Systems and methods for manufacturing waveguide cells

Information

  • Patent Grant
  • 12092914
  • Patent Number
    12,092,914
  • Date Filed
    Tuesday, December 29, 2020
    4 years ago
  • Date Issued
    Tuesday, September 17, 2024
    4 months ago
Abstract
Systems for the manufacturing of waveguide cells in accordance with various embodiments can be configured and implemented in many different ways. In many embodiments, various deposition mechanisms are used to deposit layer(s) of optical recording material onto a transparent substrate. A second transparent substrate can be provided, and the three layers can be laminated to form a waveguide cell. Suitable optical recording material can vary widely depending on the given application. In some embodiments, the optical recording material deposited has a similar composition throughout the layer. In a number of embodiments, the optical recording material spatially varies in composition, allowing for the formation of optical elements with varying characteristics. Regardless of the composition of the optical recording material, any method of placing or depositing the optical recording material onto a substrate can be utilized.
Description
FIELD OF THE INVENTION

The present invention generally relates to processes and apparatuses for manufacturing waveguide cells and, more specifically, manufacturing waveguide cells utilizing deposition and printing techniques.


BACKGROUND

Waveguides can be referred to as structures with the capability of confining and guiding waves (i.e., restricting the spatial region in which waves can propagate). One class of waveguides includes optical waveguides, which are structures that can guide electromagnetic waves, typically those in the visible spectrum. Waveguide structures can be designed to control the propagation path of waves using a number of different mechanisms. For example, planar waveguides can be designed to utilize diffraction gratings to diffract and couple incident light into the waveguide structure such that the in-coupled light can proceed to travel within the planar structure via total internal reflection (“TIR”).


Fabrication of waveguides can include the use of material systems that allow for the recording of holographic optical elements within the waveguides. One class of such material includes polymer dispersed liquid crystal (“PDLC”) mixtures, which are mixtures containing photopolymerizable monomers and liquid crystals. A further subclass of such mixtures includes holographic polymer dispersed liquid crystal (“HPDLC”) mixtures. Holographic optical elements, such as volume phase gratings, can be recorded in such a liquid mixture by illuminating the material with two mutually coherent laser beams. During the recording process, the monomers polymerize and the mixture undergoes a photopolymerization-induced phase separation, creating regions densely populated by liquid crystal micro-droplets, interspersed with regions of clear polymer. The alternating liquid crystal-rich and liquid crystal-depleted regions form the fringe planes of the grating.


Waveguide optics, such as those described above, can be considered for a range of display and sensor applications. In many applications, waveguides containing one or more grating layers encoding multiple optical functions can be realized using various waveguide architectures and material systems, enabling new innovations in near-eye displays for Augmented Reality (“AR”) and Virtual Reality (“VR”), compact Heads Up Displays (“HUDs”) for aviation and road transport, and sensors for biometric and laser radar (“LIDAR”) applications.


SUMMARY OF THE INVENTION

One embodiment includes a method for manufacturing waveguide cells, the method including providing a first substrate, determining a predefined grating characteristic, and depositing a layer of optical recording material onto the first substrate using at least one deposition head, wherein the optical recording material deposited over the grating region is formulated to achieve the predefined grating characteristic.


In another embodiment, the method further includes providing a second substrate, placing the second substrate onto the deposited layer of optical recording material, and laminating the first substrate, the layer of optical recording material, and the second substrate.


In a further embodiment, depositing the layer of optical recording material includes providing a first mixture of optical recording material, providing a second mixture of optical recording material, and depositing the first and second mixtures of optical recording material onto the first substrate in a predetermined pattern using the at least one deposition head.


In still another embodiment, the first mixture of optical recording material includes a first bead and the second mixture of optical recording material includes a second bead that is a different size from the first bead.


In a still further embodiment, the first mixture of optical recording material has a different percentage by weight of liquid crystals than the second mixture of optical recording material.


In yet another embodiment, the method further includes defining a grating region and a nongrating region on the first substrate, wherein the first mixture of optical recording material includes a liquid crystal and a monomer, the second mixture of optical recording material includes a monomer, and depositing the first and second mixtures of optical recording material onto the first substrate in the predetermined pattern includes depositing the first mixture of optical recording material over the grating region and depositing the second mixture of optical recording material over the nongrating region.


In a yet further embodiment, the first mixture of optical recording material is a polymer dispersed liquid crystal mixture that includes a monomer, a liquid crystal, a photoinitiator dye, and a coinitiator.


In another additional embodiment, the polymer dispersed liquid crystal mixture includes an additive selected from the group that includes a photoinitiator, nano particles, low-functionality monomers, additives for reducing switching voltage, additives for reducing switching time, additives for increasing refractive index modulation, and additives for reducing haze.


In a further additional embodiment, the at least one deposition head includes at least one inkjet print head.


In another embodiment again, depositing the layer of optical recording material includes providing a first mixture of optical recording material, providing a second mixture of optical recording material, printing a first dot of the first mixture of optical recording material using the at least one inkjet print head, and printing a second dot of the second mixture of optical recording material adjacent to the first dot using the at least one inkjet print head.


In a further embodiment again, the at least one inkjet print head includes a first inkjet print head and a second inkjet print head and depositing the layer of optical recording material includes providing a first mixture of optical recording material, providing a second mixture of optical recording material, printing the first mixture of optical recording material onto the first substrate using the first inkjet print head, and printing the second mixture of optical recording material onto the first substrate using the second inkjet print head.


In still yet another embodiment, the predefined grating characteristic includes a characteristic selected from the group that includes refractive index modulation, refractive index, birefringence, liquid crystal director alignment, and grating layer thickness.


In a still yet further embodiment, the predefined grating characteristic includes a spatial variation of a characteristic selected from the group that includes refractive index modulation, refractive index, birefringence, liquid crystal director alignment, and grating layer thickness.


In still another additional embodiment, the predefined grating characteristic results in a grating after exposure, wherein the grating has a spatially varying diffraction efficiency.


A still further additional embodiment includes a system for fabricating a grating, the system including at least one deposition head connected to at least one reservoir containing at least one mixture of optical recording material, a first substrate having at least one predefined region for supporting gratings, a positioning element capable of positioning the at least one deposition head across the first substrate, wherein the at least one deposition head is configured to deposit the at least one mixture of optical recording material onto the first substrate using the positioning element and the deposited material provides a predefined grating characteristic within the at least one predefined grating region after holographic exposure.


In still another embodiment again, the at least one deposition head is connected to a first reservoir containing a first mixture of optical recording material and a second reservoir containing a second mixture of optical recording material.


In a still further embodiment again, the first mixture of optical recording material includes a liquid crystal and a monomer and the second mixture of optical recording material includes a monomer, wherein the at least one deposition head is configured to deposit the first mixture of optical recording material onto the at least one predefined grating region.


In yet another additional embodiment, the at least one deposition head includes at least one inkjet print head.


In a yet further additional embodiment, the predefined grating characteristic includes a characteristic selected from the group that includes refractive index modulation, refractive index, birefringence, liquid crystal director alignment, and grating layer thickness.


In yet another embodiment again, the predefined grating characteristic results in a grating after exposure, wherein the grating has a spatially varying diffraction efficiency.


Additional embodiments and features are set forth in part in the description that follows, and in part will become apparent to those skilled in the art upon examination of the specification or may be learned by the practice of the invention. A further understanding of the nature and advantages of the present invention may be realized by reference to the remaining portions of the specification and the drawings, which forms a part of this disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS

The description will be more fully understood with reference to the following figures and data graphs, which are presented as exemplary embodiments of the invention and should not be construed as a complete recitation of the scope of the invention. It will apparent to those skilled in the art that the present invention may be practiced with some or all of the present invention as disclosed in the following description.



FIG. 1A conceptually illustrates a profile view of a waveguide cell in accordance with an embodiment of the invention.



FIG. 1B conceptually illustrates a waveguide cell with a wedge-shaped profile in accordance with an embodiment of the invention.



FIG. 1C conceptually illustrates a top view of a waveguide cell in accordance with an embodiment of the invention.



FIG. 2A conceptually illustrates a workcell cluster system in accordance with an embodiment of the invention.



FIG. 2B conceptually illustrates a workcell cluster system with two deposition workcells in accordance with an embodiment of the invention.



FIG. 3A conceptually illustrates an isometric view of a deposition workcell in accordance with an embodiment of the invention.



FIG. 3B conceptually illustrates a top view of a deposition workcell in accordance with an embodiment of the invention.



FIGS. 4A and 4B conceptually illustrate schematically the use of reverse ray tracing to compute a compensated index modulation pattern for coating in accordance with various embodiments of the invention.



FIGS. 5A and 5B conceptually illustrate the fundamental structural differences between SBGs and SRGs.



FIG. 6 conceptually illustrates a waveguide cell with marked areas for gratings in accordance with an embodiment of the invention.



FIGS. 7A and 7B conceptually illustrate operation of a deposition mechanism utilizing a spray module in accordance with an embodiment of the invention.



FIGS. 8A and 8B conceptually illustrate two operational states of a spray module in accordance with an embodiment of the invention.



FIG. 9 is a flow chart conceptually illustrating a method of fabricating a holographic grating using a selective coating process in accordance with an embodiment of the invention.



FIG. 10 conceptually illustrates a deposition head for providing predefined grating characteristics within grating regions in accordance with an embodiment of the invention.



FIG. 11 conceptually illustrates operation of a deposition head for depositing material having regions with predefined grating characteristics in accordance with an embodiment of the invention.



FIG. 12 conceptually illustrates a deposition mechanism for depositing two grating layers in accordance with an embodiment of the invention.



FIG. 13 conceptually illustrates a system for depositing a grating layer of material and for holographically exposing the layer in accordance with an embodiment of the invention.



FIG. 14 is a flow chart conceptually illustrating a method of depositing a film of material with regions having predefined grating characteristics in accordance with an embodiment of the invention.



FIG. 15 conceptually illustrates an inkjet printing modulation scheme in accordance with an embodiment of the invention.





DETAILED DESCRIPTION

For the purposes of describing embodiments, some well-known features of optical technology known to those skilled in the art of optical design and visual displays have been omitted or simplified in order to not obscure the basic principles of the invention. Unless otherwise stated, the term “on-axis” in relation to a ray or a beam direction refers to propagation parallel to an axis normal to the surfaces of the optical components described in relation to the invention. In the following description, the terms light, ray, beam and direction may be used interchangeably and in association with each other to indicate the direction of propagation of light energy along rectilinear trajectories. Parts of the following description will be presented using terminology commonly employed by those skilled in the art of optical design. For illustrative purposes, it is to be understood that the drawings are not drawn to scale unless stated otherwise.


Turning now to the drawings, systems and methods for manufacturing waveguide cells are illustrated. A waveguide cell can be defined as a device containing uncured and/or unexposed optical recording material in which optical elements, such as but not limited to gratings, can be recorded through exposure to certain wavelengths of electromagnetic radiation. Many techniques exist for the manufacturing and construction of waveguide cells. In many embodiments, a waveguide cell is constructed by placing a thin film of optical recording material between two transparent substrates. In further embodiments, a workcell cluster manufacturing system is implemented to construct such waveguide cells. A workcell can be defined as a set of machines assigned to a particular manufacturing task. A cluster can be defined as a group of machines that performs a similar function cooperatively. In some embodiments, the workcell cluster includes a preparation workcell for preparing substrates for deposition, a deposition workcell for depositing an optical recording material onto a substrate, and a lamination workcell for laminating various layers together to form a waveguide cell.


Workcells and workcell clusters in accordance with various embodiments can be configured and implemented in many different ways. For instance, preparation workcells can be configured to prepare substrates for material deposition through various processes, including but not limited to cleaning procedures and protocols. In many embodiments, the preparation of substrates includes glass cleaning procedures for ridding the surfaces of the substrates of contaminants and particles. In some embodiments, procedures for increasing the surface adhesion properties of the substrates are implemented to further prepare the substrates for material deposition.


Deposition workcells can be configured to deposit one or more layers of optical recording material onto a transparent substrate using a variety of different deposition and printing mechanisms. In many embodiments, additive manufacturing techniques, such as but not limited to inkjet printing, are used to deposit the layer(s) of optical recording material. In several embodiments, spraying techniques are utilized to deposit the layer(s) of optical recording material. Suitable optical recording material can vary widely depending on the given application. In some embodiments, the optical recording material deposited has a similar composition throughout the layer. In a number of embodiments, the optical recording material spatially varies in composition, allowing for the formation of optical elements with varying characteristics. Regardless of the composition of the optical recording material, any method of placing or depositing the optical recording material onto a substrate can be utilized.


Lamination workcells can be configured to laminate various layers to form a waveguide cell. In a number of embodiments, the lamination workcell is configured to laminate and form a three-layer composite of optical recording material and transparent substrates. As can readily be appreciated, the number of layers and types of materials used to construct the waveguide cells can vary and depend on the given application. For example, in some embodiments, waveguide cells can be constructed to include protective cover layers, polarization control layers, and/or alignment layers. In some embodiments, the system is configured for the production of curved waveguides and waveguide cells. Specific materials, systems, and methods for constructing waveguide cells are discussed below in further detail.


Waveguide Cells


Waveguide cells can be configured and constructed in many different ways in accordance with various embodiments of the invention. As discussed above, in many waveguide configurations, the waveguide cell includes a thin film of optical recording material sandwiched between two substrates. Such waveguide cells can be manufactured using various processes. In many embodiments, waveguide cells can be constructed by coating a first substrate with an optical recording material capable of acting as an optical recording medium. Various optical recording materials can be used. In some embodiments, the optical recording material is a holographic polymer dispersed liquid crystal mixture (e.g., a matrix of liquid crystal droplets). As can readily be appreciated, the choice of optical recording material and types of mixtures utilized can depend on the given application. The optical recording material can be deposited using a variety of deposition techniques. In a number of embodiments, the optical recording material can be deposited onto the first substrate through inkjetting, spin coating, and/or spraying processes. The deposition processes can be configured to deposit one or more type of optical recording material. In some embodiments, the deposition process is configured to deposit optical recording material that spatially varies in composition across a substrate. After deposition of the optical recording material, a second substrate can be placed such that the optical recording material is sandwiched between the two substrates to form a waveguide cell. In several embodiments, the second substrate can be a thin protective film coated onto the exposed layer. In such embodiments, various techniques, including but not limited to spraying processes, can be used to coat the exposed layer with the desired film of material. In a number of embodiments, the waveguide cell can include various additional layers, such as but not limited to polarization control layers and/or alignment layers. Other processes for manufacturing waveguide cells can include filling empty waveguide cells (constructed of two substrates) with an optical recording material using processes such as but not limited to gravity filling and vacuum filling methods.


Substrates used in the construction of waveguide cells are often made of transparent materials. In some embodiments, the substrate is an optical plastic. In other embodiments, the substrate may be fabricated from glass. An exemplary glass substrate is standard Corning Willow glass substrate (index 1.51) which is available in thicknesses down to 50 micrometers. The thicknesses of the substrates can vary from application to application. In many embodiments, 1 mm thick glass slides are used as the substrates. In addition to different thicknesses, substrates of different shapes, such as but not limited to rectangular and curvilinear shapes, can also be used depending on the application. Oftentimes, the shapes of the substrates can determine the overall shape of the waveguide. In a number of embodiments, the waveguide cell contains two substrates that are of the same shape. In other embodiments, the substrates are of different shapes. As can readily be appreciated, the shapes, dimensions, and materials of the substrates can vary and depend on the specific requirements of a given application.


In many embodiments, beads or other particles are dispersed throughout the optical recording material to help control the thickness of the layer of optical recording material and to help prevent the two substrates from collapsing onto one another. In some embodiments, the waveguide cell is constructed with an optical recording material layer sandwiched between two planar substrates. Depending on the type of optical recording material used, thickness control can be difficult to achieve due to the viscosity of some optical recording materials and the lack of a bounding edge for the optical recording material layer. In a number of embodiments, the beads are relatively incompressible solids, which can allow for the construction of waveguide cells with consistent thicknesses. The size of a bead can determine a localized minimum thickness for the area around the individual bead. As such, the dimensions of the beads can be selected to help attain the desired optical recording material layer thickness. The beads can be made of any of a variety of materials, including but not limited to glass and plastics. In several embodiments, the material of the beads is selected such that its refractive index does not substantially affect the propagation of light within the waveguide cell.


In some embodiments, the waveguide cell is constructed such that the two substrates are parallel or substantially parallel. In such embodiments, relatively similar sized beads can be dispersed throughout the optical recording material to help attain a uniform thickness throughout the layer. In other embodiments, the waveguide cell has a tapered profile. A tapered waveguide cell can be constructed by dispersing beads of different sizes across the optical recording material. As discussed above, the size of a bead can determine the local minimum thickness of the optical recording material layer. By dispersing the beads in a pattern of increasing size across the material layer, a tapered layer of optical recording material can be formed when the material is sandwiched between two substrates.


Once constructed, waveguide cells can be used in conjunction with a variety of processes for recording optical elements within the optical recording material. For example, the process disclosed may incorporated embodiments and teachings from the materials and processes, such as but not limited to those described in U.S. patent application Ser. No. 16/116,834 entitled “Systems and Methods for High-Throughput Recording of Holographic Gratings in Waveguide Cells,” filed Aug. 29, 2018 and U.S. patent application Ser. No. 16/007,932 entitled “Holographic Material Systems and Waveguides Incorporating Low Functionality Monomers,” filed Jun. 13, 2018 The disclosures of U.S. patent application Ser. Nos. 16/116,834 and 16/007,932 are hereby incorporated in their entireties for all purpose.


A profile view of a waveguide cell 100 in accordance with an embodiment of the invention is conceptually illustrated in FIG. 1A. As shown, the waveguide cell 100 includes a layer of optical recording material 102 that can be used as a recording medium for optical elements, such as but not limited to gratings. The optical recording material 102 can be any of a variety of compounds, mixtures, or solutions, such as but not limited to the HPDLC mixtures described in the sections above. In the illustrative embodiment, the optical recording material 102 is sandwich between two parallel glass plates 104, 106. The substrates can be arranged in both parallel and non-parallel configurations. FIG. 1B conceptually illustrates a profile view of a tapered waveguide cell 108 utilizing beads 110, 112, and 114 in accordance with an embodiment of the invention. As shown, beads 110, 112, and 114 vary in size and are dispersed throughout an optical recording material 116 sandwiched by two glass plates 118, 120. During construction of the waveguide cell, the local thickness of an area of the optical recording material layer is limited by the sizes of the beads in that particular area. By dispersing the beads in an increasing order of sizes across the optical recording material, a tapered waveguide cell can be constructed when the substrates are placed in contact with the beads. As discussed above, substrates utilized in waveguide cells can vary in thicknesses and shapes. In many embodiments, the substrate is rectangular in shape. In some embodiments, the shape of the waveguide cell is a combination of curvilinear components. FIG. 1C conceptually illustrates a top view of a waveguide cell 122 having a curvilinear shape in accordance with an embodiment of the invention.


Although FIGS. 1A-1C illustrate specific waveguide cell constructions and arrangements, waveguide cells can be constructed in many different configurations and can use a variety of different materials depending on the specific requirements of a given application. For example, substrates can be made of transparent plastic polymers instead of glass. Additionally, the shapes and sizes of the waveguide cells can vary greatly and can be determined by various factors, such as but not limited to the application of the waveguide, ergonomic considerations, and economical factors. In many embodiments, the substrates are curved, allowing for the production of waveguides with curved cross sections.


Grating Structures


Waveguide cells in accordance with various embodiments of the invention can incorporate a variety of light-sensitive materials. In many embodiments, the waveguide cell incorporates a holographic polymer dispersed liquid crystal mixture that functions as an optical recording medium in which optical elements can be recorded. Optical elements can include many different types of gratings capable of exhibiting different optical properties. One type of grating that can be recorded in waveguide cells is a volume Bragg grating, which can be characterized as a transparent medium with a periodic variation in its refractive index. This variation can allow for the diffraction of incident light of certain wavelengths at certain angles. Volume Bragg gratings can have high efficiency with little light being diffracted into higher orders. The relative amount of light in the diffracted and zero order can be varied by controlling the refractive index modulation of the grating.


One class of gratings used in holographic waveguide devices is the Switchable Bragg Grating (“SBG”). An SBG is a diffractive device that can be formed by recording a volume phase grating in an HPDLC mixture (although other materials can be used). SBGs can be fabricated by first placing a thin film of a mixture of photopolymerizable monomers and liquid crystal material between glass plates or substrates, which forms a waveguide cell. One or both glass plates can support electrodes, typically transparent tin oxide films, for applying an electric field across the film. SBGs can be implemented as waveguide devices in which the HPDLC forms either the waveguide core or an evanescently coupled layer in proximity to the waveguide. The glass plates used to form the HPDLC cell can provide a total internal reflection light guiding structure. Light is coupled out of the SBG when the switchable grating diffracts the light at an angle beyond the TIR condition.


The grating structure in an SBG can be recorded in the film of HPDLC material through photopolymerization-induced phase separation using interferential exposure with a spatially periodic intensity modulation. Factors such as but not limited to control of the irradiation intensity, component volume fractions of the HPDLC material, and exposure temperature can determine the resulting grating morphology and performance. During the recording process, the monomers polymerize and the mixture undergoes a phase separation. The LC molecules aggregate to form discrete or coalesced droplets that are periodically distributed in polymer networks on the scale of optical wavelengths. The alternating liquid crystal-rich and liquid crystal-depleted regions form the fringe planes of the grating, which can produce Bragg diffraction with a strong optical polarization resulting from the orientation ordering of the LC molecules in the droplets. The resulting volume phase grating can exhibit very high diffraction efficiency, which may be controlled by the magnitude of the electric field applied across the HPDLC layer. When an electric field is applied to the hologram via transparent electrodes, the natural orientation of the LC droplets is changed, causing the refractive index modulation of the fringes to reduce and the hologram diffraction efficiency to drop to very low levels. The diffraction efficiency of the device can be adjusted, by means of the applied voltage, over a continuous range from near 100% efficiency with no voltage applied to essentially zero efficiency with a sufficiently high voltage applied. In certain types of HPDLC devices, phase separation of the LC material from the polymer can be accomplished to such a degree that no discernible droplet structure results. An SBG can also be used as a passive grating. In this mode, its chief benefit is a uniquely high refractive index modulation. SBGs can be used to provide transmission or reflection gratings for free space applications. SBGs can be implemented as waveguide devices in which the HPDLC forms either the waveguide core or an evanescently coupled layer in proximity to the waveguide. The glass plates used to form the HPDLC cell provide a total internal reflection light guiding structure. Light can be coupled out of the SBG when the switchable grating diffracts the light at an angle beyond the TIR condition.


In many embodiments, SBGs are recorded in a uniform modulation material, such as POLICRYPS or POLIPHEM having a matrix of solid liquid crystals dispersed in a liquid polymer. Exemplary uniform modulation liquid crystal-polymer material systems are disclosed in United State Patent Application Publication No.: US2007/0019152 by Caputo et al and PCT Application No.: PCT/EP2005/006950 by Stumpe et al. both of which are incorporated herein by reference in their entireties. Uniform modulation gratings are characterized by high refractive index modulation (and hence high diffraction efficiency) and low scatter. In some embodiments, at least one of the gratings is recorded a reverse mode HPDLC material. Reverse mode HPDLC differs from conventional HPDLC in that the grating is passive when no electric field is applied and becomes diffractive in the presence of an electric field. The reverse mode HPDLC may be based on any of the recipes and processes disclosed in PCT Application No.: PCT/GB2012/000680, entitled IMPROVEMENTS TO HOLOGRAPHIC POLYMER DISPERSED LIQUID CRYSTAL MATERIALS AND DEVICES. Optical recording material systems are discussed below in further detail.


Optical Recording Material Systems


HPDLC mixtures in accordance with various embodiments of the invention generally include LC, monomers, photoinitiator dyes, and coinitiators. The mixture (often referred to as syrup) frequently also includes a surfactant. For the purposes of describing the invention, a surfactant is defined as any chemical agent that lowers the surface tension of the total liquid mixture. The use of surfactants in PDLC mixtures is known and dates back to the earliest investigations of PDLCs. For example, a paper by R. L Sutherland et al., SPIE Vol. 2689, 158-169, 1996, the disclosure of which is incorporated herein by reference, describes a PDLC mixture including a monomer, photoinitiator, coinitiator, chain extender, and LCs to which a surfactant can be added. Surfactants are also mentioned in a paper by Natarajan et al, Journal of Nonlinear Optical Physics and Materials, Vol. 5 No. I 89-98, 1996, the disclosure of which is incorporated herein by reference. Furthermore, U.S. Pat. No. 7,018,563 by Sutherland; et al., discusses polymer-dispersed liquid crystal material for forming a polymer-dispersed liquid crystal optical element including: at least one acrylic acid monomer; at least one type of liquid crystal material; a photoinitiator dye; a coinitiator; and a surfactant. The disclosure of U.S. Pat. No. 7,018,563 is hereby incorporated by reference in its entirety.


The patent and scientific literature contains many examples of material systems and processes that can be used to fabricate waveguides incorporating volume gratings, including investigations into formulating such material systems for achieving high diffraction efficiency, fast response time, low drive voltage, and so forth. U.S. Pat. No. 5,942,157 by Sutherland, and U.S. Pat. No. 5,751,452 by Tanaka et al. both describe monomer and liquid crystal material combinations suitable for fabricating waveguides incorporating volume gratings. Examples of recipes can also be found in papers dating back to the early 1990s, many of which disclose the use of acrylate monomers, including:

  • R. L. Sutherland et al., Chem. Mater. 5, 1533 (1993), the disclosure of which is incorporated herein by reference, describes the use of acrylate polymers and surfactants. Specifically, the recipe includes a crosslinking multifunctional acrylate monomer; a chain extender N-vinyl pyrrolidinone, LC E7, photo-initiator rose Bengal, and coinitiator N-phenyl glycine. Surfactant octanoic acid was added in certain variants.
  • Fontecchio et al., SID 00 Digest 774-776, 2000, the disclosure of which is incorporated herein by reference, describes a UV curable HPDLC for reflective display applications including a multi-functional acrylate monomer, LC, a photoinitiator, a coinitiators, and a chain terminator.
  • Y. H. Cho, et al., Polymer International, 48, 1085-1090, 1999, the disclosure of which is incorporated herein by reference, discloses HPDLC recipes including acrylates.
  • Karasawa et al., Japanese Journal of Applied Physics, Vol. 36, 6388-6392, 1997, the disclosure of which is incorporated herein by reference, describes acrylates of various functional orders.
  • T. J. Bunning et al., Polymer Science: Part B: Polymer Physics, Vol. 35, 2825-2833, 1997, the disclosure of which is incorporated herein by reference, also describes multifunctional acrylate monomers.
  • G. S. Iannacchione et al., Europhysics Letters Vol. 36 (6). 425-430, 1996, the disclosure of which is incorporated herein by reference, describes a PDLC mixture including a penta-acrylate monomer, LC, chain extender, coinitiators, and photoinitiator.


Acrylates offer the benefits of fast kinetics, good mixing with other materials, and compatibility with film forming processes. Since acrylates are cross-linked, they tend to be mechanically robust and flexible. For example, urethane acrylates of functionality 2 (di) and 3 (tri) have been used extensively for HPDLC technology. Higher functionality materials such as penta and hex functional stems have also been used.


Although HPDLC mixtures with specific components are discussed above in relation with their suitable uses as the optical recording material in a waveguide cell, specific formulations of optical recording materials can vary widely and can depend on the specific requirements of a given application. Such considerations can include diffraction efficiency (“DE”), haze, solar immunity, transparency, and switching requirements.


Embodiments of S & P Polarized RMLCM Materials

The S and P polarization response of a grating containing LC can depend on the average LC director orientations relative to the grating K-vector. Typically, the directors are substantially parallel to the K-vector, giving a strong P-response and a weaker S-response. If the LC directors are not aligned, the grating can have a strong S-response. Many embodiments of the invention include reactive monomer liquid crystal mixture (“RMLCM”) material systems configured to incorporate a mixture of LCs and monomers (and other components including: photoinitiator dye, coinitiators, surfactant), which under holographic exposure undergo phase separation to provide a grating in which at least one of the LCs and at least one of the monomers form a first HPDLC morphology that provides a P polarization response and at least one of the LCs and at least one of the monomers form a second HPDLC morphology that provides a S polarization response. In various such embodiments, the material systems include an RMLCM, which includes photopolymerizable monomers composed of suitable functional groups (e.g., acrylates, mercapto-, and other esters, among others), a cross-linking agent, a photo-initiator, a surfactant and a liquid crystal.


Turning to the components of the material formulation, any encapsulating polymer formed from any single photo-reactive monomer material or mixture of photo-reactive monomer materials having refractive indices from about 1.5 to 1.9 that crosslink and phase separate when combined can be utilized. Exemplary monomer functional groups usable in material formulations according to embodiments include, but are not limited to, acrylates, thiol-ene, thiol-ester, fluoromonomers, mercaptos, siloxane-based materials, and other esters, etc. Polymer cross-linking can be achieved through different reaction types, including but not limited to optically-induced photo-polymerization, thermally-induced polymerization, and chemically-induced polymerization.


These photopolymerizable materials can be combined in a biphase blend with a second liquid crystal material. Any suitable liquid crystal material having ordinary and extraordinary refractive indices matched to the polymer refractive index can be used as a dopant to balance the refractive index of the final RMLCM material. The liquid crystal material can be manufactured, refined, or naturally occurring. The liquid crystal material includes all known phases of liquid crystallinity, including the nematic and smectic phases, the cholesteric phase, the lyotropic discotic phase. The liquid crystal can exhibit ferroelectric or antiferroelectric properties and/or behavior.


Any suitable photoinitiator, co-initiator, chain extender and surfactant (such as for example octanoic acid) suitable for use with the monomer and LC materials can be used in the RMLCM material formulation. It will be understood that the photo-initiator can operate in any desired spectral band including the in the UV and/or in the visible band.


In various embodiments, the LCs can interact to form an LC mixture in which molecules of two or more different LCs interact to form a non-axial structure which interacts with both S and P polarizations. The waveguide can also contain an LC alignment material for optimizing the LC alignment for optimum S and P performance. In many embodiments, the ratio of the diffraction efficiencies of the P- and S-polarized light in the PDLC morphology is maintained at a relative ratio of from 1.1:1 to 2:1, and in some embodiments at around 1.5:1. In other embodiments, the measured diffraction efficiency of P-polarized light is from greater than 20% to less than 60%, and the diffraction efficiency for S-polarized light is from greater than 10% to less than 50%, and in some embodiments the diffraction efficiency of the PDLC morphology for P-polarization is around 30% and the diffraction efficiency of the PDLC morphology for S-polarization is around 20%. This can be compared with conventional PDLC morphologies where the diffraction efficiency for P-polarization is around 60% and for S-polarization is around 1% (i.e., the conventional P-polarization materials have very low or negligible S-components).


Mixtures Incorporating Nanoparticles


In many embodiments, the reactive monomer liquid crystal mixture can further include chemically active nanoparticles disposed within the LC domains. In some such embodiments, the nanoparticles are carbon nanotube (“CNT”) or nanoclay nanoparticle materials within the LC domains. Embodiments are also directed to methods for controlling the nanoclay particle size, shape, and uniformity. Methods for blending and dispersing the nanoclay particles can determine the resulting electrical and optical properties of the device. The use of nanoclays in HPDLC is discussed in PCT Application No.: PCT/GB2012/000680, entitled IMPROVEMENTS TO HOLOGRAPHIC POLYMER DISPERSED LIQUID CRYSTAL MATERIALS AND DEVICES.


The nanoclay nanoparticles can be formed from any naturally occurring or manufactured composition, as long as they can be dispersed in the liquid crystal material. The specific nanoclay material to be selected depends upon the specific application of the film and/or device. The concentration and method of dispersion also depends on the specific application of the film and/or device. In many embodiments, the liquid crystal material is selected to match the liquid crystal ordinary index of refraction with the nanoclay material. The resulting composite material can have a forced alignment of the liquid crystal molecules due to the nanoclay particle dispersion, and the optical quality of the film and/or device can be unaffected. The composite mixture, which includes the liquid crystal and nanoclay particles, can be mixed to an isotropic state by ultrasonication. The mixture can then be combined with an optically crosslinkable monomer, such as acrylated or urethane resin that has been photoinitiated, and sandwiched between substrates to form a cell (or alternatively applied to a substrate using a coating process).


