Aspects of embodiments of the present disclosure are generally related to image sensor and processing systems and methods of using the same.
Sensor systems and imaging systems such as radar, lidar, cameras (e.g., visible light and/or infrared cameras), and the like detect objects and features in the environment through the interactions of electromagnetic radiation with the environment. For example, camera systems and lidar systems detect light reflected off of objects in a scene or in an environment. Likewise, radar systems transmit lower frequency electromagnetic waves (e.g., radio frequency or microwave frequency) and determine properties of the objects based on the reflections of those signals. Other sensor systems may use other forms of radiation, such as pressure waves or sound waves in the case of ultrasound imaging.
The above information disclosed in this Background section is only for enhancement of understanding of the present disclosure, and therefore it may contain information that does not form the prior art that is already known to a person of ordinary skill in the art.
Aspects of embodiments of the present disclosure relate to systems and methods for augmentation of sensor systems and imaging systems using polarization. According to some aspects of embodiments of the present disclosure, sensors configured to detect the polarization of received electromagnetic radiation is used to augment the performance or behavior of other imaging modalities, such as cameras configured to detect the intensity of light without regard to the polarization of the light. In some aspects of embodiments of the present disclosure, sensors configured to detect the polarization of received electromagnetic radiation are used to form images that would otherwise be formed using comparative imaging systems such as digital cameras. Some aspects of embodiments of the present disclosure relate to camera systems configured to detect the polarization of light.
According to some embodiments of the present invention, there is provided a method of performing surface profilometry, the method including: receiving one or more polarization raw frames of a printed layer of a physical object undergoing additive manufacturing, the one or more polarization raw frames being captured at different polarizations by one or more polarization cameras; extracting one or more polarization feature maps in one or more polarization representation spaces from the one or more polarization raw frames; obtaining a coarse layer depth map of the printed layer; generating one or more surface-normal images based on the coarse layer depth map and the one or more polarization feature maps; and generating a 3D reconstruction of the printed layer based on the one or more surface-normal images.
In some embodiments, the one or more polarization feature maps in the one or more polarization representation spaces include: a degree of linear polarization (DOLP) image in a DOLP representation space; and an angle of linear polarization (AOLP) image in an AOLP representation space.
In some embodiments, the one or more polarization cameras include: a first polarization camera configured to capture a first partition of a print bed on which the printed layer of the physical object resides; and a second polarization camera at a distance from the first polarization camera and configured to capture a second partition of the print bed.
In some embodiments, the obtaining the coarse layer depth map of the printed layer includes: constructing the coarse layer depth map based on a parallax shift between polarization raw frames captured by the first and second polarization cameras.
In some embodiments, the obtaining the coarse layer depth map of the printed layer includes: receiving a computer-aided-design (CAD) layer model corresponding to the printed layer of the physical object.
In some embodiments, the generating the one or more surface-normal images includes: determining a pose of the printed layer with respect to each of the one or more polarization cameras; transforming the coarse layer depth map into one or more camera spaces corresponding to the one or more polarization cameras to generate one or more transformed coarse layer depth maps; and correcting the one or more surface-normal images based on the one or more transformed coarse layer depth maps.
In some embodiments, the generating the 3D reconstruction of the printed layer includes: integrating surface normals of the one or more surface-normal images over a sample space to determine a shape of a surface of the printed layer.
According to some embodiments of the present invention, there is provided a surface profilometry system including: one or more polarization cameras including a polarizing filter, the one or more polarization cameras being configured to capture polarization raw frames at different polarizations; and a processing system including a processor and memory storing instructions that, when executed by the processor, cause the processor to perform: receiving one or more polarization raw frames of a printed layer of a physical object undergoing additive manufacturing, the one or more polarization raw frames being captured at different polarizations by the one or more polarization cameras; extracting one or more polarization feature maps in one or more polarization representation spaces from the one or more polarization raw frames; obtaining a coarse layer depth map of the printed layer; generating one or more surface-normal images based on the coarse layer depth map and the one or more polarization feature maps; and generating a 3D reconstruction of the printed layer based on the one or more surface-normal images.
In some embodiments, the one or more polarization feature maps in the one or more polarization representation spaces include: a degree of linear polarization (DOLP) image in a DOLP representation space; and an angle of linear polarization (AOLP) image in an AOLP representation space.
In some embodiments, the one or more polarization cameras include: a first polarization camera configured to capture a first partition of a print bed on which the printed layer of the physical object resides; and a second polarization camera at a distance from the first polarization camera and configured to capture a second partition of the print bed.
In some embodiments, the obtaining the coarse layer depth map of the printed layer includes: constructing the coarse layer depth map based on a parallax shift between polarization raw frames captured by the first and second polarization cameras.
In some embodiments, the obtaining the coarse layer depth map of the printed layer includes: receiving a computer-aided-design (CAD) layer model corresponding to the printed layer of the physical object.
In some embodiments, the generating the one or more surface-normal images includes: determining a pose of the printed layer with respect to each of the one or more polarization cameras; transforming the coarse layer depth map into one or more camera spaces corresponding to the one or more polarization cameras to generate one or more transformed coarse layer depth maps; and correcting the one or more surface-normal images based on the one or more transformed coarse layer depth maps.
In some embodiments, the generating the 3D reconstruction of the printed layer includes: integrating surface normals of the one or more surface-normal images over a sample space to determine a shape of a surface of the printed layer.
In some embodiments, the memory further stores instructions that, when executed by the processor, cause the processor to further perform: providing the 3D reconstruction of the printed layer to a 3D printing system as a control feedback, wherein the 3D printing system being configured to additively manufacture the physical object layer by layer.
In some embodiments, operations of the one or more polarization cameras, the processing system, and the 3D printing system are synchronized via a synchronization signal.
According to some embodiments of the present invention, there is provided a method of capturing a 3D image of a face, the method including: receiving one or more polarization raw frames of the face, the one or more polarization raw frames being captured at different polarizations by a polarization camera at a distance from the face; extracting one or more polarization feature maps in one or more polarization representation spaces from the one or more polarization raw frames; and generating a 3D reconstruction of the face based on the one or more polarization feature maps via a facial reconstruction neural network.
In some embodiments, the one or more polarization feature maps in the one or more polarization representation spaces include: a degree of linear polarization (DOLP) image in a DOLP representation space; and an angle of linear polarization (AOLP) image in an AOLP representation space.
In some embodiments, the one or more polarization feature maps include estimated surface normals, and the extracting the one or more polarization feature maps includes: generating the estimated surface normals based on the one or more polarization raw frames.
In some embodiments, the facial reconstruction neural network is trained to compute corrected surface normals based on the estimated surface normals, and to generate the 3D reconstruction of the face based on the corrected surface normals.
In some embodiments, the facial reconstruction neural network includes a trained polarized convolutional neural network (CNN).
According to some embodiments of the present invention, there is provided a 3D imaging system for capturing a 3D image of a face, the 3D imaging system including: a polarization camera including a polarizing filter and configured to capture one or more polarization raw frames at different polarizations; and a processing system including a processor and memory storing instructions that, when executed by the processor, cause the processor to perform: receiving one or more polarization raw frames of the face, the one or more polarization raw frames being captured at different polarizations by the polarization camera; extracting one or more polarization feature maps in one or more polarization representation spaces from the one or more polarization raw frames; and generating a 3D reconstruction of the face based on the one or more polarization feature maps via a facial reconstruction neural network.
In some embodiments, the one or more polarization feature maps in the one or more polarization representation spaces include: a degree of linear polarization (DOLP) image in a DOLP representation space; and an angle of linear polarization (AOLP) image in an AOLP representation space.
In some embodiments, the one or more polarization feature maps include estimated surface normals, and the extracting the one or more polarization feature maps includes: generating the estimated surface normals based on the one or more polarization raw frames.
In some embodiments, the facial reconstruction neural network is trained to compute corrected surface normals based on the estimated surface normals, and to generate the 3D reconstruction of the face based on the corrected surface normals.
In some embodiments, the facial reconstruction neural network includes a trained polarized convolutional neural network (CNN).
According to some embodiments of the present invention, there is provided a method of capturing a 3D image of a face, the method including: receiving one or more polarization raw frames of the face, the one or more polarization raw frames being captured at different polarizations by a polarization camera; extracting estimated polarization cues from the one or more polarization raw frames; generating estimated surface normals based on the estimated polarization cues; generating an initial coarse depth map of the face; refining the estimated polarization cues and the initial coarse depth map to generate refined polarization cues and a refined depth map; generating corrected surface normals based on the refined polarization cues and the refined depth map; and generating a 3D reconstruction of the face based on the corrected surface normals.
In some embodiments, the generating the initial coarse depth map of the face includes: receiving a 2D color image of the face; and computing the initial coarse depth map based on the 2D color image of the face.
In some embodiments, the generating the initial coarse depth map of the face includes: receiving a 3D model of a generic human face; and generating the initial coarse depth map based on the 3D model of the generic human face.
In some embodiments, the method further includes: providing the estimated surface normals and the corrected surface normals to a facial reconstruction neural network as a set of training data.
According to some embodiments of the present invention, there is provided a method of computing a prediction, the method including: receiving a surface-normal image corresponding to an object, the surface-normal image including surface-normal information for each pixel of the image; and computing the prediction based on the surface-normal image.
In some embodiments, a red color value, a green color value, and blue color values of a pixel of the surface normal image encode an x-axis component, a y-axis component, and a z-axis component of a surface normal of the object at the pixel.
In some embodiments, the red, green, and blue color values of the pixel are respectively the x-axis component, the y-axis component, and the z-axis component of the surface normal of the object at the pixel.
In some embodiments, the prediction is a probability vector, the computing the prediction includes supplying the surface-normal image to a trained classifier, and the trained classifier is configured to identify image characteristics of the surface-normal image and to output the probability vector, each element of the probability vector being a probability value corresponding to one of possible image characteristics.
In some embodiments, the trained classifier includes a plurality of statistical models corresponding to the possible image characteristics.
In some embodiments, the image characteristics include facial expressions or object types.
In some embodiments, the object includes a vehicle, a face, or a body.
The accompanying drawings, together with the specification, illustrate example embodiments of the present disclosure, and, together with the description, serve to explain the principles of the present disclosure.
The detailed description set forth below is intended as a description of example embodiments of a system and method for 3D imaging and processing using light polarization, provided in accordance with the present disclosure, and is not intended to represent the only forms in which the present disclosure may be constructed or utilized. The description sets forth the features of the present disclosure in connection with the illustrated embodiments. It is to be understood, however, that the same or equivalent functions and structures may be accomplished by different embodiments that are also intended to be encompassed within the scope of the disclosure. As denoted elsewhere herein, like element numbers are intended to indicate like elements or features.
The polarization camera 10 further includes a polarizer or polarizing filter or polarization mask 16 placed in the optical path between the scene 1 and the image sensor 14. According to some embodiments of the present disclosure, the polarizer or polarization mask 16 is configured to enable the polarization camera 10 to capture images of the scene 1 with the polarizer set at various specified angles (e.g., at 45° rotations or at 60° rotations or at non-uniformly spaced rotations).
As one example,
While the above description relates to some possible implementations of a polarization camera using a polarization mosaic, embodiments of the present disclosure are not limited thereto and encompass other types of polarization cameras that are capable of capturing images at multiple different polarizations. For example, the polarization mask 16 may have fewer than four polarizations or more than four different polarizations, or may have polarizations at different angles than those stated above (e.g., at angles of polarization of: 0°, 60°, and 120° or at angles of polarization of 0°, 30°, 60°, 90°, 120°, and 150°). As another example, the polarization mask 16 may be implemented using an electronically controlled polarization mask, such as an electro-optic modulator (e.g., may include a liquid crystal layer), where the polarization angles of the individual pixels of the mask may be independently controlled, such that different portions of the image sensor 14 receive light having different polarizations. As another example, the electro-optic modulator may be configured to transmit light of different linear polarizations when capturing different frames, e.g., so that the camera captures images with the entirety of the polarization mask set, sequentially, to different linear polarizer angles (e.g., sequentially set to: 0 degrees; 45 degrees; 90 degrees; or 135 degrees). As another example, the polarization mask 16 may include a polarizing filter that rotates mechanically, such that different polarization raw frames are captured by the polarization camera 10 with the polarizing filter mechanically rotated with respect to the lens 12 to transmit light at different angles of polarization to image sensor 14. Furthermore, while the above examples relate to the use of a linear polarizing filter, embodiments of the present disclosure are not limited thereto and also include the use of polarization cameras that include circular polarizing filters (e.g., linear polarizing filters with a quarter wave plate). Accordingly, in some embodiments of the present disclosure, a polarization camera uses a polarizing filter to capture multiple polarization raw frames at different polarizations of light, such as different linear polarization angles and different circular polarizations (e.g., handedness).
As a result, the polarization camera 10 captures multiple input images 18 (or polarization raw frames) of the scene including the surface under inspection 2 of the object under inspection 1 (also referred to as the observed object). In some embodiments, each of the polarization raw frames 18 corresponds to an image taken behind a polarization filter or polarizer at a different angle of polarization ϕpol (e.g., 0 degrees, 45 degrees, 90 degrees, or 135 degrees). Each of the polarization raw frames 18 is captured from substantially the same pose with respect to the scene 1 (e.g., the images captured with the polarization filter at 0 degrees, 45 degrees, 90 degrees, or 135 degrees are all captured by a same polarization camera 100 located at a same location and orientation), as opposed to capturing the polarization raw frames from disparate locations and orientations with respect to the scene. The polarization camera 10 may be configured to detect light in a variety of different portions of the electromagnetic spectrum, such as the human-visible portion of the electromagnetic spectrum, red, green, and blue portions of the human-visible spectrum, as well as invisible portions of the electromagnetic spectrum such as infrared and ultraviolet.
In some embodiments of the present disclosure, such as some of the embodiments described above, the different polarization raw frames are captured by a same polarization camera 10 and therefore may be captured from substantially the same pose (e.g., position and orientation) with respect to the scene 1. However, embodiments of the present disclosure are not limited thereto. For example, a polarization camera 10 may move with respect to the scene 1 between different polarization raw frames (e.g., when different raw polarization raw frames corresponding to different angles of polarization are captured at different times, such as in the case of a mechanically rotating polarizing filter), either because the polarization camera 10 has moved or because objects 3 have moved (e.g., if the object is on a moving conveyor system). In some embodiments, different polarization cameras capture images of the object at different times, but from substantially the same pose with respect to the object (e.g., different cameras capturing images of the same surface of the object at different points in the conveyor system). Accordingly, in some embodiments of the present disclosure, different polarization raw frames are captured with the polarization camera 10 at different poses or the same relative pose with respect to the objects 2 and 3 being imaged in the scene 1.
