The present disclosure is directed generally to systems and methods for manufacturing multiple integrated tip probes for scanning probe microscopy.
In order to achieve low-powered high-performance electronics, the size of transistors forming the building block of very large scale integrated (VLSI) circuits are drastically decreasing. However, tool resolution and sensitivity continue to be major challenges in semiconductor device fault isolation and analysis. As transistors continue to scale down to 10 nm nodes and beyond, well-known optical microscopy techniques no longer work due to wavelength limitations. For instance, conventional failure analysis methods involve the use of Focused Ion Beam (FIB) deposited pads or Scanning Electron Microscope (SEM). However, minute charge currents from the FIB and SEM adversely affect measured results. The induced charge from the FIB and SEM can even break the ultra-thin transistor tunneling gate oxide layer. In addition to this, Passive Voltage Contrast (PVC) techniques lack the sensitivity to identify faulty vias and contacts.
Single-tip Scanning Probe Microscopy, such as Atomic Force Probing (AFP) and Atomic Force Microscopy (AFM), is a powerful tool for non-destructive determination of root causes of IC chip failure, including extension to the sub 10 nm node regimes. However, AFM effectiveness is severely limited by its single tip design. As a result, a range of fundamental phenomena that exist in thin film materials and devices are inaccessible. As just one example, the effects of dislocations and grain boundaries in thin films cannot be characterized, as the ability to perform trans-conductance (conduction between two tips) measurements at the nanoscale is a critical gap. Trans-conductance would enable a richer understanding of how electrons transport and interact with their surroundings by offering insight into the local density of states, tip-sample coupling, transport mechanisms, scattering phase shifts and inelastic free mean paths of electrons.
Multiple-tips SPMs have been proposed as a way of overcoming the inherent limitations of the single-tip SPM. However, there have been significant challenges to engineering a suitable multiple-tips SPM. Previous approaches to a multiple-tip SPM have relied on independent macroscopically-fabricated probes. These platforms are complex, difficult to actuate, and have limited scale-down. They are also prohibitively expensive to manufacture.
Accordingly, there is a continued need in the art for multiple-tips SPMs that are both cost-effective and easily manufactured and functionalized to the specific investigation for which they will be utilized. Also needed are efficient and cost-effective methods of manufacturing multiple integrated tip probes.
The present disclosure is directed to systems and methods for manufacturing multiple integrated tip (MiT) probes for scanning probe microscopy. The MiT probe is a Nano-Electro-Mechanical System (NEMS) that integrates mechanical and electrical functionality in a monolithically-fabricated nano-structure which is tailored and functionalized to the specific investigation. The MiT scanning probe microscope provides two or more monolithically integrated cantilever tips that can be placed within nanometers of each other, with monolithically integrated transistors to amplify signals. As a result, the MiT SPM is able to perform atomic force microscopy without the need for laser tip alignment. Further, the MiT SPM is capable of nanoprobing surfaces where at least two of the integrated tips are in direct contact or in close proximity with the sample.
According to an aspect is a microscope probe configured to analyze a sample. The microscope probe includes a movable probe tip comprising a terminal probe end, wherein the moveable probe tip comprises a metal layer affixed to a supporting layer, at least a portion of the metal layer at the terminal probe end extending past the supporting layer.
According to an embodiment, the microscope probe includes a first actuator configured to displace the movable probe tip along a first axis, and a detection component configured to detect motion of the movable probe tip in response to an applied signal.
According to an embodiment, the metal is platinum, gold, tungsten, or nickel.
According to an embodiment, the supporting layer is silicon, silicon dioxide, or silicon nitride.
According to an embodiment, the microscope probe includes a plurality of probe tips each comprising a terminal probe end, each of the plurality of probe tips further comprising a metal layer affixed to a supporting layer, at least a portion of the metal layer at the terminal probe ends extending past the supporting layer.
According to an embodiment, the probe further includes an insulated interdigitated structure positioned between each of the plurality of probe tips.