In various embodiments, nanoparticles are composed of nanoclay nanoparticles, preferably spheres or platelets, with particle size on the order of 2-10 nanometers in the shortest dimension and on the order of 10 nanometers in the longest dimension. Desirably, the liquid crystal material is selected to match the liquid crystal ordinary index of refraction with the nanoclay material. Alternatively, the nanoparticles can be composed of material having ferroelectric properties, causing the particles to induce a ferroelectric alignment effect on the liquid crystal molecules, thereby enhancing the electro-optic switching properties of the device. In another embodiment of the invention, the nanoparticles are composed of material having ferromagnetic properties, causing the particles to induce a ferromagnetic alignment effect on the liquid crystal molecules, thereby enhancing the electro-optic switching properties of the device. In another embodiment of the invention, the nanoparticles have an induced electric or magnetic field, causing the particles to induce an alignment effect on the liquid crystal molecules, thereby enhancing the electro-optic switching properties of the device. Exemplary nanoparticles used in other contexts including thermoplastics, polymer binders, etc. are disclosed in U.S. Pat. Nos. 7,068,898; 7,046,439; 6,323,989; 5,847,787; and U.S. Patent Pub. Nos. 2003/0175004; 2004/0156008; 2004/0225025; 2005/0218377; and 2006/0142455, the disclosures of which are incorporated herein by reference.


The nanoclay can be used with its naturally occurring surface properties, or the surface can be chemically treated for specific binding, electrical, magnetic, or optical properties. Preferably, the nanoclay particles will be intercalated, so that they disperse uniformly in the liquid crystalline material. The generic term “nanoclay” as used in the discussion of the present invention can refer to naturally occurring montmorillonite nanoclay, intercalated montmorillonite nanoclay, surface modified montmorillonite nanoclay, and surface treated montmorillonite nanoclay. The nanoparticles can be useable as commercially purchased, or they may need to be reduced in size or altered in morphology. The processes that can be used include chemical particle size reduction, particle growth, grinding of wet or dry particles, milling of large particles or stock, vibrational milling of large particles or stock, ball milling of particles or stock, centrifugal ball milling of particles or stock, and vibrational ball milling of particles or stock. All of these techniques can be performed either dry or with a liquid suspension. The liquid suspension can be a buffer, a solvent, an inert liquid, or a liquid crystal material. One exemplary ball milling process provided by Spex LLC (Metuchen, NJ) is known as the Spex 8000 High Energy Ball Mill. Another exemplary process, provided by Retsch (France), uses a planetary ball mill to reduce micrometer size particles to nanoscale particles.


The nanoparticles can be dispersed in the liquid crystal material prior to polymer dispersion. Dry or solvent suspended nanoparticles can be ultrasonically mixed with the liquid crystal material or monomers prior to polymer dispersion to achieve an isotropic dispersion. Wet particles may need to be prepared for dispersion in liquid crystal, depending on the specific materials used. If the particles are in a solvent or liquid buffer, the solution can be dried, and the dry particles dispersed in the liquid crystal as described above. Drying methods include evaporation in air, vacuum evaporation, purging with inert gas like nitrogen and heating the solution. If the particles are dispersed in a solvent or liquid buffer with a vapor pressure lower than the liquid crystal material, the solution can be mixed directly with the liquid crystal, and the solvent can be evaporated using one of the above methods leaving behind the liquid crystal/nanoparticle dispersion. In one embodiment of the invention, the optical film includes a liquid crystal material and a nanoclay nanoparticle, where a nanoparticle is a particle of material with size less than one micrometer in at least one dimension. The film can be isotropically distributed.


Although nanoclay materials are discussed, in many embodiments CNT is used as an alternative to nanoclay as a means for reducing voltage. The properties of CNT in relation to PDLC devices are reviewed by E. H. Kim et. al. in Polym. Int. 2010; 59: 1289-1295, the disclosure of which is incorporated herein by reference in its entirety. PDLC films have been fabricated with varying amounts of multi-walled carbon nanotubes (“MWCNTs”) to optimize the electro-optical performance of the PDLC films. The MWCNTs were well dispersed in the prepolymer mixture up to 0.5 wt %, implying that polyurethane acrylate (“PUA”) oligomer chains wrap the MWCNTs along their length, resulting in high diffraction efficiency and good phase separation. The hardness and elastic modulus of the polymer matrix were enhanced with increasing amounts of MWCNTs because of the reinforcement effect of the MWCNTs with intrinsically good mechanical properties. The increased elasticity of the PUA matrix and the immiscibility between the matrix and the liquid crystals gradually increased the diffraction efficiency of the PDLC films. However, the diffraction efficiency of PDLC films with more than 0.05 wt % MWCNTs was reduced, caused by poor phase separation between the matrix and LCs because of the high viscosity of the reactive mixture. PDLC films showing a low driving voltage (75%) could be obtained with 0.05 wt % MWCNTs at 40 wt % LCs.


In embodiments where the PDLC materials incorporate such nanoparticles, reductions of switching voltage and improvements to the electro-optic properties of a polymer dispersed liquid crystal film and/or polymer dispersed liquid crystal device can be obtained by including nanoparticles in the liquid crystal domains. The inclusion of nanoparticles serves to align the liquid crystal molecules and to alter the birefringent properties of the film through index of refraction averaging. In addition, the inclusion of the nanoparticles improves the switching response of the liquid crystal domains.


Monomer Functionality


RMLCM material systems in accordance with various embodiments can be formulated in a variety of ways. In many embodiments, the material system is an RMLCM that includes at least one LC, at least one multi-functional monomer, a photo-initiator, a dye, and at least one mono-functional monomer. Along with several factors, such as but not limited to recording beam power/wavelength, grating periodicity, and grating thickness, the specific mixture of components and their percent composition can determine the diffraction efficiency of the resulting HPDLC gratings. Inhomogeneous polymerization due to the spatially periodic irradiation intensity of the exposure can be the driving force to segregate monomers and LCs and to order the orientation of LC molecules, which can influence the diffraction efficiencies of the HPDLC gratings. Oftentimes, the diffusion coefficient of monomers depends on their molecular weight and reactivity. It has been shown that a variety of monomer molecular weights or functional numbers can yield a complex distribution of polymer and LC phases. In many cases, molecular functionality can be critical in achieving efficient phase separation and the formation of gratings with high diffraction efficiency. As such, many embodiments of the invention include material systems formulated with specific mixes of monomers that are chosen, at least in part, for their functionality so as to influence the diffraction efficiency and index modulation of the resulting grating structure. Other considerations in formulating such a mixture can include but are not limited to the properties of the recording beam and the thickness of the gratings. For the purposes of describing this invention, the functionality of a monomer refers to the number of reactive sites on each monomer unit.


The effects of varying monomer functionality in HPDLC material systems have been studied to some degree in the scientific literature. Such studies have generally examined the effects of the effective, or average, functionality of a mixture with regards to grating formation and performance. For example, in a paper by Pogue et al., Polymer 41 (2000) 733-741, the disclosure of which is incorporated herein by reference, investigations were conducted in floodlit PDLCs and holographic PDLC gratings to show that a decrease in effective monomer functionality general leads to decreased LC phase separation.


Many embodiments in accordance with the invention include investigations into mixtures with specific blends of monomers of low functionality that can result in the formation of gratings having high diffraction efficiency and efficient phase separation. While the scientific literature typically emphasizes the use of high functionality monomers, various embodiments in accordance with the invention are focused on the use of monomers of low functionality in certain applications. In some embodiments, the monomers within the mixture are either mono-functional monomers or bi-functional monomers. In a number of embodiments, tri-functional monomers are also included. In such mixtures, the tri-functional monomers are typically included at a low concentration, such as lower than 5 wt %.


Mixtures including low functional monomers can behave differently depending on a variety of factors, such as but not limited to the wavelength sensitivity of the material system, thickness of the HPDLC to be formed, and exposure temperature. In the scientific literature, investigations into PDLC material systems typically include UV sensitive material systems since material reaction efficiency in general is typically poor with visible light systems. However, formulations in accordance with various embodiments of the invention have been able to reach high diffraction efficiency (>80%) with low haze using low functionality monomers that are sensitive (polymerizes) to visible light. In further embodiments, the material systems include monomers that are sensitive to green light, such as light with wavelengths ranging from 495-570 nm. In addition to different light systems, performance of the HPDLC mixtures can depend on the thickness of the waveguide cell in which gratings are formed. For example, for a given material system, different thicknesses of deposited films can form waveguides with different amounts of haze. Although grating thicknesses have been explored in the patent and scientific literature, such investigations are focused on relatively thick gratings. In a number of embodiments, the material system is formulated for use in waveguides with thin form factors. In further embodiments, the material system is formulated for use in manufacturing waveguides having HPDLC layers with thicknesses of less than 10 μm. and gratings with more than 80% diffraction efficiency. In further embodiments, the material system is formulated for use in a waveguide having a 2-3 μm thick HPDLC layer and gratings with 80-90% diffraction efficiency. The material system can also be formulated for manufacturing such waveguides with low haze. In several embodiments, the material system can form HPDLC layers having less than 1% haze. Waveguide haze is the integrated effect of light interacting with material and surface inhomogeneities over many beam bounces. The impact on the ANSI contrast, the ratio of averaged white to black measurements taken from a checkerboard pattern, can be dramatic owing to the scatter contribution to the black level. Haze is mostly due to wide-angle scatter by LC droplets and other small particles or scattering centers resulting from incomplete phase separation of the LC/monomer mixture during grating recording. Haze can also arise, at least partly, from narrow angle scatter generated by large-scale nonuniformities, leading to a loss of see-through quality and reduced image sharpness. Some waveguide applications such as aircraft HUDs, which use 1-D beam expansion in thick waveguides, produce as few as 7 bounces, allowing up to 80:1 contrast. However, in thin waveguides of the type use in near eye displays the number of bounces may increase by a factor of 10 making the need for haze control more acute.


RMLCM recipes can be optimized for specific thicknesses of HPDLC layers. In many embodiments, the RMLCM recipe is optimized for a ˜3 μm thick uniform modulation gratings designed to have a refractive index modulation of ˜0.16. As can readily be appreciated, the specific thickness of the waveguide parts to be fabricated can vary and can depend on the specific requirements of a given application. In a number of embodiments, the waveguide parts can be fabricated with 90% transmission and 0.3% haze. In other embodiments, the waveguide parts can be fabricated with ˜0.1% haze (with ˜0.01% haze recorded in unexposed samples of the same material). In some embodiments, the RMLCM can be formulated for fabricating waveguide parts containing haze of less than 0.05%.


Transmission haze can be defined as the percentage of light that deviates from desired beam direction by more the 2.5 degrees on average (according to the ASTM D1003 standard). The clarity of a waveguide can be characterized by the amount of narrow angle scattered light (at an angle less than 2.5° from the normal to the waveguide surface). Transmission can be defined as the amount of light transmitted through the waveguide without being scattered. To assess general material haze, the scatter can be measured around a vector normal to a waveguide TIR surface. To assess holographic haze, the scatter can be measured around principal diffraction directions (passing through the center of the eye box). The procedures for measurement of haze, clarity and transmission are defined in the ASTM D1003 International test standards, in which “Procedure A” uses a haze meter and “Procedure B” uses a spectrophotometer. An exemplary instrument for measuring haze is the BYK-Gardner HAZE Guard II equipment.


In many embodiments, the RMLCM mixture includes a liquid crystal mixture, a complex mixture of acrylates and acrylate esters, Dynasylan® MEMO, and photoinitiators. In further embodiments, the RMLCM includes EHA and DFHA. Depending on the specific mix of components and their percent composition, the resulting grating can have vastly different characteristics. In some embodiments, the proportion of LC by weight is greater than 30%. In further embodiments, the proportion of LC is greater than 35 wt %. In some embodiments, the mixture includes liquid crystal with high birefringence. In further embodiments, the high birefringence liquid crystal accounts for more than 20 wt % of the mixture. In a number of embodiments, dye and photo-initiators account for less than 5 wt % of the mixture.


Nematic LC materials can provide a range of birefringence (which can translate to refractive index modulation). Low to medium birefringence typically covers the range of 0.09-0.12. However, gratings can be designed using much lower birefringence values, including gratings in which the birefringence varies along the grating. Such gratings can be used to extract light from waveguides with low efficiency at one end of the grating and high efficiency at the other end of the grating to provide spatially uniform output illumination. High birefringence (nematic LC) is typically the range of 0.2-0.5. Even higher values are possible. Nematic liquid crystals, compounds, and mixtures with positive dielectric anisotropies (i.e., LCs for which the dielectric constant is greater in the long molecular axis than that in the other directions) are review in a paper by R. Dabrowski et al., “High Birefringence Liquid Crystals”; Crystals; 2013; 3; 443-482, the disclosure of which is incorporated herein by reference.


The functionality of the monomers in the mixtures can greatly influence the diffraction efficiency of the resulting grating. In many embodiments, the mixture includes at least one mono-functional monomer and at least one multifunctional monomer in varying concentrations. In several embodiments, the concentration of mono-functional monomer within the mixture ranges from 1-50 wt %. The monofunctional monomer can include aliphatic/aromatic groups and an adhesion promoter. In some embodiments, the proportion of multi-functional monomers present in the mixture is in the range of 2-30 wt %. Multi-functional monomers in accordance with various embodiments of the invention typically include monomers of low functionality. In a number of embodiments, the mixture includes a bi-functional monomer at a low concentration. In further embodiments, the mixture includes bi-functional monomers at less than 15 wt %. Depending on the type and concentration of bi-functional monomer in the mixture, adequate phase separation and grating formation can occur. In the illustrative embodiment, the mono-functional monomer, bi-functional monomer and LC have relative weight ratios of 30%, 14%, and 40%, which resulted in a formulation that allowed for the recording of gratings with a diffraction efficiency higher than 90% and an index modulation of around 0.12.


As can readily be appreciated, percent composition of each component within an RMLCM can vary widely. Formulations of such material systems can be designed to achieve certain characteristics in the resulting gratings. In many cases, the RMLCM is formulated to have as high a diffraction efficiency as possible.


Workcell Cluster for Manufacturing Waveguide Cells


Waveguide cell manufacturing systems in accordance with various embodiments of the invention can be implemented as workcell clusters. By compartmentalizing different manufacturing steps into workcells, modular systems can be implemented. In many embodiments, a workcell cluster includes a preparation workcell for preparing substrates for material deposition, a deposition workcell for depositing an optical recording material onto a substrate, and a lamination workcell for laminating various layers together to construct a waveguide cell. Workcells can be configured in various ways to implement different manufacturing processes for waveguide cells. In some embodiments, the workcells are linked and configured such that the output of one workcell is transferred to another workcell, forming a manufacturing assembly line. The transferring mechanism can be implemented in a variety of ways, such as but not limited to the use of mechanical arms, suction, and/or a conveyor system. In several embodiments, the products are manually transferred. FIG. 2A conceptually illustrates a workcell cluster system 200 in accordance with an embodiment of the invention. In the illustrative embodiment, the system 200 includes a preparation workcell 202, a deposition workcell 204, and a lamination workcell 206. As shown, arrows 208 indicate a sequential workflow relationship among the workcells.


One advantage in a modular system is the ability to vary the number of workcells dedicated to a particular task to improve throughput by optimizing workcell use and reducing workcell downtime. For example, a waveguide cell manufactured with different optical recording materials may result in different deposition times. In such embodiments, the number of deposition workcells can vary accordingly to balance out the task completion time of each workcell such as to minimize the overall downtime of the workcells. FIG. 2B conceptually illustrates a workcell cluster system 210 with two deposition workcells 212, 214 in accordance with an embodiment of the invention. In the illustrative embodiment, the system 210 includes a preparation workcell 216, two deposition workcells 212, 214, and a lamination workcell 218. Dotted arrows 220 indicate that output from the preparation workcell 216 can be received by either deposition workcell 212, 214. Such a system can be ideally implemented when the completion time for a single deposition process is approximately twice as long as the completion time for other processes.


Although FIGS. 2A and 2B conceptually illustrate specific workcell cluster system configurations, workcell clusters in accordance with various embodiments of the invention can be configured in numerous ways depending on the specific requirements of the given application. For example, workcell clusters can be configured to have different workflow paths, types of workcells, and/or numbers of workcells.


Due to the sensitive nature of some materials and processes associated with waveguide cell fabrication, workcells can be configured to provide protection from environmental light and contaminants. In many embodiments, optical filters cover the workcell in order to reduce and/or prevent unwanted light from interacting with the optical recording material, which is typically a photosensitive material. Depending on the specific type of optical recording material, the deposition workcell can be lined with an appropriate optical filter that prevent light of certain wavelengths from entering the workcell and exposing the optical recording material. In addition to the reduction/prevention of light contamination, workcells can also be configured to reduce particulate contamination. In several embodiments, the workcell is configured to operate in an environment with minimal air contamination. A low-particulate environment can be achieved in many different ways, including but not limited to the use of air filters. In a number of embodiments, air filters employing laminar airflow principles are implemented. Contamination reduction/prevention systems such as those described above can be implemented separately or in combination. Although specific systems are described, workcells in accordance with various embodiments of the invention can be constructed in various ways as to alter the working environment in a desired manner. For example, in several embodiments, the workcell is configured to operate in a vacuum. Specific workcells and their implementations and constructions are described in the sections below in further detail.


Preparation Workcell


Waveguide cells in accordance with various embodiments of the invention are typically composed of a layer of optical recording material sandwiched between two substrates. Manufacturing techniques for constructing such waveguide cells in accordance with various embodiments of the invention can include a deposition step where a layer of optical recording material is deposited onto one of the substrate. In many embodiments, a preparation workcell can be implemented to perform a cleaning/preparation procedure on the substrates to prepare them for the deposition step. Preparing substrates, such as but not limited to glass plates, can include ridding the surfaces of contaminants and increasing the surface adhesion properties for better material deposition.


Preparation workcells can be configured to implement various cleaning and preparation protocols. Mechanical arms and/or suction apparatuses can be used to maneuver the substrates throughout the workcell. In many embodiments, the preparation workcells are configured to clean glass substrates using various solvents and solutions, including but not limited to soap solutions, acid washes, acetone, and various types of alcohols. In some embodiments, several types of solvents and/or solutions are used in conjunction. For example, in several embodiments, methanol or isopropanol can be administered after acetone to rinse off excess acetone. In a number of embodiments, deionized water is used to rinse off excess solvents or solutions. The solvents can be administered in several ways, including but not limited to the use of nozzles and baths. After cleaning, the workcell can be configured to dry the substrates using an inert gas, such as nitrogen, and/or a heating element.


In many embodiments, the cleaning process includes a sonication step. In several embodiments, the substrate is placed in a chamber containing a solution and a transducer is used to produce ultrasonic waves. The ultrasonic waves can agitate the solution and remove contaminants adhered to the substrates. The treatment can vary in duration depending on several factors and can be performed with different types of substrates. Deionized water or cleaning solutions/solvents can be used depending on the type of contamination and the type of substrate.


In many embodiments, the preparation workcell is configured to implement a plasma chamber to plasma treat the surfaces of the substrates. In some embodiments, the substrates are made of glass. Existing in the form of ions and electrons, plasma is essentially an ionized gas that has been electrified with extra electrons in both negative and positive states. Plasma can be used to treat the surface of the substrate to remove contaminants and/or prepare the surface for material deposition by increasing the surface energy to improve adhesion properties. In a number of embodiments, the workcell includes a vacuum pump, which can be used to create a vacuum under which the plasma treatment can be performed.


As can readily be appreciated, preparation workcells in accordance with various embodiments of the invention can be configured to perform combinations of various steps to implement a specific cleaning protocol according to the requirements of a given application. Although specific preparation workcells for preparing glass plates are discussed above, preparation workcells can be implemented to preform various preparatory steps for a variety of different substrates, including but not limited to plastics.


Deposition Workcell


Waveguide cell manufacturing systems can utilize various techniques for placing optical recording materials in between two substrates. Manufacturing systems in accordance with various embodiments of the invention can utilize a deposition process where a film of optical recording material is deposited onto a substrate, and the composite is laminated along with a second substrate to form a three-layer laminate. In many embodiments, the manufacturing system is a workcell cluster that includes a deposition workcell for depositing a film of optical recording material onto a substrate. Such deposition workcells can be configured to receive substrates from preparation workcells. In some embodiments, the deposition workcell includes a stage for supporting the substrate and at least one deposition mechanism for depositing material onto the substrate. Any of a variety of deposition heads can be implemented to perform as the deposition mechanism. In several embodiments, spraying mechanisms such as but not limited to spraying nozzles are implemented to deposit optical recording material onto a substrate. In some embodiments, the optical recording material is deposited using a printing mechanism. Depending on the type of deposition mechanism/head implemented, several different deposition capabilities can be achieved. In a number of embodiments, the deposition head can allow for the deposition of different materials and/or mixtures that vary in component concentrations. As can readily be appreciated, the specific deposition mechanism utilized can depend on the specific requirements of a given application.


The components within the deposition workcell can be configured to move in various ways in order to deposit the optical recording material onto the substrate. In many embodiments, the deposition head and/or the stage are configured to move across certain axes in order to deposit one or multiple layers of optical recording material. In some embodiments, the deposition head is configured to move and deposit material across three dimensions, such as in a three-dimensional Euclidean space, which allows for the deposition of multiple layers onto the substrate. In a number of embodiments, the deposition head is only configured to move in two axes to deposit a single layer. In other embodiments, the stage and, consequently, the substrate are configured to move in three dimensions while the deposition head is stationary. As can readily be appreciated, deposition applications can be implemented to deposit material in various dimensions by configuring the degrees of motion freedom of the print head(s) and/or stage. The stage and deposition head can be configured such that their combination of degrees of motion freedom allows for depositing material in n-dimensional Euclidean space, where n is the desired dimension. For example, in several embodiments, the deposition head is configured to move back and forth to deposit material in one axis while the stage moves in a different axis, allowing for the deposition of material in a two-dimensional Euclidean plane. In a number of embodiments, the stage is implemented using a conveyor belt. The system can be designed such that the conveyor belt receives the substrate from a different workcell, such as the preparation workcell. Once received, the conveyor system can move the substrate along as a deposition head deposits a layer of material onto the substrate. At the end of the conveyor path, the substrate can be delivered into another workcell.


In a number of embodiments, the deposition workcell includes an inkjet print head configured to deposit optical recording material onto the substrate. Conventionally, inkjet printing refers to a printing method that deposits a matrix of ink dots to form a desired image. In typical operation, an inkjet print head contains a large amount of small individual nozzles that can each deposit a dot of material. In additive manufacturing applications, inkjet printing can be used to create complex patterns and structures with high precision due to the size and number of nozzles in a typical inkjet print head. Applying these principles to waveguide cell manufacturing applications, inkjet printing can be used to print a uniform or near-uniform, in terms of thickness and composition, layer of optical recording material. Depending on the application and inkjet print head, one or multiple layers of the optical recording material can be printed onto the substrate. Various optical recording materials, such as those described in the sections above, can be used in conjunction with an inkjet print head. In addition to the capability of printing in different materials, the printing system can be configured for use with various types of substrates. As can readily be appreciated, the choice of material to be printed and the substrates used can depend on the specific requirements of a given application. For instance, choices in material systems can be selected based on printing stability and accuracy. Other considerations can include but are not limited to viscosity, surface tension, and density, which can influence several factors such as but not limited to droplet formability and the ability to form layers of uniform thickness,


A deposition workcell 300 in accordance with an embodiment of the invention is conceptually illustrate in FIGS. 3A and 3B. FIG. 3A shows an isometric view of the deposition workcell 300 while FIG. 3B shows a top view of the same deposition workcell 300. As shown, the deposition workcell 300 is constructed with a frame that can hold optical glass filters to prevent particulate contamination and environmental light from exposing optical recording materials within the workcell 300. The workcell includes chambers 302, 304 for receiving substrates and outputting waveguide cells. In the illustrative embodiment, the stage is implemented as a conveyor belt 306 that moves received substrates along one direction. The deposition workcell 300 further includes an inkjet printer 308 implemented as a deposition mechanism. The inkjet printer 308 is configured to print across a direction different from the movement of the conveyor belt 306, allowing for the deposition of a layer of optical recording material across the planar surface of the substrates. Additionally, the deposition workcell 300 implements a roller laminator 310 for laminating the printed layer and two substrates to construct a waveguide cell. The workcell 300 is also implemented as a glovebox with gloves 312 that allow for the manual manipulation of the devices within the workcell 300 while maintaining a clean environment.


Although FIGS. 3A and 3B depict a specific deposition workcell configuration, deposition workcells can be configured in many ways in accordance with various embodiments of the invention. For example, the laminator can be implemented in a separate lamination workcell. In several embodiments, automatic system configurations can be implemented. In many embodiments, multiple inkjet print heads are used. In other embodiments, spraying nozzles are used as the deposition mechanism.


Modulation of Material Composition


High luminance and excellent color fidelity are important factors in AR waveguide displays. In each case, high uniformity across the FOV can be essential. However, the fundamental optics of waveguides can lead to non-uniformities due to gaps or overlaps of beams bouncing down the waveguide. Further non-uniformities may arise from imperfections in the gratings and non-planarity of the waveguide substrates. In SBGs, there can exist a further issue of polarization rotation by birefringent gratings. The biggest challenge is the fold grating where there are millions of light paths resulting from multiple intersections of the beam with the grating fringes. Careful management of grating properties, particularly the refractive index modulation, can be utilized to overcome non-uniformity in accordance with various embodiments of the invention.


Out of the multitude of possible beam interactions (diffraction or zero order transmission), only a subset contributes to the signal presented at the eye box. By reverse tracing from the eyebox, fold regions contributing to a given field point can be pinpointed. The precise correction to the modulation that is needed to send more into the dark regions of the output illumination can then be calculated. Having brought the output illumination uniformity for one color back on target, the procedure can be repeated for other colors. Once the index modulation pattern has been established, the design can be exported to the deposition mechanism, with each target index modulation translating to a unique deposition setting for each spatial resolution cell on the substrate to be coated. In many embodiments, the spatial pattern can be implemented to 30 micrometers resolution with full repeatability.



FIGS. 4A and 4B conceptually illustrate schematically the use of reverse ray tracing to compute a compensated index modulation pattern for coating in accordance with various embodiments of the invention. The procedure can determine the optimum usable area of the fold grating and the refractive index modulation variation across the fold grating needed to provide uniform illumination at the eye box. FIG. 4A shows a mathematical model of a basic waveguide architecture that includes an input grating 402, a fold grating that is divided up into a calculation mesh 404, and an output grating 406. By tracing rays from points across the eye box through the output grating and through the fold grating, the fold grating cells which contribute to the eyebox illumination for a given FOV direction can be identified. Reverse beam paths from the output grating are indicated by the rays 408-414. By repeating the ray trace for different FOV angles the maximum extent of the fold grating needed to fill the eye box can be determined. This ensures that the area of HPDLC material to be deposited/printed can be kept to a minimum, thereby reducing haze in the finished waveguide part. The procedure can also identify which cells need to have their index modulation increased (or decreased) in order to maintain illumination uniformity across the eyebox. For example, in the embodiment of FIG. 4A, most of the fold grating region has a refractive index modulation of 0.03. However, certain calculation cells encircled by 416 (such as cell 418, for example) and encircled by 420 (such as cell 422, for example) should have index modulations of 0.07, while the calculation cells lying within the rectangular zone 424 should have index modulation 0.05. Typically, the map of index modulation values is exported as an AutoCAD DXF (Drawing Interchange Format) file into the processor controlling the deposition mechanism. FIG. 4B is a plan view 450 of the final waveguide part 452 onto which is superimposed the index modulation map of the printed grating layer (corresponding to the model of FIG. 4A) as would be revealed by examining the printed grating under cross polarizers. The grating regions include the input 454, output 456, and fold 458 gratings. In the illustrative embodiment, the fold grating contains the high index modulation regions 460, 462, and 464 corresponding to the cells identified in regions 416, 420, and 424 of FIG. 4A. The grating regions of FIG. 4B are surrounded by a clear polymer region 466. Although FIGS. 4A and 4B illustrate a specific way of computing a compensated index modulation pattern, any of a variety of techniques can be utilized to compute such a pattern.


Compared with waveguides utilizing surface relief gratings (“SRGs”), SBG waveguides implementing manufacturing techniques in accordance with various embodiments of the invention can allow for the grating design parameters that impact efficiency and uniformity, such as refractive index modulation and grating thickness, to be adjusted dynamically during the deposition process. As such, there is no need for a new master for the grating recording process. With SRGs where modulation is controlled by etch depth, such schemes would not be practical as each variation of the grating would entail repeating the complex and expensive tooling process. Additionally, achieving the required etch depth precision and resist imaging complexity can be very difficult. FIGS. 5A and 5B conceptually illustrate the fundamental structural differences between SBGs and SRGs. FIG. 5A shows a cross-sectional view 500 of a portion of an SRG. In the illustrative embodiment, the grating includes a substrate 502 supporting slanted surface relief elements 504 separated by air gaps 506. Typically, the surface relief elements and substrate are formed from a common material. The grating pitch is indicated by the symbol p and the grating depth by symbol h. FIG. 5B shows a cross-sectional view 550 of an SBG. In contrast to an SRG, the SBG includes alternating slanted Bragg fringes formed from low index monomer-rich fringes such as 552 and higher index LC-rich fringes such as 554. The index difference is characterized by the refractive index modulation δn, which plays an equivalent role in determining grating diffraction efficiency to the grating depth in a SRG. The variation of index modulation is represented by the superimposed plot 556 of index modulation versus distance z along the grating. In some embodiments, the index modulation has a sinusoidal profile as shown in FIG. 5B. In embodiments in which the SBG is formed in a uniform modulation HPLDC, the index modulation profile can include near-rectangular LC-rich and polymer-rich regions.


Deposition processes in accordance with various embodiments of the invention can provide for the adjustment of grating design parameters by controlling the type of material that is to be deposited. Similar to multi-material additive manufacturing techniques, various embodiments of the invention can be configured to deposit different materials, or different material compositions, in different areas on the substrate. In many embodiments, a layer of optical recording material can be deposited with different materials in different areas. For example, deposition processes can be configured to deposit HPDLC material onto an area of a substrate that is meant to be a grating region and to deposit monomer onto an area of the substrate that is meant to be a nongrating region. In several embodiments, the deposition process is configured to deposit a layer of optical recording material that varies spatially in component composition, allowing for the modulation of various aspects of the deposited material. Modulation schemes and deposition processes for different types of materials and mixtures are discussed below in further detail.


The choice in material printed in a specific area can depend on the optical element that will later be recorded in that area. For example, in some embodiments, the deposition head is configured to deposit a layer of optical recording material for a waveguide cell intended to be recorded with three different gratings. The layer can be deposited such that the materials printed in each of the areas designated for the three gratings are all different from one another. FIG. 6 conceptually illustrates a waveguide cell 600 with marked areas intended to be recorded with various gratings in accordance with an embodiment of the invention. As shown, areas for an input grating 602, a fold grating 604, and an output grating 606 are outlined. Such areas can each be composed of a different material or different mixture composition depending on the given application. In a number of embodiments, different materials can be deposited to produce different diffraction efficiencies among the recorded gratings. In the illustrative embodiment, the waveguide cell is in a curvilinear shape, which, along with the positions, sizes, and shapes of the gratings, is designed to be a waveguide for near-eye applications.


Deposition of material with different compositions can be implemented in several different ways. In many embodiments, more than one deposition head can be utilized to deposit different materials and mixtures. Each deposition head can be coupled to a different material/mixture reservoir. Such implementations can be used for a variety of applications. For example, different materials can be deposited for grating and nongrating areas of a waveguide cell. In some embodiments, HPDLC material is deposited onto the grating regions while only monomer is deposited onto the nongrating regions. In several embodiments, the deposition mechanism can be configured to deposit mixtures with different component compositions.