The polarization raw frames 18 are supplied to a processing circuit 100, described in more detail below, which computes a characterization output 20 based on the polarization raw frames 18. In the embodiment shown in
Some aspects of embodiments of the present disclosure relate to a polarization camera module in which multiple polarization cameras (e.g., multiple cameras, where each camera has a polarizing filter in its optical path) are arranged adjacent to one another and in an array and may be controlled to capture images in a group (e.g., a single trigger may be used to control all of the cameras in the system to capture images concurrently or substantially simultaneously). The polarizing filters in the optical paths of each of the cameras in the array cause differently polarized light to reach the image sensors of the cameras. The individual polarization cameras in the camera system have optical axes that are substantially perpendicular to one another, are placed adjacent to one another (such that parallax shift between cameras is substantially negligible based on the designed operating distance of the camera system to objects in the scene, where larger spacings between the cameras may be tolerated if the designed operating distance is large), and have substantially the same field of view, such that the cameras in the camera system capture substantially the same view of a scene 1, but with different polarizations.
For example, in the embodiment of the polarization camera module 10′ shown in
In some embodiments of the present disclosure, each of the cameras in the camera system 10′ has a corresponding polarizing filter that is configured to filter differently polarized light. For example, in the embodiment shown in
While not shown in
Accordingly,
Embodiments of the present disclosure are not limited to the particular embodiment shown in
In some embodiments of the present disclosure, a stereo polarization camera system includes a plurality of polarization camera modules that are spaced apart along one or more baselines, where each of the polarization camera modules includes a single polarization camera configured to capture polarization raw frames with different polarizations, in accordance with embodiments such as that described above with respect to
While the above embodiments specified that the individual polarization camera modules or the polarization cameras that are spaced apart along one or more baselines in the stereo polarization camera system have substantially parallel optical axes, embodiments of the present disclosure are not limited thereto. For example, in some embodiment of the present disclosure, the optical axes of the polarization camera modules are angled toward each other such that the polarization camera modules provide differently angled views of objects in the designed working distance (e.g., where the optical axes cross or intersect in the neighborhood of the designed working distance from the stereo camera system).
Accordingly, some aspects of embodiments of the present disclosure relate to extracting, from the polarization raw frames, tensors in representation space (or first tensors in first representation spaces, such as polarization feature maps) to be supplied as input to surface characterization algorithms or other computer vision algorithms. These first tensors in first representation space may include polarization feature maps that encode information relating to the polarization of light received from the scene such as the AOLP image shown in
While embodiments of the present invention are not limited to use with particular computer vision algorithms for analyzing images, some aspects of embodiments of the present invention relate to deep learning frameworks for polarization-based detection of optically challenging objects (e.g., transparent, translucent, non-Lam bertian, multipath inducing objects, and non-reflective or very dark objects), where these frameworks may be referred to as Polarized Convolutional Neural Networks (Polarized CNNs). This Polarized CNN framework includes a backbone that is suitable for processing the particular texture of polarization and can be coupled with other computer vision architectures such as Mask R-CNN (e.g., to form a Polarized Mask R-CNN architecture) to produce a solution for accurate and robust characterization of transparent objects and other optically challenging objects. Furthermore, this approach may be applied to scenes with a mix of transparent and non-transparent (e.g., opaque objects) and can be used to characterize transparent, translucent, non-Lam bertian, multipath inducing, dark, and opaque surfaces of the object or objects under inspection.
Polarization Feature Representation Spaces
Some aspects of embodiments of the present disclosure relate to systems and methods for extracting features from polarization raw frames in operation 650, where these extracted features are used in operation 690 in the robust detection of optically challenging characteristics in the surfaces of objects. In contrast, comparative techniques relying on intensity images alone may fail to detect these optically challenging features or surfaces (e.g., comparing the intensity image of
The interaction between light and transparent objects is rich and complex, but the material of an object determines its transparency under visible light. For many transparent household objects, the majority of visible light passes straight through and a small portion (˜4% to ˜8%, depending on the refractive index) is reflected. This is because light in the visible portion of the spectrum has insufficient energy to excite atoms in the transparent object. As a result, the texture (e.g., appearance) of objects behind the transparent object (or visible through the transparent object) dominate the appearance of the transparent object. For example, when looking at a transparent glass cup or tumbler on a table, the appearance of the objects on the other side of the tumbler (e.g., the surface of the table) generally dominate what is seen through the cup. This property leads to some difficulties when attempting to detect surface characteristics of transparent objects such as glass windows and glossy, transparent layers of paint, based on intensity images alone.
Similarly, a light ray hitting the surface of an object may interact with the shape of the surface in various ways. For example, a surface with a glossy paint may behave substantially similarly to a transparent object in front of an opaque object as shown in
A light ray 310 hitting the image sensor 16 of a polarization camera 10 has three measurable components: the intensity of light (intensity image/I), the percentage or proportion of light that is linearly polarized (degree of linear polarization/DOLP/ρ), and the direction of that linear polarization (angle of linear polarization/AOLP/ϕ). These properties encode information about the surface curvature and material of the object being imaged, which can be used by the predictor 710 to detect transparent objects, as described in more detail below. In some embodiments, the predictor 710 can detect other optically challenging objects based on similar polarization properties of light passing through translucent objects and/or light interacting with multipath inducing objects or by non-reflective objects (e.g., matte black objects).
Therefore, some aspects of embodiments of the present invention relate to using a feature extractor 700 to compute first tensors in one or more first representation spaces, which may include derived feature maps based on the intensity I, the DOLP ρ, and the AOLP ϕ. The feature extractor 700 may generally extract information into first representation spaces (or first feature spaces) which include polarization representation spaces (or polarization feature spaces) such as “polarization images,” in other words, images that are extracted based on the polarization raw frames that would not otherwise be computable from intensity images (e.g., images captured by a camera that did not include a polarizing filter or other mechanism for detecting the polarization of light reaching its image sensor), where these polarization images may include DOLP ρ images (in DOLP representation space or feature space), AOLP ϕ images (in AOLP representation space or feature space), other combinations of the polarization raw frames as computed from Stokes vectors, as well as other images (or more generally first tensors or first feature tensors) of information computed from polarization raw frames. The first representation spaces may include non-polarization representation spaces such as the intensity I representation space.
Measuring intensity I, DOLP ρ, and AOLP ϕ at each pixel requires 3 or more polarization raw frames of a scene taken behind polarizing filters (or polarizers) at different angles, ϕpol (e.g., because there are three unknown values to be determined: intensity I, DOLP ρ, and AOLP ϕ. For example, the FLIR® Blackfly® S Polarization Camera described above captures polarization raw frames with polarization angles ϕpol at 0 degrees, 45 degrees, 90 degrees, or 135 degrees, thereby producing four polarization raw frames Iϕ
The relationship between Iϕ
Iϕ
Accordingly, with four different polarization raw frames Iϕ
Shape from Polarization (SfP) theory (see, e.g., Gary A Atkinson and Edwin R Hancock. Recovery of surface orientation from diffuse polarization. IEEE transactions on image processing, 15(6):1653-1664, 2006) states that the relationship between the refractive index (n), azimuth angle (θa) and zenith angle (θz) of the surface normal of an object and the ϕ and ρ components of the light ray coming from that object follow the following characteristics when diffuse reflection is dominant:
and when the specular reflection is dominant:
Note that in both cases ρ increases exponentially as θz increases and if the refractive index is the same, specular reflection is much more polarized than diffuse reflection.
Accordingly, some aspects of embodiments of the present disclosure relate to applying SfP theory to detect the shapes of surfaces (e.g., the orientation of surfaces) based on the raw polarization frames 18 of the surfaces. This approach enables the shapes of objects to be characterized without the use of other computer vision techniques for determining the shapes of objects, such as time-of-flight (ToF) depth sensing and/or stereo vision techniques, although embodiments of the present disclosure may be used in conjunction with such techniques.
More formally, aspects of embodiments of the present disclosure relate to computing first tensors 50 in first representation spaces, including extracting first tensors in polarization representation spaces such as forming polarization images (or extracting derived polarization feature maps) in operation 650 based on polarization raw frames captured by a polarization camera 10.
Light rays coming from a transparent objects have two components: a reflected portion including reflected intensity Ir reflected DOLP ρr, and reflected AOLP ϕr and the refracted portion including refracted intensity It, refracted DOLP ρt, and refracted AOLP ϕt. The intensity of a single pixel in the resulting image can be written as:
I=Ir+It (6)
When a polarizing filter having a linear polarization angle of ϕpol is placed in front of the camera, the value at a given pixel is:
Iϕ
Solving the above expression for the values of a pixel in a DOLP ρ image and a pixel in an AOLP ϕ image in terms of Ir, ρr, ϕr, It, ρt, and ϕt:
Accordingly, equations (7), (8), and (9), above, provide a model for forming first tensors 50 in first representation spaces that include an intensity image I, a DOLP image ρ, and an AOLP image ϕ according to one embodiment of the present disclosure, where the use of polarization images or tensor in polarization representation spaces (including DOLP image ρ and an AOLP image ϕ based on equations (8) and (9)) enables the reliable detection of optically challenging surface characteristics of objects that are generally not detectable by comparative systems that use only intensity I images as input.
In more detail, first tensors in polarization representation spaces (among the derived feature maps 50) such as the polarization images DOLP ρ and AOLP ϕ can reveal surface characteristics of objects that might otherwise appear textureless in an intensity I domain. A transparent object may have a texture that is invisible in the intensity domain I because this intensity is strictly dependent on the ratio of Ir/It (see equation (6)). Unlike opaque objects where It=0, transparent objects transmit most of the incident light and only reflect a small portion of this incident light. As another example, thin or small deviations in the shape of an otherwise smooth surface (or smooth portions in an otherwise rough surface) may be substantially invisible or have low contrast in the intensity I domain (e.g., a domain that does not encode polarization of light), but may be very visible or may have high contrast in a polarization representation space such as DOLP ρ or AOLP ϕ.
As such, one exemplary method to acquire surface topography is to use polarization cues in conjunction with geometric regularization. The Fresnel equations relate the AOLP ϕ and the DOLP ρ with surface normals. These equations can be useful for detecting optically challenging objects by exploiting what is known as polarization patterns of the surfaces of these optically challenging objects. A polarization pattern is a tensor of size [M, N, K] where M and N are horizontal and vertical pixel dimensions, respectively, and where K is the polarization data channel, which can vary in size. For example, if circular polarization is ignored and only linear polarization is considered, then K would be equal to two, because linear polarization has both an angle and a degree of polarization (AOLP ϕ and DOLP ρ). Analogous to a Moire pattern, in some embodiments of the present disclosure, the feature extraction module 700 extracts a polarization pattern in polarization representation spaces (e.g., AOLP space and DOLP space).
While the preceding discussion provides specific examples of polarization representation spaces based on linear polarization in the case of using a polarization camera having one or more linear polarizing filters to capture polarization raw frames corresponding to different angles of linear polarization and to compute tensors in linear polarization representation spaces such as DOLP and AOLP, embodiments of the present disclosure are not limited thereto. For example, in some embodiments of the present disclosure, a polarization camera includes one or more circular polarizing filters configured to pass only circularly polarized light, and where polarization patterns or first tensors in circular polarization representation space are further extracted from the polarization raw frames. In some embodiments, these additional tensors in circular polarization representation space are used alone, and in other embodiments they are used together with the tensors in linear polarization representation spaces such as AOLP and DOLP. For example, a polarization pattern including tensors in polarization representation spaces may include tensors in circular polarization space, AOLP, and DOLP, where the polarization pattern may have dimensions [M, N, K], where K is three to further include the tensor in circular polarization representation space.
Accordingly, some aspects of embodiments of the present disclosure relate to supplying first tensors in the first representation spaces (e.g., including feature maps in polarization representation spaces) extracted from polarization raw frames as inputs to a predictor for computing or detecting surface characteristics of transparent objects and/or other optically challenging surface characteristics of objects under inspection. These first tensors may include derived feature maps which may include an intensity feature map I, a degree of linear polarization (DOLP) ρ feature map, and an angle of linear polarization (AOLP) ϕ feature map, and where the DOLP ρ feature map and the AOLP ϕ feature map are examples of polarization feature maps or tensors in polarization representation spaces, in reference to feature maps that encode information regarding the polarization of light detected by a polarization camera.
In some embodiments, the feature maps or tensors in polarization representation spaces are supplied as input to, for example, detection algorithms that make use of SfP theory to characterize the shape of surfaces of objects imaged by the polarization cameras 10. For example, in some embodiments, in the case of diffuse reflection, equations (2) and (3) are used to compute the zenith angle (θz) and the azimuth angle (θa) of the surface normal of a surface in the scene based on the DOLP ρ and the index of refraction n. Likewise, in the case of specular reflection, equations (3) and (5) are used to compute the zenith angle (θz) and the azimuth angle (θa) of the surface normal of a surface in the scene based on the DOLP ρ and the index of refraction n. As one example, a closed form solution for computing the zenith angle (θz) based on Equation (2) according to one embodiment of the present disclosure in accordance with the following steps:
Additional details on computing surface normal directions based on polarization raw frames can be found, for example, in U.S. Pat. Nos. 10,260,866 and 10,557,705 and Kadambi, Achuta, et al. “Polarized 3D: High-quality depth sensing with polarization cues.” Proceedings of the IEEE International Conference on Computer Vision. 2015, the entire disclosures of which are incorporated by reference herein.
Computing Polarization Cues from Multi-Camera Arrays
Ordinarily, multipolar cues are obtained from a monocular viewpoint. Existing methods use multipolar filters (e.g., a polarization mask as shown in FIG. 1B) or multiple CCD or CMOS sensors to multiplex different polarization channels in a single view (e.g., multiple sensors behind a single lens system) or time multiplexed systems (e.g., where different polarization raw frames are captured at different times, such as sequentially captured, which may require that the scene 1 remain substantially or constant from one capture to the next in order for the views to be the same). In particular, the techniques described above for calculating polarization cues such as the angle of linear polarization (AOLP) ϕ and the degree of linear polarization (DOLP) ρ generally assume that the polarization raw frames are captured from the same viewpoint.
However, there are some circumstances in which the above assumption of a single viewpoint may not hold. For example, polarization raw frames corresponding to different polarization states may be captured from different viewpoints when using a polarization camera array that includes multiple polarization cameras at different locations, such as the embodiments shown in
Accordingly, some aspects of embodiments of the present disclosure relate to systems and methods for computing polarization cues such as AOLP ϕ and DOLP ρ from polarization raw frames captured from different viewpoints, such as by using an array of polarization cameras. Generally, this involves a technique for decoupling parallax cues due to the different positions of the separate polarization cameras and the desired polarization cues. This is challenging because parallax cues and polarization cues are linked in that both the parallax between two views and the sensed polarization are related to the geometry of the relationship between the polarization cameras and the imaged surface. The comparative approaches to obtaining AOLP and DOLP assume that the polarization channels are acquired from the same viewpoint and therefore applying comparative techniques to the data captured by the array of polarization cameras likely results in errors or ambiguity.
In the embodiment shown in
In operation 410, the processing circuit computes an initial estimated DOLP ρ0 and an initial estimated AOLP ϕ0 using the Stokes vectors (e.g., in accordance with equations (10) and (11), above or, more specifically, in accordance with equations (8) and (9). These initial estimated DOLP ρ0 and AOLP ϕ0 will likely be incorrect due to the parallax shift between the different individual polarization cameras of the polarization camera array 10′.
