in the designed operating distance of the camera system. This enables the distances to various surfaces in a scene (the “depth”) to be detected in accordance with a magnitude of a parallax shift (e.g., larger parallax shifts in the locations of corresponding portions of the images indicate that those corresponding portions are on surfaces that are closer to the camera system and smaller parallax shifts indicate that the corresponding portions are on surfaces that are farther away from the camera system). These techniques for computing depth based on parallax shifts are sometimes referred to as Depth from Stereo


Accordingly, FIG. 1E depicts a stereo polarization camera system 10″ having a first polarization camera module 10-1″ and a second polarization camera module 10-2″ having substantially parallel optical axes and spaced apart along a baseline 10-B. In the embodiment shown in FIG. 1E, the first polarization camera module 10-1″ and includes polarization cameras 10A″, 10B″, 10C″, and 10D″ arranged in a 2×2 array similar to that shown in FIGS. 1C and 1D. Likewise, the second polarization camera module 10-2″ and includes polarization cameras 10E″, 10F″, 10G″, and 10H″ arranged in a 2×2 array, and the overall stereo polarization camera module 10″ includes eight individual polarization cameras (e.g., eight separate image sensors behind eight separate lenses). In some embodiments of the present disclosure, corresponding polarization cameras of polarization camera modules 10-1″ and 10-2″ are configured to capture polarization raw frames with substantially the same polarizations. For example, cameras 10A″ and 10E″ may both have linear polarizing filters at a same angle of 0°, cameras 10B″ and 10F″ may both have linear polarizing filters at a same angle of 45°, cameras 10C″ and 10G″ may both have linear polarizing filters at a same angle of 90°, and cameras 10D″ and 10H″ may both have linear polarizing filters at a same angle of 135°.


Embodiments of the present disclosure are not limited to the particular embodiment shown in FIG. 1E. In some embodiments, a stereo polarization camera system includes three or more polarization camera modules, where each polarization camera module includes multiple polarization cameras arranged in array and configured, using polarizing filters, to capture polarization raw frames of different polarizations. As noted above, in some embodiments of the present disclosure, one or more of the individual polarization cameras of a polarization camera module may include a color filter and, as such, one or more of the polarization cameras in a stereo polarization camera module may also include a color filter.


In a manner similar to that described for calibrating or registering cameras within a camera module, the various polarization camera modules of a stereo polarization camera system may also be registered with one another by capturing multiple images of calibration targets and computing intrinsic and extrinsic matrices for the various camera modules.


While the embodiment of a stereo polarization camera system shown in FIG. 1E includes two polarization camera modules, each having four polarization cameras, embodiments of the present disclosure are not limited thereto.


For example, in some embodiments of the present disclosure, a stereo polarization camera system includes a plurality of polarization camera modules, where each of the polarization camera modules includes three or more individual polarization cameras, each of the individual polarization cameras of a polarization camera module having polarizing filters with different polarization states (e.g., different angles of linear polarization).


In some embodiments of the present disclosure, a stereo polarization camera system includes a plurality of polarization camera modules that are spaced apart along one or more baselines, where each of the polarization camera modules includes a single polarization camera configured to capture polarization raw frames with different polarizations, in accordance with embodiments such as that described above with respect to FIG. 1B. For example, in some embodiments of the present disclosure, the polarization camera of each module may include a polarization mask (e.g., similar to the polarization mask shown in FIG. 1B) such that each individual polarization camera captures images where the pixels detect light in accordance with a mosaic pattern of different polarizing filters (e.g., polarizing filters at different angles). For example, in the embodiment shown in FIG. 1B, each 2×2 block of pixels of the polarization mask includes linear polarizers at linear polarization angles of 0°, 45°, 90°, and 135°. In other embodiments of the present disclosure, the individual polarization cameras may include mechanically or electronically controllable polarizing filters, as discussed above with respect to FIG. 1B, to enable the polarization cameras to capture polarization raw frames of different polarizations.


While the above embodiments specified that the individual polarization camera modules or the polarization cameras that are spaced apart along one or more baselines in the stereo polarization camera system have substantially parallel optical axes, embodiments of the present disclosure are not limited thereto. For example, in some embodiment of the present disclosure, the optical axes of the polarization camera modules are angled toward each other such that the polarization camera modules provide differently angled views of objects in the designed working distance (e.g., where the optical axes cross or intersect in the neighborhood of the designed working distance from the stereo camera system).


According to various embodiments of the present disclosure, the processing circuit 100 is implemented using one or more electronic circuits configured to perform various operations as described in more detail below. Types of electronic circuits may include a central processing unit (CPU), a graphics processing unit (GPU), an artificial intelligence (AI) accelerator (e.g., a vector processor, which may include vector arithmetic logic units configured efficiently perform operations common to neural networks, such dot products and softmax), a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a digital signal processor (DSP), or the like. For example, in some circumstances, aspects of embodiments of the present disclosure are implemented in program instructions that are stored in a non-volatile computer readable memory where, when executed by the electronic circuit (e.g., a CPU, a GPU, an AI accelerator, or combinations thereof), perform the operations described herein to compute a processing output 20, such as an instance segmentation map, from input polarization raw frames 18. The operations performed by the processing circuit 100 may be performed by a single electronic circuit (e.g., a single CPU, a single GPU, or the like) or may be allocated between multiple electronic circuits (e.g., multiple GPUs or a CPU in conjunction with a GPU). The multiple electronic circuits may be local to one another (e.g., located on a same die, located within a same package, or located within a same embedded device or computer system) and/or may be remote from one other (e.g., in communication over a network such as a local personal area network such as Bluetooth®, over a local area network such as a local wired and/or wireless network, and/or over wide area network such as the internet, such a case where some operations are performed locally and other operations are performed on a server hosted by a cloud computing service). One or more electronic circuits operating to implement the processing circuit 100 may be referred to herein as a computer or a computer system, which may include memory storing instructions that, when executed by the one or more electronic circuits, implement the systems and methods described herein.



FIGS. 2A, 2B, 2C, and 2D provide background for illustrating the segmentation maps computed by a comparative approach and semantic segmentation or instance segmentation based on polarization raw frames according to aspects of embodiments of the present disclosure. In more detail, FIG. 2A is an image or intensity image of a scene with one real transparent ball placed on top of a printout of photograph depicting another scene containing two transparent balls (“spoofs”) and some background clutter. FIG. 2B depicts a segmentation mask as computed by a Mask Region-based Convolutional Neural Network (Mask R-CNN) identifying instances of transparent balls overlaid on the intensity image of FIG. 2A using different patterns of lines, where the real transparent ball is correctly identified as an instance, and the two spoofs are incorrectly identified as instances. In other words, the Mask R-CNN algorithm has been fooled into labeling the two spoof transparent balls as instances of actual transparent balls in the scene.



FIG. 2C is an angle of linear polarization (AOLP) image computed from polarization raw frames captured of the scene according to one embodiment of the present invention. As shown in FIG. 2C, transparent objects have a very unique texture in polarization space such as the AOLP domain, where there is a geometry-dependent signature on edges and a distinct or unique or particular pattern that arises on the surfaces of transparent objects in the angle of linear polarization. In other words, the intrinsic texture of the transparent object (e.g., as opposed to extrinsic texture adopted from the background surfaces visible through the transparent object) is more visible in the angle of polarization image of FIG. 2C than it is in the intensity image of FIG. 2A.



FIG. 2D depicts the intensity image of FIG. 2A with an overlaid segmentation mask as computed using polarization data in accordance with an embodiment of the present invention, where the real transparent ball is correctly identified as an instance using an overlaid pattern of lines and the two spoofs are correctly excluded as instances (e.g., in contrast to FIG. 2B, FIG. 2D does not include overlaid patterns of lines over the two spoofs). While FIGS. 2A, 2B, 2C, and 2D illustrate an example relating to detecting a real transparent object in the presence of spoof transparent objects, embodiments of the present disclosure are not limited thereto and may also be applied to other optically challenging objects, such as transparent, translucent, and non-matte or non-Lambertian objects, as well as non-reflective (e.g., matte black objects) and multipath inducing objects.


Accordingly, some aspects of embodiments of the present disclosure relate to extracting, from the polarization raw frames, tensors in representation space (or first tensors in first representation spaces, such as polarization feature maps) to be supplied as input to surface characterization algorithms or other computer vision algorithms. These first tensors in first representation space may include polarization feature maps that encode information relating to the polarization of light received from the scene such as the AOLP image shown in FIG. 2C, degree of linear polarization (DOLP) feature maps, and the like (e.g., other combinations from Stokes vectors or transformations of individual ones of the polarization raw frames). For example, in some embodiments of the present disclosure, the feature extractor 700 further computes surface normals in accordance with equations (2), (3), (4), and (5), discussed in more detail below, based on the polarization raw frames. In some embodiments, these polarization feature maps are used together with non-polarization feature maps (e.g., intensity images such as the image shown in FIG. 2A) to provide additional channels of information for use by semantic segmentation algorithms.


While embodiments of the present invention are not limited to use with particular computer vision algorithms for analyzing images, some aspects of embodiments of the present invention relate to deep learning frameworks for polarization-based detection of optically challenging objects (e.g., transparent, translucent, non-Lambertian, multipath inducing objects, and non-reflective or very dark objects), where these frameworks may be referred to as Polarized Convolutional Neural Networks (Polarized CNNs). This Polarized CNN framework includes a backbone that is suitable for processing the particular texture of polarization and can be coupled with other computer vision architectures such as Mask R-CNN (e.g., to form a Polarized Mask R-CNN architecture) to produce a solution for accurate and robust characterization of transparent objects and other optically challenging objects. Furthermore, this approach may be applied to scenes with a mix of transparent and non-transparent (e.g., opaque objects) and can be used to characterize transparent, translucent, non-Lambertian, multipath inducing, dark, and opaque surfaces of the object or objects under inspection.


Polarization Feature Representation Spaces


Some aspects of embodiments of the present disclosure relate to systems and methods for extracting features from polarization raw frames in operation 650, where these extracted features are used in operation 690 in the robust detection of optically challenging characteristics in the surfaces of objects. In contrast, comparative techniques relying on intensity images alone may fail to detect these optically challenging features or surfaces (e.g., comparing the intensity image of FIG. 2A with the AOLP image of FIG. 2C, discussed above). The term “first tensors” in “first representation spaces” will be used herein to refer to features computed from (e.g., extracted from) polarization raw frames 18 captured by a polarization camera, where these first representation spaces include at least polarization feature spaces (e.g., feature spaces such as AOLP and DOLP that contain information about the polarization of the light detected by the image sensor) and may also include non-polarization feature spaces (e.g., feature spaces that do not require information regarding the polarization of light reaching the image sensor, such as images computed based solely on intensity images captured without any polarizing filters).


The interaction between light and transparent objects is rich and complex, but the material of an object determines its transparency under visible light. For many transparent household objects, the majority of visible light passes straight through and a small portion (˜4% to ˜8%, depending on the refractive index) is reflected. This is because light in the visible portion of the spectrum has insufficient energy to excite atoms in the transparent object. As a result, the texture (e.g., appearance) of objects behind the transparent object (or visible through the transparent object) dominate the appearance of the transparent object. For example, when looking at a transparent glass cup or tumbler on a table, the appearance of the objects on the other side of the tumbler (e.g., the surface of the table) generally dominate what is seen through the cup. This property leads to some difficulties when attempting to detect surface characteristics of transparent objects such as glass windows and glossy, transparent layers of paint, based on intensity images alone:



FIG. 3 is a high-level depiction of the interaction of light with transparent objects and non-transparent (e.g., diffuse and/or reflective) objects. As shown in FIG. 3, a polarization camera 10 captures polarization raw frames of a scene that includes a transparent object 302 in front of an opaque background object 303. A light ray 310 hitting the image sensor 14 of the polarization camera 10 contains polarization information from both the transparent object 302 and the background object 303. The small fraction of reflected light 312 from the transparent object 302 is heavily polarized, and thus has a large impact on the polarization measurement, in contrast to the light 313 reflected off the background object 303 and passing through the transparent object 302.


Similarly, a light ray hitting the surface of an object may interact with the shape of the surface in various ways. For example, a surface with a glossy paint may behave substantially similarly to a transparent object in front of an opaque object as shown in FIG. 3, where interactions between the light ray and a transparent or translucent layer (or clear coat layer) of the glossy paint causes the light reflecting off of the surface to be polarized based on the characteristics of the transparent or translucent layer (e.g., based on the thickness and surface normals of the layer), which are encoded in the light ray hitting the image sensor. Similarly, as discussed in more detail below with respect to shape from polarization (SfP) theory, variations in the shape of the surface (e.g., direction of the surface normals) may cause significant changes in the polarization of light reflected by the surface of the object. For example, smooth surfaces may generally exhibit the same polarization characteristics throughout, but a scratch or a dent in the surface changes the direction of the surface normals in those areas, and light hitting scratches or dents may be polarized, attenuated, or reflected in ways different than in other portions of the surface of the object. Models of the interactions between light and matter generally consider three fundamentals: geometry, lighting, and material. Geometry is based on the shape of the material. Lighting includes the direction and color of the lighting. Material can be parameterized by the refractive index or angular reflection/transmission of light. This angular reflection is known as a bi-directional reflectance distribution function (BRDF), although other functional forms may more accurately represent certain scenarios. For example, the bidirectional subsurface scattering distribution function (BSSRDF) would be more accurate in the context of materials that exhibit subsurface scattering (e.g. marble or wax).


A light ray 310 hitting the image sensor 16 of a polarization camera 10 has three measurable components: the intensity of light (intensity image/I), the percentage or proportion of light that is linearly polarized (degree of linear polarization/DOLP/ρ), and the direction of that linear polarization (angle of linear polarization/AOLP/ϕ). These properties encode information about the surface curvature and material of the object being imaged, which can be used by the predictor 750 to detect transparent objects, as described in more detail below. In some embodiments, the predictor 750 can detect other optically challenging objects based on similar polarization properties of light passing through translucent objects and/or light interacting with multipath inducing objects or by non-reflective objects (e.g., matte black objects).


Therefore, some aspects of embodiments of the present invention relate to using a feature extractor 700 to compute first tensors in one or more first representation spaces, which may include derived feature maps based on the intensity I, the DOLP ρ, and the AOLP ϕ. The feature extractor 700 may generally extract information into first representation spaces (or first feature spaces) which include polarization representation spaces (or polarization feature spaces) such as “polarization images,” in other words, images that are extracted based on the polarization raw frames that would not otherwise be computable from intensity images (e.g., images captured by a camera that did not include a polarizing filter or other mechanism for detecting the polarization of light reaching its image sensor), where these polarization images may include DOLP ρ images (in DOLP representation space or feature space), AOLP ϕ images (in AOLP representation space or feature space), other combinations of the polarization raw frames as computed from Stokes vectors, as well as other images (or more generally first tensors or first feature tensors) of information computed from polarization raw frames. The first representation spaces may include non-polarization representation spaces such as the intensity I representation space.


Measuring intensity I, DOLP ρ, and AOLP ϕ at each pixel requires 3 or more polarization raw frames of a scene taken behind polarizing filters (or polarizers) at different angles, ϕpol (e g because there are three unknown values to be determined: intensity I, DOLP ρ, and AOLP ϕ. For example, the FUR® Blackfly® S Polarization Camera described above captures polarization raw frames with polarization angles ϕpol at 0 degrees, 45 degrees, 90 degrees, or 135 degrees, thereby producing four polarization raw frames Iϕpol, denoted herein as I0, I45, I90, and I135.


The relationship between Iϕpol and intensity I, DOLP ρ, and AOLP ϕ at each pixel can be expressed as:

Iϕpol=I(1+ρ cos(2(ϕ−ϕpol)))  (1)


Accordingly, with four different polarization raw frames Iϕpol (I0, I45, I90, and I135), a system of four equations can be used to solve for the intensity I, DOLP ρ, and AOLP ϕ.


Shape from Polarization (SfP) theory (see, e.g., Gary A Atkinson and Edwin R Hancock. Recovery of surface orientation from diffuse polarization. IEEE transactions on image processing, 15(6):1653-1664, 2006.) states that the relationship between the refractive index (n), azimuth angle (θa) and zenith angle (θz) of the surface normal of an object and the ϕ and ρ components of the light ray coming from that object follow the following characteristics when diffuse reflection is dominant:









ρ
=




(

n
-

1
n


)

2




sin
2

(

θ
z

)



2
+

2


n
2


-



(

n
+

1
n


)

2



sin
2



θ
z


+

4

cos


θ
z





n
2

-


sin
2



θ
z











(
2
)












ϕ
=

θ
a





(
3
)








and when the specular reflection is dominant:









ρ
=


2


sin
2



θ
z


cos


θ
z





n
2

-


sin
2



θ
z







n
2

-


sin
2



θ
z


-


n
2



sin
2



θ
z


+

2


sin
4



θ
z








(
4
)












ϕ
=


θ
a

-

π
2






(
5
)








Note that in both cases ρ increases exponentially as θz increases and if the refractive index is the same, specular reflection is much more polarized than diffuse reflection.


Accordingly, some aspects of embodiments of the present disclosure relate to applying SfP theory to detect the shapes of surfaces (e.g., the orientation of surfaces) based on the raw polarization frames 18 of the surfaces. This approach enables the shapes of objects to be characterized without the use of other computer vision techniques for determining the shapes of objects, such as time-of-flight (ToF) depth sensing and/or stereo vision techniques, although embodiments of the present disclosure may be used in conjunction with such techniques.


More formally, aspects of embodiments of the present disclosure relate to computing first tensors 50 in first representation spaces, including extracting first tensors in polarization representation spaces such as forming polarization images (or extracting derived polarization feature maps) in operation 650 based on polarization raw frames captured by a polarization camera 10.


Light rays coming from a transparent objects have two components: a reflected portion including reflected intensity Ir, reflected DOLP ρr, and reflected AOLP ϕr and the refracted portion including refracted intensity It, refracted DOLP ρt, and refracted AOLP ϕt. The intensity of a single pixel in the resulting image can be written as:

I=Ir+It  (6)


When a polarizing filter having a linear polarization angle of ϕpol is placed in front of the camera, the value at a given pixel is:

Iϕpol=Ir(1+ρr cos(2(ϕr−ϕpol)))+It(1+ρt cos(2(ϕt−ϕpol)))  (7)


Solving the above expression for the values of a pixel in a DOLP ρ image and a pixel in an AOLP ϕ image in terms of Ir, ρr, ϕr, It, ρt, and ϕt:









ρ
=





(


I
r



ρ
r


)

2

+


(


I
t



ρ
t


)

2

+

2


I
t



ρ
t



I
r



ρ
r



cos

(

2


(


ϕ
r

-

ϕ
t


)


)






I
r

+

I
t







(
8
)












ϕ
=


arctan
(



I
r



ρ
r



sin

(

2


(


ϕ
r

-

ϕ
t


)


)





I
t



ρ
t


+


I
r



ρ
r



cos

(

2


(


ϕ
r

-

ϕ
t


)


)




)

+

ϕ
r






(
9
)







Accordingly, equations (7), (8), and (9), above, provide a model for forming first tensors 50 in first representation spaces that include an intensity image I, a DOLP image ρ, and an AOLP image ϕ according to one embodiment of the present disclosure, where the use of polarization images or tensor in polarization representation spaces (including DOLP image ρ and an AOLP image ϕ based on equations (8) and (9)) enables the reliable detection of optically challenging surface characteristics of objects that are generally not detectable by comparative systems that use only intensity I images as input.


Equations (8) and (9), above, can be represented more generally in accordance with Stokes parameters:









ρ
=





(

S
1

)

2

+


(

S
2

)

2




S
0






(
10
)












ϕ
=

0.5
*
arc

tan



S
2


S
1







(
11
)








where S0, S1, and S2 are the Stokes parameters.


In more detail, first tensors in polarization representation spaces (among the derived feature maps 50) such as the polarization images DOLP ρ and AOLP ϕ can reveal surface characteristics of objects that might otherwise appear textureless in an intensity I domain. A transparent object may have a texture that is invisible in the intensity domain I because this intensity is strictly dependent on the ratio of Ir/It (see equation (6)). Unlike opaque objects where It=0, transparent objects transmit most of the incident light and only reflect a small portion of this incident light. As another example, thin or small deviations in the shape of an otherwise smooth surface (or smooth portions in an otherwise rough surface) may be substantially invisible or have low contrast in the intensity I domain (e.g., a domain that does not encode polarization of light), but may be very visible or may have high contrast in a polarization representation space such as DOLP ρ or AOLP ϕ.


As such, one exemplary method to acquire surface topography is to use polarization cues in conjunction with geometric regularization. The Fresnel equations relate the AOLP ϕ and the DOLP ρ with surface normals. These equations can be useful for detecting optically challenging objects by exploiting what is known as polarization patterns of the surfaces of these optically challenging objects. A polarization pattern is a tensor of size [M, N, K] where M and N are horizontal and vertical pixel dimensions, respectively, and where K is the polarization data channel, which can vary in size. For example, if circular polarization is ignored and only linear polarization is considered, then K would be equal to two, because linear polarization has both an angle and a degree of polarization (AOLP ϕ and DOLP ρ). Analogous to a Moire pattern, in some embodiments of the present disclosure, the feature extraction module 700 extracts a polarization pattern in polarization representation spaces (e.g., AOLP space and DOLP space).


While the preceding discussion provides specific examples of polarization representation spaces based on linear polarization in the case of using a polarization camera having one or more linear polarizing filters to capture polarization raw frames corresponding to different angles of linear polarization and to compute tensors in linear polarization representation spaces such as DOLP and AOLP, embodiments of the present disclosure are not limited thereto. For example, in some embodiments of the present disclosure, a polarization camera includes one or more circular polarizing filters configured to pass only circularly polarized light, and where polarization patterns or first tensors in circular polarization representation space are further extracted from the polarization raw frames. In some embodiments, these additional tensors in circular polarization representation space are used alone, and in other embodiments they are used together with the tensors in linear polarization representation spaces such as AOLP and DOLP. For example, a polarization pattern including tensors in polarization representation spaces may include tensors in circular polarization space, AOLP, and DOLP, where the polarization pattern may have dimensions [M, N, K], where K is three to further include the tensor in circular polarization representation space.


Accordingly, some aspects of embodiments of the present disclosure relate to supplying first tensors in the first representation spaces (e.g., including feature maps in polarization representation spaces) extracted from polarization raw frames as inputs to a predictor for computing or detecting surface characteristics of transparent objects and/or other optically challenging surface characteristics of objects under inspection. These first tensors may include derived feature maps which may include an intensity feature map I, a degree of linear polarization (DOLP) ρ feature map, and an angle of linear polarization (AOLP) ϕ feature map, and where the DOLP ρ feature map and the AOLP ϕ feature map are examples of polarization feature maps or tensors in polarization representation spaces, in reference to feature maps that encode information regarding the polarization of light detected by a polarization camera.


In some embodiments, the feature maps or tensors in polarization representation spaces are supplied as input to, for example, detection algorithms that make use of SfP theory to characterize the shape of surfaces of objects imaged by the polarization cameras 10. For example, in some embodiments, in the case of diffuse reflection, equations (2) and (3) are used to compute the zenith angle (θz) and the azimuth angle (θa) of the surface normal of a surface in the scene based on the DOLP ρ and the index of refraction n. Likewise, in the case of specular reflection, equations (3) and (5) are used to compute the zenith angle (θz) and the azimuth angle (θa) of the surface normal of a surface in the scene based on the DOLP ρ and the index of refraction n. As one example, a closed form solution for computing the zenith angle (θz) based on Equation (2) according to one embodiment of the present disclosure in accordance with the following steps:






aa
=



(

n
-

1
n


)

2

+


ρ
(

n
+

1
n


)

2








bb
=

4


ρ

(


n
2

+
1

)



(

aa
-

4

ρ


)








cc
=


bb
2

+

16



ρ
2

(


16


ρ
2


-

aa
2


)




(


n
2

-
1

)

2









dd
=




-
bb

-

cc



2


(


16


ρ
2


-

aa
2


)











θ
z

=

aa


sin


dd





Additional details on computing surface normal directions based on polarization raw frames can be found, for example, in U.S. Pat. Nos. 10,260,866 and 10,557,705 and Kadambi, Achuta, et al. “Polarized 3D: High-quality depth sensing with polarization cues.” Proceedings of the IEEE International Conference on Computer Vision. 2015, the entire disclosures of which are incorporated by reference herein.


Computing Polarization Cues from Multi-Camera Arrays


Ordinarily, multipolar cues are obtained from a monocular viewpoint. Existing methods use multipolar filters (e.g., a polarization mask as shown in FIG. 1B) or multiple CCD or CMOS sensors to multiplex different polarization channels in a single view (e.g., multiple sensors behind a single lens system) or time multiplexed systems (e.g., where different polarization raw frames are captured at different times, such as sequentially captured, which may require that the scene 1 remain substantially or constant from one capture to the next in order for the views to be the same). In particular, the techniques described above for calculating polarization cues such as the angle of linear polarization (AOLP) ϕ and the degree of linear polarization (DOLP) ρ generally assume that the polarization raw frames are captured from the same viewpoint.


However, there are some circumstances in which the above assumption of a single viewpoint may not hold. For example, polarization raw frames corresponding to different polarization states may be captured from different viewpoints when using a polarization camera array that includes multiple polarization cameras at different locations, such as the embodiments shown in FIGS. 1C, 1D, and 1E. While placing the individual polarization cameras closer together may reduce error, physical constraints (e.g., the size of the individual polarization cameras, such as the size and shape of their corresponding packaging as well as lenses and image sensors contained therein) may limit the placement of the polarization cameras.


Accordingly, some aspects of embodiments of the present disclosure relate to systems and methods for computing polarization cues such as AOLP ϕ and DOLP ρ from polarization raw frames captured from different viewpoints, such as by using an array of polarization cameras. Generally, this involves a technique for decoupling parallax cues due to the different positions of the separate polarization cameras and the desired polarization cues. This is challenging because parallax cues and polarization cues are linked in that both the parallax between two views and the sensed polarization are related to the geometry of the relationship between the polarization cameras and the imaged surface. The comparative approaches to obtaining AOLP and DOLP assume that the polarization channels are acquired from the same viewpoint and therefore applying comparative techniques to the data captured by the array of polarization cameras likely results in errors or ambiguity.



FIG. 4 is a flowchart of a method for estimating polarization cues under parallax ambiguities according to one embodiment of the present disclosure. In the embodiment shown in FIG. 4, polarization raw frames captured from a plurality of different viewpoints, such as by an array of polarization cameras such as that shown in FIGS. 1C, 1D, and 1E are supplied as input to the process. In some embodiments of the present disclosure, estimates of the DOLP ρ and AOLP ϕ in accordance with embodiments of the present disclosure are computed by a processing circuit 100 through an iterative process. Note that the estimated DOLP ρ and estimated AOLP ϕ correspond to tensors (e.g., two dimensional tensors) having aspect ratios corresponding to the polarization raw frames, e.g., where the values of the DOLP ρ tensor and AOLP ϕ tensor correspond to the estimated degree of linear polarization and the angle of linear polarization in various portions of the captured polarization raw frames.


In operation 410, the processing circuit computes an initial estimated DOLP β0 and an initial estimated AOLP ϕ0 using the Stokes vectors (e.g., in accordance with equations (10) and (11), above or, more specifically, in accordance with equations (8) and (9). These initial estimated DOLP ρ0 and AOLP ϕ0 will likely be incorrect due to the parallax shift between the different individual polarization cameras of the polarization camera array.


In operation 430, the processing circuit 100 estimates the geometry of the surfaces of the scene depicted in the polarization raw frames. In some embodiments of the present disclosure, the processing circuit 100 uses a view correspondence-based approach to generate a coarse model of the scene using parallax from the stereo view of the scene, due to the offset between the locations of the cameras in the array (e.g., using depth from stereo techniques, as discussed, for example, in Kadambi, A. et al. (2015)). In operation 450, this coarse geometry may then be refined using the current calculated DOLP ρi and AOLP ϕi values (initially, i=0) (see, e.g., U.S. Pat. Nos. 10,260,866 and 10,557,705 and Kadambi, A. et al. (2015)).


The estimated geometry computed in operation 450 is then used to update the estimated values of the DOLP ρ and the AOLP ϕ. For example, in an i-th iteration, a previously calculated DOLP ρi-1 and a previously calculated AOLP ϕi-1 may be used to compute the estimated geometry in operation 450 and, in operation 470, the processing system 100 refines the DOLP and AOLP calculations based on the new estimated geometry (in accordance with the Fresnel equations that relate AOLP and DOLP to slope) to compute new estimates DOLP ρi and AOLP ϕi.


In operation 490, the processing system 100 determines whether to continue with another iteration of the process of estimating the DOLP ρ and AOLP ϕ. In more detail, in some embodiments, a change in the DOLP Δρ is computed based on the difference between the updated DOLP ρi and the previously calculated DOLP ρi-1 (e.g., Δρ=|ρt−ρi-1|). Likewise, a change in the AOLP Δϕ is computed based on the difference between the updated AOLP ϕi and the previously calculated AOLP ϕi-1 (e.g., Δϕ=|ϕi−ϕi-1|). If either of these changes in polarization cues (e.g., both Δρ and Δϕ) is greater than corresponding threshold values (e.g., ρth and ϕth) across the computed tensors, then the process continues by using the updated DOLP ρi and AOLP ϕi to refine the coarse model in operation 450, and then updating the DOLP and AOLP values based on this new estimated geometry. If both of the changes in the polarization cues are less than their corresponding thresholds, then the estimation process is complete and the estimated DOLP ρi and AOLP ϕi are output from the estimation process, and may be used in computing further processing outputs, such as instance segmentation maps.