In some embodiments, spraying nozzles can be implemented to deposit multiple types of materials onto a single substrate. In waveguide applications, the spraying nozzles can be used to deposit different materials for grating and non-grating areas of the waveguide. FIGS. 7A and 7B conceptually illustrate operation of a deposition mechanism utilizing a spray module in accordance with an embodiment of the invention. As shown, the apparatus 700 includes a coating module 702 that includes a first spray module 704 connected via a pipe 706 to a first reservoir 708 containing a first mixture of a first material and a second spray module 710 connected via a pipe 712 to a second reservoir 714 containing a second mixture of a second material. In the illustrative embodiment, the first material includes at least a liquid crystal and a monomer while the second material includes only a monomer. Such a configuration allows for the deposition of a layer of optical recording material with defined grating and non-grating areas. As can readily be appreciated, any configurations of different mixtures can be utilized as appropriate depending on the specific application.


In FIGS. 7A and 7B, the first and second spray modules provide jets of liquid droplets over a controllable divergence angle as represented by 716, 718. The apparatus further includes a support for a transparent substrate 720 having predefined regions for supporting gratings as illustrated by the shaded regions 722-726, regions of gratings that do not transmit light into the eyebox as indicated by 728, 730, and regions surrounding the gratings indicated by 732. In some embodiments, the regions 728, 730 are identified by a reverse ray trace of the waveguide from the eyebox. During operation, the regions for supporting gratings providing diffracted light that enters the eye box are coated with the first mixture. The regions 728, 730 are coated with the second mixture. The apparatus further includes a positioning apparatus 734 connected to the coating apparatus by a control link 736 for traversing the coating apparatus across the substrate. The apparatus further includes a switching mechanism for activating the first spray module and deactivating the second spray module when the coating apparatus is positioned over a substrate region for supporting a grating and for deactivating the first spray module and activating the second spray module when the coating apparatus is positioned over a substrate region that does not support a grating.


Two operational states of the apparatus are conceptually illustrated in FIGS. 8A and 8B, which show a detail of the substrate. As shown in FIG. 8A, when the coating apparatus is over a nongrating-supporting region 800 (located in the upper region of the strip bounded by the edges 802, 804), the second spray module is activated, and the first spray module is deactivated so that a layer of monomer 806 is sprayed onto the substrate. As shown in FIG. 8B, when the coating apparatus is over a substantially grating-supporting region 808 (located in the lower region of the strip bounded by the edges 802, 804), the second spray module is deactivated, and the first spray module is activated so that a layer of liquid crystal and monomer mixture 810 is sprayed onto the substrate.


Although FIGS. 7A-8B illustrate specific applications and configurations of spraying mechanisms, spraying mechanisms and deposition mechanisms in general can be configured and utilized for a variety of applications. In many embodiments, the spraying mechanism is configured for printing gratings in which at least one of the material composition, birefringence, and thickness can be controlled using a coating apparatus having at least two selectable spray heads. In some embodiments, the deposition workcell provides an apparatus for depositing grating recording material optimized for the control of laser banding. In several embodiments, the deposition workcell provides an apparatus for depositing grating recording material optimized for the control of polarization non-uniformity. In some embodiments, the deposition workcell provides an apparatus for depositing grating recording material optimized for the control of polarization non-uniformity in association with an alignment control layer. In a number of embodiments, the deposition workcell can be configured for the deposition of additional layers such as beam splitting coatings and environmental protection layers. Additionally, although FIGS. 7A-8B discuss the capabilities of spraying nozzles, these capabilities can be implemented in other deposition mechanisms. For example, inkjet print heads can also be implemented to print different materials in grating and nongrating regions of the substrate.



FIG. 9 is a flow chart conceptually illustrating a method of fabricating a holographic grating using a selective coating process in accordance with an embodiment of the invention. Referring to FIG. 9, the method 900 includes providing (902) a transparent substrate for coating. A grating supporting and non-grating-supporting regions of the substrate can be defined (904). Depending on the specific application, gratings of various sizes and shapes can be defined. In some embodiments, a grating region supports an input, a fold, or an output grating. In many embodiments, the substrate has regions defined for gratings made of a combination of the aforementioned types of gratings. A first mixture for coating containing a liquid crystal and monomer and a second mixture for coating containing a monomer can be provided (906). A first spray head can be provided (908) for coating the first mixture onto the substrate. A second spray head can be provided (910) for coating the second mixture. The first and second spray heads integrated together can be considered a coating apparatus. The coating apparatus can be set (912) to its starting position (k=1). The coating apparatus can be moved (914) to the current position over the substrate. A decision can be made (916) on whether the current coating apparatus is positioned over a grating supporting region or a non-grating-supporting region. If the coating apparatus is over a grating region, the first spray head can be activated and the second spray head can be deactivated (918). If the coating module is over a grating-supporting region, the first spray head can be deactivated and the second spray head can be activated (920). A decision can be made (922) regarding the coating status. If all specified regions have been coated, the process can be terminated (924). If the specified regions have not all been coated, the next region (increment k) to be coated can be selected (926) and the deposition steps can be repeated.


Although FIG. 9 illustrates a specific method for depositing different materials over a substrate, the deposition mechanism can be configured to produce a film of material having characteristics that can vary spatially and across regions. FIG. 10 conceptually illustrates a deposition head for providing predefined grating characteristics within grating regions in accordance with an embodiment of the invention. Referring to FIG. 10, the deposition head 1000 includes a first spray module 1002 fed via pipe 1004 from a reservoir 1006 containing a mixture of at least one of a liquid crystal and a monomer, which is dispersed into the spray jet 1008 by the spray module 1002 for coating a transparent substrate. The substrate has predefined regions for supporting gratings. There is also provided an X-Y displacement controller 1010 for traversing the spray module across the substrate and a means for controlling the spray characteristics from the module over each grating region to deposit a film that provides a predefined grating characteristic within the grating region following holographic exposure. The holographic exposure may be carried out using any current holographic process, include any of the processes disclosed in the reference documents. In the illustrative embodiment, the deposition head 1000 further includes a mixture controller 1012 for controlling one or more of the temperature, dilution and relative concentrations of chemical components of the mixture. The deposition head 1000 can also include a spray controller 1014 for controlling one or more of the spray angle relative to the substrate, the spray divergence angle, and the durations of the spray on and off states. In several embodiments, the predefined grating characteristic includes one or more of refractive index modulation, refractive index, birefringence, liquid crystal director alignment, and grating layer thickness. As can readily be appreciated, deposition heads can be implemented and configured in many different ways. In many embodiments, any combination and subset of the X-Y displacement controller, mixture controller, and spray controller can be utilized. In some embodiments, additional controllers are utilized to configure the spraying mechanism and the material deposited.



FIG. 11 conceptually illustrates operation of a deposition head for depositing material having regions with predefined grating characteristics in accordance with an embodiment of the invention. As discussed above, the deposition head can be configured to deposit material having a spatial variation across the grating region of one or more of refractive index modulation, refractive index, birefringence, liquid crystal director alignment and grating layer thickness. As shown in FIG. 11, the spray module 1100 follows a spraying path 1102 across the substrate 1104. The spray can be dynamically controlled during transit along the path 1102 to vary the predefined grating characteristics in areas of the predefined grating regions such as 1106, 1108, for example. In some embodiments, the deposition mechanism provides, after exposure, a grating with a spatially varying diffraction efficiency. For example, referring again to FIG. 11, the coating areas 1106, 1108 (after holographic exposure) exhibit diffraction efficiency (DE) versus angle (U) characteristics represented by the curves 1110, 1112 respectively.



FIG. 12 conceptually illustrates a deposition mechanism for depositing two grating layers in accordance with an embodiment of the invention. As shown, the system 1200 is similar to that of FIG. 11 but further includes a second spray module 1202 providing a jet 1204 for coating the second grating layer 1206. In many embodiments, the grating layers are coated using different mixture compositions. In some embodiments, similar to the one of FIG. 7A, the system includes a first spray module connected to a first reservoir containing a first mixture that includes at least one of a first liquid crystal and a first monomer and a second spray module connected to a second reservoir containing a second mixture that includes at least one of a second liquid crystal and a second monomer.



FIG. 13 conceptually illustrates a system for depositing a grating layer of material and for holographically exposing the layer using recording beams with on and off states synchronized with the coating module. As shown, the system 1300 includes a coating apparatus similar to that of FIG. 12 following a spraying path 1302 across the substrate 1304 providing predefined grating regions 1306, 1308. While the coating process is taking place, a holographic exposure apparatus 1310, which provides a recording beam 1312, can expose coated predefined grating regions 1314. In many embodiments, the holographic exposure apparatus is based on a master grating which contact copies the required grating into the predefined grating region.



FIG. 14 is a flow chart conceptually illustrating a method of depositing a film of material with regions having predefined grating characteristics in accordance with an embodiment of the invention. As shown, the method 1400 includes providing (1402) a transparent substrate for coating. A grating supporting and non-grating-supporting regions of the substrate can be defined (1404). A mixture containing a liquid crystal and monomer can be provided (1406). In several embodiments, the material utilized includes one or more of a photoinitiator, nano-particles, low-functionality monomers, additives for reducing switching voltage, additives for reducing switching time, additives for increasing refractive index modulation and additives for reducing haze. A spray module for coating the mixture onto the substrate can be provided (1408). The spray module can be set (1410) to its starting position (k=1). The spray module can be moved (1412) to the current position over the substrate. A decision can be made (1414) on whether the current coating apparatus is positioned over a grating supporting region or a non-grating-supporting region. If the coating apparatus is over a grating region, the spray module can be activated (1416) to provide a spray characteristic for achieving a predefined grating characteristic within the grating region. The grating region can be coated (1418). A decision can be made (1420) regarding the coating status. If all specified regions have been coated, the process can be terminated (1422). If all specified regions have not been coated, the next region to be coated can be selected (1424) and the deposition steps can be repeated with k incremented.


Although FIGS. 10-14 illustrate specific implementations and methods of depositing material with regions having predefined grating characteristics, any of a variety of configurations can be implemented. For example, in many embodiments, multiple spray modules or deposition heads are utilized. Various predefined grating characteristics can be controlled and/or modulated depending on the specific application. Modulation of material composition utilizing more than one deposition head is discussed below in further detail.


As discussed above, deposition processes can be configured to deposit optical recording material that varies spatially in component composition. Modulation of material composition can be implemented in many different ways. In a number of embodiments, an inkjet print head can be configured to modulate material composition by utilizing the various inkjet nozzles within the print head. By altering the composition on a “dot-by-dot” basis, the layer of optical recording material can be deposited such that it has a varying composition across the planar surface of the layer. Such a system can be implemented using a variety of apparatuses including but not limited to inkjet print heads. Similar to how color systems use a palette of only a few colors to produce a spectrum of millions of discrete color values, such as the CMYK system in printers or the additive RGB system in display applications, inkjet print heads in accordance with various embodiments of the invention can be configured to print optical recording materials with varying compositions using only a few reservoirs of different materials. Different types of inkjet print heads can have different precision levels and can print with different resolutions. In many embodiments, a 300 DPI (“dots per inch”) inkjet print head is utilized. Depending on the precision level, discretization of varying compositions of a given number of materials can be determined across a given area. For example, given two types of materials to be printed and an inkjet print head with a precision level of 300 DPI, there are 90,001 possible discrete values of composition ratios of the two types of materials across a square inch for a given volume of printed material if each dot location can contain either one of the two types of materials. In some embodiments, each dot location can contain either one of the two types of materials or both materials. In several embodiments, more than one inkjet print head is configured to print a layer of optical recording material with a spatially varying composition. Although the printed dots for a two-material application are essentially a binary system, in practical applications, averaging the printed dots across an area can allow for discretization of a sliding scale of ratios of the two materials to be printed.



FIG. 15 conceptually illustrates an inkjet printing modulation scheme in accordance with an embodiment of the invention. As shown, eighteen discrete unit-squares are each capable of being printed with a varying ratios of two different types of materials. In the illustrated embodiment, the inkjet print head is capable of printing sixty-four dots within each of the eighteen unit squares. Each dot can be printed with either one of two types of material. A close up 1500 of unit square 1502 shows that all sixty-four dot locations within the unit square is printed with the first material. Similarly, a close up 1504 of unit square 1506 is printed completely with the second material. Unit square 1508 shows an intermediate composition where thirty out of the sixty-four dot locations are printed with the first material while the remaining dot locations are printed with the second material. As such, unit square 1508, as a whole, contains an intermediate level of concentrations from both materials. Utilizing this modulation scheme, any pattern of varying material characteristics can be achieved.


The amount of discrete levels of possible concentrations/ratios across a unit square is given by how many dot locations can be printed within the unit square. In the illustrative embodiment, sixty-four discrete dots can be printed within the unit square, which thus results in each unit square having a possibility of sixty-five different concentration combinations, ranging from 100% of the first material to 100% of the second material. Although FIG. 15 discusses the areas in terms of a unit square, the concepts are applicable to real units and can be determined by the precision level of the inkjet print head. Although specific examples of modulating the material composition of the printed layer are discussed, it can readily be appreciated that the concept of modulating material composition using inkjet print head can be expanded to use more than two different material reservoirs and can vary in precision levels, which largely depends on the type of print head used.


Varying the composition of the material printed can be advantageous for several reasons. For example, in many embodiments, varying the composition of the material during deposition can allow for a waveguide with gratings that have varying diffraction efficiencies across different areas of the gratings. In embodiments utilizing HPDLC mixtures, this can be achieved by modulating the relative concentration of liquid crystals in the HPDLC mixture during the printing process, which creates compositions that can produce gratings with varying diffraction efficiencies when exposed. In several embodiments, a first HPDLC mixture with a certain concentration of liquid crystals and a second HPDLC mixture that is liquid crystal-free are used as the printing palette in an inkjet print head for modulating the diffraction efficiencies of gratings that can be formed in the printed material. In such embodiments, discretization can be determined based on the precision of the inkjet print head. For example, if a 150 DPI inkjet print head is utilized, each square inch can be printed with 22,501 discrete levels of liquid crystal concentration. A discrete level can be given by the concentration/ratio of the materials printed across a certain area. In this example, the discrete levels range from no liquid crystal to the maximum concentration of liquid crystals in the first PDLC mixture.


The ability to vary the diffraction efficiency across a waveguide can be used for various purposes. Waveguides are typically designed such that light can be reflected many times between the two planar surfaces of a waveguide. These multiple reflections can allow for a light path to interact with a grating multiple times. In many embodiments, a waveguide cell can be printed with varying compositions such that the gratings formed from the optical recording material layer have varying diffraction efficiencies to compensate for the loss of light during interactions with the gratings to allow for a uniform output intensity. For example, in some waveguide applications, an output grating is configured to provide exit pupil expansion in one direction while also coupling light out of the waveguide. The output grating can be designed such that when light within the waveguide interact with the grating, only a percentage of the light is refracted out of the waveguide. The remaining portion continues in the same light path, which remains within TIR and continues to be reflected within the waveguide. Upon a second interaction with the same output grating again, another portion of light is refracted out of the waveguide. During each refraction, the amount of light still traveling within the waveguide decreases by the amount refracted out of the waveguide. As such, the portions refracted at each interaction gradually decreases in terms of total intensity. By varying the diffraction efficiencies of the grating such that it increases with propagation distance, the decrease in output intensity along each interaction can be compensated, allowing for a uniform output intensity.


Varying the diffraction efficiency can also be used to compensate for other attenuation of light within a waveguide. All objects have a degree of reflection and absorption. Light trapped in TIR within a waveguide are continually reflected between the two surfaces of the waveguide. Depending on the material that makes up the surfaces, portions of light can be absorbed by the material during each interaction. In many cases, this attenuation is small, but can be substantial across a large area where many reflections occur. In many embodiments, a waveguide cell can be printed with varying compositions such that the gratings formed from the optical recording material layer have varying diffraction efficiencies to compensate for the absorption of light from the substrates. Depending on the substrates, certain wavelengths can be more prone to absorption by the substrates. In a multi-layer waveguide design, each layer can be designed to couple in a certain range of wavelengths of light. Accordingly, the light coupled by these individual layers can be absorbed in different amounts by the substrates of the layers. For example, in a number of embodiments, the waveguide is made of a 3-layer stack to implement a color display, where each layer is designed for one of Red, Green, and Blue. In such embodiments, gratings within each of the waveguide layers can be formed to have varying diffraction efficiencies to perform color balance optimization by compensating for color imbalance due to loss of transmission of certain wavelengths of light.


In addition to varying the liquid crystal concentration within the material in order to vary the diffraction efficiency, another technique includes varying the thickness of the waveguide cell. This can be accomplished through the use of beads. In many embodiments, beads are dispersed throughout the optical recording material for structural support during the construction of the waveguide cell. In some embodiments, different sizes of beads are dispersed throughout the optical recording material. The beads can be dispersed in ascending order of sizes across one direction of the layer of optical recording material. When the waveguide cell is constructed through lamination, the substrates sandwich the optical recording material and, with structural support from the varying sizes of beads, create a wedge shaped layer of optical recording material. Beads of varying sizes can be dispersed similar to the modulation process described above. Additionally, modulating bead sizes can be combined with modulation of material compositions. In several embodiments, reservoirs of HPDLC materials each suspended with beads of different sizes are used to print a layer of HPDLC material with beads of varying sizes strategically dispersed to form a wedge shaped waveguide cell. In a number of embodiments, bead size modulation is combined with material composition modulation by providing an amount of reservoirs equal to the product of the number of different sizes of beads and the number of different materials used. For example, in one embodiment, the inkjet print head is configured to print varying concentrations of liquid crystal with two different bead sizes. In such an embodiment, four reservoirs can be prepared: a liquid crystal-free mixture-suspension with beads of a first size, a liquid crystal-free mixture-suspension with beads of a second size, a liquid crystal-rich mixture-suspension with beads of a first size, and a liquid crystal-rich mixture-suspension with beads of a second size.


Lamination Workcell


In many embodiments, the workcell cluster includes a lamination workcell for laminating the waveguide cell. After the deposition of optical recording material onto a substrate, a second substrate can be placed onto the optical recording material, creating a three-layer composite. Oftentimes, the second substrate will be made of the same material and in the same dimensions as the first substrate. In many embodiments, the deposition workcell is configured to place the second substrate onto the optical recording material. In other embodiments, the lamination workcell is configured to place the second substrate onto the optical recording material. The second substrate can be placed manually or through the use of mechanical arms and/or suction mechanisms. Once the second substrate is placed, the three-layer composite may be too unstable to handle manually and, thus, in many embodiments, a laminator is implemented to compact the composite.


The three-layer composite can be laminated in various ways. In many embodiments, a press is implemented to provide downward pressure onto the composite. In other embodiments, the lamination workcell is configured to feed the composite through a roller laminator. The compacted composite and adhesion properties of the optical recording material can result in a waveguide cell with enough stability to be handled manually. In some embodiments, the layer of optical recording material includes beads. Consequently, these relatively incompressible beads can define the height of the layer of optical recording material within the compacted composite. As discussed in the sections above, differently sized beads can be placed throughout the optical recording material. Upon lamination, the sizes of the beads can each determine the local thickness of the waveguide cell. By varying the sizes of the beads, a wedge shaped waveguide cell can be constructed. As can readily be appreciated, the lamination of the substrates-optical recording material layer composite can be achieved using lamination workcells that can be configured and implemented in many different ways. In several embodiments, the lamination workcell is a modular workcell within the workcell cluster. In other embodiments, the lamination workcell is simply a laminator implemented within the deposition workcell, such as the one shown in FIGS. 3A and 3B.


Although specific systems and methods for manufacturing waveguide cells are discussed above, many different configurations can be implemented in accordance with many different embodiments of the invention. It is therefore to be understood that the present invention can be practiced in ways other than specifically described, without departing from the scope and spirit of the present invention. Thus, embodiments of the present invention should be considered in all respects as illustrative and not restrictive. Accordingly, the scope of the invention should be determined not by the embodiments illustrated, but by the appended claims and their equivalents.

Claims
  • 1. A method for manufacturing waveguide cells, the method comprising; providing a first substrate;determining a predefined grating characteristic;depositing a layer of optical recording material onto the first substrate using at least one deposition head; andholographically exposing the layer of optical recording material on the first substrate, wherein the optical recording material deposited over the grating region is formulated to achieve the predefined grating characteristic after holographic exposure.
  • 2. The method of claim 1, further comprising: providing a second substrate;placing the second substrate onto the deposited layer of optical recording material; andlaminating the first substrate, the layer of optical recording material, and the second substrate.
  • 3. The method of claim 1, wherein depositing the layer of optical recording material comprises: providing a first mixture of optical recording material;providing a second mixture of optical recording material; anddepositing the first and second mixtures of optical recording material onto the first substrate in a predetermined pattern using the at least one deposition head.
  • 4. The method of claim 3, wherein: the first mixture of optical recording material comprises a first bead; andthe second mixture of optical recording material comprises a second bead that is a different size from the first bead.
  • 5. The method of claim 3, wherein the first mixture of optical recording material has a different percentage by weight of liquid crystals than the second mixture of optical recording material.
  • 6. The method of claim 3, further comprising defining a grating region and a nongrating region on the first substrate, wherein: the first mixture of optical recording material comprises a liquid crystal and a monomer;the second mixture of optical recording material comprises a monomer; anddepositing the first and second mixtures of optical recording material onto the first substrate in the predetermined pattern comprises: depositing the first mixture of optical recording material over the grating region; anddepositing the second mixture of optical recording material over the nongrating region.
  • 7. The method of claim 3, wherein the first mixture of optical recording material is a polymer dispersed liquid crystal mixture comprising: a monomer;a liquid crystal;a photoinitiator dye; anda coinitiator.
  • 8. The method of claim 7, wherein the polymer dispersed liquid crystal mixture comprises an additive selected from the group consisting of: a photoinitiator, nano particles, low-functionality monomers, additives for reducing switching voltage, additives for reducing switching time, additives for increasing refractive index modulation, and additives for reducing haze.
  • 9. The method of claim 1, wherein the at least one deposition head comprises at least one inkjet print head.
  • 10. The method of claim 9, wherein depositing the layer of optical recording material comprises: providing a first mixture of optical recording material;providing a second mixture of optical recording material;printing a first dot of the first mixture of optical recording material using the at least one inkjet print head; andprinting a second dot of the second mixture of optical recording material adjacent to the first dot using the at least one inkjet print head.
  • 11. The method of claim 9, wherein: the at least one inkjet print head comprises a first inkjet print head and a second inkjet print head; anddepositing the layer of optical recording material comprises: providing a first mixture of optical recording material;providing a second mixture of optical recording material;printing the first mixture of optical recording material onto the first substrate using the first inkjet print head; andprinting the second mixture of optical recording material onto the first substrate using the second inkjet print head.
  • 12. The method of claim 1, wherein the predefined grating characteristic comprises a characteristic selected from the group consisting of: refractive index modulation, refractive index, birefringence, liquid crystal director alignment, and grating layer thickness.
  • 13. The method of claim 1, wherein the predefined grating characteristic comprises a spatial variation of a characteristic selected from the group consisting of: refractive index modulation, refractive index, birefringence, liquid crystal director alignment, and grating layer thickness.
  • 14. The method of claim 1, wherein the predefined grating characteristic results in a grating after exposure, the grating having a spatially varying diffraction efficiency.
CROSS-REFERENCE TO RELATED APPLICATIONS

The current application is a continuation of U.S. patent application Ser. No. 16/203,071 entitled “Systems and Methods for Manufacturing Waveguide Cells,” filed Nov. 28, 2018, which application claims the benefit of and priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application No. 62/663,864 entitled “Method and Apparatus for Fabricating Holographic Gratings,” filed Apr. 27, 2018, U.S. Provisional Patent Application No. 62/614,813 entitled “Low Haze Liquid Crystal Materials,” filed Jan. 8, 2018, U.S. Provisional Patent Application No. 62/614,831 entitled “Liquid Crystal Materials and Formulations,” filed Jan. 8, 2018, U.S. Provisional Patent Application No. 62/614,932 entitled “Methods for Fabricating Optical Waveguides,” filed Jan. 8, 2018, U.S. Provisional Patent Application No. 62/667,891 entitled “Method and Apparatus for Copying a Diversity of Hologram Prescriptions from a Common Master,” filed May 7, 2018, and U.S. Provisional Patent Application No. 62/703,329 entitled “Systems and Methods for Fabricating a Multilayer Optical Structure,” filed Jul. 25, 2018, the disclosures of which are hereby incorporated by reference in their entireties.