In operation 430, the processing circuit 100 estimates the geometry of the surfaces of the scene depicted in the polarization raw frames. In some embodiments of the present disclosure, the processing circuit 100 uses a view correspondence-based approach to generate a coarse model of the scene using parallax from the stereo view of the scene, due to the offset between the locations of the cameras in the array (e.g., using depth from stereo techniques, as discussed, for example, in Kadambi, A. et al. (2015)). In operation 450, this coarse geometry may then be refined using the current calculated DOLP ρi and AOLP ϕi values (initially, i=0) (see, e.g., U.S. Pat. Nos. 10,260,866 and 10,557,705 and Kadambi, A. et al. (2015)).
The estimated geometry computed in operation 450 is then used to update the estimated values of the DOLP ρ and the AOLP ϕ. For example, in an i-th iteration, a previously calculated DOLP ρi-1 and a previously calculated AOLP ϕi-1 may be used to compute the estimated geometry in operation 450 and, in operation 470, the processing system 100 refines the DOLP and AOLP calculations based on the new estimated geometry to compute new estimates DOLP ρi and AOLP ϕi.
In operation 490, the processing system 100 determines whether to continue with another iteration of the process of estimating the DOLP ρ and AOLP ϕ. In more detail, in some embodiments, a change in the DOLP Δρ is computed based on the difference between the updated DOLP ρi and the previously calculated DOLP ρi-1 (e.g., |ρi−ρi-1|). Likewise, a change in the AOLP Δϕ is computed based on the difference between the updated AOLP ϕi and the previously calculated AOLP ϕi-1 (e.g., |ϕi−ϕi-1|). If either of these changes in polarization cues (e.g., both Δρ and Δϕ) is greater than corresponding threshold values (e.g., ρth and ϕth) across the computed tensors, then the process continues by using the updated DOLP ρi and AOLP ϕi to refine the coarse model in operation 450, and then updating the DOLP and AOLP values based on this new estimated geometry. If both of the changes in the polarization cues are less than their corresponding thresholds, then the estimation process is complete and the estimated DOLP ρi and AOLP ϕi are output from the estimation process, and may be used in computing further processing outputs, such as surface normal maps, instance segmentation maps, etc.
Multi-Spectral Stereo with Polarization Imaging
In many circumstances, such as in remote sensing, multi-spectral images of scenes are capable of capturing information that would otherwise be hidden from view. For example, multi-spectral or hyper-spectral imaging is capable of detecting surface properties of scenes, such as detecting soil properties like moisture, organic content, and salinity, oil impacted soils, which may be useful in agriculture. As another example, multi-spectral imaging may enable the detection of camouflaged targets, such as military vehicles under partial vegetation cover or small military objects within relatively larger pixels. As a further example, multi-spectral imaging enables material identification and mapping, such as detecting the presence or absence of materials in relief geography, mapping of heavy metals and other toxic wastes in mining areas. Multi-spectral imaging also enables the detection of the presence of particular materials, such as water/oil spills (this is of particular importance to indoor robots so they can avoid or perform path planning around these spills and for robotic vacuum cleaners to detect, locate, and clean up spills and other small, dark, and/or specular dirt). Multi-spectral imaging may also be used for material inspection, such as detecting cracks and rust in industrial equipment such as industrial boilers and railway tracks, in which failure can be extremely hazardous and where recovery can be expensive.
In these above examples, computer vision techniques that use comparative and standard color images (e.g., red, green, and blue images) as input, may not be able to detect these types of objects, but the use of multi-spectral or hyper-spectral imaging, combined with polarization information, may provide additional cues that can be detected and recognized by computer vision algorithms and instance detection techniques (e.g., using trained convolutional neural networks).
Generally, the spectral radiance of a surface measures the rate of photons reflected from a surface as a function of surface area, slope, and incident wavelength. The spectral radiance function of most natural images are regular functions of wavelengths which makes it possible to represent these using a low-dimensional linear model. In other words, the spectral representation of light reflected from the surface can be represented as a linear combination of spectral basis functions:
where wi are the linear weights, Bi represents the spectral basis function, and n is the dimensionality of the system. Related work in the area of spectral radiance profiles of natural objects show that, for the most part, the spectral radiance of natural objects can be represented accurately by five or six linear basis functions.
Accordingly, some aspects embodiments of the present disclosure, relate to collecting spectral information simultaneously with polarization information using a stereo imaging pair wherein each camera system (or camera module) of the stereo pair includes a camera array that allows for capturing both the spectral and polarization information.
In the embodiment shown in
In a similar manner, the individual polarization cameras (e.g., cameras 510E″, 510F″, 510G″, and 510BH″) of the second polarization camera module 510-2″ includes a separate color filter 518 that are configured to transmit light in different portions of the electromagnetic spectrum and different from one another. In some embodiment of the present invention, each of the color filters of the second polarization camera module 510-2″ transmits light in a portion of the spectrum that is shifted by some amount (e.g., where the peak of the spectral profile of the color filter is shifted, either toward the longer wavelengths or toward shorter wavelengths, by about 10 nanometers to about 20 nanometers) from the corresponding color filter in the first polarization camera module 510-1″.
In the example embodiment shown in
Together, the four polarization cameras of the second polarization camera module 510-2″ capture light at four different polarization states (e.g., four different linear polarizations of 0°, 45°, 90°, and 135°) and four different colors (e.g., R′, G1′, G2′, and B′) that are also different from the four colors captured by the first polarization camera module 510-1″. As a result, the multi-spectral stereo polarization camera system 510 shown in
While some embodiments of the present disclosure are described in detail above with respect to
In addition, while some embodiments of the present disclosure are described above with respect to color filters that transmit different portions of the visible electromagnetic spectrum, embodiments of the present disclosure are not limited thereto, and may also include the use of color filters that selectively transmit light in other portions of the electromagnetic spectrum, such as infrared light or ultraviolet light.
In some embodiments of the present disclosure, the two different polarization camera modules of the multi-spectral stereo polarization camera system include polarization cameras that are configured to capture polarization raw frames of different polarization states (e.g., different polarization angles), such as using a polarization mask as shown in
Some aspects of embodiments of the present disclosure relate to capturing multi-spectral scenes using hardware arrangements such as those discussed above by determining the spectral basis functions for representation. By estimating the spectral power distribution of scene illumination and using the spectral reflectivity function of the Macbeth color chart, it is possible to simulate a set of basis functions B representing that illumination. This becomes especially feasible when estimating the spectral profile of natural sunlight for outdoor use as is typically the case with multispectral imaging for geo-spatial applications. Once the spectral basis functions are determined, it is straightforward to determine the spectral coefficients for each scene by simply solving for w (weights) in the following equation
p=TS=TBw (2)
where, p represents the pixel values in the different spectral (color) channels (e.g., eight different color channels R, G1, G2, B, R′, G1′, G2′, and B′), T represents the spectral responsivities of the various spectral channels (e.g., the captured values), B represents the spectral basis functions, and w represents the coefficients for the basis functions.
Accordingly, applying equation (13) above enables computation of per-pixel polarization information as well as spectral information.
The multi-spectral or hyper-spectral information computed from multi-spectral hardware, such as that described above, maybe supplied as inputs to other object detection or instance segmentation algorithms (e.g., using convolutional neural networks that are trained or retrained based on labeled multi-spectral polarization image training data), or may be supplied as inputs to classical computer vision algorithms (e.g., such as for detecting the depth of surfaces based on parallax shift of multi-spectral and polarization cues) for detecting the presence of objects in the scenes imaged by stereo multi-spectral polarization camera systems according to embodiments of the present disclosure.
While some embodiments of the present disclosure as described above relate to multi-viewpoint multi-spectral polarization imaging using a stereo camera system (e.g., a stereo pair), embodiments of the present disclosure are not limited thereto. For example, in some embodiments of the present disclosure, a multi-spectral camera system (e.g., using a camera system configured to capture six or more different spectra, such as R, G, B, R′, G′, and B′, as discussed above) sweeps across multiple viewpoints over time, such as when an object of interest is located on a conveyor belt that passes through the field of view of the camera system, or where the camera system moves across the field of view of the object of interest.
As one example, for applications in satellite imaging one has the added advantage of viewing the scene from multiple angles that are highly correlated. The systematic way in which satellites move in straight lines above a given point on the ground allows satellites to obtain highly correlated multi-spectral and polarization data of the surfaces of the ground for each viewing angle across a wide range of viewing angles. Accordingly, in some embodiments of the present disclosure, a processing system 100 determines, for each point on the ground, the optimal angle at which the degree of polarization (DOLP) signal is strongest, thereby providing a strong correlation as to its surface orientation. See, e.g., equations (2) and (4). In addition, because specularity is generally highly viewpoint dependent, most of the views of a given surface will be non-specular, such that equation (2) may be sufficient to compute the orientation of the surface being imaged, without needing to select between the non-specular (or diffuse) equation versus the specular equation (4).
In addition, satellite imaging enables the capture of images of objects captured from very different viewpoints. This large baseline enables the estimation of coarse distances of ground-based objects by leveraging multispectral imaging with polarization and parallax shifts due to the large changes in position. Detecting these coarse distances provides information for disaster management, power transmission line monitoring, and security. For example, utility companies are concerned with the uncontrolled growth of vegetation in and around power transmission and distribution lines due to risks of fire or damage to the transmission lines. By imaging the areas around the power lines from different viewpoints, detecting the parallax shift of the objects when viewed from different viewpoints enables estimations of the surface height of the vegetation and the height of the transmission and distribution lines. Accordingly, this enables the automatic detection of when ground vegetation reaches critical thresholds with respect to proximity of said lines with respect to vegetation growth. To monitor such data both at day and night, some embodiments of the present disclosure relate to fusing polarization data with thermal sensors (e.g., infrared sensors) to provide clear heat signatures irrespective of illumination conditions.
Image Segmentation Using Polarimetric Cues
Some aspects of embodiments of the present disclosure relate to performing instance segmentation using polarimetric cues captured in accordance with embodiments of the present disclosure. Some techniques for performing instance segmentation using polarimetric cues are described in more detail in U.S. Provisional Patent Application No. 62/942,113, filed in the United States Patent and Trademark Office on Nov. 30, 2019 and U.S. Provisional Patent Application No. 63/001,445, filed in the United States Patent and Trademark Office on Mar. 29, 2020, the entire disclosures of which are incorporated by reference herein.
According to various embodiments of the present disclosure, the processing circuit 100 is implemented using one or more electronic circuits configured to perform various operations as described in more detail below. Types of electronic circuits may include a central processing unit (CPU), a graphics processing unit (GPU), an artificial intelligence (AI) accelerator (e.g., a vector processor, which may include vector arithmetic logic units configured efficiently perform operations common to neural networks, such dot products and softmax), a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a digital signal processor (DSP), or the like. For example, in some circumstances, aspects of embodiments of the present disclosure are implemented in program instructions that are stored in a non-volatile computer readable memory where, when executed by the electronic circuit (e.g., a CPU, a GPU, an AI accelerator, or combinations thereof), perform the operations described herein to compute a characterization output 20 from input polarization raw frames 18. The operations performed by the processing circuit 100 may be performed by a single electronic circuit (e.g., a single CPU, a single GPU, or the like) or may be allocated between multiple electronic circuits (e.g., multiple GPUs or a CPU in conjunction with a GPU). The multiple electronic circuits may be local to one another (e.g., located on a same die, located within a same package, or located within a same embedded device or computer system) and/or may be remote from one other (e.g., in communication over a network such as a local personal area network such as Bluetooth®, over a local area network such as a local wired and/or wireless network, and/or over wide area network such as the internet, such a case where some operations are performed locally and other operations are performed on a server hosted by a cloud computing service). One or more electronic circuits operating to implement the processing circuit 100 may be referred to herein as a computer or a computer system, which may include memory storing instructions that, when executed by the one or more electronic circuits, implement the systems and methods described herein.
As shown in
Polarization may be used to detect surface characteristics or features that would otherwise be optically challenging when using intensity information (e.g., color intensity information) alone. For example, polarization information can detect changes in geometry and changes in material in the surfaces of objects. The changes in material (or material changes), such as boundaries between different types of materials (e.g., a black metallic object on a black road or a colorless liquid on a surface may both be substantially invisible in color space, but would both have corresponding polarization signatures in polarization space), may be more visible in polarization space because differences in the refractive indexes of the different materials cause changes in the polarization of the light. Likewise, differences in the specularity of various materials cause different changes in the polarization phase angle of rotation, also leading to detectable features in polarization space that might otherwise be optically challenging to detect without using a polarizing filter. Accordingly, this causes contrast to appear in images or tensors in polarization representation spaces, where corresponding regions of tensors computed in intensity space (e.g., color representation spaces that do not account for the polarization of light) may fail to capture these surface characteristics (e.g., where these surface characteristics have low contrast or may be invisible in these spaces). Examples of optically challenging surface characteristics include: the particular shapes of the surfaces (e.g., degree of smoothness and deviations from ideal or acceptable physical design tolerances for the surfaces); surface roughness and shapes of the surface roughness patterns (e.g., intentional etchings, scratches, and edges in the surfaces of transparent objects and machined parts), burrs and flash at the edges of machined parts and molded parts; and the like. Polarization would also be useful to detect objects with identical colors, but differing material properties, such as scattering or refractive index.
In addition, as discussed above, polarization may be used to obtain the surface normals of objects based on the degree of linear polarization (DOLP) ρ and the angle of linear polarization (AOLP) ϕ computed from the polarization raw frames based on, for example, equations (2), (3), (4), and (5). These surface normal, in turn, provide information about the shapes of the surfaces.
As shown in
As shown in
The polarization representation spaces may include combinations of polarization raw frames in accordance with Stokes vectors. As further examples, the polarization representations may include modifications or transformations of polarization raw frames in accordance with one or more image processing filters (e.g., a filter to increase image contrast or a denoising filter). The feature maps 52, 54, and 56 in first polarization representation spaces may then be supplied to a predictor 710 for detecting surface characteristics based on the feature maps 50.
While
Furthermore, as discussed above with respect to
Accordingly, extracting features such as polarization feature maps, polarization images, and/or surface normals from polarization raw frames 18 produces first tensors 50 from which optically challenging surface characteristics may be detected from images of surfaces of objects under inspection. In some embodiments, the first tensors extracted by the feature extractor 700 may be explicitly derived features (e.g., hand crafted by a human designer) that relate to underlying physical phenomena that may be exhibited in the polarization raw frames (e.g., the calculation of AOLP and DOLP images in linear polarization spaces and the calculation of tensors in circular polarization spaces, as discussed above). In some additional embodiments of the present disclosure, the feature extractor 700 extracts other non-polarization feature maps or non-polarization images, such as intensity maps for different colors of light (e.g., red, green, and blue light) and transformations of the intensity maps (e.g., applying image processing filters to the intensity maps). In some embodiments of the present disclosure the feature extractor 700 may be configured to extract one or more features that are automatically learned (e.g., features that are not manually specified by a human) through an end-to-end supervised training process based on labeled training data. In some embodiments, these learned feature extractors may include deep convolutional neural networks, which may be used in conjunction with traditional computer vision filters (e.g., a Haar wavelet transform, a Canny edge detector, a depth-from-stereo calculator through block matching, and the like).