Multi-Spectral Stereo with Polarization Imaging


In many circumstances, such as in remote sensing, multi-spectral images of scenes are capable of capturing information that would otherwise be hidden from view. For example, multi-spectral or hyper-spectral imaging is capable of detecting surface properties of scenes, such as detecting soil properties like moisture, organic content, and salinity, oil impacted soils, which may be useful in agriculture. As another example, multi-spectral imaging may enable the detection of camouflaged targets, such as military vehicles under partial vegetation cover or small military objects within relatively larger pixels. As a further example, multi-spectral imaging enables material identification and mapping, such as detecting the presence or absence of materials in relief geography, mapping of heavy metals and other toxic wastes in mining areas. Multi-spectral imaging also enables the detection of the presence of particular materials, such as water/oil spills (this is of particular importance to indoor robots so they can avoid or perform path planning around these spills and for robotic vacuum cleaners to detect, locate, and clean up spills and other small, dark, and/or specular dirt). Multi-spectral imaging may also be used for material inspection, such as detecting cracks and rust in industrial equipment such as industrial boilers and railway tracks, in which failure can be extremely hazardous and where recovery can be expensive.


In these above examples, computer vision techniques that use comparative and standard color images (e.g., red, green, and blue images) as input, may not be able to detect these types of objects, but the use of multi-spectral or hyper-spectral imaging, combined with polarization information, may provide additional cues that can be detected and recognized by computer vision algorithms and instance detection techniques (e.g., using trained convolutional neural networks).


Generally, the spectral radiance of a surface measures the rate of photons reflected from a surface as a function of surface area, slope, and incident wavelength. The spectral radiance function of most natural images are regular functions of wavelengths which makes it possible to represent these using a low-dimensional linear model. In other words, the spectral representation of light reflected from the surface can be represented as a linear combination of spectral basis functions:









s





i
=
0

n




w
i



B
i







(
12
)








where wi are the linear weights, Bi represents the spectral basis function, and n is the dimensionality of the system. Related work in the area of spectral radiance profiles of natural objects show that, for the most part, the spectral radiance of natural objects can be represented accurately by five or six linear basis functions.


Accordingly, some aspects embodiments of the present disclosure, relate to collecting spectral information simultaneously with polarization information using a stereo imaging pair wherein each camera system (or camera module) of the stereo pair includes a camera array that allows for capturing both the spectral and polarization information.



FIG. 5A is a perspective view of a multi-spectral stereo polarization camera system according to one embodiment of the present disclosure. Embodiments of a multi-spectral stereo polarization camera system as shown in FIG. 5A are substantially similar to the stereo polarization camera system shown in FIG. 1E in that FIG. 5A depicts a multi-spectral stereo polarization camera system 510 having a first polarization camera module 510-1″ and a second polarization camera module 510-2″ having substantially parallel optical axes and spaced apart along a baseline 510-B. In the embodiment shown in FIG. 5A, the first polarization camera module 510-1″ and includes polarization cameras 510A″, 510B″, 510C″, and MOD″ arranged in a 2×2 array similar to that shown in FIGS. 1C and 1D. Likewise, the second polarization camera module 510-2″ and includes polarization cameras 510E″, 510F″, 510G″, and 510H″ arranged in a 2×2 array, and the overall multi-spectral stereo polarization camera module 510 includes eight individual polarization cameras (e.g., eight separate image sensors behind eight separate lenses). In some embodiments of the present disclosure, corresponding polarization cameras of polarization camera modules 510-1″ and 510-2″ are configured to capture polarization raw frames with substantially the same polarizations. For example, cameras 510A″ and 510E″ may both have linear polarizing filters at a same angle of 0°, cameras 510B″ and 510F″ may both have linear polarizing filters at a same angle of 45°, cameras 510C″ and 510G″ may both have linear polarizing filters at a same angle of 90°, and cameras 510D″ and 510H″ may both have linear polarizing filters at a same angle of 135°.



FIG. 5B is a view of a multi-spectral stereo polarization camera system according to one embodiment of the present disclosure, along a direction parallel to the optical axis of the multi-spectral stereo polarization camera system. FIG. 5C depicts cut-away side views of example individual polarization cameras of a multi-spectral stereo polarization camera system according to one embodiment of the present disclosure. As shown in FIG. 5C, each of the individual polarization cameras (e.g., 510A″, 510B″, 510E″, and 510F″) includes a corresponding color filter 518 (e.g., 518A″, 518B″, 518E″, and 518F″) in the optical path of the individual polarization camera, in addition to a corresponding lens 512, a corresponding image sensors 514, and a corresponding polarizing filter 516. While FIG. 5C depicts the color filter 518 as being within a housing and behind the lens 512, embodiments of the present disclosure are not limited thereto. For example, in some embodiments, the color filter 518 is located in front of the lens 512. Likewise, in some embodiments, the polarizing filter is located in front of the lens 512.


In the embodiment shown in FIG. 5B, each of the individual polarization cameras includes a color filter that transmits light in only one corresponding portion of the visible spectrum (as opposed to a Bayer filter, which has a mosaic pattern and that typically transmits light in three different portions of the spectrum corresponding to red, green, and blue light). In the example embodiment shown in FIG. 5B, first polarization camera 510A″ has a color filter 518A″ that is configured to transmit light in a red (R) portion of the spectrum, second polarization camera 510B″ has a color filter 518B″ that is configured to transmit light in a first green (G1) portion of the spectrum, third polarization camera 510C″ has a color filter 518C″ that is configured to transmit light in a second green (G2) portion of the spectrum (which may be different from the first green portion G1 of the spectrum, e.g., with a peak shifted by 15 to 20 nm), and fourth polarization camera 510D″ has a color filter 518D″ that is configured to transmit light in a blue (B) portion of the spectrum. Together, the four polarization cameras of the first polarization camera module 510-1″ capture light at four different polarization states (e.g., four different linear polarizations of 0°, 45°, 90°, and 135°) and four different colors (e.g., R, G1, G2, and B). In the particular embodiment shown in FIG. 5B, for example, the first polarization camera 510A″ captures red light polarized at 0°, the second polarization camera 510B″ captures first green light polarized at 45°, the third polarization camera 510C″ captures second green light polarized at 90°, and the fourth polarization camera 510D″ captures blue light polarized at 135°. However, embodiments of the present disclosure are not limited thereto. For example, in various embodiments the color filters may be associated with different polarizing filters.


In a similar manner, the individual polarization cameras (e.g., cameras 510E″, 510F″, 510G″, and 510BH″) of the second polarization camera module 510-2″ includes a separate color filter 518 that are configured to transmit light in different portions of the electromagnetic spectrum and different from one another. In some embodiment of the present invention, each of the color filters of the second polarization camera module 510-2″ transmits light in a portion of the spectrum that is shifted by some amount (e.g., where the peak of the spectral profile of the color filter is shifted, either toward the longer wavelengths or toward shorter wavelengths, by about 10 nanometers to about 20 nanometers) from the corresponding color filter in the first polarization camera module 510-1″.


In the example embodiment shown in FIG. 5B, fifth polarization camera 510E″ has a color filter 518E″ that is configured to transmit light in a red (R′) portion of the spectrum that is shifted by about 10 to 20 nanometers from the spectrum R transmitted by corresponding color filter 518A″ of the corresponding polarization camera 510A″ of the first polarization camera module 510-1″. Likewise, sixth polarization camera 510F″ has a color filter 518F″ that is configured to transmit light in a first green (G1′) portion of the spectrum that is shifted by about 10 to 20 nanometers from the spectrum G1 transmitted by corresponding color filter 518B″ of the corresponding polarization camera 510B″ of the first polarization camera module 510-1″ (and, in some embodiments, also a different spectrum from spectrum G2). The seventh polarization camera 510G″ has a color filter 518G″ that is configured to transmit light in a second green (G2′) portion of the spectrum that is shifted by about 10 to 20 nanometers from the spectrum G2 transmitted by corresponding color filter 518C″ of the corresponding polarization camera 510C″ of the first polarization camera module 510-1″ (and, in some embodiments, also a different spectrum for spectrum G1). The eighth polarization camera 510H″ has a color filter 518H″ that is configured to transmit light in a blue (B′) portion of the spectrum that is shifted by about 10 to 20 nanometers from the spectrum B transmitted by corresponding color filter 518D″ of the corresponding polarization camera 510D″ of the first polarization camera module 510-1″.


Together, the four polarization cameras of the second polarization camera module 510-2″ capture light at four different polarization states (e.g., four different linear polarizations of 0°, 45°, 90°, and 135°) and four different colors (e.g., R′, G1′, G2′, and B′) that are also different from the four colors captured by the first polarization camera module 510-1″. As a result, the multi-spectral stereo polarization camera system 510 shown in FIGS. 5A, 5B, and 5C is configured to detect light of eight different colors and at four different polarization angles.


While some embodiments of the present disclosure are described in detail above with respect to FIGS. 5A, 5B, and 5C, embodiments of the present disclosure are not limited thereto. For example, as noted above, in some embodiments of the present disclosure, each polarization camera module may include only three polarization cameras. In some embodiments, the three individual polarization cameras may include corresponding linear polarizers with linear polarization filters at 0°, 45°, and 90° or at 0°, 60°, and 120°. In some embodiments, the three individual polarization cameras of the first polarization camera module have corresponding color filters to transmit red (R), green (G), and blue (B) light having corresponding first spectral profiles, and the three individual polarization cameras of the second polarization camera module may have corresponding color filters to transmit red (R′), green (G′), and blue (B′) light having second spectral profiles that are different from the first spectral profile (e.g., where each of the second spectral profiles is shifted from corresponding first spectral profiles by 10 to 20 nm).


In addition, while some embodiments of the present disclosure are described above with respect to color filters that transmit different portions of the visible electromagnetic spectrum, embodiments of the present disclosure are not limited thereto, and may also include the use of color filters that selectively transmit light in other portions of the electromagnetic spectrum, such as infrared light or ultraviolet light.


In some embodiments of the present disclosure, the two different polarization camera modules of the multi-spectral stereo polarization camera system include polarization cameras that are configured to capture polarization raw frames of different polarization states (e.g., different polarization angles), such as using a polarization mask as shown in FIG. 1B or a mechanically or electronically controllable polarizing filter. According to some embodiments of the present disclosure, each polarization camera further includes a color filter configured to filter light in a plurality of colors in accordance to a mosaic pattern such as a Bayer pattern, where each polarization camera may have a different color filter to enable multi-spectral or hyper-spectral capture. For example, in some embodiments, a first polarization camera of a stereo pair includes a first color filter configured to capture light in the R, G1, G2, B spectra (or R, G, B spectra), as described above, and a second polarization camera of the stereo pair includes a second color filter configured to capture light in the R′, G1′, G2′, B′ spectra (or R′, G′, B′), as described above.


Some aspects of embodiments of the present disclosure relate to capturing multi-spectral scenes using hardware arrangements such as those discussed above by determining the spectral basis functions for representation. By estimating the spectral power distribution of scene illumination and using the spectral reflectivity function of the Macbeth color chart, it is possible to simulate a set of basis functions B representing that illumination. This becomes especially feasible when estimating the spectral profile of natural sunlight for outdoor use as is typically the case with multispectral imaging for geo-spatial applications. Once the spectral basis functions are determined, it is straightforward to determine the spectral coefficients for each scene by simply solving for w (weights) in the following equation

p=TS=TBw  (13)

where, p represents the pixel values in the different spectral (color) channels (e.g., eight different color channels R, G1, G2, B, R′, G1′, G2′, and B′), T represents the spectral responsivities of the various spectral channels (e.g., the captured values), S is the illumination source, which can be decomposed into a spectral basis, B represents the spectral basis functions, and w represents the coefficients for the basis functions.


Accordingly, applying equation (13) above enables computation of per-pixel polarization information as well as spectral information.


The multi-spectral or hyper-spectral information computed from multi-spectral hardware, such as that described above, maybe supplied as inputs to other object detection or instance segmentation algorithms (e.g., using convolutional neural networks that are trained or retrained based on labeled multi-spectral polarization image training data), or may be supplied as inputs to classical computer vision algorithms (e.g., such as for detecting the depth of surfaces based on parallax shift of multi-spectral and polarization cues) for detecting the presence of objects in the scenes imaged by stereo multi-spectral polarization camera systems according to embodiments of the present disclosure.


While some embodiments of the present disclosure as described above relate to multi-viewpoint multi-spectral polarization imaging using a stereo camera system (e.g., a stereo pair), embodiments of the present disclosure are not limited thereto. For example, in some embodiments of the present disclosure, a multi-spectral camera system (e.g., using a camera system configured to capture six or more different spectra, such as R, G, B, R′, G′, and B′, as discussed above) sweeps across multiple viewpoints over time, such as when an object of interest is located on a conveyor belt that passes through the field of view of the camera system, or where the camera system moves across the field of view of the object of interest.


As one example, for applications in satellite imaging one has the added advantage of viewing the scene from multiple angles that are highly correlated. The systematic way in which satellites move in straight lines above a given point on the ground allows satellites to obtain highly correlated multi-spectral and polarization data of the surfaces of the ground for each viewing angle across a wide range of viewing angles. Accordingly, in some embodiments of the present disclosure, a processing system 100 determines, for each point on the ground, the optimal angle at which the degree of polarization (DOLP) signal is strongest, thereby providing a strong correlation as to its surface orientation. See, e.g., equations (2) and (4). In addition, because specularity is generally highly viewpoint dependent, most of the views of a given surface will be non-specular, such that equation (2) may be sufficient to compute the orientation of the surface being imaged, without needing to select between the non-specular (or diffuse) equation versus the specular equation (4).


In addition, satellite imaging enables the capture of images of objects captured from very different viewpoints. This large baseline enables the estimation of coarse distances of ground-based objects by leveraging multispectral imaging with polarization and parallax shifts due to the large changes in position. Detecting these coarse distances provides information for disaster management, power transmission line monitoring, and security. For example, utility companies are concerned with the uncontrolled growth of vegetation in and around power transmission and distribution lines due to risks of fire or damage to the transmission lines. By imaging the areas around the power lines from different viewpoints, detecting the parallax shift of the objects when viewed from different viewpoints enables estimations of the surface height of the vegetation and the height of the transmission and distribution lines. Accordingly, this enables the automatic detection of when ground vegetation reaches critical thresholds with respect to proximity of said lines with respect to vegetation growth. To monitor such data both at day and night, some embodiments of the present disclosure relate to fusing polarization data with thermal sensors (e.g., infrared sensors) to provide clear heat signatures irrespective of illumination conditions.


Image Segmentation Using Polarimetric Cues


Some aspects of embodiments of the present disclosure relate to performing instance segmentation using polarimetric cues captured in accordance with embodiments of the present disclosure. Some techniques for performing instance segmentation using polarimetric cues are described in more detail in U.S. Provisional Patent Application No. 62/942,113, filed in the United States Patent and Trademark Office on Nov. 30, 2019 and U.S. Provisional Patent Application No. 63/001,445, filed in the United States Patent and Trademark Office on Mar. 29, 2020, the entire disclosures of which are incorporated by reference herein.



FIG. 6A is a block diagram of processing circuit 100 for computing surface characterization outputs based on polarization data according to one embodiment of the present invention. FIG. 6B is a flowchart of a method 600 for performing surface characterization based on input images to compute a surface characterization output according to one embodiment of the present invention.


According to various embodiments of the present disclosure, the processing circuit 100 is implemented using one or more electronic circuits configured to perform various operations as described in more detail below. Types of electronic circuits may include a central processing unit (CPU), a graphics processing unit (GPU), an artificial intelligence (AI) accelerator (e.g., a vector processor, which may include vector arithmetic logic units configured efficiently perform operations common to neural networks, such dot products and softmax), a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a digital signal processor (DSP), or the like. For example, in some circumstances, aspects of embodiments of the present disclosure are implemented in program instructions that are stored in a non-volatile computer readable memory where, when executed by the electronic circuit (e.g., a CPU, a GPU, an AI accelerator, or combinations thereof), perform the operations described herein to compute a characterization output 20 from input polarization raw frames 18. The operations performed by the processing circuit 100 may be performed by a single electronic circuit (e.g., a single CPU, a single GPU, or the like) or may be allocated between multiple electronic circuits (e.g., multiple GPUs or a CPU in conjunction with a GPU). The multiple electronic circuits may be local to one another (e.g., located on a same die, located within a same package, or located within a same embedded device or computer system) and/or may be remote from one other (e.g., in communication over a network such as a local personal area network such as Bluetooth®, over a local area network such as a local wired and/or wireless network, and/or over wide area network such as the internet, such a case where some operations are performed locally and other operations are performed on a server hosted by a cloud computing service). One or more electronic circuits operating to implement the processing circuit 100 may be referred to herein as a computer or a computer system, which may include memory storing instructions that, when executed by the one or more electronic circuits, implement the systems and methods described herein.


As shown in FIG. 6A, in some embodiments, a processing circuit 100 includes a feature extractor or feature extraction system 700 and a predictor 750 (e.g., a classical computer vision prediction algorithm and/or a trained statistical model such as a trained neural network) configured to compute a prediction output 20 (e.g., a statistical prediction) regarding surface characteristics of objects based on the output of the feature extraction system 700. Various embodiments of the present disclosure are described herein in the context of surface characterization in circumstances where surface features may be optically challenging to detect, and/or where polarization-based imaging techniques provide information on surface normal that may otherwise be difficult to obtain, embodiments of the present disclosure are not limited thereto. For example, some aspects of embodiments of the present disclosure may be applied to techniques for characterizing the surfaces of objects made of materials or have surface characteristics that are optically challenging to detect, such as surfaces of translucent objects, multipath inducing objects, objects that are not entirely or substantially matte or Lambertian, and/or very dark objects. These optically challenging objects include objects and surface characteristics thereof that are difficult to resolve or detect through the use of images that are capture by camera systems that are not sensitive to the polarization of light (e.g., based on images captured by cameras without a polarizing filter in the optical path or where different images do not capture images based on different polarization angles). For example, these surface characteristics may have surface appearances or colors that are very similar to the surfaces on which the characteristics appear (e.g., dents have the same color as the underlying material and scratches on transparent materials such as glass may also be substantially transparent). In addition, while embodiments of the present disclosure are described herein in the context of detecting optically challenging surface characteristics, embodiments of the present disclosure are not limited to detecting only optically challenging surface defects. For example, in some embodiments, a predictor 750 is configured (e.g., a statistical model is trained using training data) to detect both surface characteristics that are optically challenging as well as surface characteristics that are robustly detectable without using polarization information.


Polarization may be used to detect surface characteristics or features that would otherwise be optically challenging when using intensity information (e.g., color intensity information) alone. For example, polarization information can detect changes in geometry and changes in material in the surfaces of objects. The changes in material (or material changes), such as boundaries between different types of materials (e.g., a black metallic object on a black road or a colorless liquid on a surface may both be substantially invisible in color space, but would both have corresponding polarization signatures in polarization space), may be more visible in polarization space because differences in the refractive indexes of the different materials cause changes in the polarization of the light. Likewise, differences in the specularity of various materials cause different changes in the polarization phase angle of rotation, also leading to detectable features in polarization space that might otherwise be optically challenging to detect without using a polarizing filter. Accordingly, this causes contrast to appear in images or tensors in polarization representation spaces, where corresponding regions of tensors computed in intensity space (e.g., color representation spaces that do not account for the polarization of light) may fail to capture these surface characteristics (e.g., where these surface characteristics have low contrast or may be invisible in these spaces). Examples of optically challenging surface characteristics include: the particular shapes of the surfaces (e.g., degree of smoothness and deviations from ideal or acceptable physical design tolerances for the surfaces); surface roughness and shapes of the surface roughness patterns (e.g., intentional etchings, scratches, and edges in the surfaces of transparent objects and machined parts), burrs and flash at the edges of machined parts and molded parts; and the like. Polarization would also be useful to detect objects with identical colors, but differing material properties, such as scattering or refractive index.


In addition, as discussed above, polarization may be used to obtain the surface normals of objects based on the degree of linear polarization (DOLP) ρ and the angle of linear polarization (AOLP) ϕ computed from the polarization raw frames based on, for example, equations (2), (3), (4), and (5). These surface normal, in turn, provide information about the shapes of the surfaces.


As shown in FIG. 6B and referring, for example, to FIG. 1B, in operation 610 the processing circuit 100 captures polarization raw frames 18 of surfaces in a scene 1. For example, in some embodiments, the processing circuit 100 controls one or more polarization cameras 10 (e.g., one or more individual polarization cameras, which may be organized into polarization camera arrays and/or stereo polarization camera systems that include multiple polarization camera modules) to capture polarization raw frames 18 depicting a surfaces of object in a scene 1.



FIG. 7A is a block diagram of a feature extractor 700 according to one embodiment of the present invention. FIG. 7B is a flowchart depicting a method according to one embodiment of the present invention for extracting features from polarization raw frames. In the embodiment shown in FIG. 7A, the feature extractor 700 includes an intensity extractor 720 configured to extract an intensity image I 52 in an intensity representation space (e.g., in accordance with equation (7), as one example of a non-polarization representation space) and polarization feature extractors 730 configured to extract features in one or more polarization representation spaces. In some embodiments of the present disclosure, the intensity extractor 720 is omitted and the feature extractor does not extract an intensity image I 52. In the embodiment shown in FIG. 7A, the features extracted in polarization representation spaces (e.g., DOLP ρ and AOLP ϕ) are supplied to a surface normals calculator 780 to compute surface normals 58 of objects in the scene


As shown in FIG. 7B, the extraction of polarization images in operation 650 may include extracting, in operation 651, a first tensor in a first polarization representation space from the polarization raw frames from a first Stokes vector. In operation 652, the feature extractor 700 further extracts a second tensor in a second polarization representation space from the polarization raw frames. For example, the polarization feature extractors 730 may include a DOLP extractor 740 configured to extract a DOLP ρ image 54 (e.g., a first polarization image or a first tensor in accordance with equation (8) with DOLP as the first polarization representation space) and an AOLP extractor 760 configured to extract an AOLP ϕ image 56 (e.g., a second polarization image or a second tensor in accordance with equation (9), with AOLP as the second polarization representation space) from the supplied polarization raw frames 18. In addition, in various embodiments, the feature extraction system 700 extracts two or more different tensors (e.g., n different tensors) in two or more representation spaces (e.g., n representation spaces), where the n-th tensor is extracted in operation 614. As discussed above, in some embodiments of the present disclosure, the polarization feature extractors 730 extract polarization features in polarization representation spaces including both linear polarization representation spaces (e.g., tensors in the aforementioned AOLP and DOLP representation spaces extracted from polarization raw frames captured with a linear polarizing filter) and circular polarization representation spaces (e.g., tensors extracted from polarization raw frames captured with a circular polarizing filter). In various embodiments, the representation spaces include, but are not limited to, polarization representation spaces.


The polarization representation spaces may include combinations of polarization raw frames in accordance with Stokes vectors. As further examples, the polarization representations may include modifications or transformations of polarization raw frames in accordance with one or more image processing filters (e.g., a filter to increase image contrast or a denoising filter). The feature maps 52, 54, and 56 in first polarization representation spaces may then be supplied to a predictor 750 for detecting surface characteristics based on the feature maps 50.


While FIG. 7B illustrates a case where two or more different tensors are extracted from the polarization raw frames 18 in more than two different representation spaces, embodiments of the present disclosure are not limited thereto. For example, in some embodiments of the present disclosure, exactly one tensor in a polarization representation space is extracted from the polarization raw frames 18. For example, one polarization representation space of raw frames is AOLP ϕ and another is DOLP ρ (e.g., in some applications, AOLP may be sufficient for detecting surface characteristics of transparent objects or surface characteristics of other optically challenging objects such as translucent, non-Lambertian, multipath inducing, and/or non-reflective objects).


Furthermore, as discussed above with respect to FIG. 7A, in some embodiments of the present disclosure, one or more feature vectors are computed based on features computed from other representation spaces. In the particular example shown in FIG. 7A, the surface normals calculator 780 computes surface normals of surfaces in the imaged scene 1 in surface normals space (e.g., azimuth angle θa and zenith angle θz) based on the computed AOLP ϕ and DOLP ρ tensors. In some embodiments, the surface normal are encoded using Cartesian coordinates (e.g., a three-dimensional vector indicating a direction of the surface normal). the computed surface normals 58 may be included among the features 50 extracted by the feature extractor 700.


Accordingly, extracting features such as polarization feature maps, polarization images, and/or surface normals from polarization raw frames 18 produces first tensors 50 from which optically challenging surface characteristics may be detected from images of surfaces of objects under inspection. In some embodiments, the first tensors extracted by the feature extractor 700 may be explicitly derived features (e.g., hand crafted by a human designer) that relate to underlying physical phenomena that may be exhibited in the polarization raw frames (e.g., the calculation of AOLP and DOLP images in linear polarization spaces and the calculation of tensors in circular polarization spaces, as discussed above). In some additional embodiments of the present disclosure, the feature extractor 700 extracts other non-polarization feature maps or non-polarization images, such as intensity maps for different colors of light (e.g., red, green, and blue light) and transformations of the intensity maps (e.g., applying image processing filters to the intensity maps). In some embodiments of the present disclosure, the feature extractor 700 further computes surface normals of surfaces depicted by the polarization raw frames, in accordance with shape from polarization techniques, as described above. In some embodiments of the present disclosure the feature extractor 700 may be configured to extract one or more features that are automatically learned (e.g., features that are not manually specified by a human) through an end-to-end supervised training process based on labeled training data. In some embodiments, these learned feature extractors may include deep convolutional neural networks, which may be used in conjunction with traditional computer vision filters (e.g., a Haar wavelet transform, a Canny edge detector, a depth-from-stereo calculator through block matching, and the like).


In some embodiments of the present disclosure, the predictor 750 implements one or more classical computer vision algorithms (e.g., depth from stereo using block matching) based on the first tensors 50.


In some embodiments of the present disclosure, the predictor 750 implements an image segmentation algorithm, such as by including a trained convolutional neural network. Image segmentation refers to labeling pixels based on the class of object contained within the pixel. Traditional algorithms are adapted to conventional red-green-blue (RGB) channel or gray channel (hereafter RGB/gray) information, using RGB/gray image gradients to enforce decision boundaries. For many industrial applications, RGB/gray image gradients might not be present. One example is a photograph of a black car on a black road. It is difficult to segment this scene to separate the car from the road. However, by capturing both RGB/gray gradients and polarimetric gradients using polarization camera systems in accordance with embodiments of the present disclosure, computer vision systems can be trained, based on the combined RGB/gray and polarization cues (e.g., including surface normals computed from the polarization cues), to perform semantic segmentation of images in conditions that would be optically challenging when using only RGB/gray images. As used herein, convolutional neural networks that are configured to take polarization cues as input (e.g., features in polarization feature spaces, as extracted from polarization raw frames by the feature extractor 700, such as AOLP ϕ, DOLP ρ, and/or surface normals computed based on AOLP and DOLP) will be referred to herein as Polarized CNNs, of which the Polarized Mask R-CNN described above and in U.S. Provisional Patent Application No. 62/942,113, filed in the United States Patent and Trademark Office on Nov. 30, 2019 and U.S. Provisional Patent Application No. 63/001,445, filed in the United States Patent and Trademark Office on Mar. 29, 2020.


Augmenting 3-D Surface Reconstruction with Polarization Imaging


Some aspects of embodiments of the present disclosure relate to recover high quality reconstructions of closed objects. In some embodiments of the present surface reconstruction is used in conjunction with high quality three-dimensional (3-D) models of the objects, such as computer-aided-design (CAD) models of the objects to be scanned to resolve ambiguities arising from a polarization-based imaging process. Previous attempts have devised methods for unknown geometry without having access to CAD models.


Capturing a high quality 3-D reconstruction of a physical object for which a high-quality 3-D computer model already exists is important in a variety of contexts, such as quality control in the fabrication and/or manufacturing of objects. For example, in the case of additive manufacturing or 3-D printing, a designer may create a 3-D model of an object and supply the 3-D model to a 3-D printer, which fabricates a physical object based on the 3-D model. During or after the 3-D printing process, the physical object fabricated by the 3-D printer may be scanned using a stereo polarization camera system according to some embodiments of the present disclosure, and the captured polarization data may be used to assist in the 3-D reconstruction of the surfaces of the physical object. This 3-D reconstruction can then be compared, in software, to the designed 3-D model to detect defects in the 3-D printing process. Similar techniques may be applied to other manufacturing processes, such as for creating 3-D reconstructions of the shapes of objects created through other manufacturing processes such as injection molding, die-casting, bending, and the like.


As one example, a stereo polarization camera system, such as that described above with respect to FIG. 1E, is used to image an object that is intended to be reconstructed in 3-D, e.g., to create a 3-D model of the object automatically from the captured polarization raw frames. Due to practical manufacturing constraints and/or defects in the manufacturing process, the surface of the object may have sparse irregularities, and may not be ideally smooth. These irregularities may appear as high frequency variations on the surface. High frequency variations (HFV) appear due to 3 scenarios:


First, there could be regions on the object surface that have valid high-frequency variations (e.g., designed and intended to be present). For example, when creating a replica of a Greek bust or statue, details near the eyes and hair of the scanned 3-D model may also be present in the high-quality 3-D model that was used to guide the fabrication of the physical object.