US Referenced Citations (1633)
Number Name Date Kind
1043938 Huttenlocher Nov 1912 A
2141884 Sonnefeld Dec 1938 A
3482498 Becker Dec 1969 A
3620601 Leonard et al. Nov 1971 A
3741716 Johne et al. Jun 1973 A
3843231 Borel et al. Oct 1974 A
3851303 Muller Nov 1974 A
3885095 Wolfson et al. May 1975 A
3940204 Withrington Feb 1976 A
3965029 Arora Jun 1976 A
3975711 McMahon Aug 1976 A
3993399 Jacoby et al. Nov 1976 A
4035068 Rawson Jul 1977 A
4066334 Fray et al. Jan 1978 A
4082432 Kirschner Apr 1978 A
4099841 Ellis Jul 1978 A
4133152 Penrose Jan 1979 A
4178074 Heller Dec 1979 A
4218111 Withrington et al. Aug 1980 A
4232943 Rogers Nov 1980 A
4248093 Andersson et al. Feb 1981 A
4251137 Knop et al. Feb 1981 A
4309070 St. Leger Searle Jan 1982 A
4322163 Schiller Mar 1982 A
4386361 Simmonds May 1983 A
4389612 Simmonds et al. Jun 1983 A
4403189 Simmonds Sep 1983 A
4418993 Lipton Dec 1983 A
4472037 Lipton Sep 1984 A
4523226 Lipton et al. Jun 1985 A
4544267 Schiller Oct 1985 A
4562463 Lipton Dec 1985 A
4566758 Bos et al. Jan 1986 A
4583117 Lipton et al. Apr 1986 A
4643515 Upatnieks Feb 1987 A
4647967 Kirschner et al. Mar 1987 A
4688900 Doane et al. Aug 1987 A
4711512 Upatnieks Dec 1987 A
4714320 Banbury Dec 1987 A
4728547 Vaz et al. Mar 1988 A
4729640 Sakata et al. Mar 1988 A
4743083 Schimpe May 1988 A
4749256 Bell et al. Jun 1988 A
4765703 Suzuki et al. Aug 1988 A
4775218 Wood et al. Oct 1988 A
4791788 Simmonds et al. Dec 1988 A
4792850 Liptoh et al. Dec 1988 A
4799765 Ferrer Jan 1989 A
4811414 Fishbine et al. Mar 1989 A
4848093 Simmonds et al. Jul 1989 A
4854688 Hayford et al. Aug 1989 A
4860294 Winzer et al. Aug 1989 A
4884876 Lipton et al. Dec 1989 A
4890902 Doane et al. Jan 1990 A
4928301 Smoot May 1990 A
4933976 Fishbine et al. Jun 1990 A
4938568 Margerum et al. Jul 1990 A
4946245 Chamberlin et al. Aug 1990 A
4960311 Moss et al. Oct 1990 A
4964701 Dorschner et al. Oct 1990 A
4967268 Lipton et al. Oct 1990 A
4970129 Ingwall et al. Nov 1990 A
4971719 Vaz et al. Nov 1990 A
4994204 Doane et al. Feb 1991 A
5004323 West Apr 1991 A
5007711 Wood et al. Apr 1991 A
5009483 Rockwell et al. Apr 1991 A
5011624 Yamagishi et al. Apr 1991 A
5016953 Moss et al. May 1991 A
5033814 Brown et al. Jul 1991 A
5035734 Honkanen et al. Jul 1991 A
5053834 Simmonds Oct 1991 A
5063441 Lipton et al. Nov 1991 A
5076664 Migozzi Dec 1991 A
5079416 Filipovich Jan 1992 A
5096282 Margerum et al. Mar 1992 A
5099343 Margerum et al. Mar 1992 A
5109465 Klopotek Apr 1992 A
5110034 Simmonds et al. May 1992 A
5117285 Nelson et al. May 1992 A
5117302 Lipton May 1992 A
5119454 McMahon et al. Jun 1992 A
5124821 Antier et al. Jun 1992 A
5138687 Horie et al. Aug 1992 A
5139192 Simmonds et al. Aug 1992 A
5142357 Lipton et al. Aug 1992 A
5142644 Vansteenkiste et al. Aug 1992 A
5148302 Nagano et al. Sep 1992 A
5150234 Takahashi et al. Sep 1992 A
5151958 Honkanen Sep 1992 A
5153751 Ishikawa et al. Oct 1992 A
5159445 Gitlin et al. Oct 1992 A
5160523 Honkanen et al. Nov 1992 A
5181133 Lipton Jan 1993 A
5183545 Branca et al. Feb 1993 A
5187597 Kato et al. Feb 1993 A
5193000 Lipton et al. Mar 1993 A
5198912 Ingwall et al. Mar 1993 A
5198914 Arns Mar 1993 A
5200861 Moskovich et al. Apr 1993 A
5210624 Matsumoto et al. May 1993 A
5218360 Goetz et al. Jun 1993 A
5218480 Moskovich et al. Jun 1993 A
5224198 Jachimowicz et al. Jun 1993 A
5225918 Taniguchi et al. Jul 1993 A
5239372 Lipton Aug 1993 A
5240636 Doane et al. Aug 1993 A
5241337 Betensky et al. Aug 1993 A
5242476 Bartel et al. Sep 1993 A
5243413 Gitlin et al. Sep 1993 A
5251048 Doane et al. Oct 1993 A
5264950 West et al. Nov 1993 A
5268792 Kreitzer et al. Dec 1993 A
5284499 Harvey et al. Feb 1994 A
5289315 Makita et al. Feb 1994 A
5295208 Caulfield et al. Mar 1994 A
5296967 Moskovich et al. Mar 1994 A
5299289 Omae et al. Mar 1994 A
5303085 Rallison Apr 1994 A
5306923 Kazmierski et al. Apr 1994 A
5309283 Kreitzer et al. May 1994 A
5313330 Betensky May 1994 A
5315324 Kubelik et al. May 1994 A
5315419 Saupe et al. May 1994 A
5315440 Betensky et al. May 1994 A
5317405 Kuriki et al. May 1994 A
5327269 Tilton et al. Jul 1994 A
5329363 Moskovich et al. Jul 1994 A
5341230 Smith Aug 1994 A
5343147 Sager et al. Aug 1994 A
5351151 Levy Sep 1994 A
5359362 Lewis et al. Oct 1994 A
5363220 Kuwayama et al. Nov 1994 A
5368770 Saupe et al. Nov 1994 A
5369511 Amos Nov 1994 A
5371626 Betensky Dec 1994 A
5400069 Braun et al. Mar 1995 A
5408346 Trissel et al. Apr 1995 A
5410370 Janssen Apr 1995 A
5416510 Lipton et al. May 1995 A
5416514 Janssen et al. May 1995 A
5418584 Larson May 1995 A
5418871 Revelli et al. May 1995 A
5428480 Betensky et al. Jun 1995 A
5437811 Doane et al. Aug 1995 A
5438357 McNelley Aug 1995 A
5452385 Izumi et al. Sep 1995 A
5453863 West et al. Sep 1995 A
5455693 Wreede et al. Oct 1995 A
5455713 Kreitzer et al. Oct 1995 A
5463428 Lipton et al. Oct 1995 A
5465311 Caulfield et al. Nov 1995 A
5471326 Hall et al. Nov 1995 A
5473222 Thoeny et al. Dec 1995 A
5476611 Nolan et al. Dec 1995 A
5481321 Lipton Jan 1996 A
5485313 Betensky Jan 1996 A
5493430 Lu et al. Feb 1996 A
5493448 Betensky et al. Feb 1996 A
5496621 Makita et al. Mar 1996 A
5499118 Wreede et al. Mar 1996 A
5499140 Betensky Mar 1996 A
5500671 Andersson et al. Mar 1996 A
5500769 Betensky Mar 1996 A
5510913 Hashimoto et al. Apr 1996 A
5515184 Caulfield et al. May 1996 A
5516455 Jacobine et al. May 1996 A
5524272 Podowski et al. Jun 1996 A
5528720 Winston et al. Jun 1996 A
5530566 Kumar Jun 1996 A
5532736 Kuriki et al. Jul 1996 A
5532875 Betemsky Jul 1996 A
5537232 Biles Jul 1996 A
RE35310 Moskovich Aug 1996 E
5543950 Lavrentovich et al. Aug 1996 A
5559637 Moskovich et al. Sep 1996 A
5572248 Allen et al. Nov 1996 A
5572250 Lipton et al. Nov 1996 A
5576888 Betensky Nov 1996 A
5579026 Tabata Nov 1996 A
5583795 Smyth Dec 1996 A
5585035 Nerad et al. Dec 1996 A
5593615 Nerad et al. Jan 1997 A
5604611 Saburi et al. Feb 1997 A
5606433 Yin et al. Feb 1997 A
5612733 Flohr Mar 1997 A
5612734 Nelson et al. Mar 1997 A
5619254 McNelley Apr 1997 A
5619586 Sibbald et al. Apr 1997 A
5621529 Gordon et al. Apr 1997 A
5621552 Coates et al. Apr 1997 A
5625495 Moskovich et al. Apr 1997 A
5629259 Akada et al. May 1997 A
5631107 Tarumi et al. May 1997 A
5633100 Mickish et al. May 1997 A
5646785 Gilboa et al. Jul 1997 A
5648857 Ando et al. Jul 1997 A
5661577 Jenkins et al. Aug 1997 A
5661603 Hanano et al. Aug 1997 A
5665494 Kawabata et al. Sep 1997 A
5668614 Chien et al. Sep 1997 A
5668907 Veligdan Sep 1997 A
5677797 Betensky et al. Oct 1997 A
5680231 Grinberg et al. Oct 1997 A
5680411 Ramdane et al. Oct 1997 A
5682255 Friesem et al. Oct 1997 A
5686931 Fuenfschilling et al. Nov 1997 A
5686975 Lipton Nov 1997 A
5691795 Doane et al. Nov 1997 A
5694230 Welch Dec 1997 A
5695682 Doane et al. Dec 1997 A
5701132 Kollin et al. Dec 1997 A
5706108 Ando et al. Jan 1998 A
5706136 Okuyama et al. Jan 1998 A
5707925 Akada et al. Jan 1998 A
5710645 Phillips et al. Jan 1998 A
5724189 Ferrante Mar 1998 A
5724463 Deacon et al. Mar 1998 A
5726782 Kato et al. Mar 1998 A
5727098 Jacobson Mar 1998 A
5729242 Margerum et al. Mar 1998 A
5731060 Hirukawa et al. Mar 1998 A
5731853 Taketomi et al. Mar 1998 A
5742262 Tabata et al. Apr 1998 A
5745266 Smith et al. Apr 1998 A
5745301 Betensky et al. Apr 1998 A
5748272 Tanaka et al. May 1998 A
5748277 Huang et al. May 1998 A
5751452 Tanaka et al. May 1998 A
5757546 Lipton et al. May 1998 A
5760931 Saburi et al. Jun 1998 A
5764414 King et al. Jun 1998 A
5790288 Jager et al. Aug 1998 A
5790314 Duck et al. Aug 1998 A
5798641 Spagna et al. Aug 1998 A
5804609 Ohnishi et al. Sep 1998 A
5808804 Moskovich Sep 1998 A
5812608 Valimaki et al. Sep 1998 A
5822089 Phillips et al. Oct 1998 A
5822127 Chen et al. Oct 1998 A
5825448 Bos et al. Oct 1998 A
5831700 Li et al. Nov 1998 A
5835661 Tai et al. Nov 1998 A
5841507 Barnes Nov 1998 A
5841587 Moskovich et al. Nov 1998 A
5847787 Fredley et al. Dec 1998 A
5856842 Tedesco Jan 1999 A
5857043 Cook et al. Jan 1999 A
5867238 Miller et al. Feb 1999 A
5867618 Ito et al. Feb 1999 A
5868951 Schuck, III et al. Feb 1999 A
5870228 Kreitzer et al. Feb 1999 A
5875012 Crawford et al. Feb 1999 A
5877826 Yang et al. Mar 1999 A
5886822 Spitzer Mar 1999 A
5892598 Asakawa et al. Apr 1999 A
5892599 Bahuguna Apr 1999 A
5898511 Mizutani et al. Apr 1999 A
5900987 Kreitzer et al. May 1999 A
5900989 Kreitzer May 1999 A
5903395 Rallison et al. May 1999 A
5903396 Rallison May 1999 A
5907416 Hegg et al. May 1999 A
5907436 Perry et al. May 1999 A
5917459 Son et al. Jun 1999 A
5926147 Sehm et al. Jul 1999 A
5929946 Sharp et al. Jul 1999 A
5929960 West et al. Jul 1999 A
5930433 Williamson et al. Jul 1999 A
5936776 Kreitzer Aug 1999 A
5937115 Domash Aug 1999 A
5942157 Sutherland et al. Aug 1999 A
5945893 Plessky et al. Aug 1999 A
5949302 Sarkka Sep 1999 A
5949508 Kumar et al. Sep 1999 A
5956113 Crawford Sep 1999 A
5962147 Shalhub et al. Oct 1999 A
5963375 Kreitzer Oct 1999 A
5966223 Friesem et al. Oct 1999 A
5969874 Moskovich Oct 1999 A
5969876 Kreitzer et al. Oct 1999 A
5973727 McGrew et al. Oct 1999 A
5974162 Metz et al. Oct 1999 A
5985422 Krauter Nov 1999 A
5986746 Metz et al. Nov 1999 A
5991087 Rallison Nov 1999 A
5999089 Carlson et al. Dec 1999 A
5999282 Suzuki et al. Dec 1999 A
5999314 Asakura et al. Dec 1999 A
6014187 Taketomi et al. Jan 2000 A
6023375 Kreitzer Feb 2000 A
6042947 Asakura et al. Mar 2000 A
6043585 Plessky et al. Mar 2000 A
6046585 Simmonds Apr 2000 A
6052540 Koyama Apr 2000 A
6061107 Yang May 2000 A
6061463 Metz et al. May 2000 A
6069728 Huignard et al. May 2000 A
6075626 Mizutani et al. Jun 2000 A
6078427 Fontaine et al. Jun 2000 A
6094311 Moskovich Jul 2000 A
6097551 Kreitzer Aug 2000 A
6104448 Doane et al. Aug 2000 A
6107943 Schroeder Aug 2000 A
6115152 Popovich et al. Sep 2000 A
6118908 Bischel et al. Sep 2000 A
6121899 Theriault Sep 2000 A
6127066 Ueda et al. Oct 2000 A
6128058 Walton et al. Oct 2000 A
6133971 Silverstein et al. Oct 2000 A
6133975 Li et al. Oct 2000 A
6137630 Tsou et al. Oct 2000 A
6141074 Bos et al. Oct 2000 A
6141154 Kreitzer et al. Oct 2000 A
6151142 Phillips et al. Nov 2000 A
6154190 Yang et al. Nov 2000 A
6156243 Kosuga et al. Dec 2000 A
6167169 Brinkman et al. Dec 2000 A
6169594 Aye et al. Jan 2001 B1
6169613 Amitai et al. Jan 2001 B1
6169636 Kreitzer et al. Jan 2001 B1
6176837 Foxlin Jan 2001 B1
6185016 Popovich Feb 2001 B1
6188462 Lavrentovich et al. Feb 2001 B1
6191887 Michaloski et al. Feb 2001 B1
6195206 Yona et al. Feb 2001 B1
6195209 Kreitzer et al. Feb 2001 B1
6204835 Yang et al. Mar 2001 B1
6211976 Popovich et al. Apr 2001 B1
6222297 Perdue Apr 2001 B1
6222675 Mall et al. Apr 2001 B1
6222971 Veligdan et al. Apr 2001 B1
6249386 Yona et al. Jun 2001 B1
6259423 Tokito et al. Jul 2001 B1
6259559 Kobayashi et al. Jul 2001 B1
6266166 Katsumata et al. Jul 2001 B1
6268839 Yang et al. Jul 2001 B1
6269203 Davies et al. Jul 2001 B1
6275031 Simmonds et al. Aug 2001 B1
6278429 Ruth et al. Aug 2001 B1
6285813 Schultz et al. Sep 2001 B1
6297860 Moskovich et al. Oct 2001 B1
6301056 Kreitzer et al. Oct 2001 B1
6301057 Kreitzer et al. Oct 2001 B1
6317083 Johnson et al. Nov 2001 B1
6317189 Yuan et al. Nov 2001 B1
6317227 Mizutani et al. Nov 2001 B1
6317228 Popovich et al. Nov 2001 B2
6317528 Gadkaree et al. Nov 2001 B1
6320563 Yang et al. Nov 2001 B1
6321069 Piirainen Nov 2001 B1
6323970 Popovich Nov 2001 B1
6323989 Jacobson et al. Nov 2001 B1
6324014 Moskovich et al. Nov 2001 B1
6327089 Hosaki et al. Dec 2001 B1
6330109 Ishii et al. Dec 2001 B1
6333819 Svedenkrans Dec 2001 B1
6340540 Ueda et al. Jan 2002 B1
6351333 Araki et al. Feb 2002 B2
6356172 Koivisto et al. Mar 2002 B1
6356674 Davis et al. Mar 2002 B1
6359730 Tervonen Mar 2002 B2
6359737 Stringfellow Mar 2002 B1
6366281 Lipton et al. Apr 2002 B1
6366369 Ichikawa et al. Apr 2002 B2
6366378 Tervonen et al. Apr 2002 B1
6377238 McPheters Apr 2002 B1
6377321 Khan et al. Apr 2002 B1
6388797 Lipton et al. May 2002 B1
6392812 Howard May 2002 B1
6407724 Waldern et al. Jun 2002 B2
6409687 Foxlin Jun 2002 B1
6411444 Moskovich et al. Jun 2002 B1
6414760 Lopez et al. Jul 2002 B1
6417971 Moskovich et al. Jul 2002 B1
6437563 Simmonds et al. Aug 2002 B1
6437886 Trepanier et al. Aug 2002 B1
6445512 Moskovich et al. Sep 2002 B1
6449095 Ohtaki et al. Sep 2002 B1
6456584 Nagata et al. Sep 2002 B1
6470132 Nousiainen et al. Oct 2002 B1
6473209 Popovich Oct 2002 B1
6476974 Kreitzer et al. Nov 2002 B1
6483303 Simmonds et al. Nov 2002 B2
6486997 Bruzzone et al. Nov 2002 B1
6504518 Kuwayama et al. Jan 2003 B1
6504629 Popovich et al. Jan 2003 B1
6509937 Moskovich et al. Jan 2003 B1
6518747 Sager et al. Feb 2003 B2
6519088 Lipton Feb 2003 B1
6522794 Bischel et al. Feb 2003 B1
6522795 Jordan et al. Feb 2003 B1
6524771 Maeda et al. Feb 2003 B2
6529336 Kreitzer et al. Mar 2003 B1
6534977 Duncan et al. Mar 2003 B1
6538775 Bowley et al. Mar 2003 B1
6545778 Ono et al. Apr 2003 B2
6550949 Bauer et al. Apr 2003 B1
6552789 Modro Apr 2003 B1
6557413 Nieminen et al. May 2003 B2
6559813 DeLuca et al. May 2003 B1
6563648 Gleckman et al. May 2003 B2
6563650 Moskovich et al. May 2003 B2
6567014 Hansen et al. May 2003 B1
6567573 Domash et al. May 2003 B1
6577411 David et al. Jun 2003 B1
6577429 Kurtz et al. Jun 2003 B1
6580529 Amitai et al. Jun 2003 B1
6583838 Hoke et al. Jun 2003 B1
6583873 Goncharov et al. Jun 2003 B1
6587619 Kinoshita Jul 2003 B1
6594090 Kruschwitz et al. Jul 2003 B2
6596193 Coates et al. Jul 2003 B2
6597176 Simmonds et al. Jul 2003 B2
6597475 Shirakura et al. Jul 2003 B1
6598987 Parikka Jul 2003 B1
6600590 Roddy et al. Jul 2003 B2
6608720 Freeman Aug 2003 B1
6611253 Cohen Aug 2003 B1
6618104 Date et al. Sep 2003 B1
6625381 Roddy et al. Sep 2003 B2
6646772 Popovich et al. Nov 2003 B1
6646810 Harter, Jr. et al. Nov 2003 B2
6661495 Popovich Dec 2003 B1
6661578 Hedrick Dec 2003 B2
6667134 Sutherland et al. Dec 2003 B1
6674578 Sugiyama et al. Jan 2004 B2
6677086 Sutehrland et al. Jan 2004 B1
6686815 Mirshekarl-Syahkal et al. Feb 2004 B1
6690516 Aritake et al. Feb 2004 B2
6692666 Sutherland et al. Feb 2004 B2
6699407 Sutehrland et al. Mar 2004 B1
6706086 Emig et al. Mar 2004 B2
6706451 Sutherland et al. Mar 2004 B1
6714329 Sekine et al. Mar 2004 B2
6721096 Bruzzone et al. Apr 2004 B2
6730442 Sutherland et al. May 2004 B1
6731434 Hua et al. May 2004 B1
6738105 Hannah et al. May 2004 B1
6741189 Gibbons, II et al. May 2004 B1
6744478 Asakura et al. Jun 2004 B1
6747781 Trisnadi et al. Jun 2004 B2
6748342 Dickhaus Jun 2004 B1
6750941 Satoh et al. Jun 2004 B2
6750995 Dickson Jun 2004 B2
6750996 Jagt et al. Jun 2004 B2
6757105 Niv et al. Jun 2004 B2
6771403 Endo et al. Aug 2004 B1
6776339 Piikivi Aug 2004 B2
6781701 Sweetser et al. Aug 2004 B1
6791629 Moskovich et al. Sep 2004 B2
6791739 Ramanujan et al. Sep 2004 B2
6804066 Ha et al. Oct 2004 B1
6805490 Levola Oct 2004 B2
6821457 Natarajan et al. Nov 2004 B1
6822713 Yaroshchuk et al. Nov 2004 B1
6824929 Taggi et al. Nov 2004 B2
6825987 Repetto et al. Nov 2004 B2
6829095 Amitai Dec 2004 B2
6830789 Doane et al. Dec 2004 B2
6833955 Niv Dec 2004 B2
6836369 Fujikawa et al. Dec 2004 B2
6844212 Bond et al. Jan 2005 B2
6844980 He et al. Jan 2005 B2
6844989 Jo et al. Jan 2005 B1
6847274 Salmela et al. Jan 2005 B2
6847488 Travis Jan 2005 B2
6850210 Lipton et al. Feb 2005 B1
6853491 Ruhle et al. Feb 2005 B1
6853493 Kreitzer et al. Feb 2005 B2
6861107 Klasen-Memmer et al. Mar 2005 B2
6864861 Schehrer et al. Mar 2005 B2
6864927 Cathey Mar 2005 B1
6867888 Sutherland et al. Mar 2005 B2
6873443 Joubert et al. Mar 2005 B1
6878494 Sutehrland et al. Apr 2005 B2
6885483 Takada Apr 2005 B2
6903872 Schrader Jun 2005 B2
6909345 Salmela et al. Jun 2005 B1
6917375 Akada et al. Jul 2005 B2
6919003 Ikeda et al. Jul 2005 B2
6922267 Endo et al. Jul 2005 B2
6926429 Barlow et al. Aug 2005 B2
6927570 Simmonds et al. Aug 2005 B2
6927694 Smith et al. Aug 2005 B1
6940361 Jokio et al. Sep 2005 B1
6943788 Tomono Sep 2005 B2
6950173 Sutherland et al. Sep 2005 B1
6950227 Schrader Sep 2005 B2
6951393 Koide Oct 2005 B2
6952312 Weber et al. Oct 2005 B2
6952435 Lai et al. Oct 2005 B2
6958662 Salmela et al. Oct 2005 B1
6958868 Pender Oct 2005 B1
6963454 Martins et al. Nov 2005 B1
6972788 Robertson et al. Dec 2005 B1
6975345 Lipton et al. Dec 2005 B1
6980365 Moskovich Dec 2005 B2
6985296 Lipton et al. Jan 2006 B2
6987908 Bond et al. Jan 2006 B2
6999239 Martins et al. Feb 2006 B1
7002618 Lipton et al. Feb 2006 B2
7002753 Moskovich et al. Feb 2006 B2
7003075 Miyake et al. Feb 2006 B2
7003187 Frick et al. Feb 2006 B2
7006732 Gunn, III et al. Feb 2006 B2
7009773 Chaoulov et al. Mar 2006 B2
7018563 Sutherland et al. Mar 2006 B1
7018686 Sutehrland et al. Mar 2006 B2
7018744 Otaki et al. Mar 2006 B2
7019793 Moskovich et al. Mar 2006 B2
7021777 Amitai Apr 2006 B2
7026892 Kajiya Apr 2006 B2
7027671 Huck et al. Apr 2006 B2
7034748 Kajiya Apr 2006 B2
7046439 Kaminsky et al. May 2006 B2
7053735 Salmela et al. May 2006 B2
7053991 Sandusky May 2006 B2
7054045 McPheters et al. May 2006 B2
7058434 Wang et al. Jun 2006 B2
7068405 Sutherland et al. Jun 2006 B2
7068898 Buretea et al. Jun 2006 B2
7072020 Sutherland et al. Jul 2006 B1
7075273 O'Gorman et al. Jul 2006 B2
7077984 Natarajan et al. Jul 2006 B1
7081215 Natarajan et al. Jul 2006 B2
7088457 Zou et al. Aug 2006 B1
7088515 Lipton Aug 2006 B2
7095562 Peng et al. Aug 2006 B1
7099080 Lipton et al. Aug 2006 B2
7101048 Travis Sep 2006 B2
7108383 Mitchell et al. Sep 2006 B1
7110184 Yona et al. Sep 2006 B1
7119965 Rolland et al. Oct 2006 B1
7123418 Weber et al. Oct 2006 B2
7123421 Moskovich et al. Oct 2006 B1
7126418 Hunton et al. Oct 2006 B2
7126583 Breed Oct 2006 B1
7132200 Ueda et al. Nov 2006 B1
7133084 Moskovich et al. Nov 2006 B2
7139109 Mukawa Nov 2006 B2
RE39424 Moskovich Dec 2006 E
7145729 Kreitzer et al. Dec 2006 B2
7149385 Parikka et al. Dec 2006 B2
7151246 Fein et al. Dec 2006 B2
7158095 Jenson et al. Jan 2007 B2
7167286 Anderson et al. Jan 2007 B2
7175780 Sutherland et al. Feb 2007 B1
7181105 Teramura et al. Feb 2007 B2
7181108 Levola Feb 2007 B2
7184002 Lipton et al. Feb 2007 B2
7184615 Levola Feb 2007 B2
7186567 Sutherland et al. Mar 2007 B1
7190849 Katase Mar 2007 B2
7198737 Natarajan et al. Apr 2007 B2
7199934 Yamasaki Apr 2007 B2
7205960 David Apr 2007 B2
7205964 Yokoyama et al. Apr 2007 B1
7206107 Levola Apr 2007 B2
7212175 Magee et al. May 2007 B1
7230767 Walck et al. Jun 2007 B2
7230770 Kreitzer et al. Jun 2007 B2
7242527 Spitzer et al. Jul 2007 B2
7248128 Mattila et al. Jul 2007 B2
7256915 Sutherland et al. Aug 2007 B2
7259906 Islam Aug 2007 B1
7265882 Sutherland et al. Sep 2007 B2
7265903 Sutherland et al. Sep 2007 B2
7268946 Wang Sep 2007 B2
7285903 Cull et al. Oct 2007 B2
7286272 Mukawa Oct 2007 B2
7289069 Ranta Oct 2007 B2
RE39911 Moskovich Nov 2007 E
7299983 Piikivi Nov 2007 B2
7301601 Lin et al. Nov 2007 B2
7312906 Sutherland et al. Dec 2007 B2
7313291 Okhotnikov et al. Dec 2007 B2
D559250 Pombo Jan 2008 S
7319573 Nishiyama Jan 2008 B2
7320534 Sugikawa et al. Jan 2008 B2
7323275 Otaki et al. Jan 2008 B2
7333685 Stone et al. Feb 2008 B2
7336271 Ozeki et al. Feb 2008 B2
7339737 Urey et al. Mar 2008 B2
7339742 Amitai et al. Mar 2008 B2
7369911 Volant et al. May 2008 B1
7375870 Schorpp May 2008 B2
7375886 Lipton et al. May 2008 B2
7376068 Khoury May 2008 B1
7376307 Singh et al. May 2008 B2
7391573 Amitai Jun 2008 B2
7394865 Borran et al. Jul 2008 B2
7395181 Foxlin Jul 2008 B2
7397606 Peng et al. Jul 2008 B1
7401920 Kranz et al. Jul 2008 B1
7404644 Evans et al. Jul 2008 B2
7410286 Travis Aug 2008 B2
7411637 Weiss Aug 2008 B2
7413678 Natarajan et al. Aug 2008 B1
7413679 Sutherland et al. Aug 2008 B1
7415173 Kassamakov et al. Aug 2008 B2
7416818 Sutherland et al. Aug 2008 B2
7418170 Mukawa et al. Aug 2008 B2
7420733 Natarajan et al. Sep 2008 B1
7433116 Islam Oct 2008 B1
7436568 Kuykendall, Jr. Oct 2008 B1
D581447 Yee Nov 2008 S
7447967 Onggosanusi et al. Nov 2008 B2
7453612 Mukawa Nov 2008 B2
7454103 Parriaux Nov 2008 B2
7457040 Amitai Nov 2008 B2
7466994 Pihlaja et al. Dec 2008 B2
7477206 Cowan et al. Jan 2009 B2
7479354 Ueda et al. Jan 2009 B2
7480215 Makela et al. Jan 2009 B2
7482996 Larson et al. Jan 2009 B2
7483604 Levola Jan 2009 B2
7492512 Niv et al. Feb 2009 B2
7496293 Shamir et al. Feb 2009 B2
7499217 Cakmakci et al. Mar 2009 B2
7500104 Goland Mar 2009 B2
7511891 Messerschmidt Mar 2009 B2
7513668 Peng et al. Apr 2009 B1
7522344 Curatu et al. Apr 2009 B1
7525448 Wilson et al. Apr 2009 B1
7528385 Volodin et al. May 2009 B2
7545429 Travis Jun 2009 B2
7550234 Otaki et al. Jun 2009 B2
7558446 Wimberger-friedl et al. Jul 2009 B2
7567372 Schorpp Jul 2009 B2
7570322 Sutherland et al. Aug 2009 B1
7570405 Sutherland et al. Aug 2009 B1
7570429 Maliah et al. Aug 2009 B2
7572555 Takizawa et al. Aug 2009 B2
7573640 Nivon et al. Aug 2009 B2
7576916 Amitai Aug 2009 B2
7577326 Amitai Aug 2009 B2
7579119 Ueda et al. Aug 2009 B2
7583423 Sutherland et al. Sep 2009 B2
7587110 Singh et al. Sep 2009 B2
7588863 Takizawa et al. Sep 2009 B2
7589900 Powell Sep 2009 B1
7589901 DeJong et al. Sep 2009 B2
7592988 Katase Sep 2009 B2
7593575 Houle et al. Sep 2009 B2
7597447 Larson et al. Oct 2009 B2
7599012 Nakamura et al. Oct 2009 B2
7600893 Laino et al. Oct 2009 B2
7602552 Blumenfeld Oct 2009 B1
7605719 Wenger et al. Oct 2009 B1
7605774 Brandt et al. Oct 2009 B1
7605882 Sutherland et al. Oct 2009 B1
7616270 Hirabayashi et al. Nov 2009 B2
7617022 Wood et al. Nov 2009 B1
7618750 Ueda et al. Nov 2009 B2
7619739 Sutherland et al. Nov 2009 B1
7619825 Peng et al. Nov 2009 B1
7629086 Otaki et al. Dec 2009 B2
7639208 Ha et al. Dec 2009 B1
7639911 Lee et al. Dec 2009 B2
7643214 Amitai Jan 2010 B2
7643225 Tsai Jan 2010 B1
7656585 Powell et al. Feb 2010 B1
7660047 Travis et al. Feb 2010 B1
7672055 Amitai Mar 2010 B2
7672549 Ghosh et al. Mar 2010 B2
7691248 Ikeda et al. Apr 2010 B2
7710622 Takabayashi et al. May 2010 B2
7710654 Ashkenazi et al. May 2010 B2
7724441 Amitai May 2010 B2
7724442 Amitai May 2010 B2
7724443 Amitai May 2010 B2
7733571 Li Jun 2010 B1
7733572 Brown et al. Jun 2010 B1
7740387 Schultz et al. Jun 2010 B2
7747113 Mukawa et al. Jun 2010 B2
7751122 Amitai Jul 2010 B2
7751662 Kleemann et al. Jul 2010 B2
7764413 Levola Jul 2010 B2
7777819 Simmonds Aug 2010 B2
7778305 Parriaux et al. Aug 2010 B2
7778508 Hirayama Aug 2010 B2
7843642 Shaoulov et al. Nov 2010 B2
7847235 Krupkin et al. Dec 2010 B2
7864427 Korenaga et al. Jan 2011 B2
7865080 Hecker et al. Jan 2011 B2
7866869 Karakawa Jan 2011 B2
7872707 Sutherland et al. Jan 2011 B1
7872804 Moon et al. Jan 2011 B2
7884593 Simmonds et al. Feb 2011 B2
7884985 Amitai et al. Feb 2011 B2
7887186 Watanabe Feb 2011 B2
7903921 Ostergard Mar 2011 B2
7907342 Simmonds et al. Mar 2011 B2
7920787 Gentner et al. Apr 2011 B2
7928862 Matthews Apr 2011 B1
7936519 Mukawa et al. May 2011 B2
7944428 Travis May 2011 B2
7944616 Mukawa May 2011 B2
7949214 DeJong et al. May 2011 B2
D640310 Suzuki et al. Jun 2011 S
7961117 Zimmerman et al. Jun 2011 B1
7969644 Tilleman et al. Jun 2011 B2
7969657 Cakmakci et al. Jun 2011 B2
7970246 Travis et al. Jun 2011 B2
7976208 Travis Jul 2011 B2
7984884 Iliev et al. Jul 2011 B1
7999982 Endo et al. Aug 2011 B2
8000020 Amitai et al. Aug 2011 B2
8000491 Brodkin et al. Aug 2011 B2
8004765 Amitai Aug 2011 B2
8014050 McGrew Sep 2011 B2
8016475 Travis Sep 2011 B2
8018579 Krah Sep 2011 B1
8022942 Bathiche et al. Sep 2011 B2
8023783 Mukawa et al. Sep 2011 B2
RE42992 David Dec 2011 E
8073296 Mukawa et al. Dec 2011 B2
8077274 Sutherland et al. Dec 2011 B2
8079713 Ashkenazi Dec 2011 B2
8082222 Rangarajan et al. Dec 2011 B2
8086030 Gordon et al. Dec 2011 B2
8089568 Brown et al. Jan 2012 B1
8093451 Spangenberg et al. Jan 2012 B2
8098439 Amitai et al. Jan 2012 B2
8107023 Simmonds et al. Jan 2012 B2
8107780 Simmonds Jan 2012 B2
8120548 Barber Feb 2012 B1
8132948 Owen et al. Mar 2012 B2
8132976 Odell et al. Mar 2012 B2
8134434 Diederichs et al. Mar 2012 B2
8136690 Fang et al. Mar 2012 B2
8137981 Andrew et al. Mar 2012 B2
8142016 Legerton et al. Mar 2012 B2
8149086 Klein et al. Apr 2012 B2
8152315 Travis et al. Apr 2012 B2
8155489 Saarikko et al. Apr 2012 B2
8159752 Wertheim et al. Apr 2012 B2
8160409 Large Apr 2012 B2
8160411 Levola et al. Apr 2012 B2
D659137 Matsumoto May 2012 S
8167173 Simmonds et al. May 2012 B1
8186874 Sinbar et al. May 2012 B2
8188925 DeJean May 2012 B2
8189263 Wang et al. May 2012 B1
8189973 Travis et al. May 2012 B2
D661334 Cho et al. Jun 2012 S
D661335 Jeon Jun 2012 S
8194325 Levola et al. Jun 2012 B2
8199803 Hauske et al. Jun 2012 B2
8213065 Mukawa Jul 2012 B2
8213755 Mukawa et al. Jul 2012 B2
8220966 Mukawa Jul 2012 B2
8224133 Popovich et al. Jul 2012 B2
8233204 Robbins et al. Jul 2012 B1
8253914 Kajiya et al. Aug 2012 B2
8254031 Levola Aug 2012 B2
8264498 Vanderkamp et al. Sep 2012 B1
8294749 Cable Oct 2012 B2
8295710 Marcus Oct 2012 B2
8301031 Gentner et al. Oct 2012 B2
8305577 Kivioja et al. Nov 2012 B2
8306423 Gottwald et al. Nov 2012 B2
8310327 Willers et al. Nov 2012 B2
8314819 Kimmel et al. Nov 2012 B2
8314993 Levola et al. Nov 2012 B2
8320032 Levola Nov 2012 B2
8321810 Heintze Nov 2012 B2
8325166 Akutsu et al. Dec 2012 B2
8329773 Fäcke et al. Dec 2012 B2
8335040 Mukawa et al. Dec 2012 B2
D673996 Kim et al. Jan 2013 S
8351744 Travis et al. Jan 2013 B2
8354640 Hamre et al. Jan 2013 B2
8354806 Travis et al. Jan 2013 B2
8355610 Simmonds Jan 2013 B2
8369019 Baker et al. Feb 2013 B2
8376548 Schultz Feb 2013 B2
8382293 Phillips, III et al. Feb 2013 B2
8384504 Diederichs et al. Feb 2013 B2
8384694 Powell et al. Feb 2013 B2
8384730 Vanderkamp et al. Feb 2013 B1
8396339 Mukawa et al. Mar 2013 B2
8398242 Yamamoto et al. Mar 2013 B2
8403490 Sugiyama et al. Mar 2013 B2
8422840 Large Apr 2013 B2
8427439 Larsen et al. Apr 2013 B2
8432363 Saarikko et al. Apr 2013 B2
8432372 Butler et al. Apr 2013 B2
8432614 Amitai Apr 2013 B2
8441731 Sprague May 2013 B2
8447365 Imanuel May 2013 B1
8466953 Levola Jun 2013 B2
8472119 Kelly Jun 2013 B1
8472120 Border et al. Jun 2013 B2
8477261 Travis et al. Jul 2013 B2
8481130 Harding et al. Jul 2013 B2
8482858 Sprague Jul 2013 B2
8488246 Border et al. Jul 2013 B2