Augmenting 3D Surface Reconstruction with Polarization Imaging
Some aspects of embodiments of the present disclosure relate to recover high quality reconstructions of closed objects. In some embodiments of the present surface reconstruction is used in conjunction with high quality three-dimensional (3D) models of the objects, such as computer-aided-design (CAD) models of the objects to be scanned to resolve ambiguities arising from a polarization-based imaging process. Previous attempts have devised methods for unknown geometry without having access to CAD models.
Capturing a high quality 3D reconstruction of a physical object for which a high-quality 3D computer model already exists is important in a variety of contexts, such as quality control in the fabrication and/or manufacturing of objects. For example, in the case of additive manufacturing or 3D printing, a designer may create a 3D model of an object and supply the 3D model to a 3D printer, which fabricates a physical object based on the 3D model. During or after the 3D printing process, the physical object fabricated by the 3D printer may be scanned using a stereo polarization camera system according to some embodiments of the present disclosure, and the captured polarization data may be used to assist in the 3D reconstruction of the surfaces of the physical object. This 3D reconstruction can then be compared, in software, to the designed 3D model to detect defects in the 3D printing process. Similar techniques may be applied to other manufacturing processes, such as for creating 3D reconstructions of the shapes of objects created through other manufacturing processes such as injection molding, die-casting, bending, and the like.
As one example, a stereo polarization camera system, such as that described above with respect to
First, there could be regions on the object surface that have valid high-frequency variations (e.g., designed and intended to be present). For example, when creating a replica of a Greek bust or statue, details near the eyes and hair of the scanned 3D model may also be present in the high-quality 3D model that was used to guide the fabrication of the physical object.
Second, there may be regions on the object surface that have high-frequency variations due to blemishes, defects, or other damage on the surface. For example, in the case of 3D printing or additive manufacturing, high frequency patterns may arise due to the layer-wise manufacturing process, causing a “steeped” appearance to surfaces of the object. As another example, an injection molding process may leave seams or flashing in the produced object where the two parts of the mold meet. These details are not reflected in the high-quality 3D model.
Third, combinations of the first and second forms of high frequency variations may occur physically close to one another (e.g., flashing may appear near the hair of the replica of the bust, thereby causing additional lines to appear in the hair).
High-frequency variations due to details are desirable on the real object, while the HFVs due to irregularities are not. However, it is important to be able to recover both of these kinds of HFVs in the 3D reconstruction for the purposes of inspection and profilometry. While some of these HFV details as well as irregularities may not be recovered by a commercially available 3D scanner (due to poor resolution arising from quantization error & other noise sources), embodiments of the present disclosure are able to handle these cases, as discussed in more detail below. Some exemplary implementations may make use of an additional structured lighting projector device to illuminate the object if the object has no visual features. Some embodiments of the present disclosure relate to the use of passive illumination (e.g., based on ambient lighting in the scene).
In some embodiments of the present disclosure, in operation 810, polarization raw frames 18 are captured of an object from multiple viewpoints using, for example, a stereo polarization camera system as describe above with respect to
In operation 820, degree and Angle of Linear Polarization (DOLP ρ and AOLP ϕ) may be computed from Stokes vector formulation for both cameras using PC1 and PC2 as described above. These may be denoted as ρC1, ϕC1, ρC2, and ϕC2. Surface normals (e.g., Zenith θz and Azimuth θa) from polarization can be obtained using shape from polarization (SFP) using DOLP ρ and AOLP ϕ as discussed above with respect to equations (2), (3), (4), and (5) for both cameras C1 and C2 (e.g., based on polarization raw frames PC1 and PC2). These surface normal from the two viewpoints may be denoted as NPol
However, these surface normals suffer from Azimuthal θa ambiguity by an angle of π, which can be disambiguated and corrected by using the CAD reference model as a constraint (e.g., by selecting the azimuthal angle θa that results in a surface that has the smaller distance or error with respect to the reference model). Accordingly, low-frequency noise (e.g., ambiguity by an angle of π) can be resolved using the reference model.
Depending on whether the object is dielectric or non-dielectric (taking cues from the strength of DOLP), an appropriate DOLP computation model may be employed to estimate the zenith angle as discussed above. In some embodiments, the material may be assumed to be dielectric with a refractive index of 1.5 because the refractive index of dielectrics is typically in the range [1.3, 1.6], and that this variation causes negligible change in DOLP ρ. In cases where the material is non-dielectric, the accuracy of the estimated zenith angle would suffer from refractive distortion. Refractive error in zenith is a low-frequency phenomenon and therefore may also be corrected by leveraging the reference model to use as a prior for resolving the refractive error.
Normals NPol
In addition to only relying on the CAD model for resolving ambiguities and errors in 3D reconstruction based on polarization data from one polarization camera (or one polarization camera array), some aspects of embodiments of the present disclosure relate to further improving the quality of the 3D reconstruction by enforcing view-point consistency between the cameras of the stereo polarization camera system.
Accordingly, while some embodiments of the present disclosure relate to computing estimated surface normal as described above through operation 830 shown in
The transformed CAD reference model can then be used as a guidance constraint to correct high frequency azimuthal π ambiguity as well as the low frequency scaling error in zenith due to refractive distortion. Corrected normals will have consistency between the 2 cameras due to Multiview PnP, making this approach more robust. In more detail, in operation 850, the estimated normals NPol
In some circumstances, specularity causes problems in surface reconstruction because the surface texture information is lost due to oversaturation in the intensity of the image. This causes estimated normals on a specular patch to be highly noisy. According to some embodiments of the present disclosure, the polarization camera system includes multiple cameras (e.g., two or more) that are viewing overlapping regions of the scene from multiple viewpoints (e.g., a stereo polarization camera system) spaced apart by a baseline. Specularity is generally a highly viewpoint dependent issue. That is, specularity is less likely to be observed by all the cameras in a setup such as the arrangement shown in
In more detail, some aspects of embodiments of the present disclosure relate to automatically recovering robust surface normals, even in highly specular materials, by imaging the surfaces from multiple viewpoints. Under most lighting conditions, it is highly unlikely that any given patch of a surface will appear specular to all of the cameras in a stereo multi-view camera system.
Accordingly, in some embodiments of the present disclosure, a voting mechanism may be employed to reject normals from a specular patch observed in a particular camera, while selecting the normals from the other cameras for the particular patch, that are more likely to be consistent with each other as well as the CAD model. For example, surface normals may be computed based on the polarization raw frames captured from each of the polarization camera modules in the stereo polarization camera array. If the surface normals computed based on the polarization raw frames are highly inconsistent with one another (e.g., more than a threshold angular distance apart), then the computed surface normals that are closest to the surface normals of the reference model are assumed to be the correct values.
In other embodiments of the present disclosure, specular patches may be detected automatically by identifying saturated pixels in the polarization raw frames. The saturation of the pixels is used to suggest that the particular patch may be observing specularity and therefore information in that region may be inaccurate.
In still other embodiments of the present disclosure, the stereo camera system includes more than two polarization camera modules (e.g., three or more polarization camera modules) which image the surfaces of the objects from different viewpoints. Accordingly, a voting mechanism may be employed, in which the surface normals computed based on the polarization raw frames captured by the various cameras are clustered based on similarity (after transforming the surface normals to correspond to a same frame of reference, such as one of the polarization camera modules). Because most of the polarization camera modules are unlikely to observe specularity, most of the calculated normals should be consistent, within an error range. Accordingly, the clustering process may identify outliers in the calculated surface normals, as caused by the specular artifacts.
A pseudocode description of an algorithm for normals correction based on voting with a CAD reference model prior is presented in more detail as follows. As notation:
The consistency operator (˜) may be modeled as a distance metric (e.g., a cosine similarity based angular distance metric) computed between the normals being compared for consistency. If the angular distance is less than a threshold, the normals being compared are consistent with each other, else not (!˜). The normals being compared are transformed into the same coordinate frame (master-camera or Camera1 image space in this case) using the transforms listed above before applying the consistency operator (˜).
In some embodiments of the present disclosure, the corrected surface normals Corrected_NPol
While the embodiments discussed above relate to the 3D reconstruction of 3D objects based on a high-quality 3D model such as a CAD design model, some aspects of embodiments of the present disclosure further relate to 3D reconstruction of generally flat surfaces or surfaces having known, simple geometry, using multi-view polarized camera system such as that shown in
Accordingly, for the sake of discussion, some embodiments of the present disclosure relate to detecting random, sparse irregularities on an otherwise substantially smooth surface (e.g., a substantially flat surface). As a motivating example, embodiments of the present disclosure may be used to detect potholes in a road using a stereo polarization camera system, such that a self-driving vehicle can avoid those potholes, as practical based on traffic conditions. As another motivating example, embodiments of the present disclosure may be used to detect surface defects in surfaces with generally simple geometries, such as detecting surface irregularities in the smoothness of a pane of glass or in a sheet of metal.
In some embodiments of the present disclosure, a multi-view polarization camera system may further include a structured light projector 903 configured to project patterned light onto a scene to provide additional detectable surface texture for the depth from stereo processes to match between views (e.g., using block matching) for measuring parallax shifts. In some circumstances, the structured light projector is configured to project infrared light and the camera system includes cameras configured to detect infrared light along with light in other spectral bands. Any following analysis of the surfaces may then be performed based on the data collected in the other spectral bands such that the projected pattern is not inadvertently detected as defects in the surface of the material.
In a manner similar to that described above, in some embodiments of the present disclosure, in operation 910, polarization raw frames 18 are captured of a scene (e.g., including substantially flat or smooth surfaces) from multiple viewpoints using, for example, a stereo polarization camera system as describe above with respect to
In operation 920, degree and Angle of Linear Polarization (DOLP ρ and AOLP ϕ) may be computed from Stokes vector formulation for both cameras using PC1 and PC2 as described above. These may be denoted as ρC1, ϕC1, ρC2, and ϕC2.
In operation 930, surface normals (e.g., Zenith θz and Azimuth θa) from polarization can be obtained using shape from polarization (SFP) using DOLP ρ and AOLP ϕ as discussed above with respect to equations (2), (3), (4), and (5) for both cameras C1 and C2 (e.g., based on polarization raw frames PC1 and PC2). Depending on whether the object is dielectric or non-dielectric (taking cues from the strength of DOLP), an appropriate DOLP computation model may be employed to estimate the zenith angle as discussed above. In some embodiments, the material may be assumed to be dielectric with a refractive index of 1.5 because the refractive index of dielectrics is typically in the range [1.3, 1.6], and that this variation causes negligible change in DOLP ρ. In cases where the material is non-dielectric, the accuracy of the estimated zenith angle would suffer from refractive distortion.
These surface normal from the two viewpoints may be denoted as NPol
In addition, in operation 940, a coarse depth map (CDM) is computed based on the parallax shift between pairs of cameras in the stereo polarization camera system, based on depth-from-stereo approaches (e.g., where larger parallax shifts indicate surfaces that are closer to the camera system and smaller parallax shifts indicate that surfaces are farther away). As noted above, in some embodiments, the stereo polarization camera system includes a structured light illumination system, which may improve the matching of corresponding portions of the images when the surfaces do not have intrinsic texture or other visual features. In operation 940, the computed coarse depth map is also aligned to the image spaces corresponding the viewpoints C1 and C2 (e.g., using the relative pose and the extrinsic matrices from the camera calibration), where the coarse depth maps corresponding to these image spaces are denoted CDMC1 and CDMC2.
In operation 950, the estimated normals as NPol
A pseudocode description of an algorithm for normals correction based on voting with a flat surface prior is presented in more detail as follows. As notation:
The consistency operator (˜) may be modeled as a distance metric (e.g., a cosine similarity based angular distance metric) computed between the normals being compared for consistency. If the angular distance is less than a threshold, the normals being compared are consistent with each other, else not (!˜). The normals being compared are transformed into the same coordinate frame (master-camera or Camera1 image space in this case) using the transforms listed above before applying the consistency operator (˜).
In some embodiments, the corrected surface normals Corrected_NPol
Surface defects and irregularities may then be detected based on detecting normals that are noisy or erroneous or that otherwise dis-obey pose consistency across the different camera modules of the stereo polarization camera system. In some circumstances, these sparse irregularities are especially apparent in standing out in different proportions across the DOLP images calculated for each of the views. In other words, portions of the normals map that violate the assumption of flatness or otherwise smoothness of the surface may actually be non-smooth surfaces, thereby enabling the detection of sparse irregularities in a surface that is assumed to be generally smooth.
A Multi-Camera Polarization Enhanced System for Real-Time Visualization Based Feedback Control
A number of industrial applications of imaging involve viewing volumes that are fixed and in controlled lighting conditions. For example, 3D printers have a fixed size print bed and the viewing volume that corresponds to this print bed is a controlled environment in terms of illumination, temperature, and humidity.
Aspects of the present disclosure are directed to a surface profilometry system configured to capture the surface profiles, layer-by-layer, of the objects being printed. This allows for the synthesis of a 3D model at the end of the print job. This may be of great use to an end customer as it allows one to understand the deviation of the printed object from its design target and thereby capture manufacturing tolerances on an object by object basis. For manufacturing of mission critical parts this information assumes even more importance. In addition, the layer-by-layer surface profile captured by the surface profilometry system allows the 3D printer to use that information to take corrective action if necessary to improve the print process and correct for any printed anomalies.
Referring to
For each layer of the object 1006 being printed by the 3D printing system 1002, the processing circuit 100 receive polarization raw frames 18 that correspond to said printed layer of the object 1006. The processing circuit 100 extracts polarization cues from the polarization raw frames 18 and, with the aid of a coarse layer depth map, generates surface-normal images (also referred to as “normal images”). The processing circuit 100 then generates a corresponding 3D surface profile of the layer being printed. In some examples, this 3D surface profile may be used in post-processing analysis to determine deviations of the printed object 1006 from its design target on a layer-by-layer basis, which can be used to improve the printing process or enhance understanding of printing tolerances. Further, the processing circuit 100 may provide the 3D surface profile to the printing system 1002 as feedback (e.g., as a control feedback), which may allow the printing system 1002 to take corrective action in real time (e.g., by correcting printed anomalies). The operations of the printing system 1002, the one or more polarization camera modules 10′, and the processing circuit 100 may be synchronized by virtue of a synchronization signal supplied by the printing system 1002 or an external controller. In some examples, once a layer of the object 1006 is printed, the one or more polarization camera modules 10′ capture the polarization raw images, and the processing circuit 100 completes the processing of these images to generate a 3D profile of the layer, before the printing system 1002 prints the subsequent layer (or before it begins printing the subsequent layer).