According to an aspect is a microscope probe configured to analyze a sample. The microscope probe includes: a plurality of probe tips and an insulated interdigitated structure positioned between each of the plurality of probe tips.
According to an embodiment, the probe includes a first actuator configured to displace at least one of the plurality of probe tips along a first axis; and a detection component configured to detect motion of the at least one of the plurality of probe tips in response to an applied signal.
According to an aspect is a microscope probe configured to analyze a sample. The microscope probe includes: (i) a first probe tip; and (ii) a second probe tip positioned a first distance from the first probe tip, wherein the second probe tip is positioned vertically underneath the first probe tip.
According to an embodiment, the probe includes a first actuator configured to displace at least one of the first and second probe tips along a first axis; and a detection component configured to detect motion of the at least one of the first and second probe tips in response to an applied signal.
According to an embodiment, the first and second probe tips comprise a metal. According to an embodiment, the first and second probe tips comprise the same metal. According to an embodiment, the first and second probe tips each comprise a different metal.
According to another aspect is a microscope probe configured to analyze a sample. The microscope probe includes: (i) a movable probe tip supported by a substrate; (ii) a first actuator configured to displace the movable probe tip along a first axis; and (iii) a detection component configured to detect motion of the movable probe tip in response to an applied signal; (iv) a resonator configured to vibrate when the probe is in a vibrational mode; and (v) a capacitor affixed to the substrate.
According to another aspect is a method for analyzing a sample using a microscope probe, the method comprising the steps of: providing a microscope probe comprising: (i) a movable probe tip supported by a substrate; (ii) a resonator configured to vibrate when the probe is in a vibrational mode; and (iii) a capacitor affixed to the substrate; receiving a current from the capacitor; receiving a current from the resonator; electrically combining the current from the capacitor and the current from the resonator; and using the electrically combined current to improve a signal-to-noise ratio of the sample analysis.
According to an aspect is a method for implementing a transistor. The method includes the steps of: providing a sample; providing a microscope probe comprising a plurality of probe tips; contacting a first, outer probe tip of the plurality of probe tips to the sample, wherein the first outer probe tip is configured to act as a source terminal for the transistor; contacting a second, outer probe tip of the plurality of probe tips to the sample, wherein the second outer probe tip is configured to act as a drain terminal for the transistor; using a third, inner probe tip of the plurality of probe tips as a gate terminal for the transistor; and characterizing the sample with the plurality of probe tips.
According to an embodiment, the inner probe tip comprises a dielectric coating, and further wherein the dielectric coating is in contact with the surface.
According to an aspect is a method for implementing a variable resistor. The method includes the steps of: providing a sample; providing a microscope probe comprising a plurality of probe tips; contacting a first, outer probe tip of the plurality of probe tips to the sample; contacting a second, outer probe tip of the plurality of probe tips to the sample; contacting a third, inner probe tip of the plurality of probe tips to the sample; applying a voltage to either of the first and second outer probe tips, wherein the inner probe tip is deflected toward either the first or second outer probe tips; and characterizing the sample based on the deflection of the inner probe tip.
These and other aspects of the invention will be apparent from the embodiment(s) described hereinafter.
The present invention will be more fully understood and appreciated by reading the following Detailed Description in conjunction with the accompanying drawings, in which:
The present disclosure includes various embodiments of a system and method for manufacturing multiple integrated tips (MiT) probes for use with a scanning probe microscope (SPM) system. The MiT-SPM enables nanoscale atomic imaging, electrical probing of trans-conductance, and parametric analysis of a transistor, among many other aspects.
Capacitive coupling and low signal-to-noise ratio leads to passive Nano-Electro-Mechanical-System (NEMS) devices generally having lower performance.
If=Ico+Ix+Icp (Eq. 1)
The admittance of the NEMS resonator is given by the following equation:
From Equation 2, if the feedback capacitor C0 and parasitic capacitor Cp increases, their effective impedance decreases and would sink most of the input current thus masking the motional current Ix which is the parameter of interest. To minimize the effect of C0 and Cp, either an on-board or off-board compensating capacitor can be added in parallel to cancel their effect.