8491121 Tilleman et al. Jul 2013 B2
8491136 Travis et al. Jul 2013 B2
8493366 Bathiche et al. Jul 2013 B2
8493662 Noui Jul 2013 B2
8494229 Jarvenpaa et al. Jul 2013 B2
8508848 Saarikko Aug 2013 B2
8520309 Sprague Aug 2013 B2
D691192 Stanley et al. Oct 2013 S
8547638 Levola Oct 2013 B2
8548290 Travers et al. Oct 2013 B2
8565560 Popovich et al. Oct 2013 B2
D694310 Cho et al. Nov 2013 S
D694311 Cho et al. Nov 2013 S
8578038 Kaikuranta et al. Nov 2013 B2
8581831 Travis Nov 2013 B2
8582206 Travis Nov 2013 B2
8593734 Laakkonen Nov 2013 B2
8611014 Valera et al. Dec 2013 B2
8619062 Powell et al. Dec 2013 B2
D697130 Lövgren Jan 2014 S
8633786 Ermolov et al. Jan 2014 B2
8634120 Popovich et al. Jan 2014 B2
8634139 Brown et al. Jan 2014 B1
8639072 Popovich et al. Jan 2014 B2
8643691 Rosenfeld et al. Feb 2014 B2
8643948 Amitai et al. Feb 2014 B2
8649099 Schultz et al. Feb 2014 B2
8654420 Simmonds Feb 2014 B2
8659826 Brown et al. Feb 2014 B1
D701206 Luckey et al. Mar 2014 S
8670029 McEldowney Mar 2014 B2
8693087 Nowatzyk et al. Apr 2014 B2
8698705 Burke Apr 2014 B2
8731350 Lin et al. May 2014 B1
8736802 Kajiya et al. May 2014 B2
8736963 Robbins et al. May 2014 B2
8742952 Bold Jun 2014 B1
8746008 Mauritsen et al. Jun 2014 B1
8749886 Gupta Jun 2014 B2
8749890 Wood et al. Jun 2014 B1
8767294 Chen et al. Jul 2014 B2
8786923 Chuang et al. Jul 2014 B2
8810600 Bohn et al. Aug 2014 B2
8810913 Simmonds et al. Aug 2014 B2
8810914 Amitai Aug 2014 B2
8814691 Haddick et al. Aug 2014 B2
8816578 Peng et al. Aug 2014 B1
8817350 Robbins et al. Aug 2014 B1
8824836 Sugiyama Sep 2014 B2
8830143 Pitchford et al. Sep 2014 B1
8830584 Saarikko et al. Sep 2014 B2
8830588 Brown et al. Sep 2014 B1
8842368 Simmonds et al. Sep 2014 B2
8859412 Jain Oct 2014 B2
8872435 Kreitzer et al. Oct 2014 B2
8873149 Bohn et al. Oct 2014 B2
8873150 Amitai Oct 2014 B2
D718304 Heinrich Nov 2014 S
D718366 Mehin et al. Nov 2014 S
8885112 Popovich et al. Nov 2014 B2
8885997 Nguyen et al. Nov 2014 B2
8903207 Brown et al. Dec 2014 B1
8906088 Pugh et al. Dec 2014 B2
8913324 Schrader Dec 2014 B2
8913865 Bennett Dec 2014 B1
8917453 Bohn Dec 2014 B2
8917962 Nichol et al. Dec 2014 B1
8933144 Enomoto et al. Jan 2015 B2
8934743 Nishiwaki et al. Jan 2015 B2
8937771 Robbins et al. Jan 2015 B2
8937772 Burns et al. Jan 2015 B1
8938141 Magnusson Jan 2015 B2
8950867 Macnamara Feb 2015 B2
8964298 Haddick et al. Feb 2015 B2
8965152 Simmonds Feb 2015 B2
D725102 Lee et al. Mar 2015 S
8985803 Bohn Mar 2015 B2
8989535 Robbins Mar 2015 B2
D726180 Roat et al. Apr 2015 S
9019595 Jain Apr 2015 B2
9025253 Hadad et al. May 2015 B2
9035344 Jain May 2015 B2
D733709 Kawai Jul 2015 S
9075184 Popovich et al. Jul 2015 B2
9081178 Simmonds et al. Jul 2015 B2
9097890 Miller et al. Aug 2015 B2
9103978 Nishiwaki et al. Aug 2015 B2
9128226 Fattal et al. Sep 2015 B2
9129295 Border et al. Sep 2015 B2
9164290 Robbins et al. Oct 2015 B2
9176324 Scherer et al. Nov 2015 B1
9201270 Fattal et al. Dec 2015 B2
9215293 Miller Dec 2015 B2
D746896 Markovitz et al. Jan 2016 S
9244275 Li Jan 2016 B1
9244280 Tiana et al. Jan 2016 B1
9244281 Zimmerman et al. Jan 2016 B1
D749074 Cazalet et al. Feb 2016 S
9253359 Takahashi Feb 2016 B2
9269854 Jain Feb 2016 B2
D751551 Ho et al. Mar 2016 S
D752129 Lee et al. Mar 2016 S
9274338 Robbins et al. Mar 2016 B2
9274339 Brown et al. Mar 2016 B1
9274349 Popovich et al. Mar 2016 B2
D754782 Kokinakis et al. Apr 2016 S
9310566 Valera et al. Apr 2016 B2
9329325 Simmonds et al. May 2016 B2
9335604 Popovich et al. May 2016 B2
9341846 Popovich et al. May 2016 B2
9354366 Jain May 2016 B2
9366862 Haddick et al. Jun 2016 B2
9366864 Brown et al. Jun 2016 B1
9372347 Levola et al. Jun 2016 B1
9377623 Robbins et al. Jun 2016 B2
9377852 Shapiro et al. Jun 2016 B1
9389415 Fattal et al. Jul 2016 B2
9400395 Travers et al. Jul 2016 B2
9423360 Kostamo et al. Aug 2016 B1
9429692 Saarikko et al. Aug 2016 B1
9431794 Jain Aug 2016 B2
9456744 Popovich et al. Oct 2016 B2
9459451 Saarikko et al. Oct 2016 B2
9464779 Popovich et al. Oct 2016 B2
9465213 Simmonds Oct 2016 B2
9465227 Popovich et al. Oct 2016 B2
9494799 Robbins et al. Nov 2016 B2
9507150 Stratton et al. Nov 2016 B1
9513480 Saarikko et al. Dec 2016 B2
9516193 Aramaki Dec 2016 B2
9519089 Brown et al. Dec 2016 B1
9523852 Brown et al. Dec 2016 B1
9535253 Levola et al. Jan 2017 B2
9541383 Abovitz et al. Jan 2017 B2
9541763 Heberlein et al. Jan 2017 B1
9547174 Gao et al. Jan 2017 B2
9551468 Jones Jan 2017 B2
9551874 Amitai Jan 2017 B2
9551880 Amitai Jan 2017 B2
9599813 Stratton et al. Mar 2017 B1
9612403 Abovitz et al. Apr 2017 B2
9632226 Waldern et al. Apr 2017 B2
9635352 Henry et al. Apr 2017 B1
9648313 Henry et al. May 2017 B1
9651368 Abovitz et al. May 2017 B2
9664824 Simmonds et al. May 2017 B2
9664910 Mansharof et al. May 2017 B2
9671612 Kress et al. Jun 2017 B2
9674413 Tiana et al. Jun 2017 B1
9678345 Melzer et al. Jun 2017 B1
9679367 Wald Jun 2017 B1
9715067 Brown et al. Jul 2017 B1
9715110 Brown et al. Jul 2017 B1
D793468 Yu et al. Aug 2017 S
D795865 Porter et al. Aug 2017 S
D795866 Porter et al. Aug 2017 S
9726540 Popovich et al. Aug 2017 B2
9727772 Popovich et al. Aug 2017 B2
9733475 Brown et al. Aug 2017 B1
9746688 Popovich et al. Aug 2017 B2
9754507 Wenger et al. Sep 2017 B1
9762895 Henry et al. Sep 2017 B1
9766465 Tiana et al. Sep 2017 B1
9785231 Zimmerman Oct 2017 B1
9791694 Haverkamp et al. Oct 2017 B1
9791696 Woltman et al. Oct 2017 B2
9804316 Drolet et al. Oct 2017 B2
9804389 Popovich et al. Oct 2017 B2
9823423 Waldern et al. Nov 2017 B2
9874931 Koenck et al. Jan 2018 B1
9933684 Brown et al. Apr 2018 B2
9977247 Brown et al. May 2018 B1
D827641 Morisawa Sep 2018 S
10089516 Popovich et al. Oct 2018 B2
10156681 Waldern et al. Dec 2018 B2
10185154 Popovich et al. Jan 2019 B2
D840454 Han et al. Feb 2019 S
10209517 Popovich et al. Feb 2019 B2
10216061 Popovich et al. Feb 2019 B2
10234696 Popovich et al. Mar 2019 B2
10241330 Popovich et al. Mar 2019 B2
10330777 Popovich et al. Jun 2019 B2
10359736 Popovich et al. Jul 2019 B2
D855687 Villalpando Aug 2019 S
D859510 Harmon et al. Sep 2019 S
10409144 Popovich et al. Sep 2019 B2
10423813 Popovich et al. Sep 2019 B2
10459311 Popovich et al. Oct 2019 B2
D871494 Yamada et al. Dec 2019 S
D872170 Evans et al. Jan 2020 S
D872794 Wilkins Jan 2020 S
10527797 Waldern et al. Jan 2020 B2
10532594 Akahane et al. Jan 2020 B2
10545346 Waldern et al. Jan 2020 B2
10569449 Curts et al. Feb 2020 B1
10578876 Lam et al. Mar 2020 B1
10598938 Huang et al. Mar 2020 B1
D880575 Thixton Apr 2020 S
10613268 Colburn et al. Apr 2020 B1
10642058 Popovich et al. May 2020 B2
10649119 Mohanty et al. May 2020 B2
10678053 Waldern et al. Jun 2020 B2
10690831 Calafiore Jun 2020 B2
10690916 Popovich et al. Jun 2020 B2
10705281 Fattal et al. Jul 2020 B2
10732351 Colburn et al. Aug 2020 B2
10732569 Waldern et al. Aug 2020 B2
10823887 Calafiore et al. Nov 2020 B1
10859768 Popovich et al. Dec 2020 B2
10890707 Waldern et al. Jan 2021 B2
10983257 Colburn et al. Apr 2021 B1
11103892 Liao et al. Aug 2021 B1
11107972 Diest et al. Aug 2021 B2
11137603 Zhang Oct 2021 B2
11243333 Ouderkirk et al. Feb 2022 B1
11306193 Lane et al. Apr 2022 B1
11307357 Mohanty Apr 2022 B2
11340386 Ouderkirk et al. May 2022 B1
11391950 Calafiore Jul 2022 B2
11402801 Waldern et al. Aug 2022 B2
11703799 Waldern et al. Jul 2023 B2
20010024177 Popovich Sep 2001 A1
20010033400 Sutherland et al. Oct 2001 A1
20010043163 Waldern et al. Nov 2001 A1
20010046142 Van Santen et al. Nov 2001 A1
20010050756 Lipton et al. Dec 2001 A1
20020003509 Lipton et al. Jan 2002 A1
20020009299 Lipton Jan 2002 A1
20020011969 Lipton et al. Jan 2002 A1
20020012064 Yamaguchi Jan 2002 A1
20020018040 Aye et al. Feb 2002 A1
20020021407 Elliott Feb 2002 A1
20020021461 Ono et al. Feb 2002 A1
20020036825 Lipton et al. Mar 2002 A1
20020047837 Suyama et al. Apr 2002 A1
20020075240 Lieberman et al. Jun 2002 A1
20020093701 Zhang et al. Jul 2002 A1
20020110077 Drobot et al. Aug 2002 A1
20020126332 Popovich Sep 2002 A1
20020127497 Brown et al. Sep 2002 A1
20020131175 Yagi et al. Sep 2002 A1
20020150032 Nishiuchi et al. Oct 2002 A1
20020196332 Lipton et al. Dec 2002 A1
20030007070 Lipton et al. Jan 2003 A1
20030030912 Gleckman et al. Feb 2003 A1
20030038912 Broer et al. Feb 2003 A1
20030039442 Bond et al. Feb 2003 A1
20030058490 Brotherton-ratcliffe et al. Mar 2003 A1
20030063042 Friesem et al. Apr 2003 A1
20030063884 Smith et al. Apr 2003 A1
20030067685 Niv Apr 2003 A1
20030086670 Moridaira et al. May 2003 A1
20030107809 Chen et al. Jun 2003 A1
20030149346 Arnone et al. Aug 2003 A1
20030175004 Garito et al. Sep 2003 A1
20030193709 Mallya et al. Oct 2003 A1
20030197154 Manabe et al. Oct 2003 A1
20030197157 Sutherland et al. Oct 2003 A1
20030202247 Niv et al. Oct 2003 A1
20030206329 Ikeda et al. Nov 2003 A1
20030228019 Eichler et al. Dec 2003 A1
20040004767 Song Jan 2004 A1
20040012833 Newswanger et al. Jan 2004 A1
20040047938 Kosuga et al. Mar 2004 A1
20040075830 Miyake et al. Apr 2004 A1
20040089842 Sutehrland et al. May 2004 A1
20040109234 Levola Jun 2004 A1
20040112862 Willson et al. Jun 2004 A1
20040130797 Leigh Jul 2004 A1
20040141217 Endo et al. Jul 2004 A1
20040156008 Reznikov et al. Aug 2004 A1
20040174348 David Sep 2004 A1
20040175627 Sutherland et al. Sep 2004 A1
20040179764 Melikechi et al. Sep 2004 A1
20040184156 Gunn, III et al. Sep 2004 A1
20040188617 Devitt et al. Sep 2004 A1
20040208446 Bond et al. Oct 2004 A1
20040208466 Mossberg et al. Oct 2004 A1
20040225025 Sullivan et al. Nov 2004 A1
20040263969 Lipton et al. Dec 2004 A1
20040263971 Lipton et al. Dec 2004 A1
20050018304 Lipton et al. Jan 2005 A1
20050079663 Masutani et al. Apr 2005 A1
20050083564 Mallya et al. Apr 2005 A1
20050105909 Stone May 2005 A1
20050122395 Lipton et al. Jun 2005 A1
20050134404 Kajiya et al. Jun 2005 A1
20050135747 Greiner et al. Jun 2005 A1
20050136260 Garcia Jun 2005 A1
20050141066 Ouchi Jun 2005 A1
20050174321 Ikeda et al. Aug 2005 A1
20050180687 Amitai Aug 2005 A1
20050195276 Lipton et al. Sep 2005 A1
20050218377 Lawandy Oct 2005 A1
20050231774 Hayashi et al. Oct 2005 A1
20050232530 Kekas Oct 2005 A1
20050259217 Lin et al. Nov 2005 A1
20050259302 Metz et al. Nov 2005 A9
20050259944 Anderson et al. Nov 2005 A1
20050265585 Rowe Dec 2005 A1
20050269481 David et al. Dec 2005 A1
20050271258 Rowe Dec 2005 A1
20050286133 Lipton Dec 2005 A1
20060002274 Kihara et al. Jan 2006 A1
20060012878 Lipton et al. Jan 2006 A1
20060013977 Duke et al. Jan 2006 A1
20060043938 O'Gorman et al. Mar 2006 A1
20060055993 Kobayashi et al. Mar 2006 A1
20060093012 Singh et al. May 2006 A1
20060093793 Miyakawa et al. May 2006 A1
20060114564 Sutherland et al. Jun 2006 A1
20060119837 Raguin et al. Jun 2006 A1
20060119916 Sutherland et al. Jun 2006 A1
20060126179 Levola Jun 2006 A1
20060132914 Weiss et al. Jun 2006 A1
20060142455 Agarwal et al. Jun 2006 A1
20060146422 Koike Jul 2006 A1
20060159864 Natarajan et al. Jul 2006 A1
20060164593 Peyghambarian et al. Jul 2006 A1
20060171647 Ye et al. Aug 2006 A1
20060177180 Tazawa et al. Aug 2006 A1
20060181683 Bhowmik et al. Aug 2006 A1
20060191293 Kuczma Aug 2006 A1
20060215244 Yosha et al. Sep 2006 A1
20060215976 Singh et al. Sep 2006 A1
20060221063 Ishihara Oct 2006 A1
20060221448 Nivon et al. Oct 2006 A1
20060228073 Mukawa et al. Oct 2006 A1
20060268104 Cowan et al. Nov 2006 A1
20060268412 Downing et al. Nov 2006 A1
20060279662 Kapellner et al. Dec 2006 A1
20060284974 Lipton et al. Dec 2006 A1
20060285205 Lipton et al. Dec 2006 A1
20060291021 Mukawa Dec 2006 A1
20060291052 Lipton et al. Dec 2006 A1
20060292493 Shinotsuka et al. Dec 2006 A1
20070012777 Tsikos et al. Jan 2007 A1
20070019152 Caputo et al. Jan 2007 A1
20070019297 Stewart et al. Jan 2007 A1
20070041684 Popovich et al. Feb 2007 A1
20070045596 King et al. Mar 2007 A1
20070052929 Allman et al. Mar 2007 A1
20070070476 Yamada et al. Mar 2007 A1
20070070504 Akutsu et al. Mar 2007 A1
20070089625 Grinberg et al. Apr 2007 A1
20070097502 Lipton et al. May 2007 A1
20070109400 Woodgate et al. May 2007 A1
20070109401 Lipton et al. May 2007 A1
20070116409 Bryan et al. May 2007 A1
20070127348 Ooi et al. Jun 2007 A1
20070133089 Lipton et al. Jun 2007 A1
20070133920 Lee et al. Jun 2007 A1
20070133983 Traff Jun 2007 A1
20070146624 Duston et al. Jun 2007 A1
20070154153 Fomitchov et al. Jul 2007 A1
20070160325 Son et al. Jul 2007 A1
20070177007 Lipton et al. Aug 2007 A1
20070182915 Osawa et al. Aug 2007 A1
20070183650 Lipton et al. Aug 2007 A1
20070188602 Cowan et al. Aug 2007 A1
20070188837 Shimizu et al. Aug 2007 A1
20070195409 Yun et al. Aug 2007 A1
20070206155 Lipton Sep 2007 A1
20070211164 Olsen et al. Sep 2007 A1
20070236560 Lipton et al. Oct 2007 A1
20070237456 Blauvelt et al. Oct 2007 A1
20070247687 Handschy et al. Oct 2007 A1
20070258138 Cowan et al. Nov 2007 A1
20070263169 Lipton Nov 2007 A1
20080001909 Lim Jan 2008 A1
20080018851 Lipton et al. Jan 2008 A1
20080024598 Perlin et al. Jan 2008 A1
20080043334 Itzkovitch et al. Feb 2008 A1
20080049100 Lipton et al. Feb 2008 A1
20080062259 Lipton et al. Mar 2008 A1
20080089073 Hikmet Apr 2008 A1
20080106775 Amitai et al. May 2008 A1
20080106779 Peterson et al. May 2008 A1
20080117289 Schowengerdt et al. May 2008 A1
20080136916 Wolff Jun 2008 A1
20080136923 Inbar et al. Jun 2008 A1
20080138013 Parriaux Jun 2008 A1
20080143964 Cowan et al. Jun 2008 A1
20080143965 Cowan et al. Jun 2008 A1
20080149517 Lipton et al. Jun 2008 A1
20080151370 Cook et al. Jun 2008 A1
20080151379 Amitai Jun 2008 A1
20080186573 Lipton Aug 2008 A1
20080186574 Robinson et al. Aug 2008 A1
20080186604 Amitai Aug 2008 A1
20080193085 Singh et al. Aug 2008 A1
20080198471 Amitai Aug 2008 A1
20080225187 Yamanaka Sep 2008 A1
20080226281 Lipton Sep 2008 A1
20080239067 Lipton Oct 2008 A1
20080239068 Lipton Oct 2008 A1
20080273081 Lipton Nov 2008 A1
20080278812 Amitai Nov 2008 A1
20080285137 Simmonds et al. Nov 2008 A1
20080285140 Amitai Nov 2008 A1
20080297731 Powell et al. Dec 2008 A1
20080297807 Feldman et al. Dec 2008 A1
20080298649 Ennis et al. Dec 2008 A1
20080303895 Akka et al. Dec 2008 A1
20080303896 Lipton et al. Dec 2008 A1
20080304111 Queenan et al. Dec 2008 A1
20080309586 Vitale Dec 2008 A1
20080316303 Chiu et al. Dec 2008 A1
20080316375 Lipton et al. Dec 2008 A1
20090017424 Yoeli et al. Jan 2009 A1
20090019222 Verma et al. Jan 2009 A1
20090052017 Sasaki Feb 2009 A1
20090052046 Amitai Feb 2009 A1
20090052047 Amitai Feb 2009 A1
20090067774 Magnusson Mar 2009 A1
20090074356 Sanchez et al. Mar 2009 A1
20090097122 Niv Apr 2009 A1
20090097127 Amitai Apr 2009 A1
20090121301 Chang May 2009 A1
20090122413 Hoffman et al. May 2009 A1
20090122414 Amitai May 2009 A1
20090128495 Kong et al. May 2009 A1
20090128902 Niv et al. May 2009 A1
20090128911 Itzkovitch et al. May 2009 A1
20090136246 Murakami May 2009 A1
20090141324 Mukawa Jun 2009 A1
20090153437 Aharoni Jun 2009 A1
20090169152 Oestergard Jul 2009 A1
20090190222 Simmonds et al. Jul 2009 A1
20090213208 Glatt Aug 2009 A1
20090237804 Amitai et al. Sep 2009 A1
20090242021 Petkie et al. Oct 2009 A1
20090296218 Ryytty Dec 2009 A1
20090303599 Levola Dec 2009 A1
20090316246 Asai et al. Dec 2009 A1
20100014312 Travis et al. Jan 2010 A1
20100039796 Mukawa Feb 2010 A1
20100053565 Mizushima et al. Mar 2010 A1
20100060551 Sugiyama et al. Mar 2010 A1
20100060990 Wertheim et al. Mar 2010 A1
20100065726 Zhong et al. Mar 2010 A1
20100079865 Saarikko et al. Apr 2010 A1
20100086256 Ben Bakir et al. Apr 2010 A1
20100092124 Magnusson et al. Apr 2010 A1
20100096562 Klunder et al. Apr 2010 A1
20100097674 Kasazumi et al. Apr 2010 A1
20100097820 Owen et al. Apr 2010 A1
20100103078 Mukawa et al. Apr 2010 A1
20100134534 Seesselberg et al. Jun 2010 A1
20100135615 Ho et al. Jun 2010 A1
20100136319 Imai et al. Jun 2010 A1
20100141555 Rorberg et al. Jun 2010 A1
20100149073 Chaum et al. Jun 2010 A1
20100165465 Levola Jul 2010 A1
20100165660 Weber et al. Jul 2010 A1
20100171680 Lapidot et al. Jul 2010 A1
20100177388 Cohen et al. Jul 2010 A1
20100202725 Popovich et al. Aug 2010 A1
20100214659 Levola Aug 2010 A1
20100220293 Mizushima et al. Sep 2010 A1
20100225834 Li Sep 2010 A1
20100225876 Escuti et al. Sep 2010 A1
20100231532 Nho et al. Sep 2010 A1
20100231693 Levola Sep 2010 A1
20100231705 Yahav et al. Sep 2010 A1
20100232003 Baldy et al. Sep 2010 A1
20100245756 Sugihara et al. Sep 2010 A1
20100245757 Sugihara et al. Sep 2010 A1
20100246003 Simmonds et al. Sep 2010 A1
20100246004 Simmonds Sep 2010 A1
20100246993 Rieger et al. Sep 2010 A1
20100253987 Leopold et al. Oct 2010 A1
20100265117 Weiss Oct 2010 A1
20100277803 Pockett et al. Nov 2010 A1
20100284085 Laakkonen Nov 2010 A1
20100284090 Simmonds Nov 2010 A1
20100284180 Popovich et al. Nov 2010 A1
20100296163 Saarikko Nov 2010 A1
20100299814 Celona et al. Dec 2010 A1
20100315719 Saarikko et al. Dec 2010 A1
20100321781 Levola et al. Dec 2010 A1
20100322555 Vermeulen et al. Dec 2010 A1
20110001895 Dahl Jan 2011 A1
20110002143 Saarikko et al. Jan 2011 A1
20110013423 Selbrede et al. Jan 2011 A1
20110019250 Aiki et al. Jan 2011 A1
20110019874 Jarvenpaa et al. Jan 2011 A1
20110026128 Baker et al. Feb 2011 A1
20110026774 Flohr et al. Feb 2011 A1
20110032602 Rothenberg et al. Feb 2011 A1
20110032618 Handerek et al. Feb 2011 A1
20110032706 Mukawa Feb 2011 A1
20110038024 Wang et al. Feb 2011 A1
20110050548 Blumenfeld et al. Mar 2011 A1
20110063604 Hamre et al. Mar 2011 A1
20110096401 Levola Apr 2011 A1
20110102711 Sutherland et al. May 2011 A1
20110109880 Nummela May 2011 A1
20110157707 Tilleman et al. Jun 2011 A1
20110164221 Tilleman et al. Jul 2011 A1
20110187293 Travis et al. Aug 2011 A1
20110211239 Mukawa et al. Sep 2011 A1
20110221656 Haddick et al. Sep 2011 A1
20110235179 Simmonds Sep 2011 A1
20110235365 McCollum et al. Sep 2011 A1
20110236803 Weiser et al. Sep 2011 A1
20110238399 Ophir et al. Sep 2011 A1
20110242349 Izuha et al. Oct 2011 A1
20110242661 Simmonds Oct 2011 A1
20110242670 Simmonds Oct 2011 A1
20110249309 McPheters et al. Oct 2011 A1
20110274435 Fini et al. Nov 2011 A1
20110299075 Meade et al. Dec 2011 A1
20110310356 Vallius Dec 2011 A1
20120007979 Schneider et al. Jan 2012 A1
20120027347 Mathal et al. Feb 2012 A1
20120033306 Valera et al. Feb 2012 A1
20120044572 Simmonds et al. Feb 2012 A1
20120044573 Simmonds et al. Feb 2012 A1
20120062850 Travis Mar 2012 A1
20120062998 Schultz et al. Mar 2012 A1
20120075168 Osterhout et al. Mar 2012 A1
20120081789 Mukawa et al. Apr 2012 A1
20120092632 McLeod et al. Apr 2012 A1
20120099203 Boubis et al. Apr 2012 A1
20120105634 Meidan et al. May 2012 A1
20120105740 Jannard et al. May 2012 A1
20120120493 Simmonds et al. May 2012 A1
20120127577 Desserouer May 2012 A1
20120162549 Gao et al. Jun 2012 A1
20120162764 Shimizu Jun 2012 A1
20120176665 Song et al. Jul 2012 A1
20120183888 Oliveira et al. Jul 2012 A1
20120194420 Osterhout et al. Aug 2012 A1
20120200532 Powell et al. Aug 2012 A1
20120206811 Mukawa et al. Aug 2012 A1
20120206937 Travis et al. Aug 2012 A1
20120207432 Travis et al. Aug 2012 A1
20120207434 Large Aug 2012 A1
20120214089 Hönel et al. Aug 2012 A1
20120214090 Weiser et al. Aug 2012 A1
20120218481 Popovich et al. Aug 2012 A1
20120224062 Lacoste et al. Sep 2012 A1
20120235884 Miller et al. Sep 2012 A1
20120235886 Border et al. Sep 2012 A1
20120235900 Border et al. Sep 2012 A1
20120242661 Takagi et al. Sep 2012 A1
20120280956 Yamamoto et al. Nov 2012 A1
20120281943 Popovich et al. Nov 2012 A1
20120290973 Robertson et al. Nov 2012 A1
20120294037 Holman et al. Nov 2012 A1
20120300311 Simmonds et al. Nov 2012 A1
20120320460 Levola Dec 2012 A1
20120326950 Park et al. Dec 2012 A1
20130016324 Travis Jan 2013 A1
20130016362 Gong et al. Jan 2013 A1
20130021392 Travis Jan 2013 A1
20130021586 Lippey Jan 2013 A1
20130027006 Holloway et al. Jan 2013 A1
20130033485 Kollin et al. Feb 2013 A1
20130039619 Laughlin Feb 2013 A1
20130044376 Valera et al. Feb 2013 A1
20130059233 Askham Mar 2013 A1
20130069850 Mukawa et al. Mar 2013 A1
20130077049 Bohn Mar 2013 A1
20130088637 Duparre Apr 2013 A1
20130093893 Schofield et al. Apr 2013 A1
20130101253 Popovich et al. Apr 2013 A1
20130107186 Ando et al. May 2013 A1
20130107343 Shekel May 2013 A1
20130117377 Miller May 2013 A1
20130125027 Abovitz et al. May 2013 A1
20130128230 Macnamara May 2013 A1
20130138275 Nauman et al. May 2013 A1
20130141937 Katsuta et al. Jun 2013 A1
20130143336 Jain Jun 2013 A1
20130163089 Bohn Jun 2013 A1
20130170031 Bohn et al. Jul 2013 A1
20130176704 Lanman et al. Jul 2013 A1
20130184904 Gadzinski Jul 2013 A1
20130200710 Robbins Aug 2013 A1
20130207887 Raffle et al. Aug 2013 A1
20130224634 Berneth et al. Aug 2013 A1
20130229717 Amitai Sep 2013 A1
20130249895 Westerinen et al. Sep 2013 A1
20130250207 Bohn Sep 2013 A1
20130250430 Robbins et al. Sep 2013 A1
20130250431 Robbins et al. Sep 2013 A1
20130257848 Westerinen et al. Oct 2013 A1
20130258701 Westerinen et al. Oct 2013 A1
20130267309 Robbins et al. Oct 2013 A1
20130271731 Popovich et al. Oct 2013 A1
20130277890 Bowman et al. Oct 2013 A1
20130301014 DeJong et al. Nov 2013 A1
20130305437 Weller et al. Nov 2013 A1
20130308185 Robinson et al. Nov 2013 A1
20130312811 Aspnes et al. Nov 2013 A1
20130314789 Saarikko et al. Nov 2013 A1
20130314793 Robbins et al. Nov 2013 A1
20130322810 Robbins Dec 2013 A1
20130328948 Kunkel et al. Dec 2013 A1
20130342525 Benko et al. Dec 2013 A1
20140003762 Macnamara Jan 2014 A1
20140009809 Pyun et al. Jan 2014 A1
20140024159 Jain Jan 2014 A1
20140027006 Foley et al. Jan 2014 A1
20140037242 Popovich et al. Feb 2014 A1
20140043672 Clarke et al. Feb 2014 A1
20140043689 Mason Feb 2014 A1
20140055845 Jain Feb 2014 A1
20140063055 Osterhout et al. Mar 2014 A1
20140064655 Nguyen et al. Mar 2014 A1
20140071538 Muller Mar 2014 A1
20140098010 Travis Apr 2014 A1
20140104665 Popovich et al. Apr 2014 A1
20140104685 Bohn et al. Apr 2014 A1
20140118647 Momonoi et al. May 2014 A1
20140126029 Fuetterer May 2014 A1
20140130132 Cahill et al. May 2014 A1
20140138581 Archetti et al. May 2014 A1
20140140653 Brown et al. May 2014 A1
20140140654 Brown et al. May 2014 A1
20140146394 Tout et al. May 2014 A1
20140152778 Ihlenburg et al. Jun 2014 A1
20140154614 Xie et al. Jun 2014 A1
20140160576 Robbins et al. Jun 2014 A1
20140168055 Smith Jun 2014 A1
20140168260 O'Brien et al. Jun 2014 A1
20140168735 Yuan et al. Jun 2014 A1
20140168783 Luebke et al. Jun 2014 A1
20140172296 Shtukater Jun 2014 A1
20140176528 Robbins Jun 2014 A1
20140177023 Gao et al. Jun 2014 A1
20140185286 Popovich et al. Jul 2014 A1
20140198128 Hong et al. Jul 2014 A1
20140204455 Popovich et al. Jul 2014 A1
20140211322 Bohn et al. Jul 2014 A1
20140218468 Gao et al. Aug 2014 A1
20140218801 Simmonds et al. Aug 2014 A1
20140232759 Simmonds et al. Aug 2014 A1
20140240834 Mason Aug 2014 A1
20140240842 Nguyen et al. Aug 2014 A1
20140253988 Newswanger Sep 2014 A1
20140255662 Enomoto et al. Sep 2014 A1
20140267420 Schowengerdt et al. Sep 2014 A1
20140268017 Sweis et al. Sep 2014 A1
20140268353 Fujimura et al. Sep 2014 A1
20140300947 Fattal et al. Oct 2014 A1
20140300960 Santori et al. Oct 2014 A1
20140300966 Travers et al. Oct 2014 A1
20140327970 Bohn et al. Nov 2014 A1
20140330159 Costa et al. Nov 2014 A1
20140367719 Jain Dec 2014 A1
20140375542 Robbins et al. Dec 2014 A1
20140375789 Lou et al. Dec 2014 A1
20140375790 Robbins et al. Dec 2014 A1
20150001677 Palumbo et al. Jan 2015 A1
20150003796 Bennett Jan 2015 A1
20150010265 Popovich et al. Jan 2015 A1
20150015946 Muller Jan 2015 A1
20150016777 Abovitz et al. Jan 2015 A1
20150035744 Robbins et al. Feb 2015 A1
20150036068 Fattal et al. Feb 2015 A1
20150058791 Robertson et al. Feb 2015 A1
20150062675 Ayres et al. Mar 2015 A1
20150062707 Simmonds et al. Mar 2015 A1
20150086163 Valera et al. Mar 2015 A1
20150086907 Mizuta et al. Mar 2015 A1
20150107671 Bodan et al. Apr 2015 A1
20150109763 Shinkai et al. Apr 2015 A1
20150125109 Robbins et al. May 2015 A1
20150148728 Sallum et al. May 2015 A1
20150160529 Popovich et al. Jun 2015 A1
20150167868 Boncha Jun 2015 A1
20150177686 Lee et al. Jun 2015 A1
20150177688 Popovich et al. Jun 2015 A1
20150185475 Saarikko et al. Jul 2015 A1
20150219834 Nichol et al. Aug 2015 A1
20150235447 Abovitz et al. Aug 2015 A1
20150235448 Schowengerdt et al. Aug 2015 A1
20150243068 Solomon Aug 2015 A1
20150247975 Abovitz et al. Sep 2015 A1
20150260994 Akutsu et al. Sep 2015 A1
20150268399 Futterer Sep 2015 A1
20150268415 Schowengerdt et al. Sep 2015 A1
20150277375 Large et al. Oct 2015 A1
20150285682 Popovich et al. Oct 2015 A1
20150288129 Jain Oct 2015 A1
20150289762 Popovich et al. Oct 2015 A1
20150309264 Abovitz et al. Oct 2015 A1
20150316768 Simmonds Nov 2015 A1
20150338689 Min et al. Nov 2015 A1
20150346490 Tekolste et al. Dec 2015 A1
20150346495 Welch et al. Dec 2015 A1
20150355394 Leighton et al. Dec 2015 A1
20160003847 Ryan et al. Jan 2016 A1
20160004090 Popovich et al. Jan 2016 A1
20160018673 Wang Jan 2016 A1
20160026253 Bradski et al. Jan 2016 A1
20160033705 Fattal Feb 2016 A1
20160033706 Fattal et al. Feb 2016 A1
20160038992 Arthur et al. Feb 2016 A1
20160041387 Valera et al. Feb 2016 A1
20160060529 Hegmann et al. Mar 2016 A1
20160077338 Robbins et al. Mar 2016 A1
20160085300 Robbins et al. Mar 2016 A1
20160097959 Bruizeman et al. Apr 2016 A1
20160116739 TeKolste et al. Apr 2016 A1
20160124223 Shinbo et al. May 2016 A1
20160132025 Taff et al. May 2016 A1
20160178901 Ishikawa Jun 2016 A1
20160195664 Fattal et al. Jul 2016 A1
20160209648 Haddick et al. Jul 2016 A1
20160209657 Popovich et al. Jul 2016 A1
20160231568 Saarikko et al. Aug 2016 A1
20160231570 Levola et al. Aug 2016 A1
20160238772 Waldern et al. Aug 2016 A1
20160266398 Poon et al. Sep 2016 A1
20160274362 Tinch et al. Sep 2016 A1
20160283773 Popovich et al. Sep 2016 A1
20160291328 Popovich et al. Oct 2016 A1
20160299344 Dobschal et al. Oct 2016 A1
20160320536 Simmonds et al. Nov 2016 A1
20160327705 Simmonds et al. Nov 2016 A1
20160336033 Tanaka Nov 2016 A1
20160341964 Amitai Nov 2016 A1
20170003505 Vallius et al. Jan 2017 A1
20170010466 Klug et al. Jan 2017 A1
20170010488 Klug et al. Jan 2017 A1
20170030550 Popovich et al. Feb 2017 A1