In some examples, in order to capture details of the object 1006 with sufficient resolution, the surface profilometry system 1000 may be positioned close enough to the print bed 1004 that the diagonal field of view subtended from the camera may exceed an angular threshold (e.g., 100°). In such scenarios, using a single camera with a large field of view lens may present optical distortions or modulation transfer function (MTF) problems, wherein at large field heights the lens distortion effects may become so severe that the system MTF degrades significantly.
Accordingly, in some examples, the active area of the print bed 1004 is partitioned into two one more regions, each region of which is covered by a different polarization camera module 10′ in a manner that the diagonal field of view of the region to be covered does not exceed the angular threshold (e.g., 100°). This may lead to good control over field distortion and system MTF across all field heights. In some examples, each adjacent pair of partitions has an overlapping region which falls within the field of view of the corresponding adjacent polarization camera modules 10′. The overlapping region may aid in the alignment of images captured by the adjacent polarization camera modules 10′. However, embodiments of the present disclosure are not limited thereto, and the overlapping region may be negligibly small or non-existent, and alignment may be performed without the aid of an overlap region. According to some examples, image alignment may be performed based on prior calibrations using knowledge of the position and orientation of each polarization camera modules 10′ relative to the print bed 1004. The prior calibrations may be encoded as an extrinsic matrix of rotation and translation, which may be stored at the processing system 100.
In embodiments in which a single polarization camera modules 10′ is used per partition, the processing circuit 100 may derive the coarse depth map from the 3D CAD layer model used by the 3D printing system to print the layer of the object 1006 being observed. However, embodiments of the present invention are not limited thereto. According to some embodiments, a pair of polarization camera modules 10′ (such as the stereo polarization camera system 10″ described with reference to
In some embodiments, the processing circuit 100 performs the method 1100 for each layer, or for each one of a subset of layers, of the object 1006 being printed.
In operation 1102, the processing circuit 100 receives polarization raw frames captured of a printed layer of the 3D object using one or more polarization camera modules 10′. The processing circuit 100 then extracts polarization feature maps or polarization images from polarization raw frames, in operation 1104. In so doing, the processing circuit 100 computes, based on the polarization images, degree and angle of linear polarization (DOLP ρ and AOLP ϕ) from Stokes vector formulation for each of the one or more cameras polarization camera modules 10′ (similarly to operation 920 of
In operation 1106, the processing circuit 100 obtains the coarse layer depth map corresponding to the layer of the object 1006 being printed. In some examples, the coarse layer depth map may be the CAD layer model provided by the printing system 1002. In examples in which the surface profilometry system 1000 utilizes a pair of polarization camera modules 10′ (e.g., the stereo polarization camera system 10″), rather than a single polarization camera module 10′, for capturing the polarization cues of each partition of the print bed 1004, the processing circuit 100 may construct the coarse depth map based on the parallax shift between the polarization raw frames captured by the pair.
In operation 1108, the processing circuit 100 generates surface-normal images based on the coarse layer depth map and the polarization images. As described above, in some embodiments, the processing circuit 100 calculates surface normals (e.g., Zenith θz and Azimuth θa) from the polarization images by using shape from polarization (SFP) technique as discussed above with respect to equations (2), (3), (4), and (5) for each of the one or more polarization camera modules 10′. The processing circuit 100 then determines the pose of the layer being printed with respect to each of the one or more polarization camera modules 10′ using Perspective-N-Point (PnP), and transforms the coarse layer depth map into the camera space(s) corresponding to the one or more polarization camera modules 10′ of the surface profilometry system 1000 (as, e.g., described with reference to operation 840 of
In operation 1110, the processing circuit 100 generates a 3D reconstruction of layer being printed based on the corrected surface-normal image(s). As described above, the corrected surface normal(s) may be (independently) integrated over a sample space (Ω) to recover the shape of the entire surface of the printed layer or a portion thereof within the corresponding partition for each camera module 10′. In examples in which the print bed 1004 is divided into two or more partitions with corresponding two or more camera modules 10′, the recovered shape of each partition may be aligned and merged with the recovered shape(s) of the adjacent partition(s) to arrive at the 3D reconstruction of the entire layer being printed. In some examples, the alignment and merging may be performed at the stage of the corrected surface-normal images, and the resulting merged surface-normal image may correspond to the entire layer being printed. This 3D reconstruction, according to some embodiments, may have a higher resolution than what can be obtained by 3D imaging techniques of the related art.
The surface recovered from such integration is expected to match the shape constrained by the CAD layer model, and differences between the surface recovered from integration and the CAD layer model may indicate defective portions of the printed layer.
Long Range 3D Face Scans
Face recognition is an important biometric recognition process that enables authentication of the user in numerous security and surveillance applications. Among existing authentication methods, 3D face scans are potentially more robust with lower false acceptance rates (FAR) and false rejection rates (FRR). As such, there has been growing interest in the field of 3D face authentication. However, 3D face scans using traditional means may not be easy to implement robustly. For instance, in mobile systems, active illumination is used to project a pattern on a user's face and then the projected pattern is sensed to retrieve the depth of key feature points. This technology is widely used but has a number of problems, which include: the added cost and power consumption resulting from using active illumination, the limited range of active illumination, as well as the inability to work reliably in all environmental conditions (e.g., lighting conditions).
Some aspects of embodiments of the present disclosure relate to a 3D imaging system that leverages light polarization and neural networks to 3D scan of a face.
In some embodiments, the 3D imaging system 1100 includes the polarization camera module 10′, the feature extractor 700, and a facial reconstruction neural network 1104. The polarization camera module 10′, which is placed at a distance from the observed face 1102, images the face 1102 and produces a corresponding polarization raw image 18′. The distance between the observed face 1102 and the polarization camera module 10′ is not particularly limited and may be any suitable distance as long as the ability to capture the face 1102 is not limited by the optics of the polarization camera module 10′. The feature extractor 700 computes the feature maps 50, which include surface normals (e.g., estimated surface normals) 58, based on the polarization raw image 18′ via the process described above with respect to
According to some embodiments, the facial reconstruction neural network 1104, which may be a polarized CNN, is trained to correlate a wide variety of feature maps (e.g., surface normals) with detailed 3D reconstructions of faces from which the feature maps were generated.
Accordingly, aspects of some embodiments of the present disclosure are related to a 3D imaging system capable of generating a plurality of enhanced/detailed 3D facial reconstructions based on faces captured by one or more polarization camera module 10′.
In some embodiments, the 3D imaging system 1110 includes one or more polarization camera modules 10′ for capturing one or more polarization raw frames/images 18, and a processing system 100 for generating a 3D reconstruction 1106′ of the observed face 1102′ based on the one or more polarization raw images 18.
In some embodiments, the one or more polarization camera modules 10′ include a least first and second polarization camera modules 10-1′ and 10-2′ (such as the stereo polarization camera system 10″), which capture polarization raw frames 18 from at least two viewpoints, and the processing system 100 generates its own coarse depth map based on the polarization raw frames 18. In some embodiments, the processing system 100 computes an initial estimate of DOLP ρ and AOLP ϕ for each of the at least two viewpoints, computes estimated surface normals from the initial estimate of DOLP ρ and AOLP ϕ for each of the at least two view points, and estimates the face geometry based on the polarization raw frames 18 (as in, e.g., operations 410 and 430 of
Here, each pair of estimated surface normals and the corresponding 3D reconstruction associated with a particular view point form one set of training data for the 3D imaging system 1100 of
While the 3D imaging system 1110 may generate the initial coarse depth map of the observed face 1102′ based on triangulation (i.e., the parallax shift between two or more polarization camera modules 10′), embodiments of the present invention are not limited thereto.
For instance, in some embodiments, the 3D imaging system 1110 further includes a coarse depth map generator 1112 that may generate the initial coarse face model based on a monocular 2D color image (e.g., RGB or RGBG image) of the observed face 1102′. This 2D color image may be captured by one of the polarization camera modules 10′ that is capable of capturing color information in addition to polarization data, or may be captured by a separate conventional color camera (e.g., RGB camera) that has a field of view similar to that of the one or more polarization camera modules 10′. The coarse depth map generator 1112 may utilize an algorithm for depth estimation, or a neural network trained to estimate depth information, based on a 2-dimensional image (e.g., using the inverse square law), and thus obtains an initial coarse depth map or model of the observed face 1102′. In some other embodiments, 3D imaging system 1110 may further include a depth sensor configured to measure depth from focus/defocus, motion, etc., and the coarse depth map generator 1112 may generate the initial coarse face model based on input from the depth sensor. According to some further embodiments, the coarse depth map generator 1112 may provide a model of a generic human face (e.g., an average human face or a 3D morphable model (3DMM) of a face) to the processing system 100 to be used as the initial coarse face model that is then refined as described above. In such embodiments, the processing system 100 may align the model of the generic face provided by the coarse depth map generator 1112 to the image spaces corresponding to the viewpoint(s) of the one or more polarization camera modules 10′, as described above with reference to operation 840 of
Slope-Net: Using Surface Normal Information for Creation of Object Signatures
And Face Signatures.
Object and face understanding are important problems to solve. The applications of object recognition and understanding are numerous, such as fashion design, product recognition, sorting, and more. Face emotion detection and face recognition may be important for applications such as driver monitoring, user authentication (e.g., in the areas of automatic payments, security, etc.), general surveillance, and the like. Both of object recognition and facial understanding rely on being able to take pixels from an image, and converting them into a signature, or representation, that doesn't change from image to image. The field of representation learning in machine learning is currently dedicated to the task of predicting complex inputs onto low dimensional manifolds. Generally, the lower the dimension of the data manifold, the easier it is to learn these representations. Standard RGB images, which do not contain surface normal information, may include a great deal of scene-specific information about texture, lighting, etc. The face/object recognition algorithms of the related art learn this manifold through learning an embedding space, i.e., a relatively low-dimensional space into which each image (which is a high-dimensional vector) is translated to a low dimensional vector. This training process may be very slow and prone to divergence.
In contrast, an image with just the surface normals does not contain any texture or lighting information, which lowers the complexity of the manifold that must be learnt. This may allow for quicker and more accurate learning.
Some aspects of embodiments of the present disclosure relate to generating surface-normal images of various objects and/or faces and compiling one or more libraries of such surface-normal images for later processing. According to some embodiments, in the surface-normal image, the red, green, and blue values of each of the pixels encode surface normal information at that pixel. In some embodiments, the first, second, and third values of the RGB values for a pixel respectively represent the x-axis component, the y-axis component, and the z-axis component of the surface normal at that pixel. In some examples, the first, second, and third values may be red, green, and blue values, respectively; however, embodiments of the present invention are not limited thereto, and the first, second, and third values may be blue, red, and green values, respectively, or any other ordering of these values. To achieve consistency across the library of surface-normal images and to enable ease of use in post-processing, the x-, y-, and z-axis components of the surface normals are mapped to the same ones of the RGB values in all surface-normal images of the library (this may be referred to as mapping consistency).
Each surface-normal image within the library may be associated with a label or tag that identifies and/or characterizes the object captured by the image. The surface-normal images within a library may all be associated with a particular class of objects (e.g., vehicles, bikes, animals, traffic lights, pedestrians, faces, etc.). For example, a library may contain surface-normal image of various types of vehicles, such as trucks, sport utility vehicles (SUVs), vans, sedans, etc, and each surface-normal image within this library may be labeled to identify the vehicle type. In another example, a library may include surface-normal image of various human facial expressions, each being labeled with the associated captured expression (e.g., laugh, smile, frown, surprise, disgust, etc.).
The labeling of the surface-normal images may be done manually (e.g., labeled by a human) or may be performed by a machine (e.g., a computer) when synthesized images are used to generate the surface-normal images.
Each surface-normal image may be generated using the techniques described above. For example, an object may be imaged via a polarization camera module 10′ or the stereo polarization camera system 10″ and the feature extractor 700 may generate the corresponding surface-normal image, as described above with respect to
According to some embodiments, the one or more libraries are used to train different machine learning algorithms (e.g., predictor/classifiers). In some examples, a library of surface-normal images corresponding to human faces may be used to train a classifier (e.g., facial expression classifier) to identify different emotional states. In so doing, a classifier, such as the predictor 710, is trained to correlate the facial normal images with the corresponding labels, which may indicate the emotional state captured by the image. This classifier may then be used to identify emotional states of a captured face based solely on the surface normals of an observed face. Similarly, the classifier may be trained to recognize intent, gaze, physical wellness, gait, and/or the like based on normal images of human faces or human bodies.
In other examples, the classifier (e.g., the predictor 710) may be trained to identify different types of vehicles, such as trucks, SUVs, vans, sedans, etc., by using surface-normal images from a library containing labeled normal images of various vehicle types.
According to some embodiments, the predictor 710 includes a trained classifier that classifies the input surface-normal image 50′ input into one or more categories. For example, the trained classifier may compute a characterization output 20 that includes a vector (e.g., a probability vector) having a length equal to the number of different possible image characteristics (e.g., facial expressions or vehicle types) that the classifier is trained to detect, where each value in the vector corresponds to a confidence that the input surface-normal image 50′ depicts the corresponding image characteristic. In some embodiments, the predictor 710 includes a plurality of statistical models (e.g., 712, 714 . . . 716, etc.) associated with different types of image characteristics, and each model provides a confidence level that the input surface-normal image 50′ matches the associated image characteristic. For example, when the image characteristics are facial expressions, each of the models of the predictor 710 may be associated with corresponding one of laugh, smile, frown, surprise, etc, and the predictor 710 may output a vector, where each element in the vector is a confidence/probability value corresponding to one of a laugh, smile, frown, surprise, etc.
The classifier may be trained to input surface-normal images 50′ of a fixed size and a particular mapping consistency. For example, the first, second, and third values of the RGB values for a pixel of the surface-normal image 50′ respectively represent the x-axis component, the y-axis component, and the z-axis component of the surface normal at that pixel. The classifier may include, for example, a support vector machine, a deep neural network (e.g., a deep fully connected neural network), and the like.
In embodiments in which the classifier utilizes a neural network such as a convolutional neural network (e.g., a Polarization Mask R-CNN), the training process may include updating the weights of connections between neurons of various layers of the neural network in accordance with a backpropagation algorithm and the use of gradient descent to iteratively adjust the weights to minimize an error (or loss) between the output of the neural network and the labeled training data.
The operations performed by the constituent components of the surface profilometry system and the various 3D imaging systems of the present disclosure may be performed by a “processing circuit” or “processor” that may include any combination of hardware, firmware, and software, employed to process data or digital signals. Processing circuit hardware may include, for example, application specific integrated circuits (ASICs), general purpose or special purpose central processing units (CPUs), digital signal processors (DSPs), graphics processing units (GPUs), and programmable logic devices such as field programmable gate arrays (FPGAs). In a processing circuit, as used herein, each function is performed either by hardware configured, i.e., hard-wired, to perform that function, or by more general-purpose hardware, such as a CPU, configured to execute instructions stored in a non-transitory storage medium. A processing circuit may be fabricated on a single printed wiring board (PWB) or distributed over several interconnected PWBs. A processing circuit may contain other processing circuits; for example, a processing circuit may include two processing circuits, an FPGA and a CPU, interconnected on a PWB.