Icomp=−(Ico+Icp) (Eq. 3)
ITotal=If+Icomp=Ix (Eq. 4)
The compensation device is structurally identical to the resonator as shown in
The probe tip can be used to image surfaces in both AFM and Scanning Tunneling Microscopy (STM) modes. In contact mode AFM, the tip is dragged across the surface of a sample. As the tip encounters different roughness of the surface, since the tip is supported by springs, it moves up and down. This up and down movement of the tip can be sensed by the differential capacitors B1 and B2. The device is biased as shown in
VSENSE changes with the displacement of the probe tip and its value can be used to create a 3D topographical image of the surface. For small probe tip displacement the following equation is utilized:
where y is a small displacement caused by the probe tip in contact with a surface and y0 is the default smallest gap between any of the fingers on B1 or B2 and a probe tip finger.
To ensure that there is good ohmics between the probe tip and the sample, the workfunction of the probe tip and sample should be closely matched. In most semiconductor technology nodes, tungsten plugs are used to connect a metal to the source, drain, and gate regions of the transistor. To probe these plugs, tungsten probe tips are usually used due to its hardness and high conductivity. But the tungsten probes are susceptible to oxidation which in effect render them insulating and non-ideal for electrical probing. Both chemical and mechanical techniques are used to remove the oxide on the probe tip.
Other structures with different workfunctions would require different conducting probe tip materials. Platinum and gold are metals of interest for nanoprobing due to their high conductivity and non-oxidation tendencies. Gold is pretty soft and might stick to surfaces. To this end, probe tip devices with different conducting materials or metals have been fabricated as shown in the SEM image in
The stress gradient in the metal films might bend the probe tip either upwards or downward. To mitigate the effect of stress gradient, the metal can be mechanically attached to a supporting material.
According to an embodiment,
The support layer for the metal is not limited to silicon but other materials such as silicon dioxide, silicon nitride, and MoSi2, among others. Two or more individual probe tips can be synchronously and simultaneously used to perform AFM or STM imaging of a sample. Using the acquired image, individual tips can be navigated to specific points on the sample. For example, the plugs in an Integrated Circuit (IC) can be nanoprobed using the device, where all the four individual probe tips are scanned simultaneously to acquire STM or AFM image and subsequently navigated to specific plugs for nanoprobing. The 3D image can then be used as feedback for positioning each tip at a particular point on the sample.
According to an embodiment using the fabrication process outlined in Table 2 above, curved probe tips can be realized as shown in
According to an embodiment using the fabrication process outlined in Table 2, pre-defined shaped single tips with extended metal overhangs can be realized. These probe tips can be used as fabricated, or soldered to metal shank, and inserted into manipulators. If the SOI device layer is thick, then the buried oxide layer can be fully etched away to release probe tips.
Freely released and suspended multiple integrated tips tend to pull-in to each other after the release process or during nanoprobing. To mitigate the pull-in effect, interdigitated structures can be monolithically inserted between the probes. Table 3 below illustrates the fabrication process for monolithically implementing the interdigitated structures, in accordance with an embodiment. Referring to
The 4-tip MiT probe can be considered as a Ground-Signal-Ground Signal (GSGS) probe device where two signals that are out-of-phase can be introduced on the Signal probes and shielded by the Ground probes. Bottom electrodes can also be placed below each probe tip for controlled downward deflection of each probe tip. The tips can be used for conventional 4-point probing. Also, the 4 probes can be scanned across a sample surface and the current between any of the two tips can be used for imaging the surface.
Certain STM/AFM imaging and nanoprobing require that probe tips exhibit 3 Degrees of Freedom (DOF).
The bottom electrodes are used to deflect the probes out-of-plane. The metal choice for the actuation electrodes (1st metal layer) and the probe tips (2nd metal layer) could be the same or different. The 3-Tip MiT probe configuration allows these probes to be used as Ground-Signal-Ground (GSG) RF/microwave probes for testing microwave and RF circuits. The 3-Tip MiT probe can also be used for AFP. Using the fabrication process outlined in Table 4 above, a 5-point probe device can be realized. The middle probe tip is used for AFM/STM imaging then it is retracted and the remaining 4 probe tips are used for conventional 4-point probe measurements.