20170031160 Popovich et al. Feb 2017 A1
20170031171 Vallius et al. Feb 2017 A1
20170032166 Raguin et al. Feb 2017 A1
20170034435 Vallius Feb 2017 A1
20170038579 Yeoh et al. Feb 2017 A1
20170052374 Waldern et al. Feb 2017 A1
20170052376 Amitai et al. Feb 2017 A1
20170059759 Ayres et al. Mar 2017 A1
20170059775 Coles et al. Mar 2017 A1
20170102543 Vallius Apr 2017 A1
20170115487 Travis et al. Apr 2017 A1
20170123208 Vallius May 2017 A1
20170131460 Lin et al. May 2017 A1
20170131545 Wall et al. May 2017 A1
20170131546 Woltman et al. May 2017 A1
20170131551 Robbins et al. May 2017 A1
20170160546 Bull et al. Jun 2017 A1
20170180404 Bersch et al. Jun 2017 A1
20170180408 Yu et al. Jun 2017 A1
20170199333 Waldern et al. Jul 2017 A1
20170212295 Vasylyev Jul 2017 A1
20170219841 Popovich et al. Aug 2017 A1
20170255257 Tiana et al. Sep 2017 A1
20170276940 Popovich et al. Sep 2017 A1
20170299860 Wall et al. Oct 2017 A1
20170356801 Popovich et al. Dec 2017 A1
20170357841 Popovich et al. Dec 2017 A1
20180011324 Popovich et al. Jan 2018 A1
20180059305 Popovich et al. Mar 2018 A1
20180074265 Waldern et al. Mar 2018 A1
20180074352 Popovich et al. Mar 2018 A1
20180081190 Lee et al. Mar 2018 A1
20180107011 Lu et al. Apr 2018 A1
20180113303 Popovich et al. Apr 2018 A1
20180120669 Popovich et al. May 2018 A1
20180143449 Popovich et al. May 2018 A1
20180188542 Waldern et al. Jul 2018 A1
20180210198 Brown et al. Jul 2018 A1
20180210396 Popovich et al. Jul 2018 A1
20180232048 Popovich et al. Aug 2018 A1
20180246354 Popovich et al. Aug 2018 A1
20180252869 Ayres et al. Sep 2018 A1
20180275350 Oh et al. Sep 2018 A1
20180275402 Popovich et al. Sep 2018 A1
20180284440 Popovich et al. Oct 2018 A1
20180373115 Brown et al. Dec 2018 A1
20190042827 Popovich et al. Feb 2019 A1
20190064735 Waldern et al. Feb 2019 A1
20190072723 Waldern et al. Mar 2019 A1
20190094548 Nicholson et al. Mar 2019 A1
20190113751 Waldern et al. Apr 2019 A9
20190113829 Waldern et al. Apr 2019 A1
20190121027 Popovich et al. Apr 2019 A1
20190129085 Waldern et al. May 2019 A1
20190187538 Popovich et al. Jun 2019 A1
20190212195 Popovich et al. Jul 2019 A9
20190212588 Waldern et al. Jul 2019 A1
20190212589 Waldern et al. Jul 2019 A1
20190212596 Waldern et al. Jul 2019 A1
20190212597 Waldern et al. Jul 2019 A1
20190212698 Waldern et al. Jul 2019 A1
20190212699 Waldern et al. Jul 2019 A1
20190219822 Popovich et al. Jul 2019 A1
20190265486 Hansotte et al. Aug 2019 A1
20190278224 Schlottau et al. Sep 2019 A1
20190319426 Lu et al. Oct 2019 A1
20190339558 Waldern et al. Nov 2019 A1
20200026074 Waldern et al. Jan 2020 A1
20200033190 Popovich et al. Jan 2020 A1
20200033801 Waldern et al. Jan 2020 A1
20200033802 Popovich et al. Jan 2020 A1
20200057353 Popovich et al. Feb 2020 A1
20200081317 Popovich et al. Mar 2020 A1
20200103661 Kamakura Apr 2020 A1
20200142131 Waldern et al. May 2020 A1
20200159026 Waldern et al. May 2020 A1
20200201042 Wang et al. Jun 2020 A1
20200201051 Popovich et al. Jun 2020 A1
20200225471 Waldern et al. Jul 2020 A1
20200247016 Calafiore Aug 2020 A1
20200249484 Waldern et al. Aug 2020 A1
20200249491 Popovich et al. Aug 2020 A1
20200249568 Rao et al. Aug 2020 A1
20200264378 Grant et al. Aug 2020 A1
20200271973 Waldern et al. Aug 2020 A1
20200292745 Waldern et al. Sep 2020 A1
20200348519 Waldern et al. Nov 2020 A1
20200363771 Waldern et al. Nov 2020 A1
20210026297 Waldern et al. Jan 2021 A1
20210109285 Jiang et al. Apr 2021 A1
20210191122 Yaroshchuk et al. Jun 2021 A1
20210199873 Shi et al. Jul 2021 A1
20210199971 Lee et al. Jul 2021 A1
20210216040 Waldern et al. Jul 2021 A1
20210238374 Ye et al. Aug 2021 A1
20210364836 Waldern et al. Nov 2021 A1
20220019015 Calafiore et al. Jan 2022 A1
20220057749 Popovich et al. Feb 2022 A1
20220082739 Franke et al. Mar 2022 A1
20220091323 Yaroshchuk et al. Mar 2022 A1
20220204790 Zhang et al. Jun 2022 A1
20220206232 Zhang et al. Jun 2022 A1
20230030594 Waldern et al. Feb 2023 A1
20230359146 Waldern et al. Nov 2023 A1
Foreign Referenced Citations (396)
Number Date Country
PI0720469 Jan 2014 BR
2889727 Jun 2014 CA
106226854 Dec 2016 CA
1357010 Jul 2002 CN
1424829 Jun 2003 CN
1475547 Feb 2004 CN
1678948 Oct 2005 CN
200944140 Sep 2007 CN
101103297 Jan 2008 CN
101151562 Mar 2008 CN
101241348 Aug 2008 CN
101263412 Sep 2008 CN
100492099 May 2009 CN
101589326 Nov 2009 CN
101688977 Mar 2010 CN
101793555 Aug 2010 CN
101793987 Aug 2010 CN
101881936 Nov 2010 CN
101945612 Jan 2011 CN
102314092 Jan 2012 CN
102393548 Mar 2012 CN
102498425 Jun 2012 CN
103562802 Feb 2014 CN
103777282 May 2014 CN
103823267 May 2014 CN
104076424 Oct 2014 CN
104204901 Dec 2014 CN
104246626 Dec 2014 CN
303019849 Dec 2014 CN
303217936 May 2015 CN
104956252 Sep 2015 CN
105074537 Nov 2015 CN
105074539 Nov 2015 CN
105190407 Dec 2015 CN
105229514 Jan 2016 CN
105393159 Mar 2016 CN
105408801 Mar 2016 CN
105408802 Mar 2016 CN
105408803 Mar 2016 CN
105531716 Apr 2016 CN
105705981 Jun 2016 CN
105940451 Sep 2016 CN
106226854 Dec 2016 CN
106950744 Jul 2017 CN
107466372 Dec 2017 CN
108474945 Aug 2018 CN
108780224 Nov 2018 CN
109154717 Jan 2019 CN
103823267 May 2019 CN
110383117 Oct 2019 CN
111566571 Aug 2020 CN
111615655 Sep 2020 CN
111684362 Sep 2020 CN
111902768 Nov 2020 CN
113728075 Nov 2021 CN
111684362 Mar 2022 CN
114341686 Apr 2022 CN
111566571 May 2022 CN
114721242 Jul 2022 CN
115356905 Nov 2022 CN
111615655 Mar 2023 CN
116224492 Jun 2023 CN
19751190 May 1999 DE
102006003785 Jul 2007 DE
102012104900 Dec 2012 DE
102012108424 Mar 2014 DE
102013209436 Nov 2014 DE
001747551-0002 Aug 2012 EM
0795775 Sep 1997 EP
0822441 Feb 1998 EP
1347641 Sep 2003 EP
1413972 Apr 2004 EP
1526709 Apr 2005 EP
1748305 Jan 2007 EP
1938152 Jul 2008 EP
1413972 Oct 2008 EP
2110701 Oct 2009 EP
2225592 Sep 2010 EP
2244114 Oct 2010 EP
2326983 Jun 2011 EP
2381290 Oct 2011 EP
1828832 May 2013 EP
2733517 May 2014 EP
1573369 Jul 2014 EP
2748670 Jul 2014 EP
2929378 Oct 2015 EP
2748670 Nov 2015 EP
2995986 Mar 2016 EP
1402298 Sep 2016 EP
2995986 Apr 2017 EP
3256888 Dec 2017 EP
3359999 Aug 2018 EP
2494388 Nov 2018 EP
3433658 Jan 2019 EP
3433659 Jan 2019 EP
3548939 Oct 2019 EP
3710876 Sep 2020 EP
3710887 Sep 2020 EP
3710893 Sep 2020 EP
3710894 Sep 2020 EP
3927793 Dec 2021 EP
4004615 Jun 2022 EP
20176157 Jun 2019 FI
20176161 Jun 2019 FI
2677463 Dec 1992 FR
2115178 Sep 1983 GB
2140935 Dec 1984 GB
2508661 Jun 2014 GB
2509536 Jul 2014 GB
2512077 Sep 2014 GB
2514658 Dec 2014 GB
1204684 Nov 2015 HK
1205563 Dec 2015 HK
1205793 Dec 2015 HK
1206101 Dec 2015 HK
S49092850 Aug 1974 JP
57089722 Jun 1982 JP
02186319 Jul 1990 JP
03239384 Oct 1991 JP
H04303812 Oct 1992 JP
H04303813 Oct 1992 JP
06294952 Oct 1994 JP
07098439 Apr 1995 JP
0990312 Apr 1997 JP
H09185313 Jul 1997 JP
10096903 Apr 1998 JP
11109320 Apr 1999 JP
11142806 May 1999 JP
2953444 Sep 1999 JP
H11271535 Oct 1999 JP
2000056259 Feb 2000 JP
2000511306 Aug 2000 JP
2000261706 Sep 2000 JP
2000267042 Sep 2000 JP
2000321962 Nov 2000 JP
2000515996 Nov 2000 JP
2001027739 Jan 2001 JP
2001181316 Jul 2001 JP
2001296503 Oct 2001 JP
2002090858 Mar 2002 JP
2002122906 Apr 2002 JP
2002162598 Jun 2002 JP
2002523802 Jul 2002 JP
2002258089 Sep 2002 JP
2002529790 Sep 2002 JP
2002311379 Oct 2002 JP
2003066428 Mar 2003 JP
2003270419 Sep 2003 JP
2004157245 Jun 2004 JP
2005222963 Aug 2005 JP
2005331757 Dec 2005 JP
2006350129 Dec 2006 JP
2007011057 Jan 2007 JP
2007094175 Apr 2007 JP
2007122039 May 2007 JP
2007199699 Aug 2007 JP
2007219106 Aug 2007 JP
2007279313 Oct 2007 JP
2008112187 May 2008 JP
2008145619 Jun 2008 JP
2008268444 Nov 2008 JP
2009036955 Feb 2009 JP
2009133999 Jun 2009 JP
2009211091 Sep 2009 JP
4367775 Nov 2009 JP
2010217928 Sep 2010 JP
2011075681 Apr 2011 JP
2011232510 Nov 2011 JP
2012014804 Jan 2012 JP
2012137616 Jul 2012 JP
5303928 Oct 2013 JP
2013235256 Nov 2013 JP
2014132328 Jul 2014 JP
2015053163 Mar 2015 JP
2015523586 Aug 2015 JP
2015172713 Oct 2015 JP
2016030503 Mar 2016 JP
2017194547 Oct 2017 JP
2018508037 Mar 2018 JP
2018521350 Aug 2018 JP
2018533069 Nov 2018 JP
2018197838 Dec 2018 JP
2019512745 May 2019 JP
2019520595 Jul 2019 JP
6598269 Oct 2019 JP
6680793 Mar 2020 JP
2020514783 May 2020 JP
6734933 Jul 2020 JP
2021509488 Mar 2021 JP
2021509736 Apr 2021 JP
2021509737 Apr 2021 JP
2021509739 Apr 2021 JP
2021530747 Nov 2021 JP
2022-523365 Apr 2022 JP
2022542248 Sep 2022 JP
7250799 Mar 2023 JP
7404243 Dec 2023 JP
20060132474 Dec 2006 KR
20100092059 Aug 2010 KR
20140140063 Dec 2014 KR
20140142337 Dec 2014 KR
20150072151 Jun 2015 KR
20160084416 Jul 2016 KR
10-2020-0106932 Sep 2020 KR
10-2020-0108030 Sep 2020 KR
2020-0106170 Sep 2020 KR
20200104402 Sep 2020 KR
1020210127237 Oct 2021 KR
10-2022- 0036963 Mar 2022 KR
200535633 Nov 2005 TW
200801583 Jan 2008 TW
201314263 Apr 2013 TW
201600943 Jan 2016 TW
201604601 Feb 2016 TW
9216880 Oct 1992 WO
9701133 Jan 1997 WO
1997001133 Jan 1997 WO
1997027519 Jul 1997 WO
1998004650 Feb 1998 WO
1999009440 Feb 1999 WO
1999052002 Oct 1999 WO
2000016136 Mar 2000 WO
2000023830 Apr 2000 WO
2000023832 Apr 2000 WO
2000023847 Apr 2000 WO
2000028369 May 2000 WO
2000028369 Oct 2000 WO
2001050200 Jul 2001 WO
2001090822 Nov 2001 WO
2002082168 Oct 2002 WO
02093204 Nov 2002 WO
2003081320 Oct 2003 WO
2004102226 Nov 2004 WO
2005001753 Jan 2005 WO
2005006065 Jan 2005 WO
2005006065 Feb 2005 WO
2005047988 May 2005 WO
2005073798 Aug 2005 WO
2006002870 Jan 2006 WO
2006064301 Jun 2006 WO
2006064325 Jun 2006 WO
2006064334 Jun 2006 WO
2006102073 Sep 2006 WO
2006132614 Dec 2006 WO
2006102073 Jan 2007 WO
2007015141 Feb 2007 WO
2007029032 Mar 2007 WO
2007085682 Aug 2007 WO
2007130130 Nov 2007 WO
2007141587 Dec 2007 WO
2007141589 Dec 2007 WO
2008011066 Jan 2008 WO
2008011066 May 2008 WO
2008081070 Jul 2008 WO
2008100545 Aug 2008 WO
2008011066 Dec 2008 WO
2009013597 Jan 2009 WO
2009013597 Jan 2009 WO
2009077802 Jun 2009 WO
2009077803 Jun 2009 WO
2009101238 Aug 2009 WO
2007130130 Sep 2009 WO
2009155437 Dec 2009 WO
2009155437 Mar 2010 WO
2010023444 Mar 2010 WO
2010057219 May 2010 WO
2010067114 Jun 2010 WO
2010067117 Jun 2010 WO
2010078856 Jul 2010 WO
2010104692 Sep 2010 WO
2010122330 Oct 2010 WO
2010125337 Nov 2010 WO
2010125337 Nov 2010 WO
2011012825 Feb 2011 WO
2011032005 Mar 2011 WO
2011042711 Apr 2011 WO
2011051660 May 2011 WO
2011055109 May 2011 WO
2011042711 Jun 2011 WO
2011073673 Jun 2011 WO
2011107831 Sep 2011 WO
2011110821 Sep 2011 WO
2011131978 Oct 2011 WO
2012052352 Apr 2012 WO
2012062658 May 2012 WO
2012158950 Nov 2012 WO
2012172295 Dec 2012 WO
2013027004 Feb 2013 WO
2013027006 Feb 2013 WO
2013033274 Mar 2013 WO
2013034879 Mar 2013 WO
2013049012 Apr 2013 WO
2013054972 Apr 2013 WO
2013102759 Jul 2013 WO
2013163347 Oct 2013 WO
2013167864 Nov 2013 WO
2013190257 Dec 2013 WO
2014064427 May 2014 WO
2014080155 May 2014 WO
2014085734 Jun 2014 WO
2014090379 Jun 2014 WO
2014091200 Jun 2014 WO
2014093601 Jun 2014 WO
2014100182 Jun 2014 WO
2014113506 Jul 2014 WO
2014116615 Jul 2014 WO
2014130383 Aug 2014 WO
2014144526 Sep 2014 WO
2014159621 Oct 2014 WO
2014164901 Oct 2014 WO
2014176695 Nov 2014 WO
2014179632 Nov 2014 WO
2014188149 Nov 2014 WO
2014209733 Dec 2014 WO
2014209819 Dec 2014 WO
2014209820 Dec 2014 WO
2014209821 Dec 2014 WO
2014210349 Dec 2014 WO
2015006784 Jan 2015 WO
2015015138 Feb 2015 WO
2015017291 Feb 2015 WO
2015069553 May 2015 WO
2015081313 Jun 2015 WO
2015117039 Aug 2015 WO
2015145119 Oct 2015 WO
2016010289 Jan 2016 WO
2016020643 Feb 2016 WO
2016025350 Feb 2016 WO
2016042283 Mar 2016 WO
2016044193 Mar 2016 WO
2016046514 Mar 2016 WO
2016069606 May 2016 WO
2016103263 Jun 2016 WO
2016111706 Jul 2016 WO
2016111707 Jul 2016 WO
2016111708 Jul 2016 WO
2016111709 Jul 2016 WO
2016113534 Jul 2016 WO
2016116733 Jul 2016 WO
2016118107 Jul 2016 WO
2016122679 Aug 2016 WO
2016130509 Aug 2016 WO
2016135434 Sep 2016 WO
2016156776 Oct 2016 WO
2016181108 Nov 2016 WO
2016205256 Dec 2016 WO
2016046514 Apr 2017 WO
2017060665 Apr 2017 WO
2017094129 Jun 2017 WO
2017120320 Jul 2017 WO
2017134412 Aug 2017 WO
2017162999 Sep 2017 WO
2017162999 Sep 2017 WO
2017178781 Oct 2017 WO
2017180403 Oct 2017 WO
2017180923 Oct 2017 WO
2017182771 Oct 2017 WO
2017203200 Nov 2017 WO
2017203201 Nov 2017 WO
2017207987 Dec 2017 WO
2018094292 May 2018 WO
2018102834 Jun 2018 WO
2018102834 Jun 2018 WO
2018096359 Jul 2018 WO
2018129398 Jul 2018 WO
2018150163 Aug 2018 WO
2018206487 Nov 2018 WO
2019046649 Mar 2019 WO
2019077307 Apr 2019 WO
2019079350 Apr 2019 WO
2019079350 Apr 2019 WO
2019046649 May 2019 WO
2019122806 Jun 2019 WO
2019135784 Jul 2019 WO
2019135796 Jul 2019 WO
2019135837 Jul 2019 WO
2019136470 Jul 2019 WO
2019136471 Jul 2019 WO
2019136473 Jul 2019 WO
2019171038 Sep 2019 WO
2019185973 Oct 2019 WO
2019185975 Oct 2019 WO
2019185976 Oct 2019 WO
2019185977 Oct 2019 WO
2019217453 Nov 2019 WO
2020023779 Jan 2020 WO
2020149956 Jul 2020 WO
2020168348 Aug 2020 WO
2020172681 Aug 2020 WO
2020186113 Sep 2020 WO
2020212682 Oct 2020 WO
2020227236 Nov 2020 WO
2021016371 Jan 2021 WO
2021032982 Feb 2021 WO
2021032983 Feb 2021 WO
2021044121 Mar 2021 WO
Non-Patent Literature Citations (442)
Entry
European search report for EP18898841.4.
Digi Lens: Waveguides, announced unknown, [online], [site visited Nov. 6, 2020]. Available from Internet, <URL: https://www.digilens.com/technology/waveguides/> (Year: 2020).
Extended European Search Report for European Application No. 18727645.6, Search completed Oct. 14, 2020, Mailed Oct. 23, 2020, 13 pgs.
Extended Search Report for European Application No. 18898841.4, Search completed Mar. 18, 2021, Mailed Mar. 26, 2021, 10 pgs.
International Preliminary Report on Patentability for International Application PCT/US2019/043496 Report issued Jan. 26, 2021, Mailed Feb. 4, 2021, 5 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2016/000051, Report issued Sep. 19, 2017, Mailed Sep. 28, 2017, 7 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2018/012227, Report issued Jul. 30, 2019, Mailed Aug. 8, 2019, 7 pgs.
International Preliminary Report on Patentability for International Application PCT/US2018/048960, Report issued on Mar. 3, 2020, Mailed on Mar. 12, 2020, 7 pgs.
International Preliminary Report on Patentability for International Application PCT/US2019/031163, Report issued Nov. 10, 2020, Mailed Nov. 19, 2020, 6 pgs.
International Preliminary Report on Patentability for International Application PCT/US2019/064765, Report issued Oct. 19, 2020, Mailed Oct. 28, 2020, 27 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2018/012227, Search completed Feb. 28, 2018, Mailed Mar. 14, 2018, 8 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2019/064765, Search completed Feb. 3, 2020, Mailed Mar. 18, 2020, 11 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2020/018686, Search completed Apr. 25, 2020, Mailed May 22, 2020, 11 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2020/022482, Search completed May 12, 2020, Mailed Jun. 9, 2020, 11 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2020/031363, completed May 28, 2020, Mailed Jun. 10, 2020, 8 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2020/043107, Search completed Sep. 28, 2020, Mailed Oct. 15, 2020, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2019/065478, Search completed Jan. 29, 2020, Mailed on Feb. 11. 2020, 14 pgs.
International Search Report for PCT/GB2016/000051, Completed Aug. 11, 2016, 3 pgs.
Supplementary Partial European Search Report for European Application No. 18727645.6, Search completed Jul. 2, 2020, Mailed Jul. 13, 2020, 13 pgs.
Written Opinion for International Application PCT/GB2016/000003, completed May 31, 2016, mailed Aug. 12, 2016, 10 pgs.
Google search: “digilens waveguide” [site visited Sep. 14, 2020], https://www.google.com/search?q=digilens+waveguide&sxsrf=ALeKk02RFwZAZ0vrlxVH0M_2fixFkhW1 FA: 1604777621684&source=Inms&tbm=isch&sa=X&ved=2ah U KEwjjyNXAlvHsAh U Rh HI EHTufCvsQ_AUoAnoECBwQBA&biw= 1200&bih= 1777.
Google search: “eyewear display devices” [site visited Sep. 14, 2020], https://www.google.com/search?q=eyewear+display+devices&sxsrf=ALeKk0 1WWfnOAgsQR_bhydJaYK3e37r J Lg: 1604779001617&source=Inms&tbm=isch&sa=X&ved=2ah U KEwi99txSm_HsAhVaoH IEHawtD8QQ_AUoAnoECC8QBA&biw= 1200&bih= 1777.
Google search: “smart glasses” [site visited Sep. 14, 2020], https://www.google.com/search?q=smart+glasses&sxsrf=ALeKk01 KN 1wj23-NqP -KCnrcsUpCgxyKA: 1604779046920&source=Inms&tbm=isch&sa=X&ved=2ah U KEwipkqPom_HsAhVKhXI EHQGFBp8Q_AUoBHoECCgQBg&biw= 1200&bih= 1777.
“The Next Generation of TV”, SID Information Display, Nov./Dec. 2014, vol. 30, No. 6, 56 pgs.
Carothers, “Polymers and polyfunctionality”, Transactions of the Faraday Society, 1936, vol. 32, pp. 39-49.
Doolittle, “Studies in Newtonian Flow II. The Dependence of the Viscosity of Liquids on Free-Space”, Journal of Applied Physics, 1951, vol. 22, Issue 12, pp. 1471-1475, published online Apr. 29, 2004, https://doi.org/10.1063/1. 1699894.
Flory, “Molecular size distribution in three-dimensional polymers. I. Gelation”, J. Am. Chem. Soc., Nov. 1941, vol. 63, pp. 3083-3090.
Gerritsen et al., “Application of Kogelnik's two-wave theory to deep, slanted, highly efficient, relief transmission gratings”, Applied Optics, Mar. 1, 1991, vol. 30; No. 7, pp. 807-814.
Golub et al., “Bragg properties of efficient surface relief gratings in the resonance domain”, Optics Communications, Feb. 24, 2004, vol. 235, pp. 261-267, doi: 10.1016/j.optcom.2004.02.069.
Guo et al., “Analysis of the effects of viscosity, volume, and temperature in photopolymer material for holographic applications”, Proc. SPIE, May 2013, vol. 8776, pp. 87760J-1-87760-J15, DOI:10.1117/12.2018330.
Lougnot et al., “Polymers for holographic recording: VI. Some basic ideas for modelling the kinetics of the recording process”, Pure and Applied Optics: Journal of the European Optical Society Part A, 1997, vol. 6, No. 2, pp. 225-245, https://doi.org/10.1088/0963-9659/6/2/007.
Moharam et al., “Diffraction characteristics of photoresist surface-relief gratings”, Applied Optics, Sep. 15, 1984, vol. 23, pp. 3214-3220.
Sabel et al., “Simultaneous formation of holographic surface relief gratings and vol. phase gratings in photosensitive polymer”, Materials Research Letters, May 30, 2019, vol. 7, No. 10, pp. 405-411, doi: 10.1080/21663831.2019.1621956.
Sakhno et al., “Deep surface relief grating in azobenzene-containing materials using a low-intensity 532 nm laser”, Optical Materials: X, Jan. 23, 2019, 100006, pp. 3-7, doi: 10.1016/j.omx.2019.100006.
Sutherland et al., “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures”, Journal of Applied Physics, Jun. 30, 2004, vol. 96, No. 2, https://doi.org/10.1063/1.1762713.
Tondiglia et al., “Holographic Formation of Electro-Optical Polymer-Liquid Crystal Photonic Crystals”, Advanced Materials, 2002, Published Online Nov. 8, 2001, vol. 14, No. 3, pp. 187-191.
Yang et al., “Robust and Accurate Surface Measurement Using Structured Light”, IEEE, Apr. 30, 2008, vol. 57, Issue 6, pp. 1275-1280, DOI:10.1109/TIM.2007.915103.
Yokomori, “Dielectric surface-relief gratings with high diffraction efficiency”, Applied Optics, Jul. 15, 1984, vol. 23; No. 14, pp. 2303-2310.
Zhao et al., “Diffusion Model of Hologram Formation in Dry Photopolymer Materials”, Journal of Modern Optics, 1994. vol. 41, No. 10, pp. 1929-1939, https://doi.org/10.1080/09500349414551831.
Zhao et al., “Extension of a diffusion model for holographic photopolymers”, Journal of Modern Optics, 1995, vol. 42, No. 12, pp. 2571-2573, https://doi.org/10.1080/713824349.
Extended European Search Report for European Application No. 18897932.2, Search completed Dec. 22, 2021, Mailed Jan. 12, 2022, 8 pgs.
Extended European Search Report for European Application No. 20760111.3, Search completed Sep. 19, 2022, Mailed Sep. 29, 2022, 12 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2020/043107, Report issued Jan. 25, 2022, Mailed on Feb. 3, 2022, 6 pgs.
Banerji et al., “A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes”, Cell, vol. 33, No. 3, Jul. 1983, pp. 729-740, doi: 10.1016/0092-8674(83)90015-6.
Waldern et al., “DigiLens switchable Bragg grating waveguide optics for augmented reality applications”, Proc. SPIE, May 21, 2018, vol. 10676, pp. 1-16.
Extended European Search Report for European Application No. 20843609.7, Search completed Mar. 9, 2023, Mailed Mar. 17, 2023, 8 pgs.
Extended European Search Report for European Application No. 18898154.2, Search completed Aug. 13, 2021, Mailed Aug. 23, 2021, 7 Pgs.
Extended European Search Report for European Application No. 19736108.2, Search completed Sep. 15, 2021, Mailed Sep. 27, 2021, 8 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2020/019549, Report issued Aug. 10, 2021, Mailed Sep. 2, 2021, 7 Pgs.
Liu et al., “Realization and Optimization of Holographic Waveguide Display System”, Acta Optica Sinica, vol. 37, Issue 5, Issuing date—May 10, 2017, pp. 310-317.
Extended European Search Report for EP Application No. 13192383.1, dated Apr. 2, 2014, 7 pgs.
Extended European Search Report for European Application No. 13765610.4 dated Feb. 16, 2016, 6 pgs.
Extended European Search Report for European Application No. 15187491.4, search completed Jan. 15, 2016, mailed Jan. 28, 2016, 5 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2010/000835, issued Nov. 1, 2011, mailed Nov. 10, 2011, 9 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2010/001920, issued Apr. 11, 2012, mailed Apr. 19, 2012, 10 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2010/001982, report issued May 1, 2012, mailed May 10, 2012, 7 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2013/000273, issued Dec. 23, 2014, mailed Dec. 31, 2014, 8 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2015/000203, issued Mar. 21, 2017, mailed Mar. 30, 2017, 8 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2016/000036, issued Aug. 29, 2017, mailed Sep. 8, 2017, 8 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2016/000065, issued Oct. 3, 2017, mailed Oct. 12, 2017, 8 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2018/037410, Report issued Jul. 14, 2020, Mailed Jul. 23, 2020, 7 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2018/048636, Report issued Jul. 14, 2020, Mailed Jul. 23, 2020, 9 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2018/062835, Report issued Jul. 14, 2020, Mailed Jul. 23, 2020, 7 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2019/012758, Report issued Jul. 14, 2020, Mailed Jul. 23, 2020, 4 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2019/012759, Report issued Jul. 14, 2020, Mailed Jul. 23, 2020, 6 pgs.
International Preliminary Report on Patentability for International Application PCT/US2018/015553, Report issued Jun. 4, 2019, Mailed Jun. 13, 2019, 6 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2009/051676, issued Jun. 14, 2011, mailed Jun. 23, 2011, 6 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2011/000349, issued Sep. 18, 2012, mailed Sep. 27, 2012, 10 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2012/000331, issued Oct. 8, 2013, mailed Oct. 17, 2013, 8 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2012/000677, issued Feb. 25, 2014, mailed Mar. 6, 2014, 5 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2013/000005, issued Jul. 8, 2014, mailed Jul. 17, 2014, 12 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2014/000295, issued Feb. 2, 2016, mailed Feb. 11, 2016, 4 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2015/000225, issued Feb. 14, 2017, mailed Feb. 23, 2017, 8 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2015/000228, issued Feb. 14, 2017, mailed Feb. 23, 2017, 11 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2015/000274, Issued Mar. 28, 2017, mailed Apr. 6, 2017, 8 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2016/000014, issued Jul. 25, 2017, mailed Aug. 3, 2017, 7 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2017/000055, issued Oct. 16, 2018, Mailed Oct. 25, 2018, 9 pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/011736, issued Jul. 21, 2015, mailed Jul. 30, 2015, 9 pgs.
International Preliminary Report on Patentability for International Application PCT/US2016/017091, issued Aug. 15, 2017, mailed Aug. 24, 2017, 5 pgs.
International Preliminary Report on Patentability for International Application PCT/US2018/012691, issued Jul. 9, 2019, Mailed Jul. 18, 2019, 10 pgs.
International Preliminary Report on Patentability for International Application PCT/US2019/012764, Report issued Jul. 14, 2020, Mailed Jul. 23, 2020, 5 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2017/000040, Report issued Sep. 25, 2018, Mailed Oct. 4, 2018, 7 pgs.
International Preliminary Report on Patentability for PCT Application No. PCT/US2013/038070, dated Oct. 28, 2014, 6 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2019/031163, Search completed Jul. 9, 2019, Mailed Jul. 29, 2019, 11 pgs.
International Search Report and Written Opinion for International Application No. PCT/GB2010/000835, completed Oct. 26, 2010, mailed Nov. 8, 2010, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/GB2010/001920, completed Mar. 29, 2011, mailed Apr. 6, 2011, 15 pgs.
International Search Report and Written Opinion for International Application No. PCT/GB2015/000228, Search completed May 4, 2011, Mailed Jul. 15, 2011, 15 pgs.
International Search Report and Written Opinion for International Application No. PCT/GB2016/000036, completed Jul. 4, 2016, mailed Jul. 13, 2016, 10 pgs.
International Search Report and Written Opinion for International Application No. PCT/GB2016/000065, completed Jul. 14, 2016, mailed Jul. 27, 2016, 10 pgs.