It will be understood that, although the terms “first”, “second”, “third”, etc., may be used herein to describe various elements, components, regions, layers, and/or sections, these elements, components, regions, layers, and/or sections should not be limited by these terms. These terms are used to distinguish one element, component, region, layer, or section from another element, component, region, layer, or section. Thus, a first element, component, region, layer, or section discussed below could be termed a second element, component, region, layer, or section, without departing from the scope of the inventive concept.
The terminology used herein is for the purpose of describing particular embodiments and is not intended to be limiting of the inventive concept. As used herein, the singular forms “a” and “an” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “include”, “including”, “comprises”, and/or “comprising”, when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. Further, the use of “may” when describing embodiments of the inventive concept refers to “one or more embodiments of the inventive concept”. Also, the term “exemplary” is intended to refer to an example or illustration.
As used herein, the terms “use”, “using”, and “used” may be considered synonymous with the terms “utilize”, “utilizing”, and “utilized”, respectively.
Further, the use of “may” when describing embodiments of the inventive concept refers to “one or more embodiments of the inventive concept.” Also, the term “exemplary” is intended to refer to an example or illustration.
While the present invention has been described in connection with certain exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims, and equivalents thereof.
This application is a U.S. National Phase patent application of International Application Number PCT/US20/54645, filed on Oct. 7, 2020, which claims priority to and the benefit of U.S. Provisional Patent Application No. 62/911,952, filed in the United States Patent and Trademark Office on Oct. 7, 2019 and which claims priority to and the benefit of U.S. Provisional Patent Application No. 62/942,113, filed in the United States Patent and Trademark Office on Nov. 30, 2019, and which claims priority to and the benefit of U.S. Provisional Patent Application No. 63/001,445, filed in the United States Patent and Trademark Office on Mar. 29, 2020, the entire disclosures of each of which is incorporated by reference herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/054645 | 10/7/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/071995 | 4/15/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4124798 | Thompson | Nov 1978 | A |
4198646 | Alexander et al. | Apr 1980 | A |
4323925 | Abell et al. | Apr 1982 | A |
4460449 | Montalbano | Jul 1984 | A |
4467365 | Murayama et al. | Aug 1984 | A |
4652909 | Glenn | Mar 1987 | A |
4888645 | Mitchell et al. | Dec 1989 | A |
4899060 | Lischke | Feb 1990 | A |
4962425 | Rea | Oct 1990 | A |
5005083 | Grage et al. | Apr 1991 | A |
5070414 | Tsutsumi | Dec 1991 | A |
5144448 | Hornbaker et al. | Sep 1992 | A |
5157499 | Oguma et al. | Oct 1992 | A |
5325449 | Burt et al. | Jun 1994 | A |
5327125 | Iwase et al. | Jul 1994 | A |
5463464 | Ladewski | Oct 1995 | A |
5475422 | Suzuki et al. | Dec 1995 | A |
5488674 | Burt et al. | Jan 1996 | A |
5517236 | Sergeant et al. | May 1996 | A |
5629524 | Stettner et al. | May 1997 | A |
5638461 | Fridge | Jun 1997 | A |
5675377 | Gibas et al. | Oct 1997 | A |
5703961 | Rogina et al. | Dec 1997 | A |
5710875 | Hsu et al. | Jan 1998 | A |
5757425 | Barton et al. | May 1998 | A |
5793900 | Nourbakhsh et al. | Aug 1998 | A |
5801919 | Griencewic | Sep 1998 | A |
5808350 | Jack et al. | Sep 1998 | A |
5832312 | Rieger et al. | Nov 1998 | A |
5833507 | Woodgate et al. | Nov 1998 | A |
5880691 | Fossum et al. | Mar 1999 | A |
5911008 | Niikura et al. | Jun 1999 | A |
5933190 | Dierickx et al. | Aug 1999 | A |
5963664 | Kumar et al. | Oct 1999 | A |
5973844 | Burger | Oct 1999 | A |
6002743 | Telymonde | Dec 1999 | A |
6005607 | Uomori et al. | Dec 1999 | A |
6034690 | Gallery et al. | Mar 2000 | A |
6069351 | Mack | May 2000 | A |
6069365 | Chow et al. | May 2000 | A |
6084979 | Kanade et al. | Jul 2000 | A |
6095989 | Hay et al. | Aug 2000 | A |
6097394 | Levoy et al. | Aug 2000 | A |
6124974 | Burger | Sep 2000 | A |
6130786 | Osawa et al. | Oct 2000 | A |
6137100 | Fossum et al. | Oct 2000 | A |
6137535 | Meyers | Oct 2000 | A |
6141048 | Meyers | Oct 2000 | A |
6160909 | Melen | Dec 2000 | A |
6163414 | Kikuchi et al. | Dec 2000 | A |
6172352 | Liu | Jan 2001 | B1 |
6175379 | Uomori et al. | Jan 2001 | B1 |
6185529 | Chen et al. | Feb 2001 | B1 |
6198852 | Anandan et al. | Mar 2001 | B1 |
6205241 | Melen | Mar 2001 | B1 |
6239909 | Hayashi et al. | May 2001 | B1 |
6292713 | Jouppi et al. | Sep 2001 | B1 |
6340994 | Margulis et al. | Jan 2002 | B1 |
6358862 | Ireland et al. | Mar 2002 | B1 |
6373518 | Sogawa | Apr 2002 | B1 |
6419638 | Hay et al. | Jul 2002 | B1 |
6443579 | Myers | Sep 2002 | B1 |
6445815 | Sato | Sep 2002 | B1 |
6476805 | Shume et al. | Nov 2002 | B1 |
6477260 | Shimomura | Nov 2002 | B1 |
6502097 | Chan et al. | Dec 2002 | B1 |
6525302 | Dowski, Jr. et al. | Feb 2003 | B2 |
6546153 | Hoydal | Apr 2003 | B1 |
6552742 | Seta | Apr 2003 | B1 |
6563537 | Kawamura et al. | May 2003 | B1 |
6571466 | Glenn et al. | Jun 2003 | B1 |
6603513 | Berezin | Aug 2003 | B1 |
6611289 | Yu et al. | Aug 2003 | B1 |
6627896 | Hashimoto et al. | Sep 2003 | B1 |
6628330 | Lin | Sep 2003 | B1 |
6628845 | Stone et al. | Sep 2003 | B1 |
6635941 | Suda | Oct 2003 | B2 |
6639596 | Shum et al. | Oct 2003 | B1 |
6647142 | Beardsley | Nov 2003 | B1 |
6657218 | Noda | Dec 2003 | B2 |
6671399 | Berestov | Dec 2003 | B1 |
6674892 | Melen | Jan 2004 | B1 |
6750488 | Driescher et al. | Jun 2004 | B1 |
6750904 | Lambert | Jun 2004 | B1 |
6765617 | Tangen et al. | Jul 2004 | B1 |
6771833 | Edgar | Aug 2004 | B1 |
6774941 | Boisvert et al. | Aug 2004 | B1 |
6788338 | Dinev et al. | Sep 2004 | B1 |
6795253 | Shinohara | Sep 2004 | B2 |
6801653 | Wu et al. | Oct 2004 | B1 |
6819328 | Moriwaki et al. | Nov 2004 | B1 |
6819358 | Kagle et al. | Nov 2004 | B1 |
6833863 | Clemens | Dec 2004 | B1 |
6879735 | Portniaguine et al. | Apr 2005 | B1 |
6897454 | Sasaki et al. | May 2005 | B2 |
6903770 | Kobayashi et al. | Jun 2005 | B1 |
6909121 | Nishikawa | Jun 2005 | B2 |
6917702 | Beardsley | Jul 2005 | B2 |
6927922 | George et al. | Aug 2005 | B2 |
6958862 | Joseph | Oct 2005 | B1 |
6985175 | Iwai et al. | Jan 2006 | B2 |
7013318 | Rosengard et al. | Mar 2006 | B2 |
7015954 | Foote et al. | Mar 2006 | B1 |
7085409 | Sawhney et al. | Aug 2006 | B2 |
7161614 | Yamashita et al. | Jan 2007 | B1 |
7199348 | Olsen et al. | Apr 2007 | B2 |
7206449 | Raskar et al. | Apr 2007 | B2 |
7215364 | Wachtel et al. | May 2007 | B2 |
7235785 | Hornback et al. | Jun 2007 | B2 |
7245761 | Swaminathan et al. | Jul 2007 | B2 |
7262799 | Suda | Aug 2007 | B2 |
7292735 | Blake et al. | Nov 2007 | B2 |
7295697 | Satoh | Nov 2007 | B1 |
7333651 | Kim et al. | Feb 2008 | B1 |
7369165 | Bosco et al. | May 2008 | B2 |
7391572 | Jacobowitz et al. | Jun 2008 | B2 |
7408725 | Sato | Aug 2008 | B2 |
7425984 | Chen et al. | Sep 2008 | B2 |
7430312 | Gu | Sep 2008 | B2 |
7471765 | Jaffray et al. | Dec 2008 | B2 |
7496293 | Shamir et al. | Feb 2009 | B2 |
7564019 | Olsen et al. | Jul 2009 | B2 |
7599547 | Sun et al. | Oct 2009 | B2 |
7606484 | Richards et al. | Oct 2009 | B1 |
7620265 | Wolff et al. | Nov 2009 | B1 |
7633511 | Shum et al. | Dec 2009 | B2 |
7639435 | Chiang | Dec 2009 | B2 |
7639838 | Nims | Dec 2009 | B2 |
7646549 | Zalevsky et al. | Jan 2010 | B2 |
7657090 | Omatsu et al. | Feb 2010 | B2 |
7667824 | Moran | Feb 2010 | B1 |
7675080 | Boettiger | Mar 2010 | B2 |
7675681 | Tomikawa et al. | Mar 2010 | B2 |
7706634 | Schmitt et al. | Apr 2010 | B2 |
7723662 | Levoy et al. | May 2010 | B2 |
7738013 | Galambos et al. | Jun 2010 | B2 |
7741620 | Doering et al. | Jun 2010 | B2 |
7782364 | Smith | Aug 2010 | B2 |
7826153 | Hong | Nov 2010 | B2 |
7840067 | Shen et al. | Nov 2010 | B2 |
7912673 | Hébert et al. | Mar 2011 | B2 |
7924321 | Nayar et al. | Apr 2011 | B2 |
7956871 | Fainstain et al. | Jun 2011 | B2 |
7965314 | Miller et al. | Jun 2011 | B1 |
7973834 | Yang | Jul 2011 | B2 |
7986018 | Rennie | Jul 2011 | B2 |
7990447 | Honda et al. | Aug 2011 | B2 |
8000498 | Shih et al. | Aug 2011 | B2 |
8013904 | Tan et al. | Sep 2011 | B2 |
8027531 | Wilburn et al. | Sep 2011 | B2 |
8044994 | Vetro et al. | Oct 2011 | B2 |
8055466 | Bryll | Nov 2011 | B2 |
8077245 | Adamo et al. | Dec 2011 | B2 |
8089515 | Chebil et al. | Jan 2012 | B2 |
8098297 | Crisan et al. | Jan 2012 | B2 |
8098304 | Pinto et al. | Jan 2012 | B2 |
8106949 | Tan et al. | Jan 2012 | B2 |
8111910 | Tanaka | Feb 2012 | B2 |
8126279 | Marcellin et al. | Feb 2012 | B2 |
8130120 | Kawabata et al. | Mar 2012 | B2 |
8131097 | Lelescu et al. | Mar 2012 | B2 |
8149323 | Li et al. | Apr 2012 | B2 |
8164629 | Zhang | Apr 2012 | B1 |
8169486 | Corcoran et al. | May 2012 | B2 |
8180145 | Wu et al. | May 2012 | B2 |
8189065 | Georgiev et al. | May 2012 | B2 |
8189089 | Georgiev et al. | May 2012 | B1 |
8194296 | Compton et al. | Jun 2012 | B2 |
8212914 | Chiu | Jul 2012 | B2 |
8213711 | Tam | Jul 2012 | B2 |
8231814 | Duparre | Jul 2012 | B2 |
8242426 | Ward et al. | Aug 2012 | B2 |
8244027 | Takahashi | Aug 2012 | B2 |
8244058 | Intwala et al. | Aug 2012 | B1 |
8254668 | Mashitani et al. | Aug 2012 | B2 |
8279325 | Pitts et al. | Oct 2012 | B2 |
8280194 | Wong et al. | Oct 2012 | B2 |
8284240 | Saint-Pierre et al. | Oct 2012 | B2 |
8289409 | Chang | Oct 2012 | B2 |
8289440 | Pitts et al. | Oct 2012 | B2 |
8290358 | Georgiev | Oct 2012 | B1 |
8294099 | Blackwell, Jr. | Oct 2012 | B2 |
8294754 | Jung et al. | Oct 2012 | B2 |
8300085 | Yang et al. | Oct 2012 | B2 |
8305456 | McMahon | Nov 2012 | B1 |
8315476 | Georgiev et al. | Nov 2012 | B1 |
8345144 | Georgiev et al. | Jan 2013 | B1 |
8360574 | Ishak et al. | Jan 2013 | B2 |
8400555 | Georgiev et al. | Mar 2013 | B1 |
8406562 | Bassi et al. | Mar 2013 | B2 |
8411146 | Twede | Apr 2013 | B2 |
8416282 | Lablans | Apr 2013 | B2 |
8446492 | Nakano et al. | May 2013 | B2 |
8456517 | Spektor et al. | Jun 2013 | B2 |
8493496 | Freedman et al. | Jul 2013 | B2 |
8514291 | Chang | Aug 2013 | B2 |
8514491 | Duparre | Aug 2013 | B2 |
8541730 | Inuiya | Sep 2013 | B2 |
8542933 | Venkataraman et al. | Sep 2013 | B2 |
8553093 | Wong et al. | Oct 2013 | B2 |
8558929 | Tredwell | Oct 2013 | B2 |