Second, there may be regions on the object surface that have high-frequency variations due to blemishes, defects, or other damage on the surface. For example, in the case of 3-D printing or additive manufacturing, high frequency patterns may arise due to the layer-wise manufacturing process, causing a “steeped” appearance to surfaces of the object. As another example, an injection molding process may leave seams or flashing in the produced object where the two parts of the mold meet. These details are not reflected in the high-quality 3-D model.


Third, combinations of the first and second forms of high frequency variations may occur physically close to one another (e.g., flashing may appear near the hair of the replica of the bust, thereby causing additional lines to appear in the hair).


High-frequency variations due to details are desirable on the real object, while the HFVs due to irregularities are not. However, it is important to be able to recover both of these kinds of HFVs in the 3D reconstruction for the purposes of inspection and profilometry. While some of these HFV details as well as irregularities may not be recovered by a commercially available 3D scanner (due to poor resolution arising from quantization error & other noise sources), embodiments of the present disclosure are able to handle these cases, as discussed in more detail below. Some exemplary implementations may make use of an additional structured lighting projector device to illuminate the object if the object has no visual features. Some embodiments of the present disclosure relate to the use of passive illumination (e.g., based on ambient lighting in the scene).



FIG. 8A is an illustration of a Greek bust statue being scanned by an exemplary implementation of the imaging setup proposed in this invention. Three types of High-Frequency-Variation (HFV) details are annotated (801A: desirable details such as hair and eyes; 801B: undesirable blemishes & defects near the cheek & nose; and 801C: a combination of cases A & B in close proximity with each other). These HFVs may not be recovered using standard 3D imaging techniques. Aspects of embodiments of the present invention relate to handling all of these cases. FIG. 8B is a flowchart of a method for 3-D surface reconstruction using polarization according to one embodiment of the present disclosure.


In some embodiments of the present disclosure, in operation 810, polarization raw frames 18 are captured of an object from multiple viewpoints using, for example, a stereo polarization camera system as describe above with respect to FIG. 1E. A set of four separate polar-angle images (0, 45, 90, 135) can be extracted from each of the raw images acquired. These may be denoted as PC1 and PC2. In exemplary implementations of this setup, the cameras may be in housed in standard stereo configurations (optical axes parallel to each other), or other configurations (e.g., where the optical axes intersect with each other).


In operation 820, degree and angle of linear polarization (DOLP ρ and AOLP ϕ) may be computed from Stokes vector formulation for both cameras using PC1 and PC2 as described above. These may be denoted as ρC1, ϕC1, ρC2, and ϕC2. In operation 830, surface normals (e.g., Zenith θz and Azimuth θa) from polarization are computed using shape from polarization (SFP) using DOLP ρ and AOLP ϕ as discussed above with respect to equations (2), (3), (4), and (5) for both cameras C1 and C2 (e.g., based on polarization raw frames PC1 and PC2). These surface normal from the two viewpoints may be denoted as NPolC1 and NPolC2.


However, these surface normals suffer from Azimuthal θa ambiguity by an angle of π, which can be disambiguated and corrected by using the CAD reference model as a constraint (e.g., by selecting the azimuthal angle θa that results in a surface that has the smaller distance or error with respect to the reference model). Accordingly, low-frequency noise (e.g., ambiguity by an angle of π) can be resolved using the reference model.


Depending on whether the object is dielectric or non-dielectric (taking cues from the strength of DOLP), an appropriate DOLP computation model may be employed to estimate the zenith angle as discussed above. In some embodiments, the material may be assumed to be dielectric with a refractive index of 1.5 because the refractive index of dielectrics is typically in the range [1.3, 1.6], and that this variation causes negligible change in DOLP ρ. In cases where the material is non-dielectric, the accuracy of the estimated zenith angle would suffer from refractive distortion. Refractive error in zenith is a low-frequency phenomenon and therefore may also be corrected by leveraging the reference model to use as a prior for resolving the refractive error.


Normals NPolC1 and NPolC2 may both independently be integrated over a sample space (Ω) to recover the entire surface off the object or a part of the surface of the object (e.g., the surface normals indicate the slope of the surfaces of the object and therefore integrating over the slopes, after accounting for the direction of the normal versus the orthogonal direction of the slope, recovers the underlying shape of the object). The surface recovered from such integration should match the shape constrained by the CAD reference model. Differences between the surface recovered from integration and the reference model may indicate defective portions of the physical object.


In addition to only relying on the CAD model for resolving ambiguities and errors in 3-D reconstruction based on polarization data from one polarization camera (or one polarization camera array), some aspects of embodiments of the present disclosure relate to further improving the quality of the 3-D reconstruction by enforcing view-point consistency between the cameras of the stereo polarization camera system.


Accordingly, while some embodiments of the present disclosure relate to computing estimated surface normal as described above through operation 830 shown in FIG. 8B, some embodiments of the present disclosure relate to further refining the estimated surface normals. Still referring to FIG. 8B, in operation 840, the high-quality CAD reference model is aligned to orientation of the physical object based on visual keypoints that are estimated on the object in the polarization raw frames captured by the two cameras PC1 and PC2. These keypoints are correlated with the same set of keypoints in the CAD reference model to obtain the six degree of freedom (6DoF) pose of the object with respect to the cameras using Perspective-N-Point (PnP) (see, e.g., Fischler, M. A.; Bolles, R. C. (1981). “Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography”. Communications of the ACM 24 (6): 381-395.) and/or random sample consensus (RANSAC). Use of multiple registered cameras at different viewpoints enables a more accurate pose reconstruction than using a single camera having a single viewpoint, although embodiments of the present disclosure are not limited thereto and single view PnP may also be used. The CAD reference model may be transformed into the camera spaces corresponding to the different camera modules of the stereo camera system (e.g., transforming the pose of the CAD reference model to the pose of the actual physical object with respect to the camera system), thereby aligning the reference model to the physical object. In the case of two cameras, this may be denoted as CADC1 and CADC2. Surface normals are then extracted from CADC1 and CADC2 (e.g., based on the orientations of surfaces with respect to the virtual cameras corresponding to the camera modules of the stereo camera system). These reference surface normals may be denoted as NCADC1 and NCADC2.


The transformed CAD reference model can then be used as a guidance constraint to correct high frequency azimuthal π ambiguity as well as the low frequency scaling error in zenith due to refractive distortion. Corrected normals will have consistency between the 2 cameras due to Multiview PnP, making this approach more robust. In more detail, in operation 850, the estimated normals NPolC1 and NPolC2 computed (in operation 830) from the polarization raw frames PC1 and PC2 from the two cameras are then corrected to compute corrected normals Corrected_NPolC1 and Corrected_NPolC2. The relative poses between the corrected normals should be consistent with the relative pose between the cameras (NCADC1 and NCADC2). This imposes additional pose-consistency constraints, thereby making SFP-normal correction more robust in general, and specifically in the case of fronto-parallel facets where Zenith θz is close to 0° (or 0 radians), which tend to have noisy estimated normal due to poor strength of the DOLP ρ along the viewing direction. However, any given facet will be less likely to be fronto-parallel to both the camera modules of a stereo polarization camera system, given the spacing (or baseline) between the camera modules. Accordingly, regions with higher DOLP may be voted and selected from across the multiple cameras to recover more robust surface normal for surfaces that are fronto-parallel to a subset of the camera modules.


In some circumstances, specularity causes problems in surface reconstruction because the surface texture information is lost due to oversaturation in the intensity of the image. This causes estimated normals on a specular patch to be highly noisy. According to some embodiments of the present disclosure, the polarization camera system includes multiple cameras (e.g., two or more) that are viewing overlapping regions of the scene from multiple viewpoints (e.g., a stereo polarization camera system) spaced apart by a baseline. Specularity is generally a highly viewpoint dependent issue. That is, specularity is less likely to be observed by all the cameras in a setup such as the arrangement shown in FIG. 1E, where different cameras have different viewpoints of surfaces of an object.


In more detail, some aspects of embodiments of the present disclosure relate to automatically recovering robust surface normals, even in highly specular materials, by imaging the surfaces from multiple viewpoints. Under most lighting conditions, it is highly unlikely that any given patch of a surface will appear specular to all of the cameras in a stereo multi-view camera system.


Accordingly, in some embodiments of the present disclosure, a voting mechanism may be employed to reject normals from a specular patch observed in a particular camera, while selecting the normals from the other cameras for the particular patch, that are more likely to be consistent with each other as well as the CAD model. For example, surface normals may be computed based on the polarization raw frames captured from each of the polarization camera modules in the stereo polarization camera array. If the surface normals computed based on the polarization raw frames are highly inconsistent with one another (e.g., more than a threshold angular distance apart), then the computed surface normals that are closest to the surface normals of the reference model are assumed to be the correct values.


In other embodiments of the present disclosure, specular patches may be detected automatically by identifying saturated pixels in the polarization raw frames. The saturation of the pixels is used to suggest that the particular patch may be observing specularity and therefore information in that region may be inaccurate.


In still other embodiments of the present disclosure, the stereo camera system includes more than two polarization camera modules (e.g., three or more polarization camera modules) which image the surfaces of the objects from different viewpoints. Accordingly, a voting mechanism may be employed, in which the surface normals computed based on the polarization raw frames captured by the various cameras are clustered based on similarity (after transforming the surface normals to correspond to a same frame of reference, such as one of the polarization camera modules). Because most of the polarization camera modules are unlikely to observe specularity, most of the calculated normals should be consistent, within an error range. Accordingly, the clustering process may identify outliers in the calculated surface normals, as caused by the specular artifacts.


A pseudocode description of an algorithm for normals correction based on voting with a CAD reference model prior is presented in more detail as follows. As notation:


N_P_C1—shape-from-polarization (SFP) normals in Camera1


N_P_C2—SFP normals in Camera2


N_CAD_C1—Normals in CAD reference model aligned with the object pose with respect to Camera1


N_CAD_C2—Normals in CAD reference model aligned with the object pose with respect to Camera2


Trans_C2_C1—Camera2's pose with respect to Camera1 obtained through extrinsic and intrinsic camera calibration (e.g., determined by imaging calibration targets visible to both Camera1 and Camera2)


Trans_CAD_C1—Transform used to align CAD reference model with the object in Camera1 image space obtained through multiview PnP


Trans_CAD_C2—Transform used to align CAD reference model with the object in Camera2 image space obtained through multiview PnP


(˜)—Consistency Operator


The consistency operator (˜) may be modeled as a distance metric (e.g., a cosine similarity based angular distance metric) computed between the normals being compared for consistency. If the angular distance is less than a threshold, the normals being compared are consistent with each other, else not (!˜). The normals being compared are transformed into the same coordinate frame (master-camera or Camera1 image space in this case) using the transforms listed above before applying the consistency operator (˜).


Pseudocode Implementation of Voting Based on CAD Reference Model Prior:














For each pixel normal in N_P_C1 (master camera image space, in this case Camera1):


 # Case 1: SFP normals in both cameras are consistent with CAD (No


ambiguity)


 if (N_P_C1 ~ N_P_C2) && (N_P_C1 ~ N_CAD_C1) && (N_P_C2 ~


N_CAD_C2) then:


  retain N_P_C1 or Trans_C2_C1*(N_P_C2) depending on which of the 2


camera normals are more aligned (consistent) with the CAD model


 # Case 2: SFP normals in the 2 cameras are consistent with each other, but both


are inconsistent with CAD normal (HFV Blemish/defect on surface)


 else if (N_P_C1 ~ N_P_C2) && (N_P_C1 !~ N_CAD_C1) && (N_P_C2 !~


N_CAD_C2) then:


  retain N_P_C1


 # Case 3: SFP normals in only one of the cameras are consistent with CAD


(specularity / fronto parallel issue in the other camera)


 else if (N_P_C1 ~ N_CAD_C1) && (N_P_C2 !~ N_CAD_C2) then:


  retain N_P_C1 #specularity / fronto parallel facet issue in Camera2


 else if (N_P_C2 ~ N_CAD_C2) && (N_P_C1 !~ N_CAD_C1) then:


  retain Trans_C2_C1*(N_P_C2) #specularity / fronto parallel facet issue in


Camera1


 # Case 4: SFP normals in both cameras are inconsistent with each other, as


well as with CAD


 else if (N_P_C1 !~ N_CAD_C1) && (N_P_C2 !~ N_CAD_C2) && (N_P_C1 !~


N_P_C2) then:


  retain N_CAD_C1









In some embodiments of the present disclosure, the corrected surface normals Corrected_NPolC1 and Corrected_NPolC2 are integrated over sample space (≠) to synthesize a 3-D reconstruction of the object imaged by the stereo polarization camera system.


While the embodiments discussed above relate to the 3-D reconstruction of 3-D objects based on a high-quality 3-D model such as a CAD design model, some aspects of embodiments of the present disclosure further relate to 3-D reconstruction of generally flat surfaces or surfaces having known, simple geometry, using multi-view polarized camera system such as that shown in FIG. 1E. The simple geometry case may apply to circumstances where the objects to be analyzed are unknown, but can be approximated using, for example, flat planes, spheres, and other simple parametric curves of known geometry. For example, flat planes may apply to many surfaces in an environment for a self-driving vehicle, such as the surface of a road, as well as walls and signage. In addition, depending on the resolution and/or accuracy demanded by a particular application, many surfaces may be approximated as being locally flat.



FIG. 9A is an illustration of a flat surface of refractive index n, being scanned by an exemplary implementation of the imaging setup according to one embodiment of the present invention. For particular applications in profilometry and inspection, this surface is examined for its smoothness. Ideally, this surface is desired to be smooth. Practically, due to defects/wear and tear, there may be sparse irregularities 901 at random locations on this otherwise flat surface 902. These irregularities manifest as High-Frequency-Variation (HFV) details that may not be recovered using standard 3D imaging techniques due to noise and poor resolution. However, embodiments of the present invention are able to recover these HFV irregularities leveraging polarization in conjunction with flatness and multi-view constraints.


Accordingly, for the sake of discussion, some embodiments of the present disclosure relate to detecting random, sparse irregularities on an otherwise substantially smooth surface (e.g., a substantially flat surface). As a motivating example, embodiments of the present disclosure may be used to detect potholes in a road using a stereo polarization camera system, such that a self-driving vehicle can avoid those potholes, as practical based on traffic conditions. As another motivating example, embodiments of the present disclosure may be used to detect surface defects in surfaces with generally simple geometries, such as detecting surface irregularities in the smoothness of a pane of glass or in a sheet of metal.


In some embodiments of the present disclosure, a multi-view polarization camera system may further include a structured light projector 903 configured to project patterned light onto a scene to provide additional detectable surface texture for the depth from stereo processes to match between views (e.g., using block matching) for measuring parallax shifts. In some circumstances, the structured light projector is configured to project infrared light and the camera system includes cameras configured to detect infrared light along with light in other spectral bands. Any following analysis of the surfaces may then be performed based on the data collected in the other spectral bands such that the projected pattern is not inadvertently detected as defects in the surface of the material.



FIG. 9B is a flowchart of a method for 3-D surface reconstruction of flat or geometrically simple surfaces using polarization according to one embodiment of the present disclosure.


In a manner similar to that described above, in some embodiments of the present disclosure, in operation 910, polarization raw frames 18 are captured of a scene (e.g., including substantially flat or smooth surfaces) from multiple viewpoints using, for example, a stereo polarization camera system as describe above with respect to FIG. 1E. A set of four separate polar-angle images (0, 45, 90, 135) can be extracted from each of the raw images acquired. These may be denoted as PC1 and PC2. In exemplary implementations of this setup, the cameras may be in housed in standard stereo configurations (optical axes parallel to each other), or other configurations (e.g., where the optical axes intersect with each other).


In operation 920, degree and angle of linear polarization (DOLP ρ and AOLP ϕ) are computed from Stokes vector formulation for both cameras using PC1 and PC2 as described above. These may be denoted as ρC1, ϕC1, ρC2, and ϕOC2.


In operation 930, surface normals (e.g., Zenith θz and Azimuth θa) from polarization can be obtained using shape from polarization (SFP) using DOLP ρ and AOLP ϕ as discussed above with respect to equations (2), (3), (4), and (5) for both cameras C1 and C2 (e.g., based on polarization raw frames PC1 and PC2). Depending on whether the object is dielectric or non-dielectric (taking cues from the strength of DOLP), an appropriate DOLP computation model may be employed to estimate the zenith angle as discussed above. In some embodiments, the material may be assumed to be dielectric with a refractive index of 1.5 because the refractive index of dielectrics is typically in the range [1.3, 1.6], and that this variation causes negligible change in DOLP ρ. In cases where the material is non-dielectric, the accuracy of the estimated zenith angle would suffer from refractive distortion.


These surface normal from the two viewpoints may be denoted as NPolC1 and NPolC2. However, these surface normals suffer from Azimuthal θa ambiguity by an angle of π, which can be disambiguated and corrected by using the coarse depth map as a constraint (e.g., by selecting the azimuthal angle θa that results in a surface that has the smaller distance or error with respect to the reference model). Accordingly, low-frequency noise (e.g., ambiguity by an angle of π) can be resolved using the coarse depth map created from the stereo view of the scene.


In addition, in operation 940, a coarse depth map (CDM) is computed based on the parallax shift between pairs of cameras in the stereo polarization camera system, based on depth-from-stereo approaches (e.g., where larger parallax shifts indicate surfaces that are closer to the camera system and smaller parallax shifts indicate that surfaces are farther away). As noted above, in some embodiments, the stereo polarization camera system includes a structured light illumination system, which may improve the matching of corresponding portions of the images when the surfaces do not have intrinsic texture or other visual features. In operation 940, the computed coarse depth map is also aligned to the image spaces corresponding the viewpoints C1 and C2 (e.g., using the relative pose and the extrinsic matrices from the camera calibration), where the coarse depth maps corresponding to these image spaces are denoted CDMC1 and CDMC2.


In operation 950, the estimated normals as NPolC1 and NPolC2 are corrected based on normals are obtained from the CDM NCDMC1 and NCDMC2 to compute corrected surface normals Corrected_NPolC1 and Corrected_NPolC2. In some embodiments of the present disclosure, these normals are computed from the CDM using the Plane Principal Component method described in Kadambi et al. 2015, cited above. In more detail, in some embodiments, the normals computed from the CDM, NCDMC1 and NCDMC2 are used as guidance to correct high frequency azimuthal ambiguity as well as refractive error zenith distortion in NPolC1, jointly taking into account multi-view consistency with camera PC2. These corrected normals are also more robust than otherwise noisy SFP normals in case of fronto-parallel facets as well as specularity, as described above. In some embodiments, the flatness prior of the surface (or other simple geometric shape of the surface) is also used to further refine the zenith distortion. In particular, estimated normals NPolC1 and NPolC2 should generally be flat, and therefore the normals from the recovered surface (apart from areas with local surface irregularities) should be approximately 90 degrees and parallel to each other in each of the cameras. In some embodiments of the present disclosure, a voting scheme is used to perform the normals correction.


A pseudocode description of an algorithm for normals correction based on voting with a flat surface prior is presented in more detail as follows. As notation:


N_P_C1—shape-from-polarization (SFP) normals in Camera1


N_P_C2—SFP normals in Camera2


CDM—Coarse Depth Map


N_CDM_C1—Normals in CDM in Camera1 image space


N_CDM_C2—Normals in CDM in Camera2 image space


Trans_C2_C1—Relative pose of Camera2 with respect to Camera1 obtained through extrinsic and intrinsic camera calibration


Trans_CDM_C1—Transform used to align CDM with the object in Camera1 image space


Trans_CDM_C2—Transform used to align CDM with the object in Camera2 image space


(˜)—Consistency operator


obeys_flatness( )—operator that checks if the normals being selected obey a flatness constraint


The consistency operator (˜) may be modeled as a distance metric (e.g., a cosine similarity based angular distance metric) computed between the normals being compared for consistency. If the angular distance is less than a threshold, the normals being compared are consistent with each other, else not (!˜). The normals being compared are transformed into the same coordinate frame (master-camera or Camera1 image space in this case) using the transforms listed above before applying the consistency operator (˜).


Pseudocode Implementation of Voting Based on Flatness Prior:














For each pixel normal in N_P_C1:


 # Case 1: SFP normals in both cameras are consistent with CDM & Obey


Flatness Constraints (No ambiguity)


 if (N_P_C1 ~ N_P_C2) && (N_P_C1 ~ N_CDM_C1) && (N_P_C2 ~


N_CDM_C2) && obeys_flatness(N_P_C1)==True && obeys_flatness(N_P_C2)==True


then:


  retain N_P_C1 or Trans_C2_C1 (N_P_C2) depending on which of the 2


camera normals are more aligned (consistent) with the CDM+Flatness Constraint


 # Case 2: SFP normals in the 2 cameras are consistent with each other, but both


are inconsistent with CDM normal (HFV Blemish/defect on surface)


 else if (N_P_C1 ~ N_P_C2) && (N_P_C1 !~ N_CDM_C1) && (N_P_C2 !~


N_CDM_C2) then:


  retain N_P_C1


 # Case 3: SFP normals in only one of the cameras are consistent with


CDM+Flatness Constraints (specularity / fronto parallel issue in the other camera)


 else if (N_P_C1 ~ N_CDM_C1) && (N_P_C2 !~ N_CDM_C2) &&


obeys_flatness(N_P_C1)==True then:


  retain N_P_C1 #specularity / fronto parallel facet issue in Camera2


 else if (N_P_C2 ~ N_CDM_C2) && (N_P_C1 !~ N_CDM_C1) &&


obeys_flatness(N_P_C2)==True then:


  retain Trans_C2_C1 (N_P_C2) #specularity / fronto parallel facet issue in


Camera1


 # Case 4: SFP normals in both cameras are inconsistent with each other, as


well as with CDM


 else if (N_P_C1 !~ N_CDM_C1) && (N_P_C2 !~ N_CDM_C2) && (N_P_C1 !~


N_P_C2) then:


  retain N_CDM_C1









In some embodiments, the corrected surface normals Corrected_NPolC1 and Corrected_NPolC2 are used to reconstruct the shape of the surface object. For example, in some embodiments, a sparse matrix inverse algorithm can be applied (as described in Kadambi et al. 2015) to estimate the revised depth coordinates of the surface. These revised depth coordinates have a higher resolution than the initial depth obtained from standard 3D imaging techniques (stereo, time of flight, etc.).


Surface defects and irregularities may then be detected based on detecting normals that are noisy or erroneous or that otherwise dis-obey pose consistency across the different camera modules of the stereo polarization camera system. In some circumstances, these sparse irregularities are especially apparent in standing out in different proportions across the DOLP images calculated for each of the views. In other words, portions of the normals map that violate the assumption of flatness or otherwise smoothness of the surface may actually be non-smooth surfaces, thereby enabling the detection of sparse irregularities in a surface that is assumed to be generally smooth.


Augmenting Active Scanning Systems including Lidar, Radar, Time-of-Flight, and Structured Illumination with Polarization Imaging


Some aspects of embodiments of the present disclosure relate to augmenting active scanning system based on polarization cues such as degree of linear polarization (DOLP) and angle of linear polarization (AOLP) as computed from polarization raw frames captured by polarization camera systems. In some circumstances, the augmentation of an imaging modality or the combination of multiple imaging modalities may be referred to as sensor fusion.


As one motivating example of augmenting active scanning systems, some autonomous driver assistance systems (ADAS) include scanning systems in order to capture information about the driving environment to offer provide the driver with features such as Forward Collision Warning (FCW), Automatic Emergency Braking (AEB), Adaptive Cruise Control (ACC), and Lane Departure Warning (LDW). Generally, these ADAS features respond to objects and the environment at a macro level, wherein the sensor system of the vehicle is able to reliably sense larger objects or features on the road such as other vehicles and lane separation signs. However, the ability to detect smaller vehicles such as motorbikes and cyclists may not be as robust. Furthermore, small objects and obstacles such as rocks, nails, potholes, and traffic cones may escape detection by such the sensor systems of such ADAS of vehicles. Similar issues may arise for more autonomous or self-driving vehicles, which would benefit from the ability to detect, and navigate around, a wider variety of potential road hazards and to avoid harming other people, animals, or objects. Absent such ability, the autonomous driving systems of today cannot claim to provide a safer alternative given that an attentive driver, in many cases, can be more proactive in sensing and taking corrective action as required.


Accordingly, some aspects of the present disclosure relate to augmenting sensing systems using polarization to improve the detection of small and/or optically challenging objects in a scene.



FIG. 10A is a schematic diagram of a system in which an active scanning system is augmented with a polarization camera system according to one embodiment of the present disclosure. In the embodiment shown in FIG. 10A, a polarization camera system 1010 configured to capturer polarization raw frames 1018 (e.g., an individual polarization camera configured to capture different images corresponding to different polarization states, a polarization camera array, or a stereo polarization camera system, as described above) augments an active sensing system 1020. The active sensing system includes an active emitter 1022 configured to emit waves (e.g., electromagnetic waves or sound waves) toward a scene 1001 containing various objects 1002 and 1003, where reflections 1004 of the waves off of surfaces of the objects 1002 and 1003 are detected by a detector 1024 of the active sensing system 1020.


For example, in the case of a radar system, the active emitter 1022 may emit radio frequency or microwave frequency electromagnetic waves, and the detector 1024 may include an antenna array configured to detect the reflected signal. In the case of a lidar and/or time-of-flight depth camera system, the active emitter 1022 may include a laser configured to emit light into the scene 1001 (e.g. by scanning the laser over the scene 1001 or by flashing light over the scene) and computing depth based on the time that elapses until reflected light is received. In the case of an active stereo depth camera system, the active emitter 1022 may emit structured light or patterned light onto the scene, and the detector 1024 is configured to detect light in the wavelength emitted by the active emitter 1022 (e.g., infrared light). The processing system 1030 may be configured to control both the polarization camera system 1010 and the active sensing system 1020, including controlling the polarization camera system 1010 and/or the active scanning system 1020 to capture data and receiving raw data captured by the polarization camera system 1010 and the active sensing system 1020 to detect objects or otherwise analyze a scene.


As discussed above, in many instances, optically challenging objects may be substantially invisible to comparative or standard camera systems that do not capture information regarding the polarization of light. On the other hand, capturing polarization raw frames of scenes and computing polarization cues from the polarization raw frames can increase the contrast of optically challenging objects in a scene, because these optically challenging objects may present distinctive polarization signatures (e.g., in the case of a transparent glass ball, shiny metal on the ground, and the like).


Accordingly, some aspects of embodiments of the present disclosure relate to the use of a predictor 750 configured to receive first tensors 50 in polarization feature spaces as input (e.g., a trained polarization CNN) to identify optically challenging objects in a scene and to generate a characterization output 20 such as a segmentation map that can be combined or fused with the outputs of other sensors operating on the same scene (e.g., radar and/or lidar data showing the distances and velocities of various objects in a scene, a depth map computed based on an RGB/gray-based camera system, or a segmentation map computed by an RGB/gray-based camera system).


Continuing the above example of ADAS and automated driving for vehicles, a polarization CNN is trained to detect road obstacles at a micro level, in cluttered environments, of optically challenging objects such as shiny metal and glass, as well as other objects that may prove to be hazardous, such as semantically inconsistent objects that are transient and even more hazardous, such as rocks, water, ice, or oil slicks on the road. These represent road conditions that are hazardous and unexpected, and that call for caution. Accordingly, fusing the large scale, coarse data from active scanning systems such as lidar and radar with segmentation maps computed using polarization cues enables ADAS and automated driving systems to detect a wider range of objects in a driving environment, from large scale vehicles down to micro-scale nails, flat metal panels, and the like.


As noted above, lidar and radar systems are generally limited to generating sparse point clouds of information regarding the scene. In particular, the active emitter 1022 of the active scanning device 1020 may have various physical constraints that force a tradeoff between breadth of coverage (e.g., solid angle swept over by the active emitter 1022), resolution, and latency. For example, physical constraints may limit the speed at which a laser emitter of a lidar can sweep over a scene, and sweeping more quickly causes fewer rays of light to be emitted toward any one part of the scene, thereby reducing the signal received by the detector 1024 for any given angle. Sweeping more slowly can increase the time between successive scans of an area (or reduce a frame rate of the data), thereby increasing latency, which may cause problems in applications that require real-time control. Likewise, in the case of active stereo depth sensors, a structured light projector emits patterned light toward a scene, where the pattern may include dots and/or lines where local patches are globally unique across the pattern. However, the angular resolution of the system is constrained by the resolution of the dot pattern.


Therefore, some aspects of embodiments of the present disclosure relate to generating to generate higher quality 3-D models by fusing sparse point clouds captured by 3-D active scanning systems with surface normals computed from polarization data captured by a polarization camera system.



FIG. 10B is a flowchart depicting a method 1050 for fusing the 3-D model captured by an active 3-D scanning system with surface normals captured by a polarization camera according to one embodiment of the present disclosure. Referring to FIG. 10B, in operation 1051, a processing system 1030 controls an active scanner 1020 (e.g., lidar, radar, active stereo, time-of-flight, etc.) is used to capture a point cloud of a scene 1001. In operation 1052, the processing system 1030 controls the polarization camera system 1010 to capture polarization raw frames 1018. In some embodiments, operations 1051 and 1052 are performed concurrently, such that substantially the same scene is sensed by both systems (e.g., in dynamic situations such as driving through traffic, the scene may continuously change over time due to the movement of the vehicle on which the ADAS or automated driving system is mounted, as well as the movement of other vehicles and objects in the environment). In operation 1053, surface normals are computed from the polarization raw frames, such as by applying the techniques described above (e.g., extracting tensors in AOLP ϕ and DOLP ρ representation spaces and computing surface normals in accordance with equations (2), (3), (4), and (5)). In operation 1054, the surface normals are integrated over sample space to compute a 3-D surface, and in operation 1055, the 3-D surface computed based on the surface normals is corrected in accordance with constraints of the sparse point cloud captured by the active scanner 1020 to generate a 3-D model of the scene that is of higher quality than the point cloud captured by the active scanner 1020 operating alone.