International Search Report and Written Opinion for International Application No. PCT/GB2017/000055, Search completed Jul. 19, 2017, Mailed Jul. 26, 2017, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/038070, completed Aug. 12, 2013, mailed Aug. 14, 2013, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2014/011736, completed Apr. 18, 2014, mailed May 8, 2014, 10 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2018/012691, completed Mar. 10, 2018, mailed Mar. 28, 2018, 16 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2018/015553, completed Aug. 6, 2018, Mailed Sep. 19, 2018, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2018/037410, Search completed Aug. 16, 2018, Mailed Aug. 30, 2018, 11 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2018/048636, Search completed Nov. 1, 2018, Mailed Nov. 15, 2018, 16 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2018/056150, Search completed Dec. 4, 2018, Mailed Dec. 26, 2018, 10 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2018/062835, Search completed Jan. 14, 2019, Mailed Jan. 31, 2019, 14 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2019/012758, completed Mar. 12, 2019, mailed Mar. 27, 2019, 9 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2019/012764, completed Mar. 1, 2019, mailed Mar. 18, 2019, 9 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2019/043496, Search completed Sep. 28, 2019, Mailed Nov. 14, 2019, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2020/019549, Search completed Apr. 14, 2020, Mailed May 22, 2020, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2018/048960, Search completed Dec. 14, 2018, Mailed Jan. 8, 2019, 14 pgs.
International Search Report and Written Opinion for International Application PCT/GB2009/051676, completed May 10, 2010, mailed May 18, 2010, 7 pgs.
International Search Report and Written Opinion for International Application PCT/GB2016/000181, completed Dec. 21, 2016, mailed Feb. 27, 2017, 21 pgs.
International Search Report and Written Opinion for International Application PCT/US2016/017091, completed by the European Patent Office on Apr. 20, 2016, 7 pgs.
International Search Report and Written Opinion for International Application PCT/US2019/012759, completed Mar. 14, 2019, mailed Apr. 15, 2019, 12 pgs.
International Search Report for International Application No. PCT/GB2014/000295, completed Nov. 18, 2014, mailed Jan. 5, 2015, 4 pgs.
International Search Report for International Application PCT/GB2017/000040, mailed Jul. 18, 2017, completed Jul. 10, 2017, 3 pgs.
International Search Report for PCT/GB2010/001982, completed by the European Patent Office on Feb. 24, 2011, 4 pgs.
International Search Report for PCT/GB2011/000349, completed by the European Patent Office on Aug. 17, 2011, 4 pgs.
International Search Report for PCT/GB2012/000331, completed by the European Patent Office on Aug. 29, 2012, 4 pgs.
International Search Report for PCT/GB2012/000677, completed by the European Patent Office on Dec. 10, 2012, 4 pgs.
International Search Report for PCT/GB2013/000005, completed by the European Patent Office on Jul. 16, 2013, 3 pgs.
International Search Report for PCT/GB2013/000273, completed by the European Patent Office on Aug. 30, 2013, 4 pgs.
International Search Report for PCT/GB2015/000203, completed by the European Patent Office on Oct. 9, 2015, 4 pgs.
International Search Report for PCT/GB2015/000225, completed by the European Patent Office on Nov. 10, 2015, mailed Dec. 2, 2016, 5 pgs.
International Search Report for PCT/GB2015/000274, completed by the European Patent Office on Jan. 7, 2016, 4 pgs.
International Search Report for PCT/GB2016/000014, completed by the European Patent Office on Jun. 27, 2016, 4 pgs.
Written Opinion for International Application No. PCT/GB2010/001982, search completed Feb. 24, 2011, mailed Mar. 8, 2011, 6 pgs.
Written Opinion for International Application No. PCT/GB2011/000349, completed Aug. 17, 2011, mailed Aug. 25, 2011, 9 pgs.
Written Opinion for International Application No. PCT/GB2012/000331, completed Aug. 29, 2012, mailed Sep. 6, 2012, 7 pgs.
Written Opinion for International Application No. PCT/GB2012/000677, completed Dec. 10, 2012, mailed Dec. 17, 2012, 4 pgs.
Written Opinion for International Application No. PCT/GB2013/000005, search completed Jul. 16, 2013, mailed Jul. 24, 2013, 11 pgs.
Written Opinion for International Application No. PCT/GB2013/000273, completed Aug. 30, 2013, mailed Sep. 9, 2013, 7 pgs.
Written Opinion for International Application No. PCT/GB2014/000295, search completed Nov. 18, 2014, mailed Jan. 5, 2015, 3 pgs.
Written Opinion for International Application No. PCT/GB2015/000203, completed Oct. 29, 2015, mailed Nov. 16, 2015, 7 pgs.
Written Opinion for International Application No. PCT/GB2015/000225, search completed Nov. 10, 2015, mailed Feb. 4, 2016, 7 pgs.
Written Opinion for International Application No. PCT/GB2015/000274, search completed Jan. 7, 2016, mailed Jan. 19, 2016, 7 pgs.
Written Opinion for International Application No. PCT/GB2016/000014, search completed Jun. 27, 2016, mailed Jul. 7, 2016, 6 pgs.
Written Opinion for International Application No. PCT/GB2016/000051, Search completed Aug. 11, 2016, Mailed Aug. 22, 2016, 6 pgs.
Written Opinion for International Application No. PCT/GB2017/000040, search completed Jul. 10, 2017, mailed Jul. 18, 2017, 6 pgs.
“Agilent ADNS-2051 Optical Mouse Sensor: Data Sheet”, Agilent Technologies, Jan. 9, 2002, 40 pgs.
“Application Note—MOXTEK ProFlux Polarizer use with LCOS displays”, CRL Opto Limited, http://www.crlopto.com, 2003, 6 pgs.
“Application Note AN16: Optical Considerations for Bridgelux LED Arrays”, BridgeLux, Jul. 31, 2010, 23 pgs.
“Application Note: Variable Attenuator for Lasers”, Technology and Applications Center, Newport Corporation, www.newport.com, 2006, DS-08067, 6 pgs.
“Bae Systems to Unveil Q-Sight Family of Helmet-Mounted Display at AUSA Symposium”, Released on Tuesday, Oct. 9, 2007, 1 pg.
“Beam Steering Using Liquid Crystals”, Boulder Nonlinear Systems, Inc., info@bnonlinear.com, May 8, 2001, 4 pgs.
“BragGrate—Deflector: Transmitting Volume Bragg Grating for angular selection and magnification”, 2015, www.OptiGrate.com.
“Cree XLamp XP-E LEDs”, Cree, Inc., Retrieved from www.cree.com/Xlamp, CLD-DS18 Rev 17, 2013, 17 pgs.
“Desmodur N 3900”, Bayer MaterialScience AG, Mar. 18, 2013, www.bayercoatings.com, 4 pgs.
“Digilens—Innovative Augmented Reality Display and Sensor Solutions for OEMs”, Jun. 6, 2017, 31 pgs.
“Exotic Optical Components”, Building Electro-Optical Systems, Making It All Work, Chapter 7, John Wiley & Sons, Inc., pp. 233-261.
“FHS Lenses Series”, Fraen Corporation, www.fraen.com, Jun. 16, 2003, 10 pgs.
“FLP Lens Series for LUXEONTM Rebel and Rebel ES LEDs”, Fraen Corporation, www.fraensrl.com, Aug. 7, 2015, 8 pgs.
“Head-up Displays, See-through display for military aviation”, BAE Systems, 2016, 3 pgs.
“Holder for LUXEON Rebel—Part No. 180”, Polymer Optics Ltd., 2008, 12 pgs.
“LED 7-Segment Displays”, Lumex, uk.digikey.com, 2003, UK031, 36 pgs.
“LED325W UVTOP UV LED with Window”, Thorlabs, Specifications and Documentation, 21978-S01 Rev. A, Apr. 8, 2011, 5 pgs.
“Liquid Crystal Phases”, Phases of Liquid Crystals, http://plc.cwru.edu/tutorial/enhanced/files/lc/phase, Retrieved on Sep. 21, 2004, 6 pgs.
“LiteHUD Head-up display”, BAE Systems, 2016, 2 pgs.
“LiteHUD Head-up display infographic”, BAE Systems, 2017, 2 pgs.
“Luxeon C: Power Light Source”, Philips Lumileds, www.philipslumileds.com, 2012, 18 pgs.
“Luxeon Rebel ES: Leading efficacy and light output, maximum design flexibility”, LUXEON Rebel ES Datasheet DS61 Feb. 21, 2013, www.philipslumileds.com, 2013, 33 pgs.
“Mobile Display Report”, Insight Media, LLC, Apr. 2012, vol. 7, No. 4, 72 pgs.
“Molecular Imprints Imprio 55”, Engineering at Illinois, Micro + Nanotechnology Lab, Retrieved from https://mntl.illinois.edu/facilities/cleanrooms/equipment/Nano-Imprint.asp, Dec. 28, 2015, 2 pgs.
“Navy awards SGB Labs a contract for HMDs for simulation and training”, Press releases, DigiLens, Oct. 2012, pp. 1-2.
“Optical measurements of retinal flow”, Industrial Research Limited, Feb. 2012, 18 pgs.
“Osterhout Design Group Develops Next-Generation, Fully-integrated Smart Glasses Using Qualcomm Technologies”, ODG, www.osterhoutgroup.com, Sep. 18, 2014, 2 pgs.
“Plastic has replaced glass in photochromic lens”, www.plastemart.com, 2003, 1 page.
“Range Finding Using Pulse Lasers”, OSRAM, Opto Semiconductors, Sep. 10, 2004, 7 pgs.
“Response time in Liquid-Crystal Variable Retarders”, Meadowlark Optics, Inc., 2005, 4 pgs.
“Secondary Optics Design Considerations for SuperFlux LEDs”, Lumileds, application brief AB20-5, Sep. 2002, 23 pgs.
“Solid-State Optical Mouse Sensor with Quadrature Outputs”, IC Datasheet, UniqueICs, Jul. 15, 2004, 11 pgs.
“SVGA TransparentVLSITM Microdisplay Evaluation Kit”, Radiant Images, Inc., Product Data Sheet, 2003, 3 pgs.
“Technical Data Sheet LPR1”, Luminus Devices, Inc., Luminus Projection Chipset, Release 1, Preliminary, Revision B, Sep. 21, 2004, 9 pgs.
“Thermal Management Considerations for SuperFlux LEDs”, Lumileds, application brief AB20-4, Sep. 2002, 14 pgs.
“USAF Awards SBG Labs an SBIR Contract for Wide Field of View HUD”, Press Release, SBG Labs DigiLens, Apr. 2014, 2 pgs.
“UVTOP240”, Roithner LaserTechnik GmbH, v 2.0, Jun. 24, 2013, 6 pgs.
“UVTOP310”, Roithner LaserTechnik GmbH, v 2.0, Jun. 24, 2013, 6 pgs.
“Velodyne's HDL-64E: A High Definition Lidar Sensor for 3-D Applications”, High Definition Lidar, white paper, Oct. 2007, 7 pgs.
“VerLASE Gets Patent for Breakthrough Color Conversion Technology That Enables Full Color MicroLED Arrays for Near Eye Displays”, Cision PRweb, Apr. 28, 2015, Retrieved from the Internet http://www.prweb.com/releases/2015/04/prweb12681038.htm, 3 pgs.
“Webster's Third New International Dictionary 433”, (1986), 3 pages.
“X-Cubes—Revisited for LCOS”, BASID, RAF Electronics Corp. Rawson Optics, Inc., Oct. 24, 2002, 16 pgs.
Aachen, “Design of plastic optics for LED applications”, Optics Colloquium 2009, Mar. 19, 2009, 30 pgs.
Abbate et al., “Characterization of LC-polymer composites for opto-electronic application”, Proceedings of OPTOEL'03, Leganes-Madrid, Spain, Jul. 14-16, 2003, 4 pgs.
Al-Kalbani et al., “Ocular Microtremor laser speckle metrology”, Proc. of SPIE, 2009, vol. 7176 717606-1, 12 pgs.
Almanza-Workman et al., “Planarization coating for polyimide substrates used in roll-to-roll fabrication of active matrix backplanes for flexible displays”, HP Laboratories, HPL-2012-23, Feb. 6, 2012, 12 pgs.
Amitai et al., “Visor-display design based on planar holographic optics”, Applied Optics, vol. 34, No. 8, Mar. 10, 1995, pp. 1352-1356.
Amundson et al., “Morphology and electro-optic properties of polymer-dispersed liquid-crystal films”, Physical Review E, Feb. 1997, vol. 55. No. 2, pp. 1646-1654.
An et al., “Speckle suppression in laser display using several partially coherent beams”, Optics Express, Jan. 5, 2009, vol. 17, No. 1, pp. 92-103.
Apter et al., “Electrooptical Wide-Angle Beam Deflector Based on Fringing-Field-Induced Refractive Inhomogeneity in a Liquid Crystal Layer”, 23rd IEEE Convention of Electrical and Electronics Engineers in Israel, Sep. 6-7, 2004, pp. 240-243.
Arnold et al., “52.3: An Improved Polarizing Beamsplitter LCOS Projection Display Based on Wire-Grid Polarizers”, Society for Information Display, Jun. 2001, pp. 1282-1285.
Ayras et al., “Exit pupil expander with a large field of view based on diffractive optics”, Journal of the SID, May 18, 2009, 17/8, pp. 659-664.
Baets et al., “Resonant-Cavity Light-Emitting Diodes: a review”, Proceedings of SPIE, 2003, vol. 4996, pp. 74-86.
Bayer et al., “Introduction to Helmet-Mounted Displays”, 2016, pp. 47-108.
Beckel et al., “Electro-optic properties of thiol-ene polymer stabilized ferroelectric liquid crystals”, Liquid Crystals, vol. 30, No. 11, Nov. 2003, pp. 1343-1350.
Bergkvist, “Biospeckle-based Study of the Line Profile of Light Scattered in Strawberries”, Master Thesis, Lund Reports on Atomic Physics, LRAP-220, Lund 1997, pp. 1-62.
Bernards et al., “Nanoscale porosity in polymer films: fabrication and therapeutic applications”, Soft Matter, Jan. 1, 2010, vol. 6, No. 8, pp. 1621-1631.
Bleha et al., “Binocular Holographic Waveguide Visor Display”, SID Symposium Digest of Technical Papers, Holoeye Systems Inc., Jun. 2014, San Diego, CA, 4 pgs.
Bleha et al., “D-ILA Technology for High Resolution Projection Displays”, Sep. 10, 2003, Proceedings, vol. 5080, doi: 10.1117/12.497532, 11 pgs.
Bone, “Design Obstacles for LCOS Displays in Projection Applications “Optics architectures for LCOS are still evolving””, Aurora Systems Inc., Bay Area SID Seminar, Mar. 27, 2001, 22 pgs.
Born et al., “Optics of Crystals”, Principles of Optics 5th Edition 1975, pp. 705-707.
Bourzac, “Magic Leap Needs to Engineer a Miracle”, Intelligent Machines, Jun. 11, 2015, 7 pgs.
Bowen et al., “Optimisation of interdigitated electrodes for piezoelectric actuators and active fibre composites”, J Electroceram, Jul. 2006, vol. 16, pp. 263-269, DOI 10.1007/s10832-006-9862-8.
Bowley et al., “Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals”, Applied Physics Letters, Jul. 2, 2001, vol. 79, No. 1, pp. 9-11.
Bronnikov et al., “Polymer-Dispersed Liquid Crystals: Progress in Preparation, Investigation and Application”, Journal of Macromolecular Science Part B, published online Sep. 30, 2013, vol. 52, pp. 1718-1738.
Brown, “Waveguide Displays”, Rockwell Collins, 2015, 11 pgs.
Bruzzone et al., “Compact, high-brightness LED illumination for projection systems”, Journal of the SID 17/12, Dec. 2009, pp. 1043-1049.
Buckley, “Colour holographic laser projection technology for heads-up and instrument cluster displays”, Conference: Proc. SID Conference 14th Annual Symposium on Vehicle Displays, Jan. 2007, 5 pgs.
Buckley, “Pixtronix DMS technology for head-up displays”, Pixtronix, Inc., Jan. 2011, 4 pgs.
Buckley et al., “Full colour holographic laser projector HUD”, Light Blue Optics Ltd., Aug. 10, 2015, 5 pgs.
Buckley et al., “Rear-view virtual image displays”, in Proc. SID Conference 16th Annual Symposium on Vehicle Displays, Jan. 2009, 5 pgs.
Bunning et al., “Effect of gel-point versus conversion on the real-time dynamics of holographic polymer-dispersed liquid crystal (HPDLC) formation”, Proceedings of SPIE—vol. 5213, Liquid Crystals VII, lam-Choon Khoo, Editor, Dec. 2003, pp. 123-129.
Bunning et al., “Electro-optical photonic crystals formed in H-PDLCs by thiol-ene photopolymerization”, American Physical Society, Annual APS, Mar. 3-7, 2003, abstract #R1.135.
Bunning et al., “Holographic Polymer-Dispersed Liquid Crystals (H-PDLCs)1”, Annu. Rev. Mater. Sci., 2000, vol. 30, pp. 83-115.
Bunning et al., “Morphology of Anisotropic Polymer Dispersed Liquid Crystals and the Effect of Monomer Functionality”, Polymer Science: Part B: Polymer Physics, Jul. 30, 1997, vol. 35, pp. 2825-2833.
Busbee et al., “SiO2 Nanoparticle Sequestration via Reactive Functionalization in Holographic Polymer-Dispersed Liquid Crystals”, Advanced Materials, Sep. 2009, vol. 21, pp. 3659-3662.
Butler et al., “Diffractive Properties of Highly Birefringent vol. Gratings: Investigation”, Journal of Optical Society of America, Feb. 2002, vol. 19, No. 2, pp. 183-189.
Cai et al., “Recent advances in antireflective surfaces based on nanostructure arrays”, Mater. Horiz., 2015, vol. 2, pp. 37-53.
Cameron, “Optical Waveguide Technology & Its Application In Head Mounted Displays”, Proc. of SPIE, May 22, 2012, vol. 8383, pp. 83830E-1-83830E-11.
Cameron, “The Application of Holographic Optical Waveguide Technology to Q-Sight™ Family of Helmet Mounted Displays”, Proc. of SPIE, 2009, 11 pages, vol. 7326.
Caputo et al., “Policryps Composite Materials: Features and Applications”, Advances in Composite Materials—Analysis of Natural and Man-Made Materials, www.intechopen.com, Sep. 2011, pp. 93-118.
Caputo et al., “Policryps Switchable Holographic Grating: A Promising Grating Electro-Optical Pixel for High Resolution Display Application”, Journal of Display Technology, Mar. 2006, vol. 2, No. 1, pp. 38-51.
Carclo Optics, “Guide to choosing secondary optics”, Carclo Optics, Dec. 15, 2014, www.carclo-optics.com, 48 pgs.
Chen et al., “Polarization rotators fabricated by thermally-switched liquid crystal alignments based on rubbed poly(N-vinyl carbazole) films”, Optics Express, Apr. 11, 2011, vol. 19, No. 8, pp. 7553-7558.
Cheng et al., “Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics”, Optics Express, Aug. 2014, 16 pgs.
Chi et al., “Ultralow-refractive-index optical thin films through nanoscale etching of ordered mesoporous silica films”, Optic Letters, May 1, 2012, vol. 37, No. 9, pp. 1406-1408.
Chigrinov et al., “Photo-aligning by azo-dyes: Physics and applications”, Liquid Crystals Today, Sep. 6, 2006, http://www.tandfonline.com/action/journalInformation?journalCode=tlcy20, 15 pgs.
Cho et al., “Electro-optic Properties of CO2 Fixed Polymer/Nematic LC Composite Films”, Journal of Applied Polymer Science, Nov. 5, 2000, vol. 81, Issue 11, pp. 2744-2753.
Cho et al., “Optimization of Holographic Polymer Dispersed Liquid Crystals for Ternary Monomers”, Polymer International, Nov. 1999, vol. 48, pp. 1085-1090.
Colegrove et al., “P-59: Technology of Stacking HPDLC for Higher Reflectance”, SID 00 Digest, May 2000, pp. 770-773.
Crawford, “Electrically Switchable Bragg Gratings”, Optics & Photonics News, Apr. 2003, pp. 54-59.
Cruz-Arreola et al., “Diffraction of beams by infinite or finite amplitude-phase gratings”, Investigacio' N Revista Mexicana De Fi'Sica, Feb. 2011, vol. 57, No. 1, pp. 6-16.
Dabrowski, “High Birefringence Liquid Crystals”, Crystals, Sep. 3, 2013, vol. 3, No. 3, pp. 443-482.
Dainty, “Some statistical properties of random speckle patterns in coherent and partially coherent illumination”, Optica Acta, Mar. 12, 1970, vol. 17, No. 10, pp. 761-772.
Date, “Alignment Control in Holographic Polymer Dispersed Liquid Crystal”, Journal of Photopolymer Science and Technology, Nov. 2, 2000, vol. 13, pp. 289-284.
Date et al., “52.3: Direct-viewing Display Using Alignment-controlled PDLC and Holographic PDLC”, Society for Information Display Digest, May 2000, pp. 1184-1187, DOI: 10.1889/1.1832877.
Date et al., “Full-color reflective display device using holographically fabricated polymer-dispersed liquid crystal (HPDLC)”, Journal of the SID, 1999, vol. 7, No. 1, pp. 17-22.
De Bitetto, “White light viewing of surface holograms by simple dispersion compensation”, Applied Physics Letters, Dec. 15, 1966, vol. 9, No. 12, pp. 417-418.
De Sarkar et al., “Effect of Monomer Functionality on the Morphology and Performance of Holographic Transmission Gratings Recorded on Polymer Dispersed Liquid Crystals”, Macromolecules, 2003, vol. 36, No. 3, pp. 630-638.
Developer World, “Create customized augmented reality solutions”, printed Oct. 19, 2017, LMX-001 holographic waveguide display, Sony Developer World, 3 pgs.
Dhar et al., “Recording media that exhibit high dynamic range for digital holographic data storage”, Optics Letters, Apr. 1, 1999, vol. 24, No. 7, pp. 487-489.
Domash et al., “Applications of switchable Polaroid holograms”, SPIE Proceedings, vol. 2152, Diffractive and Holographic Optics Technology, Jan. 23-29, 1994, Los Angeles, CA, pp. 127-138, ISBN: 0-8194-1447-6.
Drake et al., “Waveguide Hologram Fingerprint Entry Device”, Optical Engineering, Sep. 1996, vol. 35, No. 9, pp. 2499-2505.
Drevensek-Olenik et al., “In-Plane Switching of Holographic Polymer-Dispersed Liquid Crystal Transmission Gratings”, Mol. Cryst. Liq. Cryst., 2008, vol. 495, pp. 177/[529]-185/[537].
Drevensek-Olenik et al., “Optical diffraction gratings from polymer-dispersed liquid crystals switched by interdigitated electrodes”, Journal of Applied Physics, Dec. 1, 2004, vol. 96, No. 11, pp. 6207-6212.
Ducharme, “Microlens diffusers for efficient laser speckle generation”, Optics Express, Oct. 29, 2007, vol. 15, No. 22, pp. 14573-14579.
Duong et al., “Centrifugal Deposition of Iron Oxide Magnetic Nanorods for Hyperthermia Application”, Journal of Thermal Engineering, Yildiz Technical University Press, Istanbul, Turkey, Apr. 2015, vol. 1, No. 2, pp. 99-103.
Fattal et al., “A multi directional backlight for a wide-angle glasses-free three-dimensional display”, Nature, Mar. 21, 2012, vol. 495, pp. 348-351.
Fontecchio et al., “Spatially Pixelated Reflective Arrays from Holographic Polymer Dispersed Liquid Crystals”, SID 00 Digest, May 2000, pp. 774-776.
Forman et al., “Materials development for PhotoINhibited SuperResolution (PINSR) lithography”, Proc. of SPIE, 2012, vol. 8249, 824904, doi: 10.1117/12.908512, pp. 824904-1-824904-9.
Forman et al., “Radical diffusion limits to photoinhibited superresolution lithography”, Phys.Chem. Chem. Phys., May 31, 2013, vol. 15, pp. 14862-14867.
Friedrich-Schiller, “Spatial Noise and Speckle”, Version 1.12.2011, Dec. 2011, Abbe School of Photonics, Jena, Germany, 27 pgs.
Fuh et al., “Thermally and Electrically Switchable Gratings Based Upon the Polymer-Balls Type Polymer-Dispersed Liquid Crystal Films”, Appl. Phys. Vol. 41, No. 22, Aug. 1, 2002, pp. 4585-4589.
Fujii et al., “Nanoparticle-polymer-composite vol. gratings incorporating chain-transfer agents for holography and slow-neutron optics”, Optics Letters, Apr. 25, 2014, vol. 39, Issue 12, 5 pgs.
Funayama et al., “Proposal of a new type thin film light-waveguide display device using”, The International Conference on Electrical Engineering, 2008, No. P-044, 5 pgs.
Gabor, “Laser Speckle and its Elimination”, BM Research and Development, Eliminating Speckle Noise, Sep. 1970, vol. 14, No. 5, pp. 509-514.
Gardiner et al., “Bistable liquid-crystals reduce power consumption for high-efficiency smart glazing”, SPIE, 2009, 10.1117/2.1200904.1596, 2 pgs.
Giancola, “Holographic Diffuser, Makes Light Work of Screen Tests”, Photonics Spectra, 1996, vol. 30, No. 8, pp. 121-122.
Goodman, “Some fundamental properties of speckle”, J. Opt. Soc. Am., Nov. 1976, vol. 66, No. 11, pp. 1145-1150.
Goodman, “Statistical Properties of Laser Speckle Patterns”, Applied Physics, 1975, vol. 9, Chapter 2, Laser Speckle and Related Phenomena, pp. 9-75.
Goodman et al., “Speckle Reduction by a Moving Diffuser in Laser Projection Displays”, The Optical Society of America, 2000, 15 pgs.
Guldin et al., “Self-Cleaning Antireflective Optical Coatings”, Nano Letters, Oct. 14, 2013, vol. 13, pp. 5329-5335.
Guo et al., “Review Article: A Review of the Optimisation of Photopolymer Materials for Holographic Data Storage”, Physics Research International, vol. 2012, Article ID 803439, Academic Editor: Sergi Gallego, 16 pages, http://dx.doi.org/10.1155/2012/803439, May 4, 2012.
Han et al., “Study of Holographic Waveguide Display System”, Advanced Photonics for Communications, 2014, 4 pgs.
Harbers et al., “I-15.3: LED Backlighting for LCD-HDTV”, Journal of the Society for Information Display, 2002, vol. 10, No. 4, pp. 347-350.
Harbers et al., “Performance of High Power LED Illuminators in Color Sequential Projection Displays”, Lumileds Lighting, 2007, 4 pgs.
Harbers et al., “Performance of High Power LED Illuminators in Color Sequential Projection Displays”, Lumileds, Aug. 7, 2001, 11 pgs.
Harbers et al., “Performance of High-Power LED illuminators in Projection Displays”, Proc. Int. Disp. Workshops, Japan. vol. 10, pp. 1585-1588, 2003.
Harding et al., “Reactive Liquid Crystal Materials for Optically Anisotropic Patterned Retarders”, Merck, licrivue, 2008, ME-GR-RH-08-010, 20 pgs.
Harding et al., “Reactive Liquid Crystal Materials for Optically Anisotropic Patterned Retarders”, SPIE Lithography Asia—Taiwan, 2008, Proceedings vol. 7140, Lithography Asia 2008; 71402J, doi: 10.1117/12.805378.
Hariharan, “Optical Holography: Principles, techniques and applications”, Cambridge University Press, 1996, pp. 231-233.
Harris, “Photonic Devices”, EE 216 Principals and Models of Semiconductor Devices, Autumn 2002, 20 pgs.
Harrold et al., “3D Display Systems Hardware Research at Sharp Laboratories of Europe: an update”, Sharp Laboratories of Europe, Ltd., 7 pgs.
Harthong et al., “Speckle phase averaging in high-resolution color holography”, J. Opt. Soc. Am. A, Feb. 1997, vol. 14, No. 2, pp. 405-409.
Hasan et al., “Tunable-focus lens for adaptive eyeglasses”, Optics Express, Jan. 23, 2017, vol. 25, No. 2, 1221, 13 pgs.
Hasman et al., “Diffractive Optics: Design, Realization, and Applications”, Fiber and Integrated Optics, vol. 16, pp. 1-25, 1997.
Hata et al., “Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization”, Optical Materials Express, Jun. 1, 2011, vol. 1, No. 2, pp. 207-222.
He et al., “Dynamics of peristrophic multiplexing in holographic polymer-dispersed liquid crystal”, Liquid Crystals, Mar. 26, 2014, vol. 41, No. 5, pp. 673-684.
He et al., “Holographic 3D display based on polymer-dispersed liquid-crystal thin films”, Proceedings of China Display/Asia Display 2011, pp. 158-160.
He et al., “Properties of Volume Holograms Recording in Photopolymer Films with Various Pulse Exposures Repetition Frequencies”, Proceedings of SPIE vol. 5636, Bellingham, WA, 2005, doi: 10.1117/12.580978, pp. 842-848.
He et al., “Transmission Holographic Gratings Using Siloxane Containing Liquid Crystalline Compounds, Importance of Chemical Structure of Polymer Matrix Components”, Polymer Journal, Jun. 9, 2006, vol. 38, No. 7, pp. 678-685.
Herman et al., “Production and Uses of Diffractionless Beams”, J. Opt. Soc. Am. A., Jun. 1991, vol. 8, No. 6, pp. 932-942.
Hisano, “Alignment layer-free molecular ordering induced by masked photopolymerization with nonpolarized light”, Appl. Phys. Express 9, Jun. 6, 2016, pp. 072601-1-072601-4.
Hoepfner et al., “LED Front Projection Goes Mainstream”, Luminus Devices, Inc., Projection Summit, 2008, 18 pgs.
Holmes et al., “Controlling The Anisotropy of Holographic Polymer-Dispersed Liquid-Crystal Gratings”, Physical Review E, Jun. 11, 2002, vol. 65, 066603-1-066603-4.
Hoyle et al., “Advances in the Polymerization of Thiol-Ene Formulations”, Heraeus Noblelight Fusion UV Inc., 2003 Conference, 6 pgs.
Hua, “Sunglass-like displays become a reality with free-form optical technology”, Illumination & Displays 3D Visualization and Imaging Systems Laboratory (3DVIS) College of Optical Sciences University of Arizona Tucson, AZ. 2014, 3 pgs.