According to an embodiment is the fabrication of monolithically integrated probe tips with bottom and side actuation electrodes, where the side tips are laterally deflected. The side probe tips can be independently controlled by applying voltages to electrodes E1 and E2 (bottom electrodes) and F1 and F2 (side electrodes) as shown in
In certain applications, the middle probe tip might be required to be deflected both down (towards the substrate) and up (away from the substrate). Table 6 illustrates the fabrication process steps in realizing such a device. The metal choice for the actuation electrodes (1st metal) and the probe tips (2nd metal) could be the same or different. Referring to
Several MiT probes can be monolithically vertically integrated to offer several probe tips that can be used to probe structures on a wafer. Table 7 illustrates the fabrication process for the vertically stacked MiT probes. The metal choice used in the MiT probe stack could be the same (1st metal is the same as 2nd metal) or different (1st metal is different from 2nd metal). The MiT probe stack is not limited to two layers but several layers can also be implemented using the outlined fabrication process flow. The stacked MiT probes can also be realized in standard CMOS processes where the different metal layers can be used as the probe tips. Referring to
Each MiT probe that makeup the vertically stacked monolithically integrated probe tip devices that was illustrated in Table 7 above have the same number of probe tips. In certain applications, a modified probe tip configuration might be required. In such situations, the FIB can be used to remove unneeded probe tips, as shown in Table 8. Removal of unneeded probe tips is not limited to the use of FIB but other means such as ion milling and reactive ion etching are possible. The metal choice used in the MiT probe stack could be the same (1st metal the same as 2nd metal) or different (1st metal different from 2nd metal). The MiT probe stack is not limited to two layers but several layers can also be implemented using the outlined fabrication process flow. Referring to
SRAM, DRAM and flash memory are typically arrayed and the plug spacing for the source, drain and gate are fixed. These plugs could be relatively easily accessed with MiT probes that have predefined tip configurations that directly address these specific plug layouts. The MiT probes can be designed specifically for a particular technology node and semiconductor foundry. The metal choice used for the probe tips in the MiT probe could be the same (1st metal the same as 2nd metal) or different (1st metal different from 2nd metal), as shown in Table 9. Referring to
The out-of-plane MiT probe that was illustrated in Table 9 above had the middle probe tip fixed to the SiO2 support layer. Table 10 below details out the fabrication of a fully suspended and movable out-of-plane middle probe tip device. Referring to
According to an embodiment, various combinations of the different probe configurations (single tip, 2, 3 and/or 4-Tip MiT probes) can be simultaneously used to scan and nanoprobe. According to one example, a 3-Tip MiT probe could be utilized to access the source, drain, gate plugs of a transistor then bringing in an independent single tip device to probe the bulk (body) of the transistor.
Bottom electrodes are used to deflect the probe tips up or down with respect to the substrate. But in certain applications, the side probe tips might need to be laterally deflected. For instance, when the gate length of two transistors varies, the side tips must be laterally deflected in order to access the source and drain plugs. Table 11 below illustrates the fabrication process flow for making MiT probes with side actuation electrodes. Referring to
According to an embodiment, the lateral actuation electrodes for the side probe tips can be implemented for all the above MiT probe designs.
The MiT probes can be used to implement various active and passive circuit components (transistor, resistor, diode and capacitor) on substrates. Since the MiT probe is capable of electrically mapping different regions of a substrate, at each spot, an active or passive component can be implemented on the substrate. Thus, these components are not lithographically fixed to the substrate but are mobile. For example, the 3-Tips MiT probe can be used to implement a transistor on a substrate. The middle probe tip represents the gate and the side probe tips are the source and drain terminals as shown in
Referring to
A variable resistor on the other hand can be implemented by changing the spacing between the middle probe tip and any of the side tips. Applied voltages to C1 or C2 would laterally deflect the middle probe tip. By varying the tip spacing and contacting the substrate, different substrate resistance values can be achieved as demonstrated in
Two or more active or passive circuit components that are implemented with two or more MiT probes can be cascaded to form various circuits such as common source amplifier, common gate amplifier, a source follower, etc.