Some aspects of embodiments of the present disclosure further relate to generating higher quality 3-D models of a scene through beam steering of the active scanner 1020 to perform higher-resolution scans of particular regions of interest within the scene. In more detail, in some embodiments of the present disclosure, a predictor 750 is configured to identify regions of interest within a given scene. For example, in some embodiments, a polarization convolutional neural network is trained to compute a segmentation mask that identifies regions of interest, based on labeled training data. Continuing the example of sensors for ADAS and automated driving systems, a polarization CNN may be trained to identify objects of interest in a scene that may be hard to detect or analyze using a comparative active scanning system operating alone with its active emitter 1022 configured to emit a wide beam (e.g., small vehicles such as motorcycles and bicycles, small and medium sized objects such as traffic cones, chains, and other lightweight barriers, and the like).



FIG. 10C is a flowchart illustrating a method for augmenting an active sensing system using polarization according to one embodiment of the present disclosure. As shown in FIG. 10C, according to one method 1060, the processing system 1030 controls the polarization camera system 1010 to capture polarization raw frames in operation 1061. In operation 1062, the processing system 1030 identifies regions of interest in the polarization raw frames, such as by extracting polarization cues (or tensors in polarization representation spaces) from the polarization raw frames and supplying the polarization cues to a polarized convolutional neural network trained to identify objects and regions of interest for a given use case. In operation 1063, the processing system 1030 steers the active scanning system (e.g., steers the direction and/or solid angle of a beam emitted by the active emitter 1022) to scan the identified regions of interest to generate high-resolution active scans of the regions of interest. These active scans may provide more accurate information than the output of the low-resolution, wide scans of the scene performed by the active sensing system 1020 without using beam steering, and may also provide different information than determined by the polarization camera system 1010. For example, the polarization camera system 1010 may provide high precision angular data regarding the direction of a particular surface or region of interest within a scene, but may not be able to provide accurate information about the distance or three-dimensional shape of the surface of interest. On the other hand, focusing or steering the beam emitted by an active emitter 1022 toward the surface or region of interest enables high-precision measurements to be made of those surfaces (e.g., base on time-of-flight to points within the identified regions). As specific examples of beam steering, in the case of lidar, a standard scanning cycle of the lidar system can be focused on scanning only the identified regions of interest, thereby increasing the energy emitted toward those regions of interest, and thereby increasing the signal that can be detected by the detector 1024. Similarly, in the case of radar, beamforming techniques (e.g., using a phased array) may be used to form or shape the beam to be emitted over a wider or narrower shape, as well as to steer the direction in which the signals are emitted. In the case of an active stereo scanning system, the structured light pattern may be focused to cover only the particular regions of interest, thereby increasing the resolution of the pattern in those regions of interest, and thereby enabling higher resolution block matching to be performed over the surfaces in the region of interest. In some embodiments, selective beam steering across multiple frames through tracking in the registered/fused polar data. Accordingly, a steered beam can provide, for example, higher resolution 3-D point clouds of particular regions of interest. In some embodiments, these higher resolution 3-D point clouds are further enhanced using surface normals computed from the polarization raw frames captured by the polarization camera system 1010.


Capturing higher quality 3-D models of objects using active scanning systems (e.g., through beam steering and/or through the improvement of surface shape detection using surface normals computed from polarization) provides improvements to object detection and classification due to higher resolution models supplied as input to the classifier. For example, a neural network trained to classify objects (e.g., distinguishing between a dog and a fire hydrant), will produce more accurate results when the input to the neural network is of higher quality. Accordingly, aspects of embodiments of the preset disclosure implementing sensor fusion between active sensing systems 1020 and polarization camera systems 1010 can improve the accuracy and responsiveness of object detection systems.


File Formats with Surface Normals from Polarization


Shape from Polarization approaches, as described above, recover surface normals from polarization cues captured by a polarization imaging system. Surface normals provide a valuable prior about the surface being imaged that opens a wide range of possibilities for visual inspection of the scanned surfaces that are needed across different manufacturing verticals such as: vehicles (e.g., automobiles, aircraft, and watercraft) and vehicle parts (ex: tires, engine blocks, transmissions, painted surfaces, etc.), 3D metal or polymer-based printing, printed circuit boards (PCBs), and mission-critical medical devices (e.g., ventilators, pumps, stents, and the like).


Storing surface normals together with the images enables interactive post-visualization of the scanned surface for a variety of use cases. Examples include: inspection for surface anomalies on the scanned surface; and the ability to re-light the scanned surface for arbitrary lighting conditions.


Surface profile examination are important in analyzing the intrinsic shape and curvature properties of surfaces. These frequently reveal anomalous behavior which is not immediately apparent to the naked eye in simple iso-parametric surface digitizations of objects. The ability of polarization enhanced imaging to provide order of magnitude improvements to surface normals accuracy can enable their application in high precision manufacturing of industrial parts for smoothness detection and shape fidelity.


The need for fair or smooth surface shapes can be motivated by different considerations in different market verticals. In automotive design aesthetics dominate, while in aircraft and ship-building industry, aerodynamic flow is critical for fuel efficiency. The smoothness of surfaces is related to many different features such as: continuity between adjacent patches in tangents and curvature; curvature distribution; flat points; and convexity, which are driven directly by surface differential geometry. Aesthetically smooth surfaces cannot have bumps or dents, which are essentially variations in local curvature which in turn are defined by their surface normal representations. Other applications such as robotic bin picking rely on accurate surface profile of the parts being picked and the recognition of surface imperfections like exceeding curvature bounds and high variation of curvature can prevent failure of tool-path generation algorithms for controlling the robotic picker.


Visualization of differential geometric features such as curvature behavior, parabolic lines, and iso- or geodesic lines and their variational behavior in the presence of environmental stimuli such as temperature or humidity are critical in the analysis of surface properties of manufactured parts in mission critical use conditions. In all of the above cases, the ability to scan the surface in real-time made available by polarization enhanced imaging can provide major improvements to real-time monitoring and control. In some embodiments, real-time surface normals tracking provides significant improvements in surgery by providing surgeons with real-time information about induced or built-in stress on the operated upon surface tissues (such as brain tissues). This information is often critical for surgeons as they can now respond, in real-time, to their surgical path planning in response to variations in surface stress of the affected regions.


Accordingly, some aspects of embodiments of the present disclosure relate to file formats for storing information regarding surface normals captured by polarization camera systems. In addition to storing the surface normals of the scanned surface along with the image information (e.g., red, green, blue, and, in some cases, alpha color channels) in commonly used file formats (such as JPEG, TIFF, PNG) additional information from polarization include the degree and angle of polarization (DOLP ρ and AOLP ϕ). These additional channels of information provide visual cues in surface inspection, often providing enhanced contrast (even when the original image is of poor quality due to lack of adequate exposure or glare). Storing these images in compressed form enables significant latitude in producing visual overlays to allow for increased visual understanding of surface anomalies. These can also help to refine depth maps to a much higher degree of precision than is possible with conventional non-polarization technologies currently available.


One example embodiment for storing polarization data (e.g., DOLP and AOLP) alongside color information relates to using the “application markers” of the JPEG File Interchange Format (JFIF). Metadata can be stored in JFIF using sixteen “application markers,” which makes it possible for a decoder to parse the interchange format and decode only required segments of image data. Although the current JFIF standard limits application markers to 64K bytes each, it is possible to use the same marker ID multiple times and refer to different memory segments. This enables one to store surface normal information in compressed or uncompressed formats. In addition, in some embodiments of the present disclosure, one of the application markers is used to store specific additional information such as degree and angle of polarization images. While one embodiments of the present disclosure is described herein with regard to storing polarization data along color image data using the JFIF standard, embodiments of the present disclosure are not limited thereto.


In some embodiments, surface normals are represented as vectors in three dimensions and can therefore take up a lot more space than the size of the original image (e.g., larger than the size of a corresponding RGB color or grayscale image). To save space, a compressed form of surface normal can be stored by sharing the exponent across the three dimensions and using 8 bits for each of the exponents in fixed-point format. Further reduction may be achieved, at the expense of re-computing the normals along the 3 dimensions at render time, by storing just the azimuth and zenith angles, or by just storing the DOLP and AOLP.


In some embodiments of the present disclosure, an existing image format that is capable of storing three channel information (e.g., red, green, and blue color information) is repurposed to store three-dimensional surface normal information. Although such embodiments may no longer be able to store color information (e.g., color information may be stored in a separate file), these approaches enable the leveraging of existing features such as image compression and progressive display, and also allowing for the use of existing software tools for writing data to such formats and parsing data from such formats. In some embodiments of the present disclosure, the mapping of the channels of the image format and the three-dimensional directions (e.g., x-, y-, and z-directions) is fixed or otherwise previously agreed-upon, in order to avoid the misinterpretation of the orientations of the surface normals.


Augmenting DSLR and Video Cameras with Polarized Imaging


Some aspects of embodiments of the present disclosure relate to augmenting digital camera systems such as digital single-lens reflex (DSLR) cameras and video cameras with polarized imaging. In some embodiments of the present disclosure, this relates to mounting a polarization camera system onto an underlying standard color camera system (e.g., the polarization camera system may include a single polarization camera capable of capturing data at multiple different polarization angles, a polarization camera array in which each camera array is configured to capture light of a different polarization state, and/or a stereo polarization camera system as described above). According to some embodiments of the present disclosure, the polarization camera system and the underlying camera system may be registered by imaging calibration targets (e.g., a checkerboard pattern) to compute the extrinsic camera parameters for mapping between the multiple views captured by the polarization camera system and the underlying camera system. This enables an augmented DSLR camera and/or an augmented video camera system to perform surface normal extraction and, in the case of stereo camera systems, perform depth estimation.


Various applications of combining color images with polarization images are described above. In embodiments of the present disclosure in which a color camera system is augmented with a polarization camera system, the polarization camera system is configured to synchronize its capture of polarization raw frames with the capture of images by the underlying system. For example, a same shutter release button on the DSLR may be used to trigger both the capture of images by the DSLR and by the polarization camera system. Likewise, a same “record” button on a video camera system may be used to also control the polarization camera system to capture polarization raw frames that are time indexed to match the frames captured by the underlying video camera system. In some embodiments of the present disclosure, a polarization camera system is configured to fit into the flash hot shoe or otherwise configured to be controlled by the flash system of the underlying camera system to provide the synchronization between the triggering of the underlying camera and the polarization camera systems.


As discussed above, various file formats may be used to store the polarization data and/or surface normals as captured by the polarization camera system alongside the color or grayscale image data captured by the underlying camera, and/or by re-purposing standard color image file formats to store surface normal data.


Capturing polarization raw frames (and, accordingly, surface normals of objects in a scene) concurrently with color video data may be used to perform further analysis of a scene, such as by providing more accurate depth estimations, which may be used for providing additional focus control (e.g., predicting which portions of a scene will be in focus based on depth from the camera). Capturing stereo polarization raw frames may also enable the concurrent capture of depth maps along with color texture information of a scene.


In some embodiments of the present disclosure, the surface normals computed from the polarization raw frames captured by the camera system are used to assist in motion capture of the movement of people or objects in a scene. In more detail, the surface normals may provide information about the location and orientation of motion capture markers on objects in a scene, whereas comparative techniques may track only the location of the markers. Similarly, in the case of performing motion capture without markers, surface normals may also provide information about the orientation of various surfaces, thereby also improving the fidelity of the capture. Polarization based imaging may also avoid the temporary invisibility of markers or surfaces of motion captured objects in a scene due to specular reflections or glare, as discussed above. Accordingly, applying polarization camera systems to motion capture techniques can improve the accuracy and richness of motion captured data.


Computational Photography with Polarization


When polarized light enters a polarization filter, the intensity of outgoing light changes depending on the relative angle between the polarized incoming light and the polarizing filter. By capturing the scene at multiple angles of polarization, it is possible to eliminate glare, specular reflections, multiple reflections in at least one of the multiple angles of polarization images captured. These approaches may be used in industrial imaging applications to visualize hard-to-image scenes that are constrained by glare or specular reflections. However, polarization can also be used in computational photography to improve the capture of photographs for human visual consumption. Some aspects of embodiments of the present disclosure relate to the synthesis of high dynamic range images using multiple polarized input images, which may also improve the sharpness of the captured images.


High dynamic range (HDR) imaging generally involves capturing multiple images of a scene at different exposures to capture the full extent of the intrinsic dynamic range of the scene. However, the different exposures provide edges of different degrees of sharpness across the images, making them hard to align or at best aligning them imperfectly, thereby resulting in softer-looking (e.g., blurrier) images. Some comparative approaches capture frames of constant exposure, which makes alignment more robust, where the exposures are set low enough to avoid blowing out the highlights. The resulting merged HDR image has clean shadows and high bit depth. However, this works as long as there is no motion present in the scene (e.g., motion in the camera and/or motion of objects in the scene). Any motion while capturing frames of constant exposure can create blur and introduce unwanted artifacts (e.g., ghosting) in the edges.


Accordingly, some aspects of embodiments of the present disclosure relate to the use of capturing polarization raw frames at the same exposure settings and synthesizing high dynamic range images in the presence of scene motion using the polarization raw frames.


Having multi-camera systems with different polarization filters along with a reference camera with nominal Bayer filters allow for capturing multiple images concurrently (e.g., simultaneously) with the same exposure settings across all cameras. This allows for fusion of these multiple images without suffering the impact of anomalies created by motion across temporal frames (e.g., frames captured at different times). In addition, the different polarization filters allow for capturing the same scene at different intensities as if they were captured with different “neutral density” filters. Because the polarization filters have a natural effect of reducing the intensity of light incident on the camera system (e.g., incident on the image sensor), the exposure at which these sets of images are captured may not need to be as low as what would be needed in the comparative approach outlined above, as in that case there is nothing that attenuates the incident light on the camera system thereby necessitating carefully calibrated lower exposures.


Furthermore, merging polarization raw frames enables the recovery of detail in glare or otherwise saturated portions of the scene due to specular reflection. For example, under the comparative approach in which multiple lower exposure images are captured of a scene, it is still possible that portions of the scene will be overexposed to the point of saturation due to specular highlights. On the other hand, by capturing polarization raw frames of the scene using different polarization states and, in the case of a camera array and/or a stereo polarization camera system, from different viewpoints, it is unlikely that a given surface patch of the scene will exhibit specular glare from all perspectives. This, in turn, enables the recovery of detail from regions that would otherwise be lost in the case of a standard camera system that did not use polarization raw frames.



FIG. 11 is a flowchart illustrating a method for synthesizing a high dynamic range (HDR) image from polarization raw frames. In operation 1101, a processing system (e.g., a controller of a camera system) controls a polarization camera system to capture polarization raw frames and, in operation 1102, synthesizes a high dynamic range (HDR) image based on the polarization raw frames. As noted above, in some embodiments of the present disclosure, the polarization raw frames are combined based on techniques for combining multiple low-exposure frames (e.g., captured with a small aperture and/or short exposure time). In some embodiments of the present disclosure, the impact of glare and/or specularity can be removed and detail can be recovered in regions of the image that would be overexposed by dropping or portions of the images that are saturated in some polarization raw frames and more likely to be properly exposed in other polarization raw frames.


While the present invention has been described in connection with certain exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims, and equivalents thereof.

Claims
  • 1. A computer-implemented method comprising: receiving a plurality of polarization raw frames of a scene;computing an initial angle of linear polarization (AOLP) image and a degree of linear polarization (DOLP) image from the plurality of polarization raw frames;generating a coarse model of a geometry of the scene;performing a refinement process including: computing surface normals from a current estimate of the AOLP image and the DOLP image;generating a refined model of the geometry of the scene using the surface normals computed from the current estimate of the AOLP image and the DOLP image; andcomputing a new estimate of the AOLP image and the DOLP image based on the refined model of the geometry of the scene.
  • 2. The method of claim 1, further comprising repeating the refinement process until a difference between the current estimate and the new estimate of the AOLP image or the DOLP image satisfies a threshold.
  • 3. The method of claim 2, further comprising: generating a polarization representation of the scene from a final estimate of the AOLP image and the DOLP image; andusing the polarization representation for one or more image classification tasks.
  • 4. The method of claim 3, wherein generating the polarization representation comprises generating tensors having an aspect ratio corresponding to the polarization raw frames.
  • 5. The method of claim 1, wherein the plurality of different polarization frames are respectively captured by a plurality of different polarization cameras.
  • 6. The method of claim 5, wherein generating the coarse model of the geometry of the scene comprises using a stereo view of two or more of the plurality of polarization cameras.
  • 7. The method of claim 1, further comprising using the refined AOLP image or the refined DOLP image to perform one or more object detection or image classification tasks.
  • 8. A system comprising: one or more computers and one or more storage devices storing instructions that are operable, when executed by the one or more computers, to cause the one or more computers to perform operations comprising:receiving a plurality of polarization raw frames of a scene;computing an initial angle of linear polarization (AOLP) image and a degree of linear polarization (DOLP) image from the plurality of polarization raw frames;generating a coarse model of a geometry of the scene;performing a refinement process including: computing surface normals from a current estimate of the AOLP image and the DOLP image;generating a refined model of the geometry of the scene using the surface normals computed from the current estimate of the AOLP image and the DOLP image; andcomputing a new estimate of the AOLP image and the DOLP image based on the refined model of the geometry of the scene.
  • 9. The system of claim 8, further comprising repeating the refinement process until a difference between the current estimate and the new estimate of the AOLP image or the DOLP image satisfies a threshold.
  • 10. The system of claim 9, wherein the operations further comprise: generating a polarization representation of the scene from a final estimate of the AOLP image and the DOLP image; andusing the polarization representation for one or more image classification tasks.
  • 11. The system of claim 10, wherein generating the polarization representation comprises generating tensors having an aspect ratio corresponding to the polarization raw frames.
  • 12. The system of claim 8, wherein the plurality of different polarization frames are respectively captured by a plurality of different polarization cameras.
  • 13. The system of claim 12, wherein generating the coarse model of the geometry of the scene comprises using a stereo view of two or more of the plurality of polarization cameras.
  • 14. The system of claim 8, wherein the operations further comprise using the refined AOLP image or the refined DOLP image to perform one or more object detection or image classification tasks.
  • 15. One or more non-transitory computer storage media encoded with computer program instructions that when executed by one or more computers cause the one or more computers to perform operations comprising: receiving a plurality of polarization raw frames of a scene;computing an initial angle of linear polarization (AOLP) image and a degree of linear polarization (DOLP) image from the plurality of polarization raw frames;generating a coarse model of a geometry of the scene;performing a refinement process including: computing surface normals from a current estimate of the AOLP image and the DOLP image;generating a refined model of the geometry of the scene using the surface normals computed from the current estimate of the AOLP image and the DOLP image; andcomputing a new estimate of the AOLP image and the DOLP image based on the refined model of the geometry of the scene.
  • 16. The one or more computer storage media of claim 15, further comprising repeating the refinement process until a difference between the current estimate and the new estimate of the AOLP image or the DOLP image satisfies a threshold.
  • 17. The one or more computer storage media of claim 16, wherein the operations further comprise: generating a polarization representation of the scene from a final estimate of the AOLP image and the DOLP image; andusing the polarization representation for one or more image classification tasks.
  • 18. The one or more computer storage media of claim 17, wherein generating the polarization representation comprises generating tensors having an aspect ratio corresponding to the polarization raw frames.
  • 19. The one or more computer storage media of claim 15, wherein the plurality of different polarization frames are respectively captured by a plurality of different polarization cameras.
  • 20. The one or more computer storage media of claim 19, wherein generating the coarse model of the geometry of the scene comprises using a stereo view of two or more of the plurality of polarization cameras.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 17/277,242, filed on Mar. 17, 2021, which is a U.S. National Phase application of International No. PCT/US2020/054641, filed on Oct. 7, 2020, which claims the benefit of each of U.S. Provisional Application No. 62/911,952, filed on Oct. 7, 2019, U.S. Provisional Application No. 62/942,113, filed on Nov. 30, 2019, and U.S. Provisional Application No. 63/001,445, filed on Mar. 29, 2020. The disclosures of the prior applications are considered part of and are incorporated by reference in the disclosure of this application.