Huang et al., “Diffraction properties of substrate guided-wave holograms”, Optical Engineering, Oct. 1995, vol. 34, No. 10, pp. 2891-2899.
Huang et al., “Theory and characteristics of holographic polymer dispersed liquid crystal transmission grating with scaffolding morphology”, Applied Optics, Jun. 20, 2012, vol. 51, No. 18, pp. 4013-4020.
Iannacchione et al., “Deuterium NMR and morphology study of copolymer-dispersed liquid-crystal Bragg gratings”, Europhysics Letters, 1996, vol. 36, No. 6, pp. 425-430.
Irie, “Photochromic diarylethenes for photonic devices”, Pure and Applied Chemistry, 1996, pp. 1367-1371, vol. 68, No. 7, IUPAC.
Jang et al., “Low Driving Voltage Holographic Polymer Dispersed Liquid Crystals with Chemically Incorporated Graphene Oxide”, Journal of Materials Chemistry, 2011, vol. 21, p. 19226-19232, doi. 10.1039/1jm13827h.
Jeng et al., “Aligning liquid crystal molecules”, SPIE, 2012, 10.1117/2.1201203.004148, 2 pgs.
Jeong et al., “Memory Effect of Polymer Dispersed Liquid Crystal by Hybridization with Nanoclay”, express Polymer Letters, vol. 4, No. 1, 2010, pp. 39-46.
Jo et al., “Control of Liquid Crystal Pretilt Angle using Polymerization of Reactive Mesogen”, IMID 2009 Digest, P1-25, 2009, pp. 604-606.
Juhl, “Interference Lithography for Optical Devices and Coatings”, Dissertation, University of Illinois at Urbana-Champaign, 2010.
Juhl et al., “Holographically Directed Assembly of Polymer Nanocomposites”, ACS Nano, Oct. 7, 2010, vol. 4, No. 10, pp. 5953-5961.
Jurbergs et al., “New recording materials for the holographic industry”, Proc. of SPIE, 2009 vol. 7233, pp. 72330K-1-72330L-10, doi: 10.1117/12.809579.
Kahn et al., “Private Line Report on Large Area Display”, Kahn International, Jan. 7, 2003, vol. 8, No. 10, 9 pgs.
Kakiuchida et al., “Multiple Bragg Diffractions with Different Wavelengths and Polarizations Composed of Liquid Crystal/Polymer Periodic Phases”, ACS Omega, Sep. 22, 2017, pp. 6081-6090, doi: 10.1021/acsomega.7b01149.
Karasawa et al., “Effects of Material Systems on the Polarization Behavior of Holographic Polymer Dispersed Liquid Crystal Gratings”, Japanese Journal of Applied Physics, Oct. 1997, vol. 36, No. 10, pp. 6388-6392.
Karp et al., “Planar micro-optic solar concentration using multiple imaging lenses into a common slab waveguide”, Proc. of SPIE vol. 7407, 2009 SPIE, CCC code: 0277-786X/09, doi: 10.1117/12.826531, pp. 74070D-1-74070D-11.
Karp et al., “Planar micro-optic solar concentrator”, Optics Express, Jan. 18, 2010, vol. 18, No. 2, pp. 1122-1133.
Kato et al., “Alignment-Controlled Holographic Polymer Dispersed Liquid Crystal (HPDLC) for Reflective Display Devices”, SPIE, 1998, vol. 3297, pp. 52-57.
Kessler, “Optics of Near to Eye Displays (NEDs)”, Oasis 2013, Tel Aviv, Feb. 19, 2013, 37 pgs.
Keuper et al., “26.1: RGB LED Illuminator for Pocket-Sized Projectors”, SID 04 Digest, 2004, ISSN/0004-0966X/04/3502, pp. 943-945.
Keuper et al., “P-126: Ultra-Compact LED based Image Projector for Portable Applications”, SID 03 Digest, 2003, ISSN/0003-0966X/03/3401-0713, pp. 713-715.
Kim et al., “Effect of Polymer Structure on the Morphology and Electro optic Properties of UV Curable PNLCs”, Polymer, Feb. 2000, vol. 41, pp. 1325-1335.
Kim et al., “Enhancement of electro-optical properties in holographic polymer-dispersed liquid crystal films by incorporation of multiwalled carbon nanotubes into a polyurethane acrylate matrix”, Polym. Int., Jun. 16, 2010, vol. 59, pp. 1289-1295.
Kim et al., “Fabrication of Reflective Holographic PDLC for Blue”, Molecular Crystals and Liquid Crystals Science, 2001, vol. 368, pp. 3845-3853.
Kim et al., “Optimization of Holographic PDLC for Green”, Mol. Cryst. Liq. Cryst., vol. 368, pp. 3855-3864, 2001.
Klein, “Optical Efficiency for Different Liquid Crystal Colour Displays”, Digital Media Department, HPL-2000-83, Jun. 29, 2000, 18 pgs.
Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings”, The Bell System Technical Journal, vol. 48, No. 9, pp. 2909-2945, Nov. 1969.
Kotakonda et al., “Electro-optical Switching of the Holographic Polymer-dispersed Liquid Crystal Diffraction Gratings”, Journal of Optics A: Pure and Applied Optics, Jan. 1, 2009, vol. 11, No. 2, 11 pgs.
Kress et al., “Diffractive and Holographic Optics as Optical Combiners in Head Mounted Displays”, UbiComp '13, Sep. 9-12, 2013, Session: Wearable Systems for Industrial Augmented Reality Applications, pp. 1479-1482.
Lauret et al., “Solving the Optics Equation for Effective LED Applications”, Gaggione North America, LLFY System Design Workshop 2010, Oct. 28, 2010, 26 pgs.
Lee, “Patents Shows Widespread Augmented Reality Innovation”, PatentVue, May 26, 2015, 5 pgs.
Levola, “Diffractive optics for virtual reality displays”, Journal of the SID, 2006, 14/5, pp. 467-475.
Levola et al., “Near-to-eye display with diffractive exit pupil expander having chevron design”, Journal of the SID, 2008, 16/8, pp. 857-862.
Levola et al., “Replicated slanted gratings with a high refractive index material for in and outcoupling of light”, Optics Express, vol. 15, Issue 5, pp. 2067-2074 (2007).
Li et al., “Design and Optimization of Tapered Light Pipes”, Proceedings vol. 5529, Nonimaging Optics and Efficient Illumination Systems, Sep. 29, 2004, doi: 10.1117/12.559844, 10 pgs.
Li et al., “Dual Paraboloid Reflector and Polarization Recycling Systems for Projection Display”, Proceedings vol. 5002, Projection Displays IX, Mar. 28, 2003, doi: 10.1117/12.479585, 12 pgs.
Li et al., “Light Pipe Based Optical Train and its Applications”, Proceedings vol. 5524, Novel Optical Systems Design and Optimization VII, Oct. 24, 2004, doi: 10.1117/12.559833, 10 pgs.
Li et al., “Novel Projection Engine with Dual Paraboloid Reflector and Polarization Recovery Systems”, Wavien Inc., SPIE EI 5289-38, Jan. 21, 2004, 49 pgs.
Li et al., “Polymer crystallization/melting induced thermal switching in a series of holographically patterned Bragg reflectors”, Soft Matter, Jul. 11, 2005, vol. 1, pp. 238-242.
Lin et al., “Ionic Liquids in Photopolymerizable Holographic Materials”, in book: Holograms—Recording Materials and Applications, Nov. 9, 2011, 21 pgs.
Liu et al., “Effect of Surfactant on the Electro-Optical Properties of Holographic Polymer Dispersed Liquid Crystal Bragg Gratings”, Optical Materials, 2005, vol. 27, pp. 1451-1455, available online Dec. 25, 2004, doi: 10.1016/j.optmat.2004.10.010.
Liu et al., “Holographic Polymer Dispersed Liquid Crystals” Materials, Formation and Applications, Advances in OptoElectronics, Nov. 30, 2008, vol. 2008, Article ID 684349, 52 pgs.
Lorek, “Experts Say Mass Adoption of augmented and Virtual Reality is Many Years Away”, Siliconhills, Sep. 9, 2017, 4 pgs.
Lowenthal et al., “Speckle Removal by a Slowly Moving Diffuser Associated with a Motionless Diffuser”, Journal of the Optical Society of America, Jul. 1971, vol. 61, No. 7, pp. 847-851.
Lu et al., “Polarization switch using thick holographic polymer-dispersed liquid crystal grating”, Journal of Applied Physics, Feb. 1, 2004, vol. 95, No. 3, pp. 810-815.
Lu et al., “The Mechanism of electric-field-induced segregation of additives in a liquid-crystal host”, Phys Rev E Stat Nonlin Soft Matter Phys., Nov. 27, 2012, 14 pgs.
Ma et al., “Holographic Reversed-Mode Polymer-Stabilized Liquid Crystal Grating”, Chinese Phys. Lett., 2005, vol. 22, No. 1, pp. 103-106.
Mach et al., “Switchable Bragg diffraction from liquid crystal in colloid- templated structures”, Europhysics Letters, Jun. 1, 2002, vol. 58, No. 5, pp. 679-685.
Magarinos et al., “Wide Angle Color Holographic infinity optics display”, Air Force Systems Command, Brooks Air Force Base, Texas, AFHRL-TR-80-53, Mar. 1981, 100 pgs.
Marino et al., “Dynamical Behaviour of Policryps Gratings”, Electronic-Liquid Crystal Communications, Feb. 5, 2004, 10 pgs.
Massenot et al., “Multiplexed holographic transmission gratings recorded in holographic polymer-dispersed liquid crystals: static and dynamic studies”, Applied Optics, 2005, vol. 44, Issue 25, pp. 5273-5280.
Matay et al., “Planarization of Microelectronic Structures by Using Polyimides”, Journal of Electrical Engineering, 2002, vol. 53, No. 3-4, pp. 86-90.
Mathews, “The LED FAQ Pages”, Jan. 31, 2002, 23 pgs.
Matic, “Blazed phase liquid crystal beam steering”, Proc. of the SPIE, 1994, vol. 2120, pp. 194-205.
McLeod, “Axicons and Their Uses”, Journal of the Optical Society of America, Feb. 1960, vol. 50, No. 2, pp. 166-169.
McManamon et al., “A Review of Phased Array Steering for Narrow-Band Electrooptical Systems”, Proceedings of the IEEE, Jun. 2009, vol. 97, No. 6, pp. 1078-1096.
McManamon et al., “Optical Phased Array Technology”, Proceedings of the IEEE, Feb. 1996, vol. 84, Issue 2, pp. 268-298.
Miller, “Coupled Wave Theory and Waveguide Applications”, The Bell System Technical Journal, Short Hills, NJ, Feb. 2, 1954, 166 pgs.
Moffitt, “Head-Mounted Display Image Configurations”, retrieved from the internet on Dec. 19, 2014, dated May 2008, 25 pgs.
Nair et al., “Enhanced Two-Stage Reactive Polymer Network Forming Systems”, Polymer (Guildf). May 25, 2012, vol. 53, No. 12, pp. 2429-2434, doi:10.1016/j.polymer.2012.04.007.
Nair et al., “Two-Stage Reactive Polymer Network Forming Systems”, Advanced Functional Materials, 2012, pp. 1-9, DOI: 10.1002/adfm.201102742.
Naqvi et al., “Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress”, International Journal of Nanomedicine, Dovepress, Nov. 13, 2010, vol. 5, pp. 983-989.
Natarajan et al., “Electro Optical Switching Characteristics of Volume Holograms in Polymer Dispersed Liquid Crystals”, Journal of Nonlinear Optical Physics and Materials, 1997, vol. 5, No. 1, pp. 666-668.
Natarajan et al., “Electro-Optical Switching Characteristics of Volume Holograms in Polymer Dispersed Liquid Crystals”, J. of Nonlinear Optical Physics Materials, Jan. 1996, vol. 5, No. 1, pp. 89-98.
Natarajan et al., “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization”, Polymer, vol. 47, May 8, 2006, pp. 4411-4420.
Naydenova et al., “Low-scattering Volume Holographic Material”, DIT PhD Project, http://www.dit.ie/ieo/, Oct. 2017, 2 pgs.
Neipp et al., “Non-local polymerization driven diffusion based model: general dependence of the polymerization rate to the exposure intensity”, Optics Express, Aug. 11, 2003, vol. 11, No. 16, pp. 1876-1886.
Nishikawa et al., “Mechanically and Light Induced Anchoring of Liquid Crystal on Polyimide Film”, Mol. Cryst. Liq. Cryst., Aug. 1999, vol. 329, 8 pgs.
Nishikawa et al., “Mechanism of Unidirectional Liquid-Crystal Alignment on Polyimides with Linearly Polarized Ultraviolet Light Exposure”, Applied Physics Letters, May 11, 1998, vol. 72, No. 19, 4 pgs.
Nordin et al., “Diffraction Properties of Stratified Volume Holographic Optical Elements”, Journal of the Optical Society of America A., vol. 9, No. 12, Dec. 1992, pp. 2206-2217.
Ogiwara et al., “Temperature Dependence of Anisotropic Diffraction in Holographic Polymer-Dispersed Liquid Crystal Memory”, Applied Optics, Sep. 10, 2013, vol. 52, No. 26, pp. 6529-6536.
Ogiwara et al., “Thermo-Driven Light Controller by Using Thermal Modulation of Diffraction Wavelength in Holographic Polymer Dispersed Liquid Crystal Grating”, Proc SPIE, Feb. 19, 2014, 9004, Article 90040Q, 8 pgs., doi: 10.1117/12.2039104.
Oh et al., “Achromatic diffraction from polarization gratings with high efficiency”, Optic Letters, Oct. 15, 2008, vol. 33, No. 20, pp. 2287-2289.
Olson et al., “Templating Nanoporous Polymers with Ordered Block Copolymers”, Chemistry of Materials, Web publication Nov. 27, 2007, vol. 20, pp. 869-890.
Ondax, Inc., “Volume Holographic Gratings (VHG)”, 2005, 7 pgs.
Orcutt, “Coming Soon: Smart Glasses That Look Like Regular Spectacles”, Intelligent Machines, Jan. 9, 2014, 4 pgs.
Osredkar, “A study of the limits of spin-on-glass planarization process”, Informacije MIDEM, 2001, vol. 31, 2, ISSN0352-9045, pp. 102-105.
Osredkar et al., “Planarization methods in IC fabrication technologies”, Informacije MIDEM, 2002, vol. 32, 3, ISSN0352-9045, 5 pgs.
Ou et al., “A Simple LCOS Optical System (Late News)”, Industrial Technology Research Institute/OES Lab. Q100/Q200, SID 2002, Boston, USA, 2 pgs.
Paolini et al., “High-Power LED Illuminators in Projection Displays”, Lumileds, Aug. 7, 2001, 19 pgs.
Park et al., “Aligned Single-Wall Carbon Nanotube Polymer Composites Using an Electric Field”, Journal of Polymer Science: Part B: Polymer Physics, Mar. 24, 2006, DOI 10.1002/polb.20823, pp. 1751-1762.
Park et al., “Fabrication of Reflective Holographic Gratings with Polyurethane Acrylates (PUA)”, Current Applied Physics, Jun. 2002, vol. 2, pp. 249-252.
Peng et al., “Low Voltage Driven and Highly Diffractive Holographic Polymer Dispersed Liquid Crystals with Spherical Morphology”, RSC Advances, 2017, vol. 7, pp. 51847-51857, doi: 10.1039/c7ra08949.
Plawsky et al., “Engineered nanoporous and nanostructured films”, MaterialsToday, Jun. 2009, vol. 12, No. 6, pp. 36-45.
Potenza, “These smart glasses automatically focus on what you're looking at”, The Verge, Voc Media, Inc., Jan. 29, 2017, https://www.theverge.com/2017/1/29/14403924/smart-glasses-automatic-focus-presbyopia-ces-2017, 6 pgs.
Presnyakov et al., “Electrically tunable polymer stabilized liquid-crystal lens”, Journal of Applied Physics, Apr. 29, 2005, vol. 97, pp. 103101-1-103101-6.
Qi et al., “P-111: Reflective Display Based on Total Internal Reflection and Grating-Grating Coupling”, Society for Information Display Digest, May 2003, pp. 648-651, DOI: 10.1889/1.1832359.
Ramón, “Formation of 3D micro- and nanostructures using liquid crystals as a template”, Technische Universiteit Eindhoven, Apr. 17, 2008, Thesis, DOI:http://dx.doi.org/10.6100/IR634422, 117 pgs.
Ramsey, “Holographic Patterning of Polymer Dispersed Liquid Crystal Materials for Diffractive Optical Elements”, Thesis, The University of Texas at Arlington, Dec. 2006, 166 pgs.
Ramsey et al., “Holographically recorded reverse-mode transmission gratings in polymer-dispersed liquid crystal cells”, Applied Physics B: Laser and Optics, Sep. 10, 2008, vol. 93, Nos. 2-3, pp. 481-489.
Reid, “Thin film silica nanocomposites for anti-reflection coatings”, Oxford Advance Surfaces, www.oxfordsurfaces.com, Oct. 18, 2012, 23 pgs.
Riechert, “Speckle Reduction in Projection Systems”, Dissertation, University Karlsruhe, 2009, 178 pgs.
Rossi et al., “Diffractive Optical Elements for Passive Infrared Detectors”, Submitted to OSA Topical Meeting “Diffractive Optics and Micro-Optics”, Quebec, Jun. 18-22, 2000, 3 pgs.
Roussel et al., “Photopolymerization Kinetics and Phase Behavior of Acrylate Based Polymers Dispersed Liquid Crystals”, Liquid Crystals, 1998, vol. 24, Issue 4, pp. 555-561.
Sagan et al., “Electrically Switchable Bragg Grating Technology for Projection Displays”, Proc. SPIE. vol. 4294, Jan. 24, 2001, pp. 75-83.
Saleh et al., “Fourier Optics: 4.1 Propagation of light in free space, 4.2 Optical Fourier Transform, 4.3 Diffraction of Light, 4.4 Image Formation, 4.5 Holography”, Fundamentals of Photonics 1991, Chapter 4, pp. 108-143.
Saraswat, “Deposition & Planarization”, EE 311 Notes, Aug. 29, 2017, 28 pgs.
Schechter et al., “Compact beam expander with linear gratings”, Applied Optics, vol. 41, No. 7, Mar. 1, 2002, pp. 1236-1240.
Schreiber et al., “Laser display with single-mirror MEMS scanner”, Journal of the SID 17/7, 2009, pp. 591-595.
Seiberle et al., “Photo-aligned anisotropic optical thin films”, Journal of the SID 12/1, 2004, 6 pgs.
Serebriakov et al., “Correction of the phase retardation caused by intrinsic birefringence in deep UV lithography”, Proc. of SPIE, May 21, 2010, vol. 5754, pp. 1780-1791.
Shi et al., “Design considerations for high efficiency liquid crystal decentered microlens arrays for steering light”, Applied Optics, vol. 49, No. 3, Jan. 20, 2010, pp. 409-421.
Shriyan et al., “Analysis of effects of oxidized multiwalled carbon nanotubes on electro-optic polymer/liquid crystal thin film gratings”, Optics Express, Nov. 12, 2010, vol. 18, No. 24, pp. 24842-24852.
Simonite, “How Magic Leap's Augmented Reality Works”, Intelligent Machines, Oct. 23, 2014, 7 pgs.
Smith et al., “RM-PLUS—Overview”, Licrivue, Nov. 5, 2013, 16 pgs.
Sony Global, “Sony Releases the Transparent Lens Eyewear ‘SmartEyeglass Developer Edition’”, printed Oct. 19, 2017, Sony Global—News Releases, 5 pgs.
Steranka et al., “High-Power LEDs—Technology Status and Market Applications”, Lumileds, Jul. 2002, 23 pgs.
Stumpe et al., “Active and Passive LC Based Polarization Elements”, Mol. Cryst. Liq. Cryst., 2014, vol. 594: pp. 140-149.
Stumpe et al., “New type of polymer-LC electrically switchable diffractive devices—Poliphem”, May 19, 2015, p. 97.
Subbarayappa et al., “Bistable Nematic Liquid Crystal Device”, Jul. 30, 2009, 14 pgs.
Sun et al., “Effects of multiwalled carbon nanotube on holographic polymer dispersed liquid crystal”, Polymers Advanced Technologies, Feb. 19, 2010, DOI: 10.1002/pat.1708, 8 pgs.
Sun et al., “Low-birefringence lens design for polarization sensitive optical systems”, Proceedings of SPIE, 2006, vol. 6289, doi: 10.1117/12.679416, pp. 6289DH-1-6289DH-10.
Sun et al., “Transflective multiplexing of holographic polymer dispersed liquid crystal using Si additives”, eXPRESS Polymer Letters, 2011, vol. 5, No. 1, pp. 73-81.
Sutherland et al., “Bragg Gratings in an Acrylate Polymer Consisting of Periodic Polymer-Dispersed Liquid-Crystal Planes”, Chem. Mater., 1993, vol. 5, pp. 1533-1538.
Sutherland et al., “Electrically switchable volume gratings in polymer-dispersed liquid crystals”, Applied Physics Letters, Feb. 28, 1994, vol. 64, No. 9, pp. 1074-1076.
Sutherland et al., “Enhancing the electro-optical properties of liquid crystal nanodroplets for switchable Bragg gratings”, Proc. of SPIE, 2008, vol. 7050, pp. 705003-1-705003-9, doi: 10.1117/12.792629.
Sutherland et al., “Liquid crystal bragg gratings: dynamic optical elements for spatial light modulators”, Hardened Materials Branch, Hardened Materials Branch, AFRL-ML-WP-TP-2007-514, Jan. 2007, Wright-Patterson Air Force Base, OH, 18 pgs.
Sutherland et al., “The physics of photopolymer liquid crystal composite holographic gratings”, presented at SPIE: Diffractive and Holographic Optics Technology San Jose, CA, 1996, SPIE, vol. 2689, pp. 158-169.
Sweatt, “Achromatic triplet using holographic optical elements”, Applied Optics, May 1977, vol. 16, No. 5, pp. 1390-1391.
Tahata et al., “Effects of Polymer Matrix on Electro-Optic Properties of Liquid Crystal Mixed With Polymer”, Proc SPIE, Mar. 11, 1996, vol. 2651, pp. 101-106, doi: 10.1117/12.235342.
Talukdar, “Technology Forecast: Augmented reality”, Changing the economics of Smartglasses, Issue 2, 2016, 5 pgs.
Tao et al., “TiO2 nanocomposites with high refractive index and transparency”, J. Mater. Chem., Oct. 4, 2011, vol. 21, pp. 18623-18629.
Titus et al., “Efficient, Accurate Liquid Crystal Digital Light Deflector”, Proc. SPIE 3633, Diffractive and Holographic Technologies, Systems, and Spatial Light Modulators VI, 1 Jun. 1, 1999, doi: 10.1117/12.349334, 10 pgs.
Tiziani, “Physical Properties of Speckles”, Speckle Metrology, Chapter 2, Academic Press, Inc., 1978, pp. 5-9.
Tominaga et al., “Fabrication of holographic polymer dispersed liquid crystals doped with gold nanoparticles”, 2010 Japanese Liquid Crystal Society Annual Meeting, 2 pgs.
Tomita, “Holographic assembly of nanoparticles in photopolymers for photonic applications”, The International Society for Optical Engineering, SPIE Newsroom, 2006, 10.1117/2.1200612.0475, 3 pgs.
Trisnadi, “Hadamard Speckle Contrast Reduction”, Optics Letters, Jan. 1, 2004, vol. 29, No. 1, pp. 11-13.
Trisnadi, “Speckle contrast reduction in laser projection displays”, Proc. SPIE 4657, 2002, 7 pgs.
Tzeng et al., “Axially symmetric polarization converters based on photo-aligned liquid crystal films”, Optics Express, Mar. 17, 2008, vol. 16, No. 6, pp. 3768-3775.
Upatnieks et al., “Color Holograms for white light reconstruction”, Applied Physics Letters, Jun. 1, 1996, vol. 8, No. 11, pp. 286-287.
Urey, “Diffractive exit pupil expander for display applications”, Applied Optics, vol. 40, Issue 32, pp. 5840-5851 (2001).
Ushenko, “The Vector Structure of Laser Biospeckle Fields and Polarization Diagnostics of Collagen Skin Structures”, Laser Physics, 2000, vol. 10, No. 5, pp. 1143-1149.
Valoriani, “Mixed Reality: Dalle demo a un prodotto”, Disruptive Technologies Conference, Sep. 23, 2016, 67 pgs.
Van Gerwen et al., “Nanoscaled interdigitated electrode arrays for biochemical sensors”, Sensors and Actuators, Mar. 3, 1998, vol. B 49, pp. 73-80.
Vecchi, “Studi Esr Di Sistemi Complessi Basati Su Cristalli Liquidi”, Thesis, University of Bologna, Department of Physical and Inorganic Chemistry, 2004-2006, 110 pgs.
Veltri et al., “Model for the photoinduced formation of diffraction gratings in liquid-crystalline composite materials”, Applied Physics Letters, May 3, 2004, vol. 84, No. 18, pp. 3492-3494.
Vita, “Switchable Bragg Gratings”, Thesis, Universita degli Studi di Napoli Federico II, Nov. 2005, 103 pgs.
Vuzix, “M3000 Smart Glasses, Advanced Waveguide Optics”, brochure, Jan. 1, 2017, 2 pgs.
Wang et al., “Liquid-crystal blazed-grating beam deflector”, Applied Optics, Dec. 10, 2000, vol. 39, No. 35, pp. 6545-6555.
Wang et al., “Optical Design of Waveguide Holographic Binocular Display for Machine Vision”, Applied Mechanics and Materials, Sep. 27, 2013, vols. 427-429, pp. 763-769.
Wang et al., “Speckle reduction in laser projection systems by diffractive optical elements”, Applied Optics, Apr. 1, 1998, vol. 37, No. 10, pp. 1770-1775.
Weber et al., “Giant Birefringent Optics in Multilayer Polymer Mirrors”, Science, Mar. 31, 2000, vol. 287, pp. 2451-2456.
Wei An, “Industrial Applications of Speckle Techniques”, Doctoral Thesis, Royal Institute of Technology, Department of Production Engineering, Chair of Industrial Metrology & Optics, Stockholm, Sweden 2002, 76 pgs.
Welde et al., “Investigation of methods for speckle contrast reduction”, Master of Science in Electronics, Jul. 2010, Norwegian University of Science and Technology, Department of Electronics and Telecommunications, 127 pgs.
White, “Influence of thiol-ene polymer evolution on the formation and performance of holographic polymer dispersed liquid crystals”, The 232nd ACS National Meeting, San Francisco, CA, Sep. 10-14, 2006, 1 pg.
Wicht et al., “Nanoporous Films with Low Refractive Index for Large-Surface Broad-Band Anti-Reflection Coatings”, Macromol. Mater. Eng., 2010, 295, DOI: 10.1002/mame.201000045, 9 pgs.
Wilderbeek et al., “Photoinitiated Bulk Polymerization of Liquid Crystalline Thiolene Monomers”, Macromolecules, 2002, vol. 35, pp. 8962-8969.
Wilderbeek et al., “Photo-Initiated Polymerization of Liquid Crystalline Thiol-Ene Monomers in Isotropic and Anisotropic Solvents”, J. Phys. Chem. B, 2002, vol. 106, No. 50, pp. 12874-12883.
Wisely, “Head up and head mounted display performance improvements through advanced techniques in the manipulation of light”, Proc. of SPIE, 2009, 10 pages, vol. 7327.
Wofford et al., “Liquid crystal bragg gratings: dynamic optical elements for spatial light modulators”, Hardened Materials Branch, Survivability and Sensor Materials Division, AFRL-ML-WP-TP-2007-551, Air Force Research Laboratory, Jan. 2007, Wright-Patterson Air Force Base, OH, 17 pgs.
Yaqoob et al., “High-speed two-dimensional laser scanner based on Bragg grating stored in photothermorefractive glass”, Applied Optics, Sep. 10, 2003, vol. 42, No. 26, pp. 5251-5262.
Yaroshchuk et al., “Stabilization of liquid crystal photoaligning layers by reactive mesogens”, Applied Physics Letters, Jul. 14, 2009, vol. 95, pp. 021902-1-021902-3.
Ye, “Three-dimensional Gradient Index Optics Fabricated in Diffusive Photopolymers”, Thesis, Department of Electrical, Computer and Energy Engineering, University of Colorado, 2012, 224 pgs.
Yemtsova et al., “Determination of liquid crystal orientation in holographic polymer dispersed liquid crystals by linear and nonlinear optics”, Journal of Applied Physics, Oct. 13, 2008, vol. 104, pp. 073115-1-073115-4.
Yeralan et al., “Switchable Bragg grating devices for telecommunications applications”, Opt. Eng., Aug. 2012, vol. 41, No. 8, pp. 1774-1779.
Yoshida et al., “Nanoparticle-Dispersed Liquid Crystals Fabricated by Sputter Doping”, Adv. Mater., 2010, vol. 22, pp. 622-626.
Youcef et al., “Phase Behavior Of Poly(N-Butyl Acrylate) And Poly(2- Ethylhexyl Acrylate) in Nematic Liquid Crystal E7”, Macromol. Symp. 2011, vol. 303, pp. 10-16, doi: 10.1002/masy.201150502.
Zhang et al., “Dynamic Holographic Gratings Recorded by Photopolymerization of Liquid Crystalline Monomers”, J. Am. Chem. Soc., 1994, vol. 116, pp. 7055-7063.
Zhang et al., “Switchable Liquid Crystalline Photopolymer Media for Holography”, J. Am. Chem. Soc., 1992, vol. 114, pp. 1506-1507.
Zhao et al., “Designing Nanostructures by Glancing Angle Deposition”, Proc. of SPIE, Oct. 27, 2003, vol. 5219, pp. 59-73.
Zheng et al., “Holographic Polymer-Dispersed Liquid Crystal Grating with Low Scattering Losses”, Liquid Crystals, Mar. 2012, vol. 39, Issue 3, pp. 387-391.
Zlębacz, “Dynamics of nano and micro objects in complex liquids”, Ph.D. dissertation, Institute of Physical Chemistry of the Polish Academy of Sciences, Warsaw 2011, 133 pgs.
Zou et al., “Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement”, Sensors and Actuators A, Jan. 16, 2007, vol. 136, pp. 518-526.
Zyga, “Liquid crystals controlled by magnetic fields may lead to new optical applications”, Nanotechnology, Nanophysics, Retrieved from http://phys.org/news/2014-07-liquid-crystals-magnetic-fields-optical.html, Jul. 9, 2014, 3 pgs.
Related Publications (1)
Number Date Country
20210223585 A1 Jul 2021 US
Provisional Applications (6)
Number Date Country
62703329 Jul 2018 US
62667891 May 2018 US
62663864 Apr 2018 US
62614813 Jan 2018 US
62614831 Jan 2018 US
62614932 Jan 2018 US
Continuations (1)
Number Date Country
Parent 16203071 Nov 2018 US
Child 17136884 US