While various embodiments have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the function and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the embodiments described herein. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the teachings is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, embodiments may be practiced otherwise than as specifically described and claimed. Embodiments of the present disclosure are directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the scope of the present disclosure.
The above-described embodiments of the described subject matter can be implemented in any of numerous ways. For example, some embodiments may be implemented using hardware, software or a combination thereof. When any aspect of an embodiment is implemented at least in part in software, the software code can be executed on any suitable processor or collection of processors, whether provided in a single device or computer or distributed among multiple devices/computers.
This application is a Continuation Application of U.S. patent application Ser. No. 16/553,968, filed on Aug. 28, 2019, which application claims priority to U.S. patent application Ser. No. 15/054,626 filed on Feb. 26, 2016, which application claims priority to U.S. Provisional Patent Application Ser. No. 62/121,208, filed on Feb. 26, 2015, entitled “Systems and Methods for Manufacturing Nano-Electric-Mechanical-System Probes,” the entire disclosures of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4992660 | Kobayashi | Feb 1991 | A |
5148103 | Pasiecznik, Jr. | Sep 1992 | A |
5400647 | Elings | Mar 1995 | A |
5426302 | Marchman et al. | Jun 1995 | A |
5436448 | Hosaka et al. | Jul 1995 | A |
5666190 | Quate et al. | Sep 1997 | A |
5929438 | Suzuki | Jul 1999 | A |
5994698 | Kawade et al. | Nov 1999 | A |
6078186 | Hembree et al. | Jun 2000 | A |
6196061 | Adderton | Mar 2001 | B1 |
6369385 | Muray | Apr 2002 | B1 |
7349223 | Haemer et al. | Mar 2008 | B2 |
7397087 | Chinthakindi et al. | Jul 2008 | B2 |
7872482 | Chong et al. | Jan 2011 | B2 |
8056402 | Hecker et al. | Nov 2011 | B2 |
8440523 | Guillorn et al. | May 2013 | B1 |
8575954 | Chong et al. | Nov 2013 | B2 |
10048289 | Lal et al. | Aug 2018 | B2 |
10436814 | Amponsah | Oct 2019 | B2 |
20020153583 | Frazier et al. | Oct 2002 | A1 |
20030020500 | Altmann et al. | Jan 2003 | A1 |
20040004182 | Kranz | Jan 2004 | A1 |
20040157350 | McQuade et al. | Aug 2004 | A1 |
20040223309 | Haemer et al. | Nov 2004 | A1 |
20050026476 | Mok et al. | Feb 2005 | A1 |
20060027878 | Chinthakindi et al. | Feb 2006 | A1 |
20060257286 | Adams | Nov 2006 | A1 |
20070234786 | Moon | Oct 2007 | A1 |
20080246500 | Chong et al. | Oct 2008 | A1 |
20080258059 | Saito et al. | Oct 2008 | A1 |
20090001488 | Magana et al. | Jan 2009 | A1 |
20090114000 | Hecker et al. | May 2009 | A1 |
20100071098 | Mirkin et al. | Mar 2010 | A1 |
20100115671 | Pryadkin et al. | May 2010 | A1 |
20100132075 | Iyoki | May 2010 | A1 |
20100154085 | Maruyama et al. | Jun 2010 | A1 |
20100186132 | Humphris | Jul 2010 | A1 |
20100205698 | Faucher et al. | Aug 2010 | A1 |
20100218286 | Lai | Aug 2010 | A1 |
20100229265 | Jin et al. | Sep 2010 | A1 |
20100244867 | Chong et al. | Sep 2010 | A1 |
20100257643 | Reifenberger et al. | Oct 2010 | A1 |