US Referenced Citations (1285)
Number Name Date Kind
4124798 Thompson Nov 1978 A
4198646 Alexander et al. Apr 1980 A
4323925 Abell et al. Apr 1982 A
4460449 Montalbano Jul 1984 A
4467365 Murayama et al. Aug 1984 A
4652909 Glenn Mar 1987 A
4888645 Mitchell et al. Dec 1989 A
4899060 Lischke Feb 1990 A
4962425 Rea Oct 1990 A
5005083 Grage et al. Apr 1991 A
5070414 Tsutsumi Dec 1991 A
5144448 Hornbaker et al. Sep 1992 A
5157499 Oguma et al. Oct 1992 A
5325449 Burt et al. Jun 1994 A
5327125 Iwase et al. Jul 1994 A
5463464 Ladewski Oct 1995 A
5475422 Suzuki et al. Dec 1995 A
5488674 Burt et al. Jan 1996 A
5517236 Sergeant et al. May 1996 A
5629524 Stettner et al. May 1997 A
5638461 Fridge Jun 1997 A
5675377 Gibas et al. Oct 1997 A
5703961 Regina et al. Dec 1997 A
5710875 Hsu et al. Jan 1998 A
5757425 Barton et al. May 1998 A
5793900 Nourbakhsh et al. Aug 1998 A
5801919 Griencewic Sep 1998 A
5808350 Jack et al. Sep 1998 A
5832312 Rieger et al. Nov 1998 A
5833507 Woodgate et al. Nov 1998 A
5867584 Hu et al. Feb 1999 A
5880691 Fossum et al. Mar 1999 A
5911008 Niikura et al. Jun 1999 A
5933190 Dierickx et al. Aug 1999 A
5963664 Kumar et al. Oct 1999 A
5973844 Burger Oct 1999 A
6002743 Telymonde Dec 1999 A
6005607 Uomori et al. Dec 1999 A
6034690 Gallery et al. Mar 2000 A
6069351 Mack May 2000 A
6069365 Chow et al. May 2000 A
6084979 Kanade et al. Jul 2000 A
6095989 Hay et al. Aug 2000 A
6097394 Levoy et al. Aug 2000 A
6124974 Burger Sep 2000 A
6130786 Osawa et al. Oct 2000 A
6137100 Fossum et al. Oct 2000 A
6137535 Meyers Oct 2000 A
6141048 Meyers Oct 2000 A
6160909 Melen Dec 2000 A
6163414 Kikuchi et al. Dec 2000 A
6172352 Liu Jan 2001 B1
6175379 Uomori et al. Jan 2001 B1
6185529 Chen et al. Feb 2001 B1
6198852 Anandan et al. Mar 2001 B1
6205241 Melen Mar 2001 B1
6239909 Hayashi et al. May 2001 B1
6292713 Jouppi et al. Sep 2001 B1
6340994 Margulis et al. Jan 2002 B1
6358862 Ireland et al. Mar 2002 B1
6373518 Segawa Apr 2002 B1
6419638 Hay et al. Jul 2002 B1
6443579 Myers Sep 2002 B1
6445815 Sato Sep 2002 B1
6476805 Shum et al. Nov 2002 B1
6477260 Shimomura Nov 2002 B1
6502097 Chan et al. Dec 2002 B1
6525302 Dowski, Jr. et al. Feb 2003 B2
6546153 Hoydal Apr 2003 B1
6552742 Seta Apr 2003 B1
6563537 Kawamura et al. May 2003 B1
6571466 Glenn et al. Jun 2003 B1
6603513 Berezin Aug 2003 B1
6611289 Yu et al. Aug 2003 B1
6627896 Hashimoto et al. Sep 2003 B1
6628330 Lin Sep 2003 B1
6628845 Stone et al. Sep 2003 B1
6635941 Suda Oct 2003 B2
6639596 Shum et al. Oct 2003 B1
6647142 Beardsley Nov 2003 B1
6657218 Noda Dec 2003 B2
6671399 Berestov Dec 2003 B1
6674892 Melen Jan 2004 B1
6750488 Driescher et al. Jun 2004 B1
6750904 Lambert Jun 2004 B1
6765617 Tangen et al. Jul 2004 B1
6771833 Edgar Aug 2004 B1
6774941 Boisvert et al. Aug 2004 B1
6788338 Dinev et al. Sep 2004 B1
6795253 Shinohara Sep 2004 B2
6801653 Wu et al. Oct 2004 B1
6819328 Moriwaki et al. Nov 2004 B1
6819358 Kagle et al. Nov 2004 B1
6833863 Clemens Dec 2004 B1
6879735 Portniaguine et al. Apr 2005 B1
6897454 Sasaki et al. May 2005 B2
6903770 Kobayashi et al. Jun 2005 B1
6909121 Nishikawa Jun 2005 B2
6917702 Beardsley Jul 2005 B2
6927922 George et al. Aug 2005 B2
6958862 Joseph Oct 2005 B1
6985175 Iwai et al. Jan 2006 B2
7013318 Rosengard et al. Mar 2006 B2
7015954 Foote et al. Mar 2006 B1
7085409 Sawhney et al. Aug 2006 B2
7161614 Yamashita et al. Jan 2007 B1
7199348 Olsen et al. Apr 2007 B2
7206449 Raskar et al. Apr 2007 B2
7215364 Wachtel et al. May 2007 B2
7235785 Hornback et al. Jun 2007 B2
7245761 Swaminathan et al. Jul 2007 B2
7262799 Suda Aug 2007 B2
7292735 Blake et al. Nov 2007 B2
7295697 Satoh Nov 2007 B1
7333651 Kim et al. Feb 2008 B1
7369165 Bosco et al. May 2008 B2
7391572 Jacobowitz et al. Jun 2008 B2
7408725 Sato Aug 2008 B2
7425984 Chen et al. Sep 2008 B2
7430312 Gu Sep 2008 B2
7471765 Jaffray et al. Dec 2008 B2
7496293 Shamir et al. Feb 2009 B2
7564019 Olsen et al. Jul 2009 B2
7599547 Sun et al. Oct 2009 B2
7606484 Richards et al. Oct 2009 B1
7620265 Wolff et al. Nov 2009 B1
7633511 Shum et al. Dec 2009 B2
7639435 Chiang Dec 2009 B2
7639838 Nims Dec 2009 B2
7646549 Zalevsky et al. Jan 2010 B2
7657090 Omatsu et al. Feb 2010 B2
7667824 Moran Feb 2010 B1
7675080 Boettiger Mar 2010 B2
7675681 Tomikawa et al. Mar 2010 B2
7706634 Schmitt et al. Apr 2010 B2
7723662 Levoy et al. May 2010 B2
7738013 Galambos et al. Jun 2010 B2
7741620 Doering et al. Jun 2010 B2
7782364 Smith Aug 2010 B2
7826153 Hong Nov 2010 B2
7840067 Shen et al. Nov 2010 B2
7912673 Hebert et al. Mar 2011 B2
7924321 Nayar et al. Apr 2011 B2
7956871 Fainstain et al. Jun 2011 B2
7965314 Miller et al. Jun 2011 B1
7973834 Yang Jul 2011 B2
7986018 Rennie Jul 2011 B2
7990447 Honda et al. Aug 2011 B2
8000498 Shih et al. Aug 2011 B2
8013904 Tan et al. Sep 2011 B2
8027531 Wilburn et al. Sep 2011 B2
8044994 Vetro et al. Oct 2011 B2
8055466 Bryll Nov 2011 B2
8077245 Adamo et al. Dec 2011 B2
8089515 Chebil et al. Jan 2012 B2
8098297 Crisan et al. Jan 2012 B2
8098304 Pinto et al. Jan 2012 B2
8106949 Tan et al. Jan 2012 B2
8111910 Tanaka Feb 2012 B2
8126279 Marcellin et al. Feb 2012 B2
8130120 Kawabata et al. Mar 2012 B2
8131097 Lelescu et al. Mar 2012 B2
8149323 Li et al. Apr 2012 B2
8164629 Zhang Apr 2012 B1
8169486 Corcoran et al. May 2012 B2
8180145 Wu et al. May 2012 B2
8189065 Georgiev et al. May 2012 B2
8189089 Georgiev et al. May 2012 B1
8194296 Compton et al. Jun 2012 B2
8212914 Chiu Jul 2012 B2
8213711 Tam Jul 2012 B2
8231814 Duparre Jul 2012 B2
8242426 Ward et al. Aug 2012 B2
8244027 Takahashi Aug 2012 B2
8244058 Intwala et al. Aug 2012 B1
8254668 Mashitani et al. Aug 2012 B2
8279325 Pitts et al. Oct 2012 B2
8280194 Wong et al. Oct 2012 B2
8284240 Saint-Pierre et al. Oct 2012 B2
8289409 Chang Oct 2012 B2
8289440 Pitts et al. Oct 2012 B2
8290358 Georgiev Oct 2012 B1
8294099 Blackwell, Jr. Oct 2012 B2
8294754 Jung et al. Oct 2012 B2
8300085 Yang et al. Oct 2012 B2
8305456 McMahon Nov 2012 B1
8315476 Georgiev et al. Nov 2012 B1
8345144 Georgiev et al. Jan 2013 B1
8350957 Schechner et al. Jan 2013 B2
8360574 Ishak et al. Jan 2013 B2
8400555 Georgiev et al. Mar 2013 B1
8406562 Bassi et al. Mar 2013 B2
8411146 Twede Apr 2013 B2
8416282 Lablans Apr 2013 B2
8446492 Nakano et al. May 2013 B2
8456517 Spektor et al. Jun 2013 B2
8493496 Freedman et al. Jul 2013 B2
8514291 Chang Aug 2013 B2
8514491 Duparre Aug 2013 B2
8541730 Inuiya Sep 2013 B2
8542933 Venkataraman et al. Sep 2013 B2
8553093 Wong et al. Oct 2013 B2
8558929 Tredwell Oct 2013 B2
8559705 Ng Oct 2013 B2
8559756 Georgiev et al. Oct 2013 B2
8565547 Strandemar Oct 2013 B2
8576302 Yoshikawa Nov 2013 B2
8577183 Robinson Nov 2013 B2
8581995 Lin et al. Nov 2013 B2
8619082 Ciurea et al. Dec 2013 B1
8648918 Kauker et al. Feb 2014 B2
8648919 Mantzel et al. Feb 2014 B2
8655052 Spooner et al. Feb 2014 B2
8682107 Yoon et al. Mar 2014 B2
8687087 Pertsel et al. Apr 2014 B2
8692893 McMahon Apr 2014 B2
8754941 Sarwari et al. Jun 2014 B1
8773536 Zhang Jul 2014 B1
8780113 Ciurea et al. Jul 2014 B1
8787691 Takahashi et al. Jul 2014 B2
8792710 Keselman Jul 2014 B2
8804255 Duparre Aug 2014 B2
8823813 Mantzel et al. Sep 2014 B2
8830375 Ludwig Sep 2014 B2
8831367 Venkataraman et al. Sep 2014 B2
8831377 Pitts et al. Sep 2014 B2
8836793 Kriesel et al. Sep 2014 B1
8842201 Tajiri Sep 2014 B2
8854433 Rafii Oct 2014 B1
8854462 Herbin et al. Oct 2014 B2
8861089 Duparre Oct 2014 B2
8866912 Mullis Oct 2014 B2
8866920 Venkataraman et al. Oct 2014 B2
8866951 Keelan Oct 2014 B2
8878950 Lelescu et al. Nov 2014 B2
8885059 Venkataraman et al. Nov 2014 B1
8885922 Ito et al. Nov 2014 B2
8896594 Xiong et al. Nov 2014 B2
8896719 Venkataraman et al. Nov 2014 B1
8902321 Venkataraman et al. Dec 2014 B2
8928793 McMahon Jan 2015 B2
8977038 Tian et al. Mar 2015 B2
9001226 Ng et al. Apr 2015 B1
9019426 Han et al. Apr 2015 B2
9025894 Venkataraman et al. May 2015 B2
9025895 Venkataraman et al. May 2015 B2
9030528 Pesach et al. May 2015 B2
9031335 Venkataraman et al. May 2015 B2
9031342 Venkataraman May 2015 B2
9031343 Venkataraman May 2015 B2
9036928 Venkataraman May 2015 B2
9036931 Venkataraman et al. May 2015 B2
9041823 Venkataraman et al. May 2015 B2
9041824 Lelescu et al. May 2015 B2
9041829 Venkataraman et al. May 2015 B2
9042667 Venkataraman et al. May 2015 B2
9047684 Lelescu et al. Jun 2015 B2
9049367 Venkataraman et al. Jun 2015 B2
9055233 Venkataraman et al. Jun 2015 B2
9060120 Venkataraman et al. Jun 2015 B2
9060124 Venkataraman et al. Jun 2015 B2
9077893 Venkataraman et al. Jul 2015 B2
9094661 Venkataraman et al. Jul 2015 B2
9100586 McMahon et al. Aug 2015 B2
9100635 Duparre et al. Aug 2015 B2
9123117 Ciurea et al. Sep 2015 B2
9123118 Ciurea et al. Sep 2015 B2
9124815 Venkataraman et al. Sep 2015 B2
9124831 Mullis Sep 2015 B2
9124864 Mullis Sep 2015 B2
9128228 Duparre Sep 2015 B2
9129183 Venkataraman et al. Sep 2015 B2
9129377 Ciurea et al. Sep 2015 B2
9143711 McMahon Sep 2015 B2
9147254 Florian et al. Sep 2015 B2
9185276 Rodda et al. Nov 2015 B2
9188765 Venkataraman et al. Nov 2015 B2
9191580 Venkataraman et al. Nov 2015 B2
9197821 McMahon Nov 2015 B2
9210392 Nisenzon et al. Dec 2015 B2
9214013 Venkataraman et al. Dec 2015 B2
9235898 Venkataraman et al. Jan 2016 B2
9235900 Ciurea et al. Jan 2016 B2
9240049 Ciurea et al. Jan 2016 B2
9247117 Jacques Jan 2016 B2
9253380 Venkataraman et al. Feb 2016 B2
9253397 Lee et al. Feb 2016 B2
9256974 Hines Feb 2016 B1
9264592 Rodda et al. Feb 2016 B2
9264610 Duparre Feb 2016 B2
9361662 Lelescu et al. Jun 2016 B2
9374512 Venkataraman et al. Jun 2016 B2
9412206 McMahon et al. Aug 2016 B2
9413953 Maeda Aug 2016 B2
9426343 Rodda et al. Aug 2016 B2
9426361 Venkataraman et al. Aug 2016 B2
9438888 Venkataraman et al. Sep 2016 B2
9445003 Lelescu et al. Sep 2016 B1
9456134 Venkataraman et al. Sep 2016 B2
9456196 Kim et al. Sep 2016 B2
9462164 Venkataraman et al. Oct 2016 B2
9485496 Venkataraman et al. Nov 2016 B2
9497370 Venkataraman et al. Nov 2016 B2
9497429 Mullis et al. Nov 2016 B2
9516222 Duparre et al. Dec 2016 B2
9519972 Venkataraman et al. Dec 2016 B2
9521319 Rodda et al. Dec 2016 B2
9521416 McMahon et al. Dec 2016 B1
9536166 Venkataraman et al. Jan 2017 B2
9576369 Venkataraman et al. Feb 2017 B2
9578237 Duparre et al. Feb 2017 B2
9578259 Molina Feb 2017 B2
9602805 Venkataraman et al. Mar 2017 B2
9633442 Venkataraman et al. Apr 2017 B2
9635274 Lin et al. Apr 2017 B2
9638883 Duparre May 2017 B1
9661310 Deng et al. May 2017 B2
9706132 Nisenzon et al. Jul 2017 B2
9712759 Venkataraman et al. Jul 2017 B2
9729865 Kuo et al. Aug 2017 B1
9733486 Lelescu et al. Aug 2017 B2
9741118 Mullis Aug 2017 B2
9743051 Venkataraman et al. Aug 2017 B2
9749547 Venkataraman et al. Aug 2017 B2
9749568 McMahon Aug 2017 B2
9754422 McMahon et al. Sep 2017 B2
9766380 Duparre et al. Sep 2017 B2
9769365 Jannard Sep 2017 B1
9774789 Ciurea et al. Sep 2017 B2
9774831 Venkataraman et al. Sep 2017 B2
9787911 McMahon et al. Oct 2017 B2
9794476 Nayar et al. Oct 2017 B2
9800856 Venkataraman et al. Oct 2017 B2
9800859 Venkataraman et al. Oct 2017 B2
9807382 Duparre et al. Oct 2017 B2
9811753 Venkataraman et al. Nov 2017 B2
9813616 Lelescu et al. Nov 2017 B2
9813617 Venkataraman et al. Nov 2017 B2
9826212 Newton et al. Nov 2017 B2
9858673 Ciurea et al. Jan 2018 B2
9864921 Venkataraman et al. Jan 2018 B2
9866739 McMahon Jan 2018 B2
9888194 Duparre Feb 2018 B2
9892522 Smirnov et al. Feb 2018 B2
9898856 Yang et al. Feb 2018 B2
9917998 Venkataraman et al. Mar 2018 B2
9924092 Rodda et al. Mar 2018 B2
9936148 McMahon Apr 2018 B2
9942474 Venkataraman et al. Apr 2018 B2
9955070 Lelescu et al. Apr 2018 B2
9986224 Mullis May 2018 B2
10009538 Venkataraman et al. Jun 2018 B2
10019816 Venkataraman et al. Jul 2018 B2
10027901 Venkataraman et al. Jul 2018 B2
10089740 Srikanth et al. Oct 2018 B2
10091405 Molina Oct 2018 B2
10119808 Venkataraman et al. Nov 2018 B2
10122993 Venkataraman et al. Nov 2018 B2
10127682 Mullis Nov 2018 B2
10142560 Venkataraman et al. Nov 2018 B2
10182216 Mullis et al. Jan 2019 B2
10218889 McMahan Feb 2019 B2
10225543 Mullis Mar 2019 B2
10250871 Ciurea et al. Apr 2019 B2
10260866 Kadambi et al. Apr 2019 B2
10261219 Duparre et al. Apr 2019 B2
10275676 Venkataraman et al. Apr 2019 B2
10306120 Duparre May 2019 B2
10311649 McMohan et al. Jun 2019 B2
10334241 Duparre et al. Jun 2019 B2
10366472 Lelescu et al. Jul 2019 B2
10375302 Nayar et al. Aug 2019 B2
10375319 Venkataraman et al. Aug 2019 B2
10380752 Ciurea et al. Aug 2019 B2
10390005 Nisenzon et al. Aug 2019 B2
10412314 McMahon et al. Sep 2019 B2
10430682 Venkataraman et al. Oct 2019 B2
10455168 McMahon Oct 2019 B2
10455218 Venkataraman et al. Oct 2019 B2
10462362 Lelescu et al. Oct 2019 B2
10482618 Jain et al. Nov 2019 B2
10540806 Yang et al. Jan 2020 B2
10542208 Lelescu et al. Jan 2020 B2
10547772 Molina Jan 2020 B2
10557705 Kadambi et al. Feb 2020 B2
10560684 Mullis Feb 2020 B2
10574905 Srikanth et al. Feb 2020 B2
10638099 Mullis et al. Apr 2020 B2
10643383 Venkataraman May 2020 B2
10674138 Venkataraman et al. Jun 2020 B2
10694114 Venkataraman et al. Jun 2020 B2
10708492 Venkataraman et al. Jul 2020 B2
10735635 Duparre Aug 2020 B2
10742861 McMahon Aug 2020 B2
10767981 Venkataraman et al. Sep 2020 B2
10805589 Venkataraman et al. Oct 2020 B2
10818026 Jain et al. Oct 2020 B2
10839485 Lelescu et al. Nov 2020 B2
10909707 Ciurea et al. Feb 2021 B2
10944961 Ciurea et al. Mar 2021 B2
10958892 Mullis Mar 2021 B2
10984276 Venkataraman et al. Apr 2021 B2
11022725 Duparre et al. Jun 2021 B2
11024046 Venkataraman Jun 2021 B2
11525906 Kadambi et al. Dec 2022 B2
20010005225 Clark et al. Jun 2001 A1
20010019621 Hanna et al. Sep 2001 A1
20010028038 Hamaguchi et al. Oct 2001 A1
20010038387 Tomooka et al. Nov 2001 A1
20020003669 Kedar et al. Jan 2002 A1
20020012056 Trevino et al. Jan 2002 A1
20020015536 Warren et al. Feb 2002 A1
20020027608 Johnson et al. Mar 2002 A1
20020028014 Ono Mar 2002 A1
20020039438 Mori et al. Apr 2002 A1
20020057845 Fossum et al. May 2002 A1
20020061131 Sawhney et al. May 2002 A1
20020063807 Margulis May 2002 A1
20020075450 Aratani et al. Jun 2002 A1
20020087403 Mevers et al. Jul 2002 A1
20020089596 Yasuo Jul 2002 A1
20020094027 Sato et al. Jul 2002 A1
20020101528 Lee et al. Aug 2002 A1
20020113867 Takigawa et al. Aug 2002 A1
20020113888 Sonoda et al. Aug 2002 A1
20020118113 Oku et al. Aug 2002 A1
20020120634 Min et al. Aug 2002 A1
20020122113 Foote Sep 2002 A1
20020163054 Sada Nov 2002 A1
20020167537 Trajkovic Nov 2002 A1
20020171666 Endo et al. Nov 2002 A1
20020177054 Saitoh et al. Nov 2002 A1
20020190991 Efran et al. Dec 2002 A1
20020195548 Dowski, Jr. et al. Dec 2002 A1
20030025227 Daniell Feb 2003 A1
20030026474 Yano Feb 2003 A1
20030086079 Barth et al. May 2003 A1
20030124763 Fan et al. Jul 2003 A1
20030140347 Varsa Jul 2003 A1
20030156189 Utsumi et al. Aug 2003 A1
20030179418 Wengender et al. Sep 2003 A1
20030188659 Merry et al. Oct 2003 A1
20030190072 Adkins et al. Oct 2003 A1
20030198377 Ng Oct 2003 A1
20030211405 Venkataraman Nov 2003 A1
20030231179 Suzuki Dec 2003 A1
20040003409 Berstis Jan 2004 A1
20040008271 Hagimori et al. Jan 2004 A1
20040012689 Tinnerino et al. Jan 2004 A1
20040027358 Nakao Feb 2004 A1
20040047274 Amanai Mar 2004 A1
20040050104 Ghosh et al. Mar 2004 A1
20040056966 Schechner et al. Mar 2004 A1
20040061787 Lin et al. Apr 2004 A1
20040066454 Otani et al. Apr 2004 A1
20040071367 Irani et al. Apr 2004 A1
20040075654 Hsiao et al. Apr 2004 A1
20040096119 Williams et al. May 2004 A1
20040100570 Shizukuishi May 2004 A1
20040105021 Hu Jun 2004 A1
20040114807 Lelescu et al. Jun 2004 A1
20040141659 Zhang Jul 2004 A1
20040151401 Sawhnev et al. Aug 2004 A1
20040165090 NinQ Aug 2004 A1
20040169617 Yelton et al. Sep 2004 A1
20040170340 Tipping et al. Sep 2004 A1
20040174439 Upton Sep 2004 A1
20040179008 Gordon et al. Sep 2004 A1
20040179834 Szajewski et al. Sep 2004 A1
20040196379 Chen et al. Oct 2004 A1
20040207600 ZhanQ et al. Oct 2004 A1
20040207836 Chhibber et al. Oct 2004 A1
20040212734 Macinnis et al. Oct 2004 A1
20040213449 Safaee-Rad et al. Oct 2004 A1
20040218809 Blake et al. Nov 2004 A1
20040234873 Venkataraman Nov 2004 A1
20040239782 Equitz et al. Dec 2004 A1
20040239885 Jaynes et al. Dec 2004 A1
20040240052 Minefuji et al. Dec 2004 A1
20040251509 Choi Dec 2004 A1
20040264806 Herley Dec 2004 A1
20050006477 Patel Jan 2005 A1
20050007461 Chou et al. Jan 2005 A1
20050009313 Suzuki et al. Jan 2005 A1
20050010621 Pinto et al. Jan 2005 A1
20050012035 Miller Jan 2005 A1
20050036778 DeMonte Feb 2005 A1
20050047678 Jones et al. Mar 2005 A1
20050048690 Yamamoto Mar 2005 A1
20050068436 Fraenkel et al. Mar 2005 A1
20050083531 Millerd et al. Apr 2005 A1
20050084179 Hanna et al. Apr 2005 A1
20050111705 Waupotitsch et al. May 2005 A1
20050117015 Cutler Jun 2005 A1
20050128509 Tokkonen et al. Jun 2005 A1
20050128595 Shimizu Jun 2005 A1
20050132098 Sonoda et al. Jun 2005 A1
20050134698 Schroeder et al. Jun 2005 A1
20050134699 Nagashima Jun 2005 A1
20050134712 Gruhlke et al. Jun 2005 A1
20050147277 HiQaki et al. Jul 2005 A1
20050151759 Gonzalez-Banos et al. Jul 2005 A1
20050168924 Wu et al. Aug 2005 A1
20050175257 Kuroki Aug 2005 A1
20050185711 Pfister et al. Aug 2005 A1
20050203380 Sauer et al. Sep 2005 A1
20050205785 Hornback et al. Sep 2005 A1
20050219264 Shum et al. Oct 2005 A1
20050219363 Kohler et al. Oct 2005 A1
20050224843 Boemler Oct 2005 A1
20050225654 Feldman et al. Oct 2005 A1
20050265633 Piacentino et al. Dec 2005 A1
20050275946 Choo et al. Dec 2005 A1
20050286612 Takanashi Dec 2005 A1
20050286756 Hong et al. Dec 2005 A1
20060002635 Nestares et al. Jan 2006 A1
20060007331 Izumi et al. Jan 2006 A1
20060013318 Webb et al. Jan 2006 A1
20060018509 Miyoshi Jan 2006 A1
20060023197 Joel Feb 2006 A1
20060023314 Boettiger et al. Feb 2006 A1
20060028476 Sobel et al. Feb 2006 A1
20060029270 Berestov et al. Feb 2006 A1
20060029271 Miyoshi et al. Feb 2006 A1
20060033005 Jerdev et al. Feb 2006 A1
20060034003 Zalevsky Feb 2006 A1
20060034531 Poon et al. Feb 2006 A1
20060035415 Wood Feb 2006 A1
20060038891 Okutomi et al. Feb 2006 A1
20060039611 Rother et al. Feb 2006 A1
20060046204 Ono et al. Mar 2006 A1
20060049930 Zruya et al. Mar 2006 A1
20060050980 Kohashi et al. Mar 2006 A1
20060054780 Garrood et al. Mar 2006 A1
20060054782 Olsen et al. Mar 2006 A1
20060055811 Frtiz et al. Mar 2006 A1
20060069478 Iwama Mar 2006 A1
20060072029 Miyatake et al. Apr 2006 A1
20060087747 Ohzawa et al. Apr 2006 A1
20060098888 Morishita May 2006 A1
20060103754 Wenstrand et al. May 2006 A1
20060119597 Oshino Jun 2006 A1
20060125936 Gruhike et al. Jun 2006 A1
20060138322 Costello et al. Jun 2006 A1
20060139475 Esch et al. Jun 2006 A1
20060152803 Provitola Jul 2006 A1
20060153290 Watabe et al. Jul 2006 A1
20060157640 Perlman et al. Jul 2006 A1
20060159369 Young Jul 2006 A1
20060176566 Boettiger et al. Aug 2006 A1
20060187322 Janson, Jr. et al. Aug 2006 A1
20060187338 May et al. Aug 2006 A1
20060197937 Bamji et al. Sep 2006 A1
20060203100 Ajito et al. Sep 2006 A1
20060203113 Wada et al. Sep 2006 A1
20060210146 Gu Sep 2006 A1
20060210186 Berkner Sep 2006 A1
20060214085 Olsen et al. Sep 2006 A1
20060215879 Whitaker Sep 2006 A1
20060215924 Steinberg et al. Sep 2006 A1
20060221250 Rossbach et al. Oct 2006 A1
20060239549 Kelly et al. Oct 2006 A1
20060243889 Farnworth et al. Nov 2006 A1
20060251410 Trutna Nov 2006 A1
20060274174 Tewinkle Dec 2006 A1
20060278948 Yamaquchi et al. Dec 2006 A1
20060279648 Senba et al. Dec 2006 A1
20060289772 Johnson et al. Dec 2006 A1
20070002159 Olsen et al. Jan 2007 A1
20070008575 Yu et al. Jan 2007 A1
20070009150 Suwa Jan 2007 A1
20070024614 Tam et al. Feb 2007 A1
20070030356 Yea et al. Feb 2007 A1
20070035707 Margulis Feb 2007 A1
20070036427 Nakamura et al. Feb 2007 A1
20070040828 Zalevsky et al. Feb 2007 A1
20070040922 McKee et al. Feb 2007 A1
20070041391 Lin et al. Feb 2007 A1
20070052825 Cho Mar 2007 A1
20070083114 Yano et al. Apr 2007 A1
20070085917 Kobayashi Apr 2007 A1
20070092245 Bazakos et al. Apr 2007 A1
20070102622 Olsen et al. May 2007 A1
20070116447 Ye May 2007 A1
20070126898 Feldman et al. Jun 2007 A1
20070127831 Venkataraman Jun 2007 A1
20070139333 Sato et al. Jun 2007 A1
20070140685 Wu Jun 2007 A1
20070146503 Shiraki Jun 2007 A1
20070146511 Kinoshita et al. Jun 2007 A1
20070153335 Hosaka Jul 2007 A1
20070158427 Zhu et al. Jul 2007 A1
20070159541 Sparks et al. Jul 2007 A1
20070160310 Tanida et al. Jul 2007 A1
20070165931 HiQaki Jul 2007 A1
20070166447 U r-Rehman et al. Jul 2007 A1
20070171290 Kroger Jul 2007 A1
20070177004 Kolehmainen et al. Aug 2007 A1
20070182843 Shimamura et al. Aug 2007 A1
20070201859 Sarrat Aug 2007 A1
20070206241 Smith et al. Sep 2007 A1
20070211164 Olsen et al. Sep 2007 A1
20070216765 Wong et al. Sep 2007 A1
20070225600 Weibrecht et al. Sep 2007 A1
20070228256 Mentzer et al. Oct 2007 A1
20070236595 Pan et al. Oct 2007 A1
20070242141 Ciurea Oct 2007 A1
20070247517 Zhang et al. Oct 2007 A1
20070257184 Olsen et al. Nov 2007 A1
20070258006 Olsen et al. Nov 2007 A1
20070258706 Raskar et al. Nov 2007 A1
20070263113 Baek et al. Nov 2007 A1
20070263114 Gurevich et al. Nov 2007 A1
20070268374 Robinson Nov 2007 A1
20070291995 Rivera Dec 2007 A1
20070296721 ChanQ et al. Dec 2007 A1
20070296832 Ota et al. Dec 2007 A1
20070296835 Olsen et al. Dec 2007 A1
20070296846 Barman et al. Dec 2007 A1
20070296847 ChanQ et al. Dec 2007 A1
20070297696 Hamza et al. Dec 2007 A1
20080006859 Mionetto Jan 2008 A1
20080019611 Larkin et al. Jan 2008 A1
20080024683 Damera-Venkata et al. Jan 2008 A1
20080025649 Liu et al. Jan 2008 A1
20080030592 Border et al. Feb 2008 A1
20080030597 Olsen et al. Feb 2008 A1
20080043095 Vetro et al. Feb 2008 A1
20080043096 Vetro et al. Feb 2008 A1
20080044170 Yap et al. Feb 2008 A1
20080054518 Ra et al. Mar 2008 A1
20080056302 Erdal et al. Mar 2008 A1
20080062164 Bassi et al. Mar 2008 A1
20080079805 TakaQi et al. Apr 2008 A1
20080080028 Bakin et al. Apr 2008 A1
20080084486 Enge et al. Apr 2008 A1
20080088793 Sverdrup et al. Apr 2008 A1
20080095523 Schilling-Benz Apr 2008 A1
20080099804 Venezia et al. May 2008 A1
20080106620 Sawachi May 2008 A1
20080112059 Choi et al. May 2008 A1
20080112635 Kondo et al. May 2008 A1
20080117289 Schowengerdt et al. May 2008 A1
20080118241 TeKolste et al. May 2008 A1
20080131019 Ng Jun 2008 A1
20080131107 Ueno Jun 2008 A1
20080151097 Chen et al. Jun 2008 A1
20080152213 Medioni et al. Jun 2008 A1
20080152215 Horie et al. Jun 2008 A1
20080152296 Oh et al. Jun 2008 A1
20080156991 Hu et al. Jul 2008 A1
20080158259 Kempf et al. Jul 2008 A1
20080158375 Kakkori et al. Jul 2008 A1
20080158698 Chang et al. Jul 2008 A1
20080165257 BoettiQer Jul 2008 A1
20080174670 Olsen et al. Jul 2008 A1
20080187305 Raskar et al. Aug 2008 A1
20080193026 Horie et al. Aug 2008 A1
20080208506 Kuwata Aug 2008 A1
20080211737 Kim et al. Sep 2008 A1
20080218610 Chapman et al. Sep 2008 A1
20080218611 Parulski et al. Sep 2008 A1
20080218612 Border et al. Sep 2008 A1
20080218613 Tanson et al. Sep 2008 A1
20080219654 Border et al. Sep 2008 A1
20080239116 Smith Oct 2008 A1
20080240598 Hasegawa Oct 2008 A1
20080246866 Kinoshita et al. Oct 2008 A1
20080247638 Tanida et al. Oct 2008 A1
20080247653 Moussavi et al. Oct 2008 A1
20080272416 Yun Nov 2008 A1
20080273751 Yuan et al. Nov 2008 A1
20080278591 Barna et al. Nov 2008 A1
20080278610 Boettiger Nov 2008 A1
20080284880 Numata Nov 2008 A1
20080291295 Kato et al. Nov 2008 A1
20080298674 Baker et al. Dec 2008 A1
20080310501 Ward et al. Dec 2008 A1
20090027543 Kanehiro Jan 2009 A1
20090050946 Duparre et al. Feb 2009 A1
20090052743 Techmer Feb 2009 A1
20090060281 Tanida et al. Mar 2009 A1
20090066693 Carson Mar 2009 A1
20090079862 Subbotin Mar 2009 A1
20090086074 Li et al. Apr 2009 A1
20090091645 Trimeche et al. Apr 2009 A1
20090091806 Inuiya Apr 2009 A1
20090092363 Daum et al. Apr 2009 A1
20090096050 Park Apr 2009 A1
20090102956 Georqiev Apr 2009 A1
20090103792 Rahn et al. Apr 2009 A1
20090109306 Shan et al. Apr 2009 A1
20090127430 Hirasawa et al. May 2009 A1
20090128644 Camp, Jr. et al. May 2009 A1
20090128833 Yahav May 2009 A1
20090129667 Ho et al. May 2009 A1
20090140131 Utaqawa Jun 2009 A1
20090141933 Waaa Jun 2009 A1
20090147919 Goto et al. Jun 2009 A1
20090152664 Klem et al. Jun 2009 A1
20090167922 Perlman et al. Jul 2009 A1
20090167923 Safaee-Rad et al. Jul 2009 A1
20090167934 Gupta Jul 2009 A1