8559705 | Ng | Oct 2013 | B2 |
8559756 | Georgiev et al. | Oct 2013 | B2 |
8565547 | Strandemar | Oct 2013 | B2 |
8576302 | Yoshikawa | Nov 2013 | B2 |
8577183 | Robinson | Nov 2013 | B2 |
8581995 | Lin et al. | Nov 2013 | B2 |
8619082 | Ciurea et al. | Dec 2013 | B1 |
8648918 | Kauker et al. | Feb 2014 | B2 |
8648919 | Mantzel et al. | Feb 2014 | B2 |
8655052 | Spooner et al. | Feb 2014 | B2 |
8682107 | Yoon et al. | Mar 2014 | B2 |
8687087 | Pertsel et al. | Apr 2014 | B2 |
8692893 | McMahon | Apr 2014 | B2 |
8754941 | Sarwari et al. | Jun 2014 | B1 |
8773536 | Zhang | Jul 2014 | B1 |
8780113 | Ciurea et al. | Jul 2014 | B1 |
8787691 | Takahashi et al. | Jul 2014 | B2 |
8792710 | Keselman | Jul 2014 | B2 |
8804255 | Duparre | Aug 2014 | B2 |
8823813 | Mantzel et al. | Sep 2014 | B2 |
8830375 | Ludwig | Sep 2014 | B2 |
8831367 | Venkataraman et al. | Sep 2014 | B2 |
8831377 | Pitts et al. | Sep 2014 | B2 |
8836793 | Kriesel et al. | Sep 2014 | B1 |
8842201 | Tajiri | Sep 2014 | B2 |
8854433 | Rafii | Oct 2014 | B1 |
8854462 | Herbin et al. | Oct 2014 | B2 |
8861089 | Duparre | Oct 2014 | B2 |
8866912 | Mullis | Oct 2014 | B2 |
8866920 | Venkataraman et al. | Oct 2014 | B2 |
8866951 | Keelan | Oct 2014 | B2 |
8878950 | Lelescu et al. | Nov 2014 | B2 |
8885059 | Venkataraman et al. | Nov 2014 | B1 |
8885922 | Ito et al. | Nov 2014 | B2 |
8896594 | Xiong et al. | Nov 2014 | B2 |
8896719 | Venkataraman et al. | Nov 2014 | B1 |
8902321 | Venkataraman et al. | Dec 2014 | B2 |
8928793 | McMahon | Jan 2015 | B2 |
8977038 | Tian et al. | Mar 2015 | B2 |
9001226 | Ng et al. | Apr 2015 | B1 |
9019426 | Han et al. | Apr 2015 | B2 |
9025894 | Venkataraman et al. | May 2015 | B2 |
9025895 | Venkataraman et al. | May 2015 | B2 |
9030528 | Pesach et al. | May 2015 | B2 |
9031335 | Venkataraman et al. | May 2015 | B2 |
9031342 | Venkataraman | May 2015 | B2 |
9031343 | Venkataraman | May 2015 | B2 |
9036928 | Venkataraman | May 2015 | B2 |
9036931 | Venkataraman et al. | May 2015 | B2 |
9041823 | Venkataraman et al. | May 2015 | B2 |
9041824 | Lelescu et al. | May 2015 | B2 |
9041829 | Venkataraman et al. | May 2015 | B2 |
9042667 | Venkataraman et al. | May 2015 | B2 |
9047684 | Lelescu et al. | Jun 2015 | B2 |
9049367 | Venkataraman et al. | Jun 2015 | B2 |
9055233 | Venkataraman et al. | Jun 2015 | B2 |
9060120 | Venkataraman et al. | Jun 2015 | B2 |
9060124 | Venkataraman et al. | Jun 2015 | B2 |
9077893 | Venkataraman et al. | Jul 2015 | B2 |
9094661 | Venkataraman et al. | Jul 2015 | B2 |
9100586 | McMahon et al. | Aug 2015 | B2 |
9100635 | Duparre et al. | Aug 2015 | B2 |
9123117 | Ciurea et al. | Sep 2015 | B2 |
9123118 | Ciurea et al. | Sep 2015 | B2 |
9124815 | Venkataraman et al. | Sep 2015 | B2 |
9124831 | Mullis | Sep 2015 | B2 |
9124864 | Mullis | Sep 2015 | B2 |
9128228 | Duparre | Sep 2015 | B2 |
9129183 | Venkataraman et al. | Sep 2015 | B2 |
9129377 | Ciurea et al. | Sep 2015 | B2 |
9143711 | McMahon | Sep 2015 | B2 |
9147254 | Florian et al. | Sep 2015 | B2 |
9185276 | Rodda et al. | Nov 2015 | B2 |
9188765 | Venkataraman et al. | Nov 2015 | B2 |
9191580 | Venkataraman et al. | Nov 2015 | B2 |
9197821 | McMahon | Nov 2015 | B2 |
9210392 | Nisenzon et al. | Dec 2015 | B2 |
9214013 | Venkataraman et al. | Dec 2015 | B2 |
9235898 | Venkataraman et al. | Jan 2016 | B2 |
9235900 | Ciurea et al. | Jan 2016 | B2 |
9240049 | Ciurea et al. | Jan 2016 | B2 |
9247117 | Jacques | Jan 2016 | B2 |
9253380 | Venkataraman et al. | Feb 2016 | B2 |
9253397 | Lee et al. | Feb 2016 | B2 |
9256974 | Hines | Feb 2016 | B1 |
9264592 | Rodda et al. | Feb 2016 | B2 |
9264610 | Duparre | Feb 2016 | B2 |
9361662 | Lelescu et al. | Jun 2016 | B2 |
9374512 | Venkataraman et al. | Jun 2016 | B2 |
9412206 | McMahon et al. | Aug 2016 | B2 |
9413953 | Maeda | Aug 2016 | B2 |
9426343 | Rodda et al. | Aug 2016 | B2 |
9426361 | Venkataraman et al. | Aug 2016 | B2 |
9438888 | Venkataraman et al. | Sep 2016 | B2 |
9445003 | Lelescu et al. | Sep 2016 | B1 |
9456134 | Venkataraman et al. | Sep 2016 | B2 |
9456196 | Kim et al. | Sep 2016 | B2 |
9462164 | Venkataraman et al. | Oct 2016 | B2 |
9485496 | Venkataraman et al. | Nov 2016 | B2 |
9497370 | Venkataraman et al. | Nov 2016 | B2 |
9497429 | Mullis et al. | Nov 2016 | B2 |
9516222 | Duparre et al. | Dec 2016 | B2 |
9519972 | Venkataraman et al. | Dec 2016 | B2 |
9521319 | Rodda et al. | Dec 2016 | B2 |
9521416 | McMahon et al. | Dec 2016 | B1 |
9536166 | Venkataraman et al. | Jan 2017 | B2 |
9576369 | Venkataraman et al. | Feb 2017 | B2 |
9578237 | Duparre et al. | Feb 2017 | B2 |
9578259 | Molina | Feb 2017 | B2 |
9602805 | Venkataraman et al. | Mar 2017 | B2 |
9633442 | Venkataraman et al. | Apr 2017 | B2 |
9635274 | Lin et al. | Apr 2017 | B2 |
9638883 | Duparre | May 2017 | B1 |
9661310 | Deng et al. | May 2017 | B2 |
9706132 | Nisenzon et al. | Jul 2017 | B2 |
9712759 | Venkataraman et al. | Jul 2017 | B2 |
9729865 | Kuo et al. | Aug 2017 | B1 |
9733486 | Lelescu et al. | Aug 2017 | B2 |
9741118 | Mullis | Aug 2017 | B2 |
9743051 | Venkataraman et al. | Aug 2017 | B2 |
9749547 | Venkataraman et al. | Aug 2017 | B2 |
9749568 | McMahon | Aug 2017 | B2 |
9754422 | McMahon et al. | Sep 2017 | B2 |
9766380 | Duparre et al. | Sep 2017 | B2 |
9769365 | Jannard | Sep 2017 | B1 |
9774789 | Ciurea et al. | Sep 2017 | B2 |
9774831 | Venkataraman et al. | Sep 2017 | B2 |
9787911 | McMahon et al. | Oct 2017 | B2 |
9794476 | Nayar et al. | Oct 2017 | B2 |
9800856 | Venkataraman et al. | Oct 2017 | B2 |
9800859 | Venkataraman et al. | Oct 2017 | B2 |
9807382 | Duparre et al. | Oct 2017 | B2 |
9811753 | Venkataraman et al. | Nov 2017 | B2 |
9813616 | Lelescu et al. | Nov 2017 | B2 |
9813617 | Venkataraman et al. | Nov 2017 | B2 |
9826212 | Newton et al. | Nov 2017 | B2 |
9858673 | Ciurea et al. | Jan 2018 | B2 |
9864921 | Venkataraman et al. | Jan 2018 | B2 |
9866739 | McMahon | Jan 2018 | B2 |
9888194 | Duparre | Feb 2018 | B2 |
9892522 | Smirnov et al. | Feb 2018 | B2 |
9898856 | Yang et al. | Feb 2018 | B2 |
9917998 | Venkataraman et al. | Mar 2018 | B2 |
9924092 | Rodda et al. | Mar 2018 | B2 |
9936148 | McMahon | Apr 2018 | B2 |
9942474 | Venkataraman et al. | Apr 2018 | B2 |
9955070 | Lelescu et al. | Apr 2018 | B2 |
9986224 | Mullis | May 2018 | B2 |
10009538 | Venkataraman et al. | Jun 2018 | B2 |
10019816 | Venkataraman et al. | Jul 2018 | B2 |
10027901 | Venkataraman et al. | Jul 2018 | B2 |
10089740 | Srikanth et al. | Oct 2018 | B2 |
10091405 | Molina | Oct 2018 | B2 |
10119808 | Venkataraman et al. | Nov 2018 | B2 |
10122993 | Venkataraman et al. | Nov 2018 | B2 |
10127682 | Mullis | Nov 2018 | B2 |
10142560 | Venkataraman et al. | Nov 2018 | B2 |
10182216 | Mullis et al. | Jan 2019 | B2 |
10218889 | McMahan | Feb 2019 | B2 |
10225543 | Mullis | Mar 2019 | B2 |
10250871 | Ciurea et al. | Apr 2019 | B2 |
10261219 | Duparre et al. | Apr 2019 | B2 |
10275676 | Venkataraman et al. | Apr 2019 | B2 |
10306120 | Duparre | May 2019 | B2 |
10311649 | McMohan et al. | Jun 2019 | B2 |
10334241 | Duparre et al. | Jun 2019 | B2 |
10366472 | Lelescu et al. | Jul 2019 | B2 |
10375302 | Nayar et al. | Aug 2019 | B2 |
10375319 | Venkataraman et al. | Aug 2019 | B2 |
10380752 | Ciurea et al. | Aug 2019 | B2 |
10390005 | Nisenzon et al. | Aug 2019 | B2 |
10412314 | McMahon et al. | Sep 2019 | B2 |
10430682 | Venkataraman et al. | Oct 2019 | B2 |
10455168 | McMahon | Oct 2019 | B2 |
10455218 | Venkataraman et al. | Oct 2019 | B2 |
10462362 | Lelescu et al. | Oct 2019 | B2 |
10482618 | Jain et al. | Nov 2019 | B2 |
10540806 | Yang et al. | Jan 2020 | B2 |
10542208 | Lelescu et al. | Jan 2020 | B2 |
10547772 | Molina | Jan 2020 | B2 |
10560684 | Mullis | Feb 2020 | B2 |
10574905 | Srikanth et al. | Feb 2020 | B2 |
10638099 | Mullis et al. | Apr 2020 | B2 |
10643383 | Venkataraman | May 2020 | B2 |
10674138 | Venkataraman et al. | Jun 2020 | B2 |
10694114 | Venkataraman et al. | Jun 2020 | B2 |
10708492 | Venkataraman et al. | Jul 2020 | B2 |
10735635 | Duparre | Aug 2020 | B2 |
10742861 | McMahon | Aug 2020 | B2 |
10767981 | Venkataraman et al. | Sep 2020 | B2 |
10805589 | Venkataraman et al. | Oct 2020 | B2 |
10818026 | Jain et al. | Oct 2020 | B2 |
10839485 | Lelescu et al. | Nov 2020 | B2 |
10909707 | Ciurea et al. | Feb 2021 | B2 |
10944961 | Ciurea et al. | Mar 2021 | B2 |
10958892 | Mullis | Mar 2021 | B2 |
10984276 | Venkataraman et al. | Apr 2021 | B2 |
11022725 | Duparre et al. | Jun 2021 | B2 |
11024046 | Venkataraman | Jun 2021 | B2 |
20010005225 | Clark et al. | Jun 2001 | A1 |
20010019621 | Hanna et al. | Sep 2001 | A1 |
20010028038 | Hamaguchi et al. | Oct 2001 | A1 |
20010038387 | Tomooka et al. | Nov 2001 | A1 |
20020003669 | Kedar et al. | Jan 2002 | A1 |
20020012056 | Trevino et al. | Jan 2002 | A1 |
20020015536 | Warren et al. | Feb 2002 | A1 |
20020027608 | Johnson et al. | Mar 2002 | A1 |
20020028014 | Ono | Mar 2002 | A1 |
20020039438 | Mori et al. | Apr 2002 | A1 |
20020057845 | Fossum et al. | May 2002 | A1 |
20020061131 | Sawhney et al. | May 2002 | A1 |
20020063807 | Margulis | May 2002 | A1 |
20020075450 | Aratani et al. | Jun 2002 | A1 |
20020087403 | Meyers et al. | Jul 2002 | A1 |
20020089596 | Yasuo | Jul 2002 | A1 |
20020094027 | Sato et al. | Jul 2002 | A1 |
20020101528 | Lee et al. | Aug 2002 | A1 |
20020113867 | Takigawa et al. | Aug 2002 | A1 |
20020113888 | Sonoda et al. | Aug 2002 | A1 |
20020118113 | Oku et al. | Aug 2002 | A1 |
20020120634 | Min et al. | Aug 2002 | A1 |
20020122113 | Foote | Sep 2002 | A1 |
20020163054 | Suda | Nov 2002 | A1 |
20020167537 | Trajkovic | Nov 2002 | A1 |
20020171666 | Endo et al. | Nov 2002 | A1 |
20020177054 | Saitoh et al. | Nov 2002 | A1 |
20020190991 | Efran et al. | Dec 2002 | A1 |
20020195548 | Dowski, Jr. et al. | Dec 2002 | A1 |
20030025227 | Daniell | Feb 2003 | A1 |
20030026474 | Yano | Feb 2003 | A1 |
20030086079 | Barth et al. | May 2003 | A1 |
20030124763 | Fan et al. | Jul 2003 | A1 |
20030140347 | Varsa | Jul 2003 | A1 |
20030156189 | Utsumi et al. | Aug 2003 | A1 |
20030179418 | Wengender et al. | Sep 2003 | A1 |
20030188659 | Merry et al. | Oct 2003 | A1 |
20030190072 | Adkins et al. | Oct 2003 | A1 |
20030198377 | Ng | Oct 2003 | A1 |
20030211405 | Venkataraman | Nov 2003 | A1 |
20030231179 | Suzuki | Dec 2003 | A1 |
20040003409 | Berstis | Jan 2004 | A1 |
20040008271 | Hagimori et al. | Jan 2004 | A1 |
20040012689 | Tinnerino et al. | Jan 2004 | A1 |
20040027358 | Nakao | Feb 2004 | A1 |
20040047274 | Amanai | Mar 2004 | A1 |
20040050104 | Ghosh et al. | Mar 2004 | A1 |
20040056966 | Schechner et al. | Mar 2004 | A1 |