20100263098 | Müller et al. | Oct 2010 | A1 |
20110055982 | Watanabe et al. | Mar 2011 | A1 |
20110089572 | Tezcan et al. | Apr 2011 | A1 |
20110126329 | Despont et al. | May 2011 | A1 |
20120090056 | Hirooka | Apr 2012 | A1 |
20130249584 | Lou et al. | Sep 2013 | A1 |
20140331367 | Lal et al. | Nov 2014 | A1 |
20160003866 | Chaigneau | Jan 2016 | A1 |
20180149673 | Huo et al. | May 2018 | A1 |
Number | Date | Country |
---|---|---|
1159001 | Sep 1997 | CN |
1160193 | Sep 1997 | CN |
2465175 | Dec 2001 | CN |
2488061 | Apr 2002 | CN |
1416523 | May 2003 | CN |
101920338 | Dec 2010 | CN |
103235158 | Aug 2013 | CN |
104087505 | Oct 2014 | CN |
104105655 | Oct 2014 | CN |
1085327 | Mar 2001 | EP |
H07120482 | May 1995 | JP |
2005507175 | Mar 2005 | JP |
2005300177 | Oct 2005 | JP |
2010526284 | Jul 2010 | JP |
4685309 | May 2011 | JP |
20090128186 | Dec 2009 | KR |
0120347 | Mar 2001 | WO |
03019238 | Mar 2003 | WO |
2011159351 | Dec 2011 | WO |
2013090887 | Jun 2013 | WO |
2014041677 | Mar 2014 | WO |
2014114860 | Jul 2014 | WO |
Entry |
---|
Yoomin, Ahn et al., “Si multiprobes integrated with lateral actuators for independent scanning probe applications; AFM Si multiprobes with lateral actuators,” Journal of Micromechanics & Microengineering, Institute of Physics Publishing, Bristol, GB, vol. 15, No. 6, Jun. 1, 2005, pp. 1224-1229; doi: 10.1088/0960-1317/15//6/012. |
Koester, S. J. et al., “Wafer-level 3D integration technology,” IBM Journal of Research and Development, International Business Machines Corporation, New York, NY, US, vol. 52, No. 6, Nov. 1, 2008 (Nov. 1, 2008), KP002676160, ISSN: 0018-8646, DOI: 10.1147/JRD.2008.5388565, pp. 583-597. |
Song, Z.G. et al., “Front-end processing defect localization by contact-level passive voltage contrast technique and root cause analysis,” Physical and Failure Analysis of Integrated Circuits, 2002, IPFA 2002, proceedings of the 9th International Symposium on the Jul. 8-12, 2002, Piscataway, NJ, USA, IEEE, Jul. 8, 2002 (Jul. 8, 2002), KP010597768, ISBM: 978-0-7803-7416-4, pp. 97-100. |
Ming-Dou Ker et al., “Fully Process-Compatible Layout Design on Bond Pad to Improve Wire Bond Reliability in CMOS ICs,” IEEE Transaction on Components and Packaging Technologies, IEEE Service Center, Piscataway, NJ, US, Vo. 25, No. 2, Jun. 1, 2002 (Jun. 1, 2002), pp. 309-316, XP011070771, ISSN: 1521-3331; figures 1-7. |
Notification of Third Office Action, Chinese Patent Application No. 201680024285.X, dated Dec. 8, 2020, pp. 1-8. |
Communication Pursuant to Article 94(3) EPC, European Patent Application No. 16709223.8, dated Jan. 19, 2021, pp. 1-4. |
The Second Office Action, Chinese Patent Application No. 201680024285.X, dated Jun. 3, 2020, pp. 1-12. |
Decision of Refusal, Japanese Patent Application No. 2017-563508, dated Sep. 20, 2019, pp. 1-3. |
International Preliminary Report on Patentability, PCT Patent Application No. PCT/US2016/019806, dated Aug. 29, 2017, pp. 1-11. |
Number | Date | Country | |
---|---|---|---|
20200156376 A1 | May 2020 | US |
Number | Date | Country | |
---|---|---|---|
62121208 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15054626 | Feb 2016 | US |
Child | 16533968 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16533968 | Aug 2019 | US |
Child | 16751913 | US |