20090175349 Ye et al. Jul 2009 A1
20090179142 Duparre et al. Jul 2009 A1
20090180021 Kikuchi et al. Jul 2009 A1
20090200622 Tai et al. Aug 2009 A1
20090201371 Matsuda et al. Aug 2009 A1
20090207235 Francini et al. Aug 2009 A1
20090219435 Yuan Sep 2009 A1
20090225203 Tanida et al. Sep 2009 A1
20090237520 Kaneko et al. Sep 2009 A1
20090245573 Saptharishi et al. Oct 2009 A1
20090245637 Barman et al. Oct 2009 A1
20090256947 Ciurea et al. Oct 2009 A1
20090263017 Tanbakuchi Oct 2009 A1
20090268192 Koenck et al. Oct 2009 A1
20090268970 Babacan et al. Oct 2009 A1
20090268983 Stone et al. Oct 2009 A1
20090273663 Yoshida Nov 2009 A1
20090274387 Jin Nov 2009 A1
20090279800 Uetani et al. Nov 2009 A1
20090284651 Srinivasan Nov 2009 A1
20090290811 Imai Nov 2009 A1
20090297056 Lelescu et al. Dec 2009 A1
20090302205 Olsen et al. Dec 2009 A9
20090317061 Jung et al. Dec 2009 A1
20090322876 Lee et al. Dec 2009 A1
20090323195 Hembree et al. Dec 2009 A1
20090323206 Oliver et al. Dec 2009 A1
20090324118 Maslov et al. Dec 2009 A1
20100002126 Wenstrand et al. Jan 2010 A1
20100002313 Duparre et al. Jan 2010 A1
20100002314 Duparre Jan 2010 A1
20100007714 Kim et al. Jan 2010 A1
20100013927 Nixon Jan 2010 A1
20100044815 ChanQ Feb 2010 A1
20100045809 Packard Feb 2010 A1
20100053342 Hwang et al. Mar 2010 A1
20100053347 AQarwala et al. Mar 2010 A1
20100053415 Yun Mar 2010 A1
20100053600 Tanida et al. Mar 2010 A1
20100060746 Olsen et al. Mar 2010 A9
20100073463 Momonoi et al. Mar 2010 A1
20100074532 Gordon et al. Mar 2010 A1
20100085351 Deb et al. Apr 2010 A1
20100085425 Tan Apr 2010 A1
20100086227 Sun et al. Apr 2010 A1
20100091389 Henriksen et al. Apr 2010 A1
20100097444 Lablans Apr 2010 A1
20100097491 Farina et al. Apr 2010 A1
20100103175 Okutomi et al. Apr 2010 A1
20100103259 Tanida et al. Apr 2010 A1
20100103308 Butterfield et al. Apr 2010 A1
20100111444 Coffman May 2010 A1
20100118127 Nam et al. May 2010 A1
20100128145 Pitts et al. May 2010 A1
20100129048 Pitts et al. May 2010 A1
20100133230 Henriksen et al. Jun 2010 A1
20100133418 Sargent et al. Jun 2010 A1
20100141802 KniQht et al. Jun 2010 A1
20100142828 Chang et al. Jun 2010 A1
20100142839 Lakus-Becker Jun 2010 A1
20100157073 Kondo et al. Jun 2010 A1
20100165152 Lim Jul 2010 A1
20100166410 Chang Jul 2010 A1
20100171866 Brady et al. Jul 2010 A1
20100177411 HeQde et al. Jul 2010 A1
20100182406 Benitez Jul 2010 A1
20100194860 Mentz et al. Aug 2010 A1
20100194901 van Hoorebeke et al. Aug 2010 A1
20100195716 Klein Gunnewiek et al. Aug 2010 A1
20100201809 Oyama et al. Aug 2010 A1
20100201834 Maruyama et al. Aug 2010 A1
20100202054 Niederer Aug 2010 A1
20100202683 Robinson Aug 2010 A1
20100208100 Olsen et al. Aug 2010 A9
20100214423 Ogawa Aug 2010 A1
20100220212 Perlman et al. Sep 2010 A1
20100223237 Mishra et al. Sep 2010 A1
20100225740 Jung et al. Sep 2010 A1
20100231285 Boomer et al. Sep 2010 A1
20100238327 Griffith et al. Sep 2010 A1
20100244165 Lake et al. Sep 2010 A1
20100245684 Xiao et al. Sep 2010 A1
20100254627 Panahpour Tehrani et al. Oct 2010 A1
20100259610 Petersen Oct 2010 A1
20100265346 Iizuka Oct 2010 A1
20100265381 Yamamoto et al. Oct 2010 A1
20100265385 KniQht et al. Oct 2010 A1
20100277629 Tanaka Nov 2010 A1
20100281070 Chan et al. Nov 2010 A1
20100289941 Ito et al. Nov 2010 A1
20100290483 Park et al. Nov 2010 A1
20100296724 Chang et al. Nov 2010 A1
20100302423 Adams, Jr. et al. Dec 2010 A1
20100309292 Ho et al. Dec 2010 A1
20100309368 Choi et al. Dec 2010 A1
20100321595 Chiu Dec 2010 A1
20100321640 Yeh et al. Dec 2010 A1
20100329556 Mitarai et al. Dec 2010 A1
20100329582 Albu et al. Dec 2010 A1
20110001037 Tewinkle Jan 2011 A1
20110013006 Uzenbajakava et al. Jan 2011 A1
20110018973 Takayama Jan 2011 A1
20110019048 Raynor et al. Jan 2011 A1
20110019243 Constant, Jr. et al. Jan 2011 A1
20110031381 Tay et al. Feb 2011 A1
20110032341 Ignatov et al. Feb 2011 A1
20110032370 LudwiQ Feb 2011 A1
20110033129 Robinson Feb 2011 A1
20110038536 GonQ Feb 2011 A1
20110043604 Peleg et al. Feb 2011 A1
20110043613 Rohaly et al. Feb 2011 A1
20110043661 Podoleanu Feb 2011 A1
20110043665 Qasahara Feb 2011 A1
20110043668 McKinnon et al. Feb 2011 A1
20110044502 Liu et al. Feb 2011 A1
20110051255 Lee et al. Mar 2011 A1
20110055729 Mason et al. Mar 2011 A1
20110064327 Dagher et al. Mar 2011 A1
20110069189 Venkataraman et al. Mar 2011 A1
20110080487 Venkataraman et al. Apr 2011 A1
20110084893 Lee et al. Apr 2011 A1
20110085028 Samadani et al. Apr 2011 A1
20110090217 Mashitani et al. Apr 2011 A1
20110102553 Corcoran et al. May 2011 A1
20110108708 Olsen et al. May 2011 A1
20110115886 Nguyen et al. May 2011 A1
20110121421 Charbon et al. May 2011 A1
20110122308 Duparre May 2011 A1
20110128393 Tavi et al. Jun 2011 A1
20110128412 Milnes et al. Jun 2011 A1
20110129165 Lim et al. Jun 2011 A1
20110141309 Nagashima et al. Jun 2011 A1
20110142138 Tian et al. Jun 2011 A1
20110149408 HahQholt et al. Jun 2011 A1
20110149409 Haugholt et al. Jun 2011 A1
20110150321 Cheong et al. Jun 2011 A1
20110153248 Gu et al. Jun 2011 A1
20110157321 Nakajima et al. Jun 2011 A1
20110157451 ChanQ Jun 2011 A1
20110169994 Francesco et al. Jul 2011 A1
20110176020 ChanQ Jul 2011 A1
20110181797 Galstian et al. Jul 2011 A1
20110193944 Lian et al. Aug 2011 A1
20110199458 Havasaka et al. Aug 2011 A1
20110200319 Kravitz et al. Aug 2011 A1
20110206291 Kashani et al. Aug 2011 A1
20110207074 Hall-Holt et al. Aug 2011 A1
20110211068 Yokota Sep 2011 A1
20110211077 Nayar et al. Sep 2011 A1
20110211824 Georgiev et al. Sep 2011 A1
20110221599 HoQasten Sep 2011 A1
20110221658 Haddick et al. Sep 2011 A1
20110221939 Jerdev Sep 2011 A1
20110221950 Oostra et al. Sep 2011 A1
20110222757 Yeatman, Jr. et al. Sep 2011 A1
20110228142 Brueckner et al. Sep 2011 A1
20110228144 Tian et al. Sep 2011 A1
20110234825 Liu et al. Sep 2011 A1
20110234841 Akeley et al. Sep 2011 A1
20110241234 Duparre Oct 2011 A1
20110242342 Goma et al. Oct 2011 A1
20110242355 Goma et al. Oct 2011 A1
20110242356 Aleksic et al. Oct 2011 A1
20110243428 Das Gupta et al. Oct 2011 A1
20110255592 Sung et al. Oct 2011 A1
20110255745 Hodder et al. Oct 2011 A1
20110255786 Hunter et al. Oct 2011 A1
20110261993 Weiming et al. Oct 2011 A1
20110267264 Mccarthy et al. Nov 2011 A1
20110267348 Lin et al. Nov 2011 A1
20110273531 Ito et al. Nov 2011 A1
20110274175 Sumitomo Nov 2011 A1
20110274366 Tardif Nov 2011 A1
20110279705 Kuang et al. Nov 2011 A1
20110279721 McMahon Nov 2011 A1
20110285701 Chen et al. Nov 2011 A1
20110285866 Bhrugumalla et al. Nov 2011 A1
20110285910 Bamii et al. Nov 2011 A1
20110292216 Fergus et al. Dec 2011 A1
20110298898 JunQ et al. Dec 2011 A1
20110298917 Yanagita Dec 2011 A1
20110300929 Tardif et al. Dec 2011 A1
20110310980 Mathew Dec 2011 A1
20110316968 Taguchi et al. Dec 2011 A1
20110317766 Lim et al. Dec 2011 A1
20120012748 Pain Jan 2012 A1
20120013748 Stanwood et al. Jan 2012 A1
20120014456 Martinez Bauza et al. Jan 2012 A1
20120019530 Baker Jan 2012 A1
20120019700 Gaber Jan 2012 A1
20120023456 Sun Jan 2012 A1
20120026297 Sato Feb 2012 A1
20120026342 Yu et al. Feb 2012 A1
20120026366 Golan et al. Feb 2012 A1
20120026451 Nystrom Feb 2012 A1
20120026478 Chen et al. Feb 2012 A1
20120038745 Yu et al. Feb 2012 A1
20120039525 Tian et al. Feb 2012 A1
20120044249 Mashitani et al. Feb 2012 A1
20120044372 Cote et al. Feb 2012 A1
20120051624 Ando Mar 2012 A1
20120056982 Katz et al. Mar 2012 A1
20120057040 Park et al. Mar 2012 A1
20120062697 Treado et al. Mar 2012 A1
20120062702 JianQ et al. Mar 2012 A1
20120062756 Tian et al. Mar 2012 A1
20120069235 Imai Mar 2012 A1
20120081519 Goma et al. Apr 2012 A1
20120086803 Malzbender et al. Apr 2012 A1
20120105590 Fukumoto et al. May 2012 A1
20120105654 Kwatra et al. May 2012 A1
20120105691 Wagas et al. May 2012 A1
20120113232 Joblove May 2012 A1
20120113318 Galstian et al. May 2012 A1
20120113413 Miahczylowicz-Wolski et al. May 2012 A1
20120114224 Xu et al. May 2012 A1
20120114260 Takahashi et al. May 2012 A1
20120120264 Lee et al. May 2012 A1
20120127275 Von Zitzewitz et al. May 2012 A1
20120127284 Bar-Zeev et al. May 2012 A1
20120147139 Li et al. Jun 2012 A1
20120147205 Lelescu et al. Jun 2012 A1
20120153153 ChanQ et al. Jun 2012 A1
20120154551 Inoue Jun 2012 A1
20120155830 Sasaki et al. Jun 2012 A1
20120162374 Markas et al. Jun 2012 A1
20120163672 McKinnon Jun 2012 A1
20120163725 Fukuhara Jun 2012 A1
20120169433 Mullins et al. Jul 2012 A1
20120170134 Bolis et al. Jul 2012 A1
20120176479 Mayhew et al. Jul 2012 A1
20120176481 Lukk et al. Jul 2012 A1
20120188235 Wu et al. Jul 2012 A1
20120188341 Klein Gunnewiek et al. Jul 2012 A1
20120188389 Lin et al. Jul 2012 A1
20120188420 Black et al. Jul 2012 A1
20120188634 Kubala et al. Jul 2012 A1
20120198677 Duparre Aug 2012 A1
20120200669 Lai et al. Aug 2012 A1
20120200726 Bugnariu Aug 2012 A1
20120200734 Tang Aug 2012 A1
20120206582 DiCarlo et al. Aug 2012 A1
20120218455 Imai et al. Aug 2012 A1
20120219236 Ali et al. Aug 2012 A1
20120224083 Jovanovski et al. Sep 2012 A1
20120229602 Chen et al. Sep 2012 A1
20120229628 Ishiyama et al. Sep 2012 A1
20120237114 Park et al. Sep 2012 A1
20120249550 Akeley et al. Oct 2012 A1
20120249750 Izzat et al. Oct 2012 A1
20120249836 Ali et al. Oct 2012 A1
20120249853 Krolc zyk et al. Oct 2012 A1
20120250990 Bocirnea Oct 2012 A1
20120262601 Choi et al. Oct 2012 A1
20120262607 Shimura et al. Oct 2012 A1
20120268574 Gidon et al. Oct 2012 A1
20120274626 Hsieh Nov 2012 A1
20120287291 McMahon Nov 2012 A1
20120290257 Hodqe et al. Nov 2012 A1
20120293489 Chen et al. Nov 2012 A1
20120293624 Chen et al. Nov 2012 A1
20120293695 Tanaka Nov 2012 A1
20120307084 Mantzel Dec 2012 A1
20120307093 Miyoshi Dec 2012 A1
20120307099 Yahata Dec 2012 A1
20120314033 Lee et al. Dec 2012 A1
20120314937 Kim et al. Dec 2012 A1
20120327222 Ng et al. Dec 2012 A1
20130002828 Ding et al. Jan 2013 A1
20130002953 Noguchi et al. Jan 2013 A1
20130003184 Duparre Jan 2013 A1
20130010073 Do et al. Jan 2013 A1
20130016245 Yuba Jan 2013 A1
20130016885 Tsujimoto Jan 2013 A1
20130022111 Chen et al. Jan 2013 A1
20130027580 Olsen et al. Jan 2013 A1
20130033579 Wais Feb 2013 A1
20130033585 Li et al. Feb 2013 A1
20130038696 Ding et al. Feb 2013 A1
20130047396 Au et al. Feb 2013 A1
20130050504 Saface-Rad et al. Feb 2013 A1
20130050526 Keelan Feb 2013 A1
20130057710 McMahon Mar 2013 A1
20130070060 Chatterjee et al. Mar 2013 A1
20130076967 Brunner et al. Mar 2013 A1
20130077859 Stauder et al. Mar 2013 A1
20130077880 Venkataraman et al. Mar 2013 A1
20130077882 Venkataraman et al. Mar 2013 A1
20130083172 Baba Apr 2013 A1
20130088489 Schmeitz et al. Apr 2013 A1
20130088637 Duparre Apr 2013 A1
20130093842 Yabata Apr 2013 A1
20130100254 Morioka et al. Apr 2013 A1
20130107061 Kumar et al. May 2013 A1
20130113888 Koquchi May 2013 A1
20130113899 Morohoshi et al. May 2013 A1
20130113939 Strandemar May 2013 A1
20130120536 Sonq et al. May 2013 A1
20130120605 Georgiev et al. May 2013 A1
20130121559 Hu et al. May 2013 A1
20130123985 Hirai May 2013 A1
20130127988 Wang et al. May 2013 A1
20130128049 Schofield et al. May 2013 A1
20130128068 Georgiev et al. May 2013 A1
20130128069 Georgiev et al. May 2013 A1
20130128087 Georgiev et al. May 2013 A1
20130128121 AQarwala et al. May 2013 A1
20130135315 Bares et al. May 2013 A1
20130135448 Nagumo et al. May 2013 A1
20130147979 McMahon et al. Jun 2013 A1
20130155050 Rastogi et al. Jun 2013 A1
20130162641 Zhang et al. Jun 2013 A1
20130169754 Aronsson et al. Jul 2013 A1
20130176394 Tian et al. Jul 2013 A1
20130208138 Li et al. Aug 2013 A1
20130215108 McMahon et al. Aug 2013 A1
20130215231 Hiramoto et al. Aug 2013 A1
20130216144 Robinson et al. Aug 2013 A1
20130222556 Shimada Aug 2013 A1
20130222656 Kaneko Aug 2013 A1
20130223759 Nishiyama Aug 2013 A1
20130229540 Farina et al. Sep 2013 A1
20130230237 Schlosser et al. Sep 2013 A1
20130250123 ZhanQ et al. Sep 2013 A1
20130250150 Malone et al. Sep 2013 A1
20130258067 Zhang et al. Oct 2013 A1
20130259317 Gaddy Oct 2013 A1
20130265459 Duparre et al. Oct 2013 A1
20130274596 Azizian et al. Oct 2013 A1
20130274923 By Oct 2013 A1
20130278631 Border et al. Oct 2013 A1
20130286236 Mankowski Oct 2013 A1
20130293760 Nisenzon et al. Nov 2013 A1
20130308197 Duparre Nov 2013 A1
20130321581 EI-Qhorourv et al. Dec 2013 A1
20130321589 Kirk et al. Dec 2013 A1
20130335598 Gustavsson et al. Dec 2013 A1
20130342641 Morioka et al. Dec 2013 A1
20140002674 Duparre et al. Jan 2014 A1
20140002675 Duparre et al. Jan 2014 A1
20140009586 McNamer et al. Jan 2014 A1
20140013273 NQ Jan 2014 A1
20140037137 Broaddus et al. Feb 2014 A1
20140037140 Benhimane et al. Feb 2014 A1
20140043507 WanQ et al. Feb 2014 A1
20140059462 Wernersson Feb 2014 A1
20140076336 Clayton et al. Mar 2014 A1
20140078333 Miao Mar 2014 A1
20140079336 Venkataraman et al. Mar 2014 A1
20140081454 Nuyujukian et al. Mar 2014 A1
20140085502 Lin et al. Mar 2014 A1
20140092281 Nisenzon et al. Apr 2014 A1
20140098266 Navar et al. Apr 2014 A1
20140098267 Tian et al. Apr 2014 A1
20140104490 Hsieh et al. Apr 2014 A1
20140118493 Sali et al. May 2014 A1
20140118584 Lee et al. May 2014 A1
20140125760 Au et al. May 2014 A1
20140125771 Grossmann et al. May 2014 A1
20140132810 McMahon May 2014 A1
20140139642 Ni et al. May 2014 A1
20140139643 Hogasten et al. May 2014 A1
20140140626 Cho et al. May 2014 A1
20140146132 Bagnato et al. May 2014 A1
20140146201 Knight et al. May 2014 A1
20140176592 Wilburn et al. Jun 2014 A1
20140183258 DiMoro Jul 2014 A1
20140183334 Wang et al. Jul 2014 A1
20140186045 Poddar et al. Jul 2014 A1
20140192154 Jeong et al. Jul 2014 A1
20140192253 Laroia Jul 2014 A1
20140198188 Izawa Jul 2014 A1
20140204183 Lee et al. Jul 2014 A1
20140218546 McMahon Aug 2014 A1
20140232822 Venkataraman et al. Aug 2014 A1
20140240528 Venkataraman et al. Aug 2014 A1
20140240529 Venkataraman et al. Aug 2014 A1
20140253738 Mullis Sep 2014 A1
20140267243 Venkataraman et al. Sep 2014 A1
20140267286 Duparre Sep 2014 A1
20140267633 Venkataraman et al. Sep 2014 A1
20140267762 Mullis et al. Sep 2014 A1
20140267829 McMahon et al. Sep 2014 A1
20140267890 Lelescu et al. Sep 2014 A1
20140285675 Mullis Sep 2014 A1
20140300706 Song Oct 2014 A1
20140307058 Kirk et al. Oct 2014 A1
20140307063 Lee Oct 2014 A1
20140313315 Shoham et al. Oct 2014 A1
20140321712 Ciurea et al. Oct 2014 A1
20140333731 Venkataraman et al. Nov 2014 A1
20140333764 Venkataraman et al. Nov 2014 A1
20140333787 Venkataraman et al. Nov 2014 A1
20140340539 Venkataraman et al. Nov 2014 A1
20140347509 Venkataraman et al. Nov 2014 A1
20140347748 Duparre Nov 2014 A1
20140354773 Venkataraman et al. Dec 2014 A1
20140354843 Venkataraman et al. Dec 2014 A1
20140354844 Venkataraman et al. Dec 2014 A1
20140354853 Venkataraman et al. Dec 2014 A1
20140354854 Venkataraman et al. Dec 2014 A1
20140354855 Venkataraman et al. Dec 2014 A1
20140355870 Venkataraman et al. Dec 2014 A1
20140368662 Venkataraman et al. Dec 2014 A1
20140368683 Venkataraman et al. Dec 2014 A1
20140368684 Venkataraman et al. Dec 2014 A1
20140368685 Venkataraman et al. Dec 2014 A1
20140368686 Duparre Dec 2014 A1
20140369612 Venkataraman et al. Dec 2014 A1
20140369615 Venkataraman et al. Dec 2014 A1
20140376825 Venkataraman et al. Dec 2014 A1
20140376826 Venkataraman et al. Dec 2014 A1
20150002734 Lee Jan 2015 A1
20150003752 Venkataraman et al. Jan 2015 A1
20150003753 Venkataraman et al. Jan 2015 A1
20150009353 Venkataraman et al. Jan 2015 A1
20150009354 Venkataraman et al. Jan 2015 A1
20150009362 Venkataraman et al. Jan 2015 A1
20150015669 Venkataraman et al. Jan 2015 A1
20150035992 Mullis Feb 2015 A1
20150036014 Lelescu et al. Feb 2015 A1
20150036015 Lelescu et al. Feb 2015 A1
20150042766 Ciurea et al. Feb 2015 A1
20150042767 Ciurea et al. Feb 2015 A1
20150042814 Vaziri Feb 2015 A1
20150042833 Lelescu et al. Feb 2015 A1
20150049915 Ciurea et al. Feb 2015 A1
20150049916 Ciurea et al. Feb 2015 A1
20150049917 Ciurea et al. Feb 2015 A1
20150055884 Venkataraman et al. Feb 2015 A1
20150085073 Bruis et al. Mar 2015 A1
20150085174 Shabtay et al. Mar 2015 A1
20150091900 Yang et al. Apr 2015 A1
20150095235 Dua Apr 2015 A1
20150098079 Montgomery et al. Apr 2015 A1
20150104076 Hayasaka Apr 2015 A1
20150104101 Bryant et al. Apr 2015 A1
20150122411 Rodda et al. May 2015 A1
20150124059 Georgiev et al. May 2015 A1
20150124113 Rodda et al. May 2015 A1
20150124151 Rodda et al. May 2015 A1
20150138346 Venkataraman et al. May 2015 A1
20150146029 Venkataraman et al. May 2015 A1
20150146030 Venkataraman et al. May 2015 A1
20150161798 Venkataraman et al. Jun 2015 A1
20150199793 Venkataraman et al. Jul 2015 A1
20150199841 Venkataraman et al. Jul 2015 A1
20150207990 Ford et al. Jul 2015 A1
20150228081 Kim et al. Aug 2015 A1
20150235476 McMahon et al. Aug 2015 A1
20150237329 Venkataraman et al. Aug 2015 A1
20150243480 Yamada Aug 2015 A1
20150244927 Laroia et al. Aug 2015 A1
20150245013 Venkataraman et al. Aug 2015 A1
20150248744 Havasaka et al. Sep 2015 A1
20150254868 Srikanth et al. Sep 2015 A1
20150264337 Venkataraman et al. Sep 2015 A1
20150288861 Duparre Oct 2015 A1
20150296137 Duparre et al. Oct 2015 A1
20150312455 Venkataraman et al. Oct 2015 A1
20150317638 Donaldson Nov 2015 A1
20150326852 Duparre et al. Nov 2015 A1
20150332468 Havasaka et al. Nov 2015 A1
20150373261 Rodda et al. Dec 2015 A1
20160037097 Duparre Feb 2016 A1
20160042548 Du et al. Feb 2016 A1
20160044252 Molina Feb 2016 A1
20160044257 Venkataraman et al. Feb 2016 A1
20160057332 Ciurea et al. Feb 2016 A1
20160065934 Kaza et al. Mar 2016 A1
20160163051 Mullis Jun 2016 A1
20160165106 Duparre Jun 2016 A1
20160165134 Lelescu et al. Jun 2016 A1
20160165147 Nisenzon et al. Jun 2016 A1
20160165212 Mullis Jun 2016 A1
20160182786 Anderson et al. Jun 2016 A1
20160191768 Shin et al. Jun 2016 A1
20160195733 Lelescu et al. Jul 2016 A1
20160198096 McMahon et al. Jul 2016 A1
20160209654 Riccomini et al. Jul 2016 A1
20160210785 Balachandreswaran et al. Jul 2016 A1
20160227195 Venkataraman et al. Aug 2016 A1
20160249001 McMahon Aug 2016 A1
20160255333 Nisenzon et al. Sep 2016 A1
20160261844 Kadambi Sep 2016 A1
20160266284 Duparre et al. Sep 2016 A1
20160267486 Mitra et al. Sep 2016 A1
20160267665 Venkataraman et al. Sep 2016 A1
20160267672 Ciurea et al. Sep 2016 A1
20160269626 McMahon Sep 2016 A1
20160269627 McMahon Sep 2016 A1
20160269650 Venkataraman et al. Sep 2016 A1
20160269651 Venkataraman et al. Sep 2016 A1
20160269664 Duparre Sep 2016 A1
20160309084 Venkataraman et al. Oct 2016 A1
20160309134 Venkataraman et al. Oct 2016 A1
20160316140 Navar et al. Oct 2016 A1
20160323578 Kaneko et al. Nov 2016 A1
20170004791 Aubineau et al. Jan 2017 A1
20170006233 Venkataraman et al. Jan 2017 A1
20170011405 Pandey Jan 2017 A1
20170048468 Pain et al. Feb 2017 A1
20170053382 Lelescu et al. Feb 2017 A1
20170054901 Venkataraman et al. Feb 2017 A1
20170070672 Rodda et al. Mar 2017 A1
20170070673 Lelescu et al. Mar 2017 A1
20170070753 Kaneko Mar 2017 A1
20170078568 Venkataraman et al. Mar 2017 A1
20170085845 Venkataraman et al. Mar 2017 A1
20170094243 Venkataraman et al. Mar 2017 A1
20170099465 Mullis et al. Apr 2017 A1
20170109742 Varadarajan Apr 2017 A1
20170142405 Shers et al. May 2017 A1
20170163862 Molina Jun 2017 A1
20170178363 Venkataraman et al. Jun 2017 A1
20170187933 Duparre Jun 2017 A1
20170188011 Panescu et al. Jun 2017 A1
20170244960 Ciurea et al. Aug 2017 A1
20170257562 Venkataraman et al. Sep 2017 A1
20170365104 McMahon et al. Dec 2017 A1
20180005244 Govindarajan et al. Jan 2018 A1
20180007284 Venkataraman et al. Jan 2018 A1
20180013945 Ciurea et al. Jan 2018 A1
20180024330 Laroia Jan 2018 A1
20180035057 McMahon et al. Feb 2018 A1
20180040135 Mallis Feb 2018 A1
20180048830 Venkataraman et al. Feb 2018 A1
20180048879 Venkataraman et al. Feb 2018 A1
20180081090 Duparre et al. Mar 2018 A1
20180097993 Nayar et al. Apr 2018 A1
20180109782 Duparre et al. Apr 2018 A1
20180124311 Lelescu et al. May 2018 A1
20180131852 McMahon May 2018 A1
20180139382 Venkataraman et al. May 2018 A1
20180189767 Bigioi Jul 2018 A1
20180197035 Venkataraman et al. Jul 2018 A1
20180211402 Ciurea et al. Jul 2018 A1
20180227511 McMahon Aug 2018 A1
20180240265 Yang et al. Aug 2018 A1
20180270473 Mullis Sep 2018 A1
20180286120 Fleishman et al. Oct 2018 A1
20180302554 Lelescu et al. Oct 2018 A1
20180324334 Wippermann et al. Nov 2018 A1
20180330182 Venkataraman et al. Nov 2018 A1
20180376122 Park et al. Dec 2018 A1
20190012768 Tafazoli Bilandi et al. Jan 2019 A1
20190037116 Molina Jan 2019 A1
20190037150 Srikanth et al. Jan 2019 A1
20190043253 Lucas et al. Feb 2019 A1
20190052792 Baba Feb 2019 A1
20190057513 Jain et al. Feb 2019 A1
20190063905 Venkataraman et al. Feb 2019 A1
20190089947 Venkataraman et al. Mar 2019 A1
20190098209 Venkataraman et al. Mar 2019 A1
20190109998 Venkataraman et al. Apr 2019 A1
20190164341 Venkataraman May 2019 A1
20190174040 Mcmahon Jun 2019 A1
20190174077 Mitani et al. Jun 2019 A1
20190197735 Xiong et al. Jun 2019 A1
20190215496 Mullis et al. Jul 2019 A1
20190230348 Ciurea et al. Jul 2019 A1
20190235138 Duparre et al. Aug 2019 A1
20190243086 Rodda et al. Aug 2019 A1
20190244379 Venkataraman Aug 2019 A1
20190268586 Mullis Aug 2019 A1
20190289176 Duparre Sep 2019 A1
20190347768 Lelescu et al. Nov 2019 A1
20190356863 Venkataraman et al. Nov 2019 A1
20190362515 Ciurea et al. Nov 2019 A1
20190364263 Jannard et al. Nov 2019 A1
20200026948 Venkataraman et al. Jan 2020 A1
20200151894 Jain et al. May 2020 A1
20200195862 Briggs Jun 2020 A1
20200252597 Mullis Aug 2020 A1
20200311418 Mahadeswaraswamy Oct 2020 A1
20200334905 Venkataraman Oct 2020 A1
20200389604 Venkataraman et al. Dec 2020 A1
20210042952 Jain et al. Feb 2021 A1
20210044790 Venkataraman et al. Feb 2021 A1
20210063141 Venkataraman et al. Mar 2021 A1
20210133927 Lelescu et al. May 2021 A1
20210150748 Ciurea et al. May 2021 A1
Foreign Referenced Citations (283)
Number Date Country
2488005 Apr 2002 CN
1619358 May 2005 CN
1669332 Sep 2005 CN
1727991 Feb 2006 CN
1839394 Sep 2006 CN
1985524 Jun 2007 CN
1992499 Jul 2007 CN
101010619 Aug 2007 CN
101046882 Oct 2007 CN
101064780 Oct 2007 CN
101102388 Jan 2008 CN
101147392 Mar 2008 CN
201043890 Apr 2008 CN
101212566 Jul 2008 CN
101312540 Nov 2008 CN
101427372 May 2009 CN
101433458 May 2009 CN
101551586 Oct 2009 CN
101593350 Dec 2009 CN
101606086 Dec 2009 CN
101785025 Jul 2010 CN
101883291 Nov 2010 CN
102037717 Apr 2011 CN
102164298 Aug 2011 CN
102184720 Sep 2011 CN
102375199 Mar 2012 CN
103004180 Mar 2013 CN
103765864 Apr 2014 CN
104081414 Oct 2014 CN
104508681 Apr 2015 CN
104662589 May 2015 CN
104685513 Jun 2015 CN
104685860 Jun 2015 CN
105409212 Mar 2016 CN
103765864 Jul 2017 CN
106989675 Jul 2017 CN
101662589 Aug 2017 CN
104081414 Aug 2017 CN
107077743 Aug 2017 CN
107230236 Oct 2017 CN
107346061 Nov 2017 CN
107404609 Nov 2017 CN
104685513 Apr 2018 CN
107924572 Apr 2018 CN
108307675 Jul 2018 CN
104335246 Sep 2018 CN
107404609 Feb 2020 CN
107346061 Apr 2020 CN
111537072 Aug 2020 CN
107230236 Dec 2020 CN
108307675 Dec 2020 CN
112329256 Feb 2021 CN
107077743 Mar 2021 CN
602011041799 Sep 2017 DE
677821 Oct 1995 EP
840502 May 1998 EP
1201407 May 2002 EP
1355274 Oct 2003 EP
1734766 Dec 2006 EP
1991145 Nov 2008 EP
1243945 Jan 2009 EP
2026563 Feb 2009 EP
2031592 Mar 2009 EP
2041454 Apr 2009 EP
2072785 Jun 2009 EP
2104334 Sep 2009 EP
2136345 Dec 2009 EP
2156244 Feb 2010 EP
2244484 Oct 2010 EP
957642 Apr 2011 EP
2336816 Jun 2011 EP
2339532 Jun 2011 EP
2381418 Oct 2011 EP
2386554 Nov 2011 EP
2462477 Jun 2012 EP
2502115 Sep 2012 EP
2569935 Mar 2013 EP
2652678 Oct 2013 EP
2677066 Dec 2013 EP
2708019 Mar 2014 EP
2761534 Aug 2014 EP
2777245 Sep 2014 EP
2867718 May 2015 EP
2873028 May 2015 EP
2888698 Jul 2015 EP
2888720 Jul 2015 EP
2901671 Aug 2015 EP
2973476 Jan 2016 EP
3066690 Sep 2016 EP
2569935 Dec 2016 EP
3201877 Aug 2017 EP
2652678 Sep 2017 EP
3284061 Feb 2018 EP
3286914 Feb 2018 EP
3201877 Mar 2018 EP
2817955 Apr 2018 EP
3328048 May 2018 EP
3075140 Jun 2018 EP
3201877 Dec 2018 EP
3467776 Apr 2019 EP
2708019 Oct 2019 EP
3286914 Dec 2019 EP
2761534 Nov 2020 EP
2888720 Mar 2021 EP
3328048 Apr 2021 EP
2482022 Jan 2012 GB
2708CHENP2014 Aug 2015 IN
361194 Mar 2021 IN
59-025483 Feb 1984 JP
64-037177 Feb 1989 JP
02-285772 Nov 1990 JP
6129851 May 1994 JP
07-015457 Jan 1995 JP
H0756112 Mar 1995 JP
9171075 Jun 1997 JP
9181913 Jul 1997 JP
10253351 Sep 1998 JP
11142609 May 1999 JP
11223708 Aug 1999 JP
11325889 Nov 1999 JP
2000209503 Jul 2000 JP
2001008235 Jan 2001 JP
2001194114 Jul 2001 JP
2001264033 Sep 2001 JP
2001277260 Oct 2001 JP
2001337263 Dec 2001 JP
2002195910 Jul 2002 JP
2002205310 Jul 2002 JP
2002209226 Jul 2002 JP
2002250607 Sep 2002 JP
2002252338 Sep 2002 JP
2003091726 Mar 2003 JP
2003094445 Apr 2003 JP
2003139910 May 2003 JP
2003163938 Jun 2003 JP
2003298920 Oct 2003 JP
2004221585 Aug 2004 JP
2005116022 Apr 2005 JP
2005181460 Jul 2005 JP
2005295381 Oct 2005 JP
2005303694 Oct 2005 JP
2005341569 Dec 2005 JP
2005354124 Dec 2005 JP
2006033228 Feb 2006 JP
2006033493 Feb 2006 JP
2006047944 Feb 2006 JP
2006258930 Sep 2006 JP
2007520107 Jul 2007 JP
2007259136 Oct 2007 JP
2008039852 Feb 2008 JP
2008055908 Mar 2008 JP
2008507874 Mar 2008 JP
2008172735 Jul 2008 JP
2008258885 Oct 2008 JP
2009064421 Mar 2009 JP
2009132010 Jun 2009 JP
2009300268 Dec 2009 JP
2010139288 Jun 2010 JP
2011017764 Jan 2011 JP
2011030184 Feb 2011 JP
2011109484 Jun 2011 JP
2011523538 Aug 2011 JP
2011203238 Oct 2011 JP
2012504805 Feb 2012 JP
2011052064 Mar 2013 JP
2013509022 Mar 2013 JP
2013526801 Jun 2013 JP
2014519741 Aug 2014 JP
2014521117 Aug 2014 JP
2014535191 Dec 2014 JP
2015022510 Feb 2015 JP
2015522178 Aug 2015 JP
2015534734 Dec 2015 JP
5848754 Jan 2016 JP
2016524125 Aug 2016 JP
6140709 May 2017 JP
2017519380 Jul 2017 JP
2017519380 Jul 2017 JP
2017163550 Sep 2017 JP
2017163587 Sep 2017 JP
2017531976 Oct 2017 JP
6546613 Jul 2019 JP
2019-220957 Dec 2019 JP
6630891 Dec 2019 JP
2020017999 Jan 2020 JP
6767543 Sep 2020 JP
6767558 Sep 2020 JP
1020050004239 Jan 2005 KR
100496875 Jun 2005 KR
1020110097647 Aug 2011 KR
20140045373 Apr 2014 KR
20170063827 Jun 2017 KR
101824672 Feb 2018 KR
101843994 Mar 2018 KR
101973822 Apr 2019 KR
102002165 Jul 2019 KR
102083759 Mar 2020 KR
102111181 May 2020 KR
191151 Jul 2013 SG
11201500910 Oct 2015 SG
200828994 Jul 2008 TW
200939739 Sep 2009 TW
201228382 Jul 2012 TW
1535292 May 2016 TW
2005057922 Jun 2005 WO
2006039906 Apr 2006 WO
2007013280 Feb 2007 WO
2007083579 Jul 2007 WO
2007134137 Nov 2007 WO
2008045198 Apr 2008 WO
2008050904 May 2008 WO
2008108271 Sep 2008 WO
2008108926 Sep 2008 WO
2008150817 Dec 2008 WO
2009073950 Jun 2009 WO
2009151903 Dec 2009 WO
2009157273 Dec 2009 WO
WO 2009147814 Dec 2009 WO
2010037512 Apr 2010 WO
2011008443 Jan 2011 WO
2011026527 Mar 2011 WO
2011046607 Apr 2011 WO
2011055655 May 2011 WO
2011063347 May 2011 WO
2011105814 Sep 2011 WO
2011116203 Sep 2011 WO
2011121117 Oct 2011 WO
2011143501 Nov 2011 WO
2012057619 May 2012 WO
2012057620 May 2012 WO
2012057621 May 2012 WO
2012057622 May 2012 WO
2012057623 May 2012 WO
2012074361 Jun 2012 WO
2012078126 Jun 2012 WO
2012082904 Jun 2012 WO
2012155119 Nov 2012 WO
2013003276 Jan 2013 WO
2013043751 Mar 2013 WO
2013043761 Mar 2013 WO
2013049699 Apr 2013 WO
2013055960 Apr 2013 WO
2013119706 Aug 2013 WO
2013126578 Aug 2013 WO
2013166215 Nov 2013 WO
2014004134 Jan 2014 WO
2014005123 Jan 2014 WO
2014031795 Feb 2014 WO
2014052974 Apr 2014 WO
2014032020 May 2014 WO
2014078443 May 2014 WO
2014130849 Aug 2014 WO
2014131038 Aug 2014 WO
2014133974 Sep 2014 WO
2014138695 Sep 2014 WO
2014138697 Sep 2014 WO
2014144157 Sep 2014 WO
2014145856 Sep 2014 WO
2014149403 Sep 2014 WO
2014149902 Sep 2014 WO
2014150856 Sep 2014 WO
2014153098 Sep 2014 WO
2014159721 Oct 2014 WO
2014159779 Oct 2014 WO
2014160142 Oct 2014 WO
2014163244 Oct 2014 WO
2014164550 Oct 2014 WO
2014164909 Oct 2014 WO
2014133974 Apr 2015 WO
2015048694 Apr 2015 WO
2015048906 Apr 2015 WO
2015070105 May 2015 WO
2015074078 May 2015 WO
2015081279 Jun 2015 WO
2015134996 Sep 2015 WO
2015183824 Dec 2015 WO
2016054089 Apr 2016 WO
2016172125 Oct 2016 WO
2016167814 Oct 2016 WO
2016172125 Apr 2017 WO
2016136086 Dec 2017 WO
2018053181 Mar 2018 WO
2019038193 Feb 2019 WO
Non-Patent Literature Citations (276)
Entry
US 8,957,977 B2, 02/2015, Venkataraman et al. (withdrawn)
Decision to Grant a Patent in Japanese Appln. No. 2022-521149, dated Jun. 13, 2023, 4 pages (with English translation).
An et al., “Charuco board-based omnidirectional camera calibration method,” Electronics, Dec. 2018, 7(12):421.
Ansari et al., “3-D Face Modeling Using Two Views and a Generic Face Model with Application to 3-D Face Recognition”, Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance, Jul. 22, 2003, 9 pgs.
Aufderheide et al., “A MEMS-based Smart Sensor System for Estimation of Camera Pose for Computer Vision Applications”, Research and Innovation Conference 2011, Jul. 29, 2011, pp. 1-10.
Baker et al., “Limits on Super-Resolution and How to Break Them”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Sep. 2002, vol. 24, No. 9, pp. 1167-1183.
Banz et al., “Real-Time Semi-Global Matching Disparity Estimation on the GPU”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Sep. 2002, vol. 24, No. 9, pp. 1167-1183.
Barron et al., “Intrinsic Scene Properties from a Single RGB-D Image”, 2013 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2013, Portland, OR, USA, pp. 17-24.
Bennett et al., “Multispectral Bilateral Video Fusion”, Computer Graphics (ACM SIGGRAPH Proceedings), Jul. 25, 2006, published Jul. 30, 2006, 1 pg.
Bennett et al., “Multispectral Video Fusion”, Computer Graphics (ACM SIGGRAPH Proceedings), Jul. 25, 2006, published Jul. 30, 2006, 1 pg.
Berretti et al., “Face Recognition by Super-Resolved 3D Models from Consumer Depth Cameras”, IEEE Transactions on Information Forensics and Security, vol. 9, No. 9, Sep. 2014, pp. 1436-1448.
Bertalmio et al., “Image Inpainting”, Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, 2000, ACM Pres/Addison-Wesley Publishing Co., pp. 417-424.
Bertero et al., “Super-resolution in computational imaging”, Micron, Jan. 1, 2003, vol. 34, Issues 6-7, 17 pgs.
Bishop et al., “Full-Resolution Depth Map Estimation from an Aliased Plenoptic Light Field”, ACCV Nov. 8, 2010, Part II, LNCS 6493, pp. 186-200.
Bishop et al., “Light Fick Superresolution”, Computational Photography (ICCP), 2009 IEEE International Conference, Conference Date Apr. 16-17, published Jan. 26, 2009, 9 pgs.
Bishop et al., “The Light Field Camera: Extended Depth of Field, Aliasing, and Superresolution”, IEEE Transactions on Pattern Analysis and Machine Intelligence, May 2012, vol. 34, No. 5, published Aug. 18, 2011, pp. 972-986.
Blanz et al., “A Morphable Model for The Synthesis of 3D Faces”, In Proceedings of ACM SIGGRAPH 1999, Jul. 1, 1999, pp. 187-194.
Borman et al., “Linear models for multi-frame super-resolution restoration under non-affine registration and spatially varying PSF”, Proc. SPIE, May 21, 2004, vol. 5299, 12 pgs.
Borman et al., “Block-Matching Sub-Pixel Motion Estimation from Noisy, Under-Sampled Frames—An Empirical Performance Evaluation”, Proc SPIE, Dec. 28, 1998, vol. 3653, 10 pgs.
Borman et al., “Image Resampling and Constraint Formulation for Multi-Frame Super-Resolution Restoration”, Proc SPIE, Dec. 28, 1998, vol. 3653, 10 pgs.
Borman et al., “Image Sequence Processing”, Dekker Encyclopedia of Optical Engineering, Oct. 14, 2002, 81 pgs.
Borman et al., “Nonlinear Prediction Methods for Estimation of Clique Weighting Parameters in NonGaussian Image Models”, Proc. SPIE, Sep. 22, 1998, vol. 3459, 9 pgs.
Borman et al., “Simultaneous Multi-Frame MAP Super-Resolution Video Enhancement Using Spatio-Temporal Priors”, Image Processing, 1999, ICIP 99 Proceedings, vol. 3, pp. 469-473.
Borman et al., “Super-Resolution from Inage Sequences—A Review”, Circuits & Systems, 1998, pp. 374-378.
Borman, “Topics in Multiframe Superresolution Restoration”, Thesis of Sean Borman, Apr. 2004, 282 pgs.
Bose et al., “Superresolution and Noise Filtering Using Moving Least Squares”, IEEE Transactions on Image Processing, Aug. 2006, vol. 15, Issue 8, published Jul. 17, 2006, pp. 2239-2248.
Boye et al., “Comparison of Subpixel Image Registration Algorithms”, Proc. of SPIE—IS&T Electronic Imaging, Feb. 3, 2009, vol. 7246, pp. 72460X-1-72460X-9; doi: 10.1117/12.810369.
Bruckner et al., “Artificial compound eye applying hyperenity”, Optics Express, Dec. 11, 2006, vol. 14, No. 25, pp. 12076-12084.
Bruckner et al., “Driving microoptical imaging systems towards miniature camera applications”, Proc. SPIE, Micro-Optics, May 13, 2010, 11 pgs.
Bruckner et al., “Thin wafer-level camera lenses inspired by insect compound eyes”, Optics Express, Nov. 22, 2010, vol. 18, No. 24, pp. 24379-24394.
Bryan et al., “Perspective Distortion from Interpersonal Distance Is an Implicit Visual Cue for Social Judgments of Faces”, PLOS One, vol. 7, Issue 9, Sep. 26, 2012, e45301, doi:10.1371/journal.pone.0045301, 9 pgs.
Bulat et al., “How far are we from solving the 2D & 3D Face Alignment problem? (and a dataset of 230,000 3D facial landmarks)”, arxiv.org, Cornell University Library, 201 Olin Library Comell University Ithaca, NY 14853, Mar. 21, 2017.
Cai et al., “3D Deformable Face Tracking with a Commodity Depth Camera”, Proceedings of the European Conference on Computer Vision: Part III, Sep. 5-11, 2010, 14pgs.
Callenberg et al., “Snapshot Difference Imaging using Time-of-Flight Sensors,” CoRR, May 2017, arxiv.org/abs/1705.07108, 10 pages.
Capel, “Image Mosaicing and Super-resolution”, Retrieved on Nov. 10, 2012, Retrieved from the Internet at URL :<http://citeseerx.ist.psu.edu/viewdoc/download?doi=1 0.1.1.226.2643&rep=rep1&type=pdf>, 2001, 269 pgs.
Caron et al., “Multiple camera types simultaneous stereo calibration, Robotics and Automation (ICRA)”, 2011 IEEE International Conference On, May 1, 2011 (May 1, 2011), pp. 2933-2938.
Carroll et al., “Image Warps for Artistic Perspective 127, 9 pgs.Manipulation”, ACM Transactions on Graphics (TOG), vol. 29, No. 4, Jul. 26, 2010, Article No.
Chan et al., “Extending the Depth of Field in a Compound-Bye Imaging System with Super-Resolution Reconstruction”, Proceedings—International Conference on Pattern Recognition, Jan. 1, 2006, vol. 3, pp. 623-626.
Chan et al., “Investigation of Computational Compound-Eye Imaging System with Super-Resolution Reconstruction”, IEEE, ISASSP, Jun. 19, 2006, pp. 1177-1180.
Chan et al., “Super-resolution reconstruction in a computational compound-eye imaging system”, Multidim. Syst. Sign. Process, published online Feb. 23, 2007, vol. 18, pp. 83-101.
Chen et al., “Human Face Modeling and Recognition Through Multi-View High Resolution Stereopsis”, IEEE Conference on Computer Vision and Pattern Recognition Workshop, Jun. 17-22, 2006, 6 pgs.
Chen et al., “Image Matting with Local and Nonlocal Smooth Priors”, CVPR '13 Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23, 2013, pp. 1902-1907.
Chen et al., “Interactive deformation of light fields”, Symposium on Interactive 3D Graphics, 2005, pp. 139-146.
Chen et al., “KNN matting”, 2012 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 16-21, 2012, Providence, RI, USA, pp. 869-876.
Chen et al., “KNN Matting”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Sep. 2013, vol. 35, No. 9, pp. 2175-2188.
Collins et al., “An Active Camera System for Acquiring Multi-View Video”, IEEE 2002 International Conference on Image Processing, Date of Conference: Sep. 22-25, 2002, Rochester, NY, 4 pgs.
Cooper et al., “The perceptual basis of common photographic practice”, Journal of Vision, vol. 12, No. 5, Article 8, May 25, 2012, pp. 1-14.
Crabb et al., “Real-time foreground segmentation via range and color imaging”, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Anchorage, AK, USA, Jun. 23-28, 2008, pp. 1-5.
Cui, Zhaopeng, et al. “Polarimetric multi-view stereo.” Proceedings of the IEEE conference on computer vision and pattern recognition. 2017, pp. 1558-1567.
Dainese et al., “Accurate Depth-Map Estimation For 3D Face Modeling”, IEEE European Signal Processing Conference, Sep. 4-8, 2005, 4 pgs.
Debevec et al., “Recovering High Dynamic Range Radiance Maps from Photographs”, Computer Graphics (ACM SIGGRAPH Proceedings), Aug. 16, 1997, 10 pgs.
Diagnosis, Analytical Chemistry (American Chemical Society), vol. 80, No. 10, May 15, 2008, pp. 3699-3707.
Do et al., Immersive Visual Communication, IEEE Signal Processing Magazine, vol. 28, Issue 1, Jan. 2011, DOI: 10.1109/MSP.2010.939075, Retrieved from: http://minhdo.ece.illinois.edu/publications/ImmerComm_SPM.pdf, pp. 58-66.
Do, Minh N. “Immersive Visual Communication with Depth”, Presented at Microsoft Research, Jun. 15, 2011, Retrieved from: http://minhdo.ece.illinois.edu/talks/ImmersiveComm.pdf, 42 pgs.
Dou et al., “End-to-end 3D face reconstruction with deep neural networks”, arXiv:1704.05020v1, Apr. 17, 2017, 10 pgs.
Drouin et al., “Fast Multiple-Baseline Stereo with Occlusion”, Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05), Ottawa, Ontario, Canada, Jun. 13-16, 2005, pp. 540-547.
Drouin et al., “Geo-Consistency for Wide Multi-Camera Stereo”, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), vol. 1, Jun. 20-25, 2005, pp. 351-358.
Drouin et al., “Improving Border Localization of Multi-Baseline Stereo Using Border-Cut”, International Journal of Computer Vision, Jul. 5, 2006, vol. 83, Issue 3, 8 pgs.
Drulea et al., “Motion Estimation Using the Correlation Transform”, IEEE Transactions on Image Processing, Aug. 2013, vol. 22, No. 8, pp. 3260-3270, first published May 14, 2013.
Duparre et al., “Artificial apposition compound eye fabricated by micro-optics technology”, Applied Optics, Aug. 1, 2004, vol. 43, No. 22, pp. 4303-4310.
Duparre et al., “Artificial compound eye zoom camera”, Bioinspiration & Biomimetics, Nov. 21, 2008, vol. 3, pp. 1-6.
Duparre et al., “Artificial compound eyes—different concepts and their application to ultra flat image acquisition sensors”, MOEMS and Miniaturized Systems IV, Proc. SPIE 5346, Jan. 24, 2004, pp. 89-100.
Duparre et al., “Chirped arrays of refractive ellipsoidal microlenses for aberration correction onder oblique incidence”, Optics Express, Dec. 26, 2005, vol. 13, No. 26, pp. 10539-10551.
Duparre et al., “Microoptical artificial compound eyes—from design to experimental verification of two different concepts”, Proc. of SPIE, Optical Design and Engineering II, vol. 5962, Oct. 17, 2005, pp. 59622A-1-59622A-12.
Duparre et al., “Microoptical Artificial Compound Eyes—Two Different Concepts for Compact Imaging Systems”, 11th Microoptics Conference, Oct. 30-Nov. 2, 2005, 2 pgs.
Duparre et al., “Micro-optical artificial compound eyes”, Bioinspiration & Biomimetics, Apr. 6, 2006, vol. 1, pp. R1-R16.
Duparre et al., “Microoptical telescope compound eye”, Optics Express, Feb. 7, 2005, vol. 13, No. 3, pp. 889-903.
Duparre et al., “Micro-optically fabricated artificial apposition compound eye”, Electronic Imaging—Science and Technology, Prod. SPIE 5301, Jan. 2004, pp. 25-33.
Duparre et al., “Theoretical analysis of an artificial superposition compound eye for application in ultra flat digital image acquisition devices”, Optical Systems Design, Proc. SPIE 5249, Sep. 2003, pp. 408-418.
Duparre et al., “Thin compound-eye camera”, Applied Optics, May 20, 2005, vol. 44, No. 15, pp. 2949-2956.
Duparre et al., “Ultra-Thin Camera Based on Artificial Apposition Compound Eyes”, 10th Microoptics Conference, Sep. 1-3, 2004, 2 pgs.
Duparre et al., Novel Optics/Micro-Optics for Miniature Imaging, 2006.
Eng et al., “Gaze correction for 3D tele-immersive communication system”, IVMSP Workshop. 2013 IEEE 11th IEEE, Jun. 10, 2013.
Exchangeable image file format for digital still cameras: Exif Version 2.2_. Japan Electronics and Information Technology Industries Association, Prepared by Technical Standardization Committee on AV & IT Storage, 2002.
Fanaswala, “Regularized Super-Resolution of Multi-View Images”, Retrieved on Nov. 10, 2012 (Nov. 10, 2012). Retrieved from the Internet at URL:<http://www.site.uottawa.ca/-edubois/theses/Fanaswala_thesis.pdf>, 2009, 163 pgs.
Fang et al., “Volume Morphing Methods for Landmark Based 3D Image Deformation”, SPIE vol. 2710, Proc. 1996 SPIE Intl Symposium on Medical Imaging, Newport Beach, CA, Feb. 10, 1996, pp. 404-415.
Fangmin et al., “3D Face Reconstruction Based on Convolutional Neural Network”, 2017 10th International Conference on Intelligent Computation Technology and Automation, Oct. 9-10, 2017, Changsha, China.
Farrell et al., “Resolution and Light Sensitivity Tradeoff with Pixel Size”, Proceedings of the SPIE Electronic Imaging 2006 Conference, Feb. 2, 2006, vol. 6069, 8 pgs.
Farsiu et al., “Advances and Challenges in Super-Resolution”, International Journal of Imaging Systems and Technology, Aug. 12, 2004, vol. 14, pp. 47-57.
Farsiu et al., “Fast and Robust Multiframe Super Resolution”, IEEE Transactions on Image Processing, Oct. 2004, published Sep. 3, 2004, vol. 13, No. 10, pp. 1327-1344.
Farsiu et al., “Multiframe Demosaicing and Super-Resolution of Color Images”, IEEE Transactions on Image Processing, Jan. 2006, vol. 15, No. 1, date of publication Dec. 12, 2005, pp. 141-159.
Fechteler et al., Fast and High Resolution 3D Face Scanning, IEEE International Conference on Image Processing, Sep. 16-Oct. 19, 2007, 4 pgs.
Fecker et al., “Depth Map Compression for Unstructured Lumigraph Rendering”, Proc. SPIE 6077, Proceedings Visual Communications and Image Processing 2006, Jan. 18, 2006, 60770B-1-60770B-8.
Feris et al., “Multi-Flash Stereopsis: Depth Edge Preserving Stereo with Small Baseline Illumination”, IEEE Trans on PAMI, 2006, 31 pgs.
Fife et al., “A 3D Multi-Aperture Image Sensor Architecture”, Custom Integrated Circuits Conference, 2006, CICC '06, IEEE, pp. 281-284.
Fife et al. “A 3MPixel Multi-Aperture Image Sensor with 0.7Mu Pixels in 0.11Mu CMOS” ISSCC 2008, Session 2, Image Sensors & Technology, 2008, pp. 48-50.
Fischer et al., “Optical System Design”, 2nd Edition, SPIE Press, Feb. 14, 2008, pp. 191-198.
Fischer et al., “Optical System Design”, 2nd Edition, SPIE Press, Feb. 14, 2008, pp. 49-58.
Fischler et al., “Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography,” Communications of the ACM, Jun. 1981, 24(6):381-395.
Garg et al., “Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue”, In European Conference on Computer Vision, Springer, Cham, Jul. 2016, 16 pgs.
Garrido-Jurado et al., “Automatic generation and detection of highly reliable fiducial markers under occlusion,” Pattern Recognition, Jun. 2014, 47(6):2280-2292.
Gastal et al., “Shared Sampling for Real-Time Alpha Matting”, Computer Graphics Forum, Eurographics 2010, vol. 29, Issue 2, May 2010,pp. 575-584.
Georgeiv et al., “Light Field Camera Design for Integral View Photography”, Adobe Systems Incorporated, Adobe Technical Report, 2003, 13 pgs.
Georgiev et al., “Light-Field Capture by Multiplexing in the Frequency Domain”, Adobe Systems Incorporated, Adobe Technical Report, 2003, 13 pgs.
Godard et al., “Unsupervised Monocular Depth Estimation with Left-Right Consistency”, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, 14 pgs.
Goldman et al., “Video Object Annotation, Navigation, and Composition”, In Proceedings of UIST 2008, Oct. 19-22, 2008, Monterey CA, USA, pp. 3-12.
Goodfellow et al., “Generative Adversarial Nets, 2014. Generative adversarial nets”, In Advances in Neural Information Processing Systems (pp. 2672-2680).
Gortler et al., “The Lumigraph”, In Proceedings of SIGGRAPH 1996, published Aug. 1, 1996, pp. 43-54.
Gruev et al., “Material detection with a cod polarization imager,” 2010 IEEE 39th Applied Imagery Pattern Recognition Workshop, Sep. 20, 2022, 7 pages.
Gupta et al., “Perceptual Organization and Recognition of Indoor Scenes from RGB-D Images”, 2013 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2013, Portland, OR, USA, pp. 564-571.
Hacohen et al., “Non-Rigid Dense Correspondence with Applications for Image Enhancement”, ACM Transactions on Graphics, vol. 30, No. 4, Aug. 7, 2011, 9 pgs.
Hamilton, “JPEG File Interchange Format, Version 1.02”, Sep. 1, 1992, 9 pgs.
Hardie, “A Fast Image Super-Algorithm Using an Adaptive Wiener Filter”, IEEE Transactions on Image Processing, Dec. 2007, published Nov. 19, 2007, vol. 16, No. 12, pp. 2953-2964.
Hasinoff et al., “Search-and-Replace Editing for Personal Photo Collections”, 2010 International Conference: Computational Photography (ICCP) Mar. 2010, pp. 1-8.
Hernandez et al., “Laser Sean Quality 3-D Face Modeling Using a Low-Cost Depth Camera”, 20th European Signal Processing Conference, Aug. 27-31, 2012, Bucharest, Romania, pp. 1995-1999.
Hernandez-Lopez et al., “Detecting objects using color and depth segmentation with Kinect sensor”, Procedia Technology, vol. 3, Jan. 1, 2012, pp. 196-204, XP055307680, ISSN: 2212-0173, DOI: 10.1016/j.protey.2012.03.021.
Higo et al., “A Hand-held Photometric Stereo Camera for 3-D Modeling”, IEEE International Conference on Computer Vision, 2009, pp. 1234-1241.
Hirschmuller et al., “Memory Efficient Semi-Global Matching, ISPRS Annals of the Photogrammetry”, Remote Sensing and Spatial Information Sciences, vol. 1-3, 2012, XXII ISPRS Congress, Aug. 25-Sep. 1, 2012, Melbourne, Australia, 6 pgs.
Hirschmuller, “Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual Information”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA, Jun. 20-26, 2005, 8 pgs.
Holoeye Photonics AG, “LC 2012 Spatial Light Modulator (transmissive)”, Sep. 18, 2013, retrieved from https://web.archive.org/web/20130918151716/http:1/holoeye.com/spatial- light-modulators/lc-2012-spatial-light-modulator/ on Oct. 20, 2017, 3 pgs.
Holoeye Photonics AG, “Spatial Light Modulators”, Oct. 2, 2013, Brochure retrieved from https://web.archive.org/web/20131002061028/http://holoeye.com/wp-content/uploads/Spatial_Light_Modulators.pdf on Oct. 13, 2017, 4 pgs.
Holoeye Photonics AG, “Spatial Light Modulators”, Sep. 18, 2013, retrieved from Photonics Spectra.
Horisaki et al., “Irregular Lens Arrangement Design to Improve Imaging Performance of Compound-Eye Imaging Systems”, Applied Physics Express, Jan. 29, 2010, vol. 3, pp. 022501-1-022501-3.
Horisaki et al., “Superposition Imaging for Three-Dimensionally Space-Invariant Point Spread Functions”, Applied Physics Express, Oct. 13, 2011, vol. 4, pp. 112501-1-112501-3.
Horn et al., “LightShop: Interactive Light Field Manipulation and Rendering”, In Proceedings of I3D, Jan. 1, 2007, pp. 121-128.
Hossain et al., “Inexpensive Construction of a 3D Face Model from Stereo Images”, IEEE International Conference on Computer and Information Technology, Dec. 27-29, 2007, 6 pgs.
https://web.archive.org/web/20130918113140/http:1/holoeye.com/spatial- light-modulators/ on Oct. 13, 2017, 4 pgs.
Hu et al., “A Quantitative Evaluation of Confidence Measures for Stereo Vision”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, Issue 11, Nov. 2012, pp. 2121-2133.
Huafeng et al., “Multi-features fusion network for face anti-spoofing.” Xiamen University, MAC-adv-group, Mar. 11, 2019, 3 pages.
Humenberger et al., “A Census-Based Stereo Vision Algorithm Using Modified Semi-Global Matching and Plane Fitting to Improve Matching Quality”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), IEEE, Jun. 13-18, 2010, San Francisco, CA, 8 pgs.
Huynh et al., “Robust Shape from Polarisation and Shading,” 2010 International Conference on Pattern Recognition, 2010, pp. 810-813.
International Preliminary Report on Patentability in International Appln. No. PCT/US20/54641, dated Apr. 12, 2022, 6 pages.
International Search Report and Written Opinion for International Application No. PCT/US20/54641, dated Feb. 17, 2021, 13 pages.
Isaksen et al., “Dynamically Reparameterized Light Fields”, In Proceedings of SIGGRAPH 2000, 2000, pp. 297-306.
Izadi et al., “KinectFusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera”, UIST'11, Oct. 16-19, 2011, Santa Barbara, CA, pp. 559-568.
Jackson et al., “Large Post 3D Face Reconstruction from a Single Image via Direct Volumetric CNN Regression”, arXiv: 1703.07834v2, Sep. 8, 2017, 9 pgs.
Janoch et al., “A category-level 3-D object dataset: Putting the Kinect to work”, 2011 IEEE International Conference on Computer Vision Workshops (ICCVWorkshops), Nov. 6-13, 2011, Barcelona, Spain, pp. 1168-1174.
Jarabo et al., “Efficient Propagation of Light Field Edits”, In Proceedings of SIACG 2011, 2011, pp. 75-80.
Jiang et al., “Panoramic 3D Reconstruction Using Rotational Stereo Camera with Simple Epipolar Constraints”, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), vol. 1, Jun. 17-22, 2006, New York, NY, USA, pp. 371-378.
Joshi et al., “Synthetic Aperture Tracking: Tracking Through Occlusions”, I CCV IEEE 11th International Conference on Computer Vision; Publication [online]. Oct. 2007 [retrieved Jul. 28, 2014]. Retrieved from the Internet: <URL: http: I/ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4409032&isnumb er=4408819>, pp. 1-8.
Joshi, Color Calibration for Arrays of Inexpensive Image Sensors, Mitsubishi Electric Research Laboratories, Inc., TR2004-137, Dec. 2004, 6 pgs.
Jourabloo, “Large-Pose Face Alignment via CNN-Based Dense 3D Model Fitting”, I CCV IEEE 11th International Conference on Computer Vision; Publication [online]. Oct. 2007 [retrieved Jul. 28, 2014]. Retrieved from the Internet: <URL: http: I/ieeexplore.ieee.org/stamp/stamp.jsp?ip=&arnumber=4409032&isnumb er=4408819>, pp. 1-8.
Kadambi, Achuta, et al. “Polarized 3d: High-quality depth sensing with polarization cues.” Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 3370-3378.
Kang et al., “Handling Occlusions in Dense Multi-view Stereo”, Computer Vision and Pattern Recognition, 2001, vol. 1, pp. 1-103-1-110.
Keeton, “Memory-Driven Computing”, Hewlett Packard Enterprise Company, Oct. 20, 2016, 45 pgs.
Kim et al., “Scene reconstruction from high spatio-angular resolution light fields”, ACM Transactions on Graphics (TOG)—SIGGRAPH 2013 Conference Proceedings, vol. 32 Issue 4, Article 73, Jul. 21, 2013, 11 pages.
Kim, “Scene Reconstruction from a Light Field”, Master Thesis, Sep. 1, 2010 (Sep. 1, 2010), pp. 1-72.
Kitamura et al., “Reconstruction of a high-resolution image on a compound-eye image-capturing system”, Applied Optics, Mar. 10, 2004, vol. 43, No. 8, pp. 1719-1727.
Kittler et al., “3D Assisted Face Recognition: A Survey of 3D Imaging, Modelling, and Recognition Approaches” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Jul. 2005, 7 pgs.
Konolige, Kurt “Projected Texture Stereo,” 2010 IEEE International Conference on Robotics and Automation, May 3-7, 2010, pp. 148-155.
Kotsia et al., “Facial Expression Recognition in Image Sequences Using Geometric Deformation Features and Support Vector Machines”, IEEE Transactions on Image Processing, Jan. 2007, vol. 16, No. 1, pp. 172-187.
Krishnamurthy et al., “Compression and Transmission of Depth Maps for Image-Based Rendering”, Image Processing, 2001, pp. 828-831.
Kubota et al., “Reconstructing Dense Light Field From Array of Multifocus Images for Novel View Synthesis”, IEEE Transactions on Image Processing, vol. 16, No. 1, Jan. 2007, pp. 269-279.
Kutulakos et al., “Occluding Contour Detection Using Affine Invariants and Purposive Viewpoint Control”, Computer Vision and Pattern Recognition, Proceedings CVPR 94, Seattle, Washington, Jun. 21-23, 1994, 8 pgs.
Lat et al., “A Large-Scale Hierarchical Multi-View RGB-D Object Dataset”, Proceedings—IEEE International Conference on Robotics and Automation, Conference Date May 9-13, 2011, 8 pgs., DOI:10.1109/ICRA.201135980382.
Lane et al., “A Survey of Mobile Phone Sensing”, IEEE Communications Magazine, vol. 48, Issue 9, Sep. 2010, pp. 140-150.
Lao et al., “3D template matching for pose invariant face recognition using 3D facial model built with isoluminance line based stereo vision”, Proceedings 15th International Conference on Pattern Recognition, Sep. 3-7, 2000, Barcelona, Spain, pp. 911-916.
Leb et al., “Automatic Upright Adjustment of Photographs”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 877-884.
Lee et al., “Electroactive Polymer Actuator for Lens-Drive Unit in Auto-Focus Compact Camera Module”, ETRI Journal, vol. 31, No. 6, Dec. 2009, pp. 695-702.
Lee et al., “Nonlocal matting”, CVPR 2011, Jun. 20-25, 2011, pp. 2193-2200.
Lee, “NFC Hacking: The Easy Way”, Defcon Hacking Conference, 2012, 24 pgs.
LensVector, “How LensVector Autofocus Works”, 2010, printed Nov. 2, 2012 from http://www.lensvector.com/overview.html, 1 pg.
Levin et al., “A Closed Form Solution to Natural Image Matting”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2006, vol. 1, pp. 61-68.
Levin et al., “Spectral Matting”, 2007 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 17-22, 2007, Minneapolis, MN, USA, pp. 1-8.
Levoy et al., “Light Field Rendering” Proc. ADM SIGGRAPH 96, 1996, pp. 1-12.
Levoy, “Light Fields and Computational Imaging”, IEEE Computer Society, Sep. 1, 2006, vol. 39, Issue No. 8, pp. 46-55.
Li et al., “A Hybrid Camera for Motion Deblurring and Depth Map Super-Resolution”, Jun. 23-28, 2008, IEEE Conference on Computer Vision and Pattern Recognition, 8 pgs. Retrieved from www.eccis.udel.edu/˜jye/lab_research/08/deblur-feng.pdf on Feb. 5, 2014.
Li et al., “Fusing Images with Different Focuses Using Support Vector Machines”, IEEE Transactions on Neural Networks, vol. 15, No. 6, Nov. 8, 2004, pp. 1555-1561.
Light fields and computational photography, Stanford Computer Graphics Laboratory, Retrieved from: http://graphics.stanford.edu/projects/lightfield/, Earliest publication online: Feb. 10, 1997, 3 pgs.
Lim, “Optimized Projection Pattern Supplementing Stereo Systems”, 2009 IEEE International Conference on Robotics and Automation, May 12-17, 2009, pp. 282-2829.
Liu et al., “Virtual View Reconstruction Using Temporal Information”, 2012 IEEE International Conference on Multimedia and Expo, 2012, pp. 115-120.
Lo et al., “Stereoscopic 3D Copy & Paste”, ACM Transactions on Graphics, vol. 29, No. 6, Article 147, Dec. 2010, pp. 147:1-147:10.
Ma et al., “Constant Time Weighted Median Filtering for Stereo Matching and Beyond”, ICCV '13 Proceedings of the 2013 IEEE International Conference on Computer Vision, IEEE Computer Society, Washington DC, USA, Dec. 1-8, 2013, 8 pgs.
Mahmoud, “Utilizing radiation for smart robotic applications using visible, thermal, and polarization images,” Electronic Theses and Dissertations, 2014, 888:143 pages.
Martinez et al., Simple Telemedicine for Developing Regions: Camera Phones and Paper-Based Microfluidic Devices for Real-Time, Off-Site, 2008.
McGuire et al., “Defocus video matting”, ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH 2005, vol. 24, Issue 3, Jul. 2005, pp. 567-576.
Medioni et al., “Face Modeling and Recognition in 3-D”, Proceedings of the IEEE International Workshop on Analysis and Modeling of Faces and Gestures, 2013, 2 pgs.
Merkle et al., “Adaptation and optimization of coding algorithms for mobile 3DTV”, Mobile3DTV Project No. 216503, Nov. 2008, 55 pgs.
Michael et al., “Real-time Stereo Vision: Optimizing Semi-Global Matching”, 2013 IEEE Intelligent Vehicles Symposium (IV), IEEE, Jun. 23-26, 2013, Australia, 6 pgs.
Milella et al., “3D reconstruction and classification of natural environments by an autonomous vehicle using multi-baseline stereo”, Intelligent Service Robotics, vol. 7, No. 2, Mar. 2, 2014, pp. 79-92.
Min et al., “Real-Time 3D Face Identification from a Depth Camera”, Proceedings of the IEEE International Conference on Pattern Recognition, Nov. 11-15, 2012, 4 pgs.
Mitra et al., “Light Field Denoising, Light Field Superresolution and Stereo Camera Based Refocusing using a GMM Light Field Patch Prior”, Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer Society Conference on Jun. 16-21, 2012, pp. 22-28.
Moreno-Noguer et al., “Active Refocusing of Images and Videos”, ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH 2007, vol. 26, Issue 3, Jul. 2007, 10 pgs.
Muehlebach, “Camera Auto Exposure Control for VSLAM Applications”, Studies on Mechatronics, Swiss Federal Institute of Technology Zurich, Autumn Term 2010 course, 67 pgs.
Nayar, “Computational Cameras; Redefining the Image”, IEEE Computer Society, Aug. 14, 2006, pp. 30-38.
Ng et al., “Light Field Photography with a Hand-held Plenoptic Camera”, Stanford Tech Report CTSR 2005-02, Apr. 20, 2005, pp. 1-11.
Ng et al., “Super-Resolution Image Restoration from Blurred Low-Resolution Images”, Journal of Mathematical Imaging and Vision, 2005, vol. 23, pp. 367-378.
Ng, “Digital Light Field Photography”, Thesis, Jul. 2006, 203 pgs.
Nguyen et al., “Error Analysis for Image-Based Rendering with Depth Information”, IEEE Transactions on Image Processing, vol. 18, Issue 4, Apr. 2009, pp. 703-716.
Nguyen et al., “Image-Based Rendering with Depth Information Using the Propagation Algorithm”, Proceedings, (ICASSP '05), IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005, vol. 5, Mar. 23-23, 2005, pp. 11-589-11-592.
Nishihara, H.K. “PRISM: A Practical Real-Time Imaging Stereo Matcher”, Massachusetts Institute of Technology, A.I. Memo 780, May 1984, 32 pgs.
Nitta et al., “Image reconstruction for thin observation module by bound opties by using the iterative backprojection method” Applied Optics, May 1, 2006, vol. 45, No. 13, pp. 2893-2900.
Nomura et al., “Scene Collages and Flexible Camera Arrays”, Proceedings of Eurographics Symposium on Rendering, Jun. 2007, 12 pgs.
Notice of Allowance in Korean Appln. No. 10-2022-7015610, dated Feb. 27, 2023, 4 pages (with English translation).
Office Action in Canadian Appln. No. 3,109,406, dated Sep. 21, 2021, 5 pages.
Office Action in Chinese Appln. No. 202080083702.4, dated Sep. 28, 2022, 14 pages (with English translation).
Office Action in German Applu. No. 112020004 813.6, dated Jul. 22, 2022, 5 pages (with English translation).
Office Action in Japanese Appln. No. 2022-521149, dated Sep. 13, 2022, 18 pages (with English translation).
Park et al., “3D Face Reconstruction from Stereo Video”, First International Workshop on Video Processing for Security, Jun. 7-9, 2006, Quebec City, Canada, 2006, 8 pgs.
Park et al., “Multispectral Imaging Using Multiplexed Illumination”, 2007 IEEE 11th International Conference on Computer Vision, Oct. 14-21, 2007, Rio de Janeiro, Brazil, pp. 1-8.
Park et al., “Super-Resolution Image Reconstruction”, IEEE Signal Processing Magazine, May 2003, pp. 21-36.
Parkkinen et al., “Characteristic Spectra of Munsell Colors”, Journal of the Optical Society of America A, vol. 6, Issue 2, Feb. 1989, pp. 318-322.
Perwass et al., “Single Lens 3D-Camera with Extended Depth-of-Field”, printed from www.raytrix.de, Jan. 22, 2012, 15 pgs.
Pham et al., “Robust Super-Resolution without Regularization”, Journal of Physics: Conference Series 124, Jul. 2008, pp. 1-19.
Philips 3D Solutions, “3D Interface Specifications, White Paper”, Feb. 15, 2008, 2005-2008 Philips Electronics Nederland B.V., Philips 3D Solutions retrieved from www.philips.com/3dsolutions. 29 pgs.
Polight, “Designing Imaging Products Using Reflowable Autofocus Lenses”, printed Nov. 2, 2012 from http://www.polight.no/tunable- polymer-autofocus-lens-html--I I.html, 1 pg.
Pouydebasque et al., “Varifocal liquid lenses with integrated actuator, high focusing power and low operating voltage fabricated on 200 mm wafers”, Sensors and Actuators A: Physical, vol. 172, Issue 1, Dec. 2011, pp. 280-286.
Protter et al., “Generalizing the Nonlocal-Means to Super-Resolution Reconstruction”, IEEE Transactions on Image Processing, Dec. 2, 2008, vol. 18, No. 1, pp. 36-51.
Radtke et al., “Laser lithographie fabrication and characterization of a spherical artificial compound eve”, Opties Express, Mar. 19, 2007, vol. 15, No. 6, pp. 3067-3077.
Rajan et al., “Simultaneous Estimation of Super Resolved Scene and Depth Map from Low Resolution Defocused Observations”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, No. 9, Sep. 8, 2003, pp. 1-16.
Rander et al., “Virtualized Reality: Constructing Time-Varying Virtual Worlds from Real World Events”, Proc. of IEEE Visualization '97, Phoenix, Arizona, Oct. 19-24, 1997, pp. 277-283, 552.
Ranjan et al., “HyperFace: A Deep Multi-Task Learning Framework for Face Detection, Landmark Localization, Pose Estimation, and Gender Recognition”, May 11, 2016 (May 11, 2016), pp. 1-36.
Rhemann et al., “Fast Cost-Volume Filtering for Visual Correspondence and Beyond”, IEEE Trans. Pattern Anal. Mach. Intell, 2013, vol. 35, No. 2, pp. 504-511.
Rhemann et al., “A perceptually motivated online benchmark for image matting”, 2009 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 20-25, 2009, Miami, FL, USA, pp. 1826-1833.
Robert et al., “Dense Depth Map Reconstruction: A Mimmization and Regularization Approach which Preserves Discontinuities”, European Conference on Computer Vision (ECCV), pp. 439-451, (1996).
Robertson et al., “Dynamic Range Improvement Through Multiple Exposures”, In Proc. of the Int. Conf. on Image Processing, 1999, 5 pgs.
Robertson et al., “Estimation-theoretic approach to dynamic range enhancement using multiple exposures”, Journal of Electronic Imaging, Apr. 2003, vol. 12, No. 2, pp. 219-228.
Roy et al., “Non-Uniform Hierarchical Pyramid Stereo for Large Images”, Computer and Robot Vision, 2002, pp. 208-215.
Rusinkiewicz et al., “Real-Time 3D Model Acquisition”, ACM Transactions on Graphics (TOG), vol. 21, No. 3, Jul. 2002, pp. 438-446.
Saatci et al., “Cascaded Classification of Gender and Facial Expression using Active Appearance Models”, IEEE, FGR'06, 2006, 6 pgs.
Sauer et al., “Parallel Computation of Sequential Pixel Updates in Statistical Tomographic Reconstruction”, ICIP 1995 Proceedings of the 1995 International Conference on Image Processing, Date of Conference: Oct. 23-26, 1995, pp. 93-96.
Scharstein et al., “High-Accuracy Stereo Depth Maps Using Structured Light”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2003), Jun. 2003, vol. 1, pp. 195-202.
Seitz et al., “Plenoptic Image Editing”, International Journal of Computer Vision 48, Conference Date Jan. 7, 1998, 29 pgs., DOI: 10.1109/ICCV.1998.710696 · Source: DBLP Conference: Computer Vision, Sixth International Conference.
Shechtman et al., “Increasing Space-Time Resolution in Video”, European Conference on Computer Vision, LNCS 2350, May 28-31, 2002, pp. 753-768.
Shinoda et al., “Snapshot multispectral polarization imaging using a photonic crystal filter array,” Optics Express, Jun. 2018, 26(12): 14 pages
Shotton et al., “Real-time human pose recognition in parts from single depth images”, CVPR 2011, Jun. 20-25, 2011, Colorado Springs, CO, USA, pp. 1297-1304.
Shum et al., “A Review of Image-based Rendering Techniques”, Visual Communications and Image Processing 2000, May 2000, 12 pgs.
Shum et al., “Pop-Up Light Field: An Interactive Image-Based Modeling and Rendering System”, Apr. 2004, ACM Transactions on Graphics, vol. 23, No. 2, pp. 143-162, Retrieved from http:/1131.107.65.14/en- us/um/people/j iansun/papers/PopupLightField_TOG.pdf on Feb. 5, 2014
Sibbing et al., “Markerless reconstruction of dynamic facial expressions”, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshop: Kyoto, Japan, Sep. 27-Oct. 4, 2009, Institute of Electrical and Electronics Engineers, Piscataway, NJ, Sep. 27, 2009 (Sep. 27, 2009), pp. 1778-1785.
SIGGRAPH 2007, vol. 26, Issue 3, Article 9, Jul. 2007, 6 pg., published Aug. 5, 2007.
Silberman et al., “Indoor segmentation and support inference from RGBD images”, ECCV'12 Proceedings of the 12th European conference on Computer Vision, vol. Part V, Oct. 7-13, 2012, Florence, Italy, pp. 746-760.
Stober, “Stanford researchers developing 3-D camera with 12,616 lenses”, Stanford Report, Mar. 19, 2008, Retrieved from: http://news.stanford.edu/news/2008/march19/camera-031908.html, 5 pgs.
Stollberg et al., “The Gabor superlens as an alternative wafer-level camera approach inspired by superposition compound eyes of nocturnal insects”, Optics Express, Aug. 31, 2009, vol. 17, No. 18, pp. 15747-15759.
Sun et al., “Image Super-Resolution Using Gradient Profile Prior”, 2008 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2008, 8 pgs.; DOI: 10.1109/CVPR.2008.4587659.
Systems and Equipment, JEITA CP-3451, Apr. 2002, Retrieved from: http://www.exif.org/Exif2-2.PDF, 154 pgs.
Systems, Proc. of SPIE, Apr. 21, 2006, vol. 6196, p. 619607-1-619607-15.
Taguchi et al., “Rendering-Oriented Decoding for a Distributed Multiview Coding System Using a Coset Code”, Hindawi Publishing Corporation, EURASIP Journal on Image and Video Processing, vol. 2009, Article ID 251081, Online: Apr. 22, 2009, 12 pgs.
Takeda et al., “Super-resolution Without Explicit Subpixel Motion Estimation”, IEEE Transaction on Image Processing, Sep. 2009, vol. 18, No. 9, pp. 1958-1975.
Tallon et al., “Upsampling and Denoising of Depth Maps Via Joint-Segmentation”, 20th European Signal Processing Conference, Aug. 27-31, 2012, 5 pgs.
Tanida et al., “Color imaging with an integrated compound imaging system”, Opties Express, Sep. 8, 2003, vol. 11, No. 18, pp. 2109-2117.
Tanida et al., “Thin observation module by bound optics (TOMBO): concept and experimental verification”, Applied Optics, Apr. 10, 2001, vol. 40, No. 11, pp. 1806-1813.
Tao et al., “Depth from Combining Defocus and Correspondence Using Light-Field Cameras”, ICCV'13 Proceedings of the 2013 IEEE International Conference on Computer Vision, Dec. 1, 2013, pp. 673-680.
Taylor, “Virtual camera movement: The way of the future?”, American Cinematographer, vol. 77, No. 9, Sep. 1996, pp. 93-100.
Technology, Graduate School of Information Science, LNCS 3851, pp. 369-378, 2006.
Tian et al., “Face Anti-Spoofing by Learning Polarization Cues in a Real-World Scenario,” ICAIP 2020: 2020 4th International Conference on Advances in Image Processing, Nov. 2020, pp. 129-137.
Tseng et al., “Automatic 3-D depth recovery from a single urban-scene image”, 2012 Visual Communications and Image Processing, Nov. 27-30, 2012, San Diego, CA, USA, pp. 1-6.
Uchida et al., 3D Face Recognition Using Passive Stereo Vision, IEEE International Conference on Image Processing 2005, Sep. 14, 2005, 4 pgs.
Vaish et al., “Reconstructing Occluded Surfaces Using Synthetic Apertures: Stereo, Focus and Robust Measures”, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), vol. 2, Jun. 17-22, 2006, pp. 2331-2338.
Vaish et al., “Synthetic Aperture Focusing Using a Shear-Warp Factorization of the Viewing Transform”, IEEE Workshop on A3DISS, CVPR, 2005, 8 pgs.
Vaish et al., “Using Plane+ Parallax for Calibrating Dense Camera Arrays”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2004, 8 pgs.
Van Der Wal et al., “The Acadia Vision Processor”, Proceedings Fifth IEEE International Workshop on Computer Architectures for Machine Perception, Sep. 13, 2000, Padova, Italy, pp. 31-40.
Veilleux, “CCD Gain Lab: The Theory”, University of Maryland, College Park—Observational Astronomy (ASTR 310), Oct. 19, 2006, pp. 1-5 (online], [retrieved on May 13, 2014], Retrieved from the Internet <URL: http://www.astro.umd.edu/˜veilleux/ASTR310/fall06/ccd_theory.pdf, 5 pgs.
Venkataraman et al., “PiCam: An Ultra-Thin High Performance Monolithic Camera Array”, ACM Transactions on Graphics (TOG), ACM, US, vol. 32, No. 6, Nov. 1, 2013, pp. 1-13.
Vetro et al., “Coding Approaches for End-To-End 3D TV Systems”, Mitsubishi Electric Research Laboratories, Inc., TR2004-137, Dec. 2004, 6 pgs.
Viola et al., “Robust Real-time Object Detection”, Cambridge Research Laboratory, Technical Report Series, Compaq, CRL 2001/01, Feb. 2001, Printed from: http://www.hpl.hp.com/techreports/Compaq-DEC/CRL-2001- 1.pdf, 30 pgs.
Vuong et al., “A New Auto Exposure and Auto White-Balance Algorithm to Detect High Dynamic Range Conditions Using CMOS Technology”, Proceedings of the World Congress on Engineering and Computer Science 2008, WCECS 2008, Oct. 22-24, 2008, 5 pgs.
Wang et al., “Automatic Natural Video Matting with Depth”, 15th Pacific Conference on Computer Graphics and Applications, PG '07, Oct. 29-Nov. 2, 2007, Maui, HI, USA, pp. 469-472.
Wang et al., “Deep Spatial Gradient and Temporal Depth Learning for Face Anti-spoofing,” IEEE, 2020, pp. 5042-5051.
Wang et al., “Facial Feature Point Detection: A Comprehensive Survey”, arXiv: 1410.1037v1, Oct. 4, 2014, 32 pgs.
Wang et al., “Image and Video Matting: A Survey”, Foundations and Trends, Computer Graphics and Vision, vol. 3, No. 2, 2007, pp. 91-175.
Wang et al., “Soft scissors: an interactive tool for realtime high quality matting”, ACM Transactions on Graphics (TOG)—Proceedings of ACM, 2007.
Wang, “Calculation of Image Position, Size and Orientation Using First Order Properties”, Dec. 29, 2010, OPT1521 Tutorial, 10 pgs.
Wetzstein et al., “Computational Plenoptic Imaging”, Computer Graphics Forum, 2011, vol. 30, No. 8, pp. 2397-2426.
Wheeler et al., “Super-Resolution Image Synthesis Using Projections Onto Convex Sets in the Frequency Domain”, Proc. SPIE, Mar. 11, 2005, vol. 5674, 12 pgs.
Widanagamaachchi et al., “3D Face Recognition from 2D Images: A Survey”, Proceedings of the International Conference on Digital Image Computing: Techniques and Applications, Dec. 1-3, 2008, 7 pgs.
Wieringa et al., “Remote Non-invasive Stereoscopic Imaging of Blood Vessels: First In-vivo Results of a New Multispectral Contrast Enhancement Technology”, Annals of Biomedical Engineering, vol. 34, No. 12, Dec. 2006, pp. 1870-1878, Published online Oct. 12, 2006.
Wikipedia, “Polarizing Filter (Photography)”, retrieved from http://en.wikipedia.org/wiki/Polarizing_filter_(photography) on Dec. 12, 2012, last modified on Sep. 26, 2012, 5 pgs.
Wilburn et al., “High Performance Imaging Using Large Camera Arrays”, ACM Transactions on Graphics, Jul. 2005, vol. 24, No. 3, pp. 1-12.
Wilburn et al., “High-Speed Videography Using a Dense Camera Array”, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, CVPR 2004., vol. 2, Jun. 27-Jul. 2, 2004, pp. 294-301.
Wilburn et al., “The Light Field Video Camera”, Proceedings of Media Processors 2002, SPIE Electronic Imaging, 2002, 8 pgs.
Wilburn, “High Performance Imaging Using Arrays of Inexpensive Cameras”, Thesis of Bennett Wilburn, Dec. 2004, 128 pgs.
Wippermann et al., “Design and fabrication of a chirped array of refractive ellipsoidal micro- enses for an apposition eye camera objective”, Proceedings of SPIE, Optical Design and Engineering II, Oct. 15, 2005, pp. 59622C-1-59622C-11.
Wu et al., “A virtual view synthesis algorithm based on image inpainting”, 2012 Third International Conference on Networking and Distributed Computing, Hangzhou, China, Oct. 21-24, 2012, pp. 153-156.
Xu, “Real-Time Realistic Rendering and High Dynamic Range Image Display and Compression”, Dissertation, School of Computer Science in the College of Engineering and Computer Science at the University of Central Florida, Orlando, Florida, Fall Term 2005, 192 pgs.
Yang et al., “A Real-Time Distributed Light Field Camera”, Eurographics Workshop on Rendering (2002), published Jul. 26, 2002, pp. 1-10.
Yang et al., “Superresolution Using Preconditioned Conjugate Gradient Method”, Proceedings of SPIE—The International Society for Optical Engineering, Jul. 2002, 8 pgs.
Yang et al., Model-based Head Pose Tracking with Stereovision, Microsoft Research, Technical Report, MSR-TR-2001-102, Oct. 2001, 12 pgs.
Yokochi et al., “Extrinsic Camera Parameter Estimation Based-on Feature Tracking and GPS Data”, 2006, Nara Institute of Science and.
Yvain Queau, Jean-Denis Durou, Jean-Fram;ois Aujol. Normal Integration: A Survey, 2016. hal-01334349v4, 19 pages.
Zbontar et al., Computing the Stereo Matching Cost with a Convolutional Neural Network, CVPR, 2015, pp. 1592-1599.
Zhang et al., “A Self-Reconfigurable Camera Array”, Eurographics Symposium on Rendering, published Aug. 8, 2004, 12 pgs.
Zhang et al., “Depth estimation, spatially variant image registration, and super-resolution using a multi-lenslet camera”, proceedings of SPIE, vol. 2010.
Zhang et al., “Spacetime Faces: High Resolution Capture for Modeling and Animation”, ACM Transactions on Graphics, 2004, 11pgs.
Zheng et al., “Balloon Motion Estimation Using Two Frames”, Proceedings of the Asilomar Conference on Signals, Systems and Computers, IEEE, Comp. Soc. Press, US, vol. 2 of2, Nov. 4, 1991, pp. 1057-1061.
Zhu et al., “Pasion of Time-of-Flight Depth and Stereo for High Accuracy Depth Maps”, 2008 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2008, Anchorage, AK, USA, pp. 1-8.
Zomet et al., “Robust Super-Resolution”, IEEE, 2001, pp. 1-6.
Related Publications (1)
Number Date Country
20230184912 A1 Jun 2023 US
Provisional Applications (3)
Number Date Country
63001445 Mar 2020 US
62942113 Nov 2019 US
62911952 Oct 2019 US
Continuations (1)
Number Date Country
Parent 17277242 US
Child 18079477 US