20040061787 | Liu et al. | Apr 2004 | A1 |
20040066454 | Otani et al. | Apr 2004 | A1 |
20040071367 | Irani et al. | Apr 2004 | A1 |
20040075654 | Hsiao et al. | Apr 2004 | A1 |
20040096119 | Williams et al. | May 2004 | A1 |
20040100570 | Shizukuishi | May 2004 | A1 |
20040105021 | Hu | Jun 2004 | A1 |
20040114807 | Lelescu et al. | Jun 2004 | A1 |
20040141659 | Zhang | Jul 2004 | A1 |
20040151401 | Sawhney et al. | Aug 2004 | A1 |
20040165090 | Ning | Aug 2004 | A1 |
20040169617 | Yelton et al. | Sep 2004 | A1 |
20040170340 | Tipping et al. | Sep 2004 | A1 |
20040174439 | Upton | Sep 2004 | A1 |
20040179008 | Gordon et al. | Sep 2004 | A1 |
20040179834 | Szajewski et al. | Sep 2004 | A1 |
20040196379 | Chen et al. | Oct 2004 | A1 |
20040207600 | Zhang et al. | Oct 2004 | A1 |
20040207836 | Chhibber et al. | Oct 2004 | A1 |
20040212734 | Macinnis et al. | Oct 2004 | A1 |
20040213449 | Safaee-Rad et al. | Oct 2004 | A1 |
20040218809 | Blake et al. | Nov 2004 | A1 |
20040234873 | Venkataraman | Nov 2004 | A1 |
20040239782 | Equitz et al. | Dec 2004 | A1 |
20040239885 | Jaynes et al. | Dec 2004 | A1 |
20040240052 | Minefuji et al. | Dec 2004 | A1 |
20040251509 | Choi | Dec 2004 | A1 |
20040264806 | Herley | Dec 2004 | A1 |
20050006477 | Patel | Jan 2005 | A1 |
20050007461 | Chou et al. | Jan 2005 | A1 |
20050009313 | Suzuki et al. | Jan 2005 | A1 |
20050010621 | Pinto et al. | Jan 2005 | A1 |
20050012035 | Miller | Jan 2005 | A1 |
20050036778 | DeMonte | Feb 2005 | A1 |
20050047678 | Jones et al. | Mar 2005 | A1 |
20050048690 | Yamamoto | Mar 2005 | A1 |
20050068436 | Fraenkel et al. | Mar 2005 | A1 |
20050083531 | Millerd et al. | Apr 2005 | A1 |
20050084179 | Hanna et al. | Apr 2005 | A1 |
20050111705 | Waupotitsch et al. | May 2005 | A1 |
20050117015 | Cutler | Jun 2005 | A1 |
20050128509 | Tokkonen et al. | Jun 2005 | A1 |
20050128595 | Shimizu | Jun 2005 | A1 |
20050132098 | Sonoda et al. | Jun 2005 | A1 |
20050134698 | Schroeder et al. | Jun 2005 | A1 |
20050134699 | Nagashima | Jun 2005 | A1 |
20050134712 | Gruhlke et al. | Jun 2005 | A1 |
20050147277 | Higaki et al. | Jul 2005 | A1 |
20050151759 | Gonzalez-Banos et al. | Jul 2005 | A1 |
20050168924 | Wu et al. | Aug 2005 | A1 |
20050175257 | Kuroki | Aug 2005 | A1 |
20050185711 | Pfister et al. | Aug 2005 | A1 |
20050203380 | Sauer et al. | Sep 2005 | A1 |
20050205785 | Hornback et al. | Sep 2005 | A1 |
20050219264 | Shum et al. | Oct 2005 | A1 |
20050219363 | Kohler et al. | Oct 2005 | A1 |
20050224843 | Boemler | Oct 2005 | A1 |
20050225654 | Feldman et al. | Oct 2005 | A1 |
20050265633 | Piacentino et al. | Dec 2005 | A1 |
20050275946 | Choo et al. | Dec 2005 | A1 |
20050286612 | Takanashi | Dec 2005 | A1 |
20050286756 | Hong et al. | Dec 2005 | A1 |
20060002635 | Nestares et al. | Jan 2006 | A1 |
20060007331 | Izumi et al. | Jan 2006 | A1 |
20060013318 | Webb et al. | Jan 2006 | A1 |
20060018509 | Miyoshi | Jan 2006 | A1 |
20060023197 | Joel | Feb 2006 | A1 |
20060023314 | Boettiger et al. | Feb 2006 | A1 |
20060028476 | Sobel et al. | Feb 2006 | A1 |
20060029270 | Berestov et al. | Feb 2006 | A1 |
20060029271 | Miyoshi et al. | Feb 2006 | A1 |
20060033005 | Jerdev et al. | Feb 2006 | A1 |
20060034003 | Zalevsky | Feb 2006 | A1 |
20060034531 | Poon et al. | Feb 2006 | A1 |
20060035415 | Wood | Feb 2006 | A1 |
20060038891 | Okutomi et al. | Feb 2006 | A1 |
20060039611 | Rother et al. | Feb 2006 | A1 |
20060046204 | Ono et al. | Mar 2006 | A1 |
20060049930 | Zruya et al. | Mar 2006 | A1 |
20060050980 | Kohashi et al. | Mar 2006 | A1 |
20060054780 | Garrood et al. | Mar 2006 | A1 |
20060054782 | Olsen et al. | Mar 2006 | A1 |
20060055811 | Frtiz et al. | Mar 2006 | A1 |
20060069478 | Iwama | Mar 2006 | A1 |
20060072029 | Miyatake et al. | Apr 2006 | A1 |
20060087747 | Ohzawa et al. | Apr 2006 | A1 |
20060098888 | Morishita | May 2006 | A1 |
20060103754 | Wenstrand et al. | May 2006 | A1 |
20060119597 | Oshino | Jun 2006 | A1 |
20060125936 | Gruhike et al. | Jun 2006 | A1 |
20060138322 | Costello et al. | Jun 2006 | A1 |
20060139475 | Esch et al. | Jun 2006 | A1 |
20060152803 | Provitola | Jul 2006 | A1 |
20060153290 | Watabe et al. | Jul 2006 | A1 |
20060157640 | Perlman et al. | Jul 2006 | A1 |
20060159369 | Young | Jul 2006 | A1 |
20060176566 | Boettiger et al. | Aug 2006 | A1 |
20060187322 | Janson, Jr. et al. | Aug 2006 | A1 |
20060187338 | May et al. | Aug 2006 | A1 |
20060197937 | Bamji et al. | Sep 2006 | A1 |
20060203100 | Ajito et al. | Sep 2006 | A1 |
20060203113 | Wada et al. | Sep 2006 | A1 |
20060210146 | Gu | Sep 2006 | A1 |
20060210186 | Berkner | Sep 2006 | A1 |
20060214085 | Olsen et al. | Sep 2006 | A1 |
20060215924 | Steinberg et al. | Sep 2006 | A1 |
20060221250 | Rossbach et al. | Oct 2006 | A1 |
20060239549 | Kelly et al. | Oct 2006 | A1 |
20060243889 | Farnworth et al. | Nov 2006 | A1 |
20060251410 | Trutna | Nov 2006 | A1 |
20060274174 | Tewinkle | Dec 2006 | A1 |
20060278948 | Yamaguchi et al. | Dec 2006 | A1 |
20060279648 | Senba et al. | Dec 2006 | A1 |
20060289772 | Johnson et al. | Dec 2006 | A1 |
20070002159 | Olsen et al. | Jan 2007 | A1 |
20070008575 | Yu et al. | Jan 2007 | A1 |
20070009150 | Suwa | Jan 2007 | A1 |
20070024614 | Tam et al. | Feb 2007 | A1 |
20070030356 | Yea et al. | Feb 2007 | A1 |
20070035707 | Margulis | Feb 2007 | A1 |
20070036427 | Nakamura et al. | Feb 2007 | A1 |
20070040828 | Zalevsky et al. | Feb 2007 | A1 |
20070040922 | McKee et al. | Feb 2007 | A1 |
20070041391 | Lin et al. | Feb 2007 | A1 |
20070052825 | Cho | Mar 2007 | A1 |
20070083114 | Yang et al. | Apr 2007 | A1 |
20070085917 | Kobayashi | Apr 2007 | A1 |
20070092245 | Bazakos et al. | Apr 2007 | A1 |
20070102622 | Olsen et al. | May 2007 | A1 |
20070116447 | Ye | May 2007 | A1 |
20070126898 | Feldman et al. | Jun 2007 | A1 |
20070127831 | Venkataraman | Jun 2007 | A1 |
20070139333 | Sato et al. | Jun 2007 | A1 |
20070140685 | Wu | Jun 2007 | A1 |
20070146503 | Shiraki | Jun 2007 | A1 |
20070146511 | Kinoshita et al. | Jun 2007 | A1 |
20070153335 | Hosaka | Jul 2007 | A1 |
20070158427 | Zhu et al. | Jul 2007 | A1 |
20070159541 | Sparks et al. | Jul 2007 | A1 |
20070160310 | Tanida et al. | Jul 2007 | A1 |
20070165931 | Higaki | Jul 2007 | A1 |
20070166447 | Ur-Rehman et al. | Jul 2007 | A1 |
20070171290 | Kroger | Jul 2007 | A1 |
20070177004 | Kolehmainen et al. | Aug 2007 | A1 |
20070182843 | Shimamura et al. | Aug 2007 | A1 |
20070201859 | Sarrat | Aug 2007 | A1 |
20070206241 | Smith et al. | Sep 2007 | A1 |
20070211164 | Olsen et al. | Sep 2007 | A1 |
20070216765 | Wong et al. | Sep 2007 | A1 |
20070225600 | Weibrecht et al. | Sep 2007 | A1 |
20070228256 | Mentzer et al. | Oct 2007 | A1 |
20070236595 | Pan et al. | Oct 2007 | A1 |
20070242141 | Ciurea | Oct 2007 | A1 |
20070247517 | Zhang et al. | Oct 2007 | A1 |
20070257184 | Olsen et al. | Nov 2007 | A1 |
20070258006 | Olsen et al. | Nov 2007 | A1 |
20070258706 | Raskar et al. | Nov 2007 | A1 |
20070263113 | Baek et al. | Nov 2007 | A1 |
20070263114 | Gurevich et al. | Nov 2007 | A1 |
20070268374 | Robinson | Nov 2007 | A1 |
20070291995 | Rivera | Dec 2007 | A1 |
20070296721 | Chang et al. | Dec 2007 | A1 |
20070296832 | Ota et al. | Dec 2007 | A1 |
20070296835 | Olsen et al. | Dec 2007 | A1 |
20070296846 | Barman et al. | Dec 2007 | A1 |
20070296847 | Chang et al. | Dec 2007 | A1 |
20070297696 | Hamza et al. | Dec 2007 | A1 |
20080006859 | Mionetto | Jan 2008 | A1 |
20080019611 | Larkin et al. | Jan 2008 | A1 |
20080024683 | Damera-Venkata et al. | Jan 2008 | A1 |
20080025649 | Liu et al. | Jan 2008 | A1 |
20080030592 | Border et al. | Feb 2008 | A1 |
20080030597 | Olsen et al. | Feb 2008 | A1 |
20080043095 | Vetro et al. | Feb 2008 | A1 |
20080043096 | Vetro et al. | Feb 2008 | A1 |
20080044170 | Yap et al. | Feb 2008 | A1 |
20080054518 | Ra et al. | Mar 2008 | A1 |
20080056302 | Erdal et al. | Mar 2008 | A1 |
20080062164 | Bassi et al. | Mar 2008 | A1 |
20080079805 | Takagi et al. | Apr 2008 | A1 |
20080080028 | Bakin et al. | Apr 2008 | A1 |
20080084486 | Enge et al. | Apr 2008 | A1 |
20080088793 | Sverdrup et al. | Apr 2008 | A1 |
20080095523 | Schilling-Benz et al. | Apr 2008 | A1 |
20080099804 | Venezia et al. | May 2008 | A1 |
20080106620 | Sawachi | May 2008 | A1 |
20080112059 | Choi et al. | May 2008 | A1 |
20080112635 | Kondo et al. | May 2008 | A1 |
20080117289 | Schowengerdt et al. | May 2008 | A1 |
20080118241 | TeKolste et al. | May 2008 | A1 |
20080131019 | Ng | Jun 2008 | A1 |
20080131107 | Ueno | Jun 2008 | A1 |
20080151097 | Chen et al. | Jun 2008 | A1 |
20080152213 | Medioni et al. | Jun 2008 | A1 |
20080152215 | Horie et al. | Jun 2008 | A1 |
20080152296 | Oh et al. | Jun 2008 | A1 |
20080156991 | Hu et al. | Jul 2008 | A1 |
20080158259 | Kempf et al. | Jul 2008 | A1 |
20080158375 | Kakkori et al. | Jul 2008 | A1 |
20080158698 | Chang et al. | Jul 2008 | A1 |
20080165257 | Boettiger | Jul 2008 | A1 |
20080174670 | Olsen et al. | Jul 2008 | A1 |
20080187305 | Raskar et al. | Aug 2008 | A1 |
20080193026 | Horie et al. | Aug 2008 | A1 |
20080208506 | Kuwata | Aug 2008 | A1 |
20080211737 | Kim et al. | Sep 2008 | A1 |
20080218610 | Chapman et al. | Sep 2008 | A1 |
20080218611 | Parulski et al. | Sep 2008 | A1 |
20080218612 | Border et al. | Sep 2008 | A1 |
20080218613 | Janson et al. | Sep 2008 | A1 |
20080219654 | Border et al. | Sep 2008 | A1 |
20080239116 | Smith | Oct 2008 | A1 |
20080240598 | Hasegawa | Oct 2008 | A1 |
20080246866 | Kinoshita et al. | Oct 2008 | A1 |
20080247638 | Tanida et al. | Oct 2008 | A1 |
20080247653 | Moussavi et al. | Oct 2008 | A1 |
20080272416 | Yun | Nov 2008 | A1 |
20080273751 | Yuan et al. | Nov 2008 | A1 |
20080278591 | Barna et al. | Nov 2008 | A1 |
20080278610 | Boettiger | Nov 2008 | A1 |
20080284880 | Numata | Nov 2008 | A1 |
20080291295 | Kato et al. | Nov 2008 | A1 |
20080298674 | Baker et al. | Dec 2008 | A1 |
20080310501 | Ward et al. | Dec 2008 | A1 |
20090027543 | Kanehiro | Jan 2009 | A1 |
20090050946 | Duparre et al. | Feb 2009 | A1 |
20090052743 | Techmer | Feb 2009 | A1 |
20090060281 | Tanida et al. | Mar 2009 | A1 |
20090066693 | Carson | Mar 2009 | A1 |
20090079862 | Subbotin | Mar 2009 | A1 |
20090086074 | Li et al. | Apr 2009 | A1 |
20090091645 | Trimeche et al. | Apr 2009 | A1 |
20090091806 | Inuiya | Apr 2009 | A1 |
20090092363 | Daum et al. | Apr 2009 | A1 |
20090096050 | Park | Apr 2009 | A1 |
20090102956 | Georgiev | Apr 2009 | A1 |
20090103792 | Rahn et al. | Apr 2009 | A1 |
20090109306 | Shan et al. | Apr 2009 | A1 |
20090127430 | Hirasawa et al. | May 2009 | A1 |
20090128644 | Camp, Jr. et al. | May 2009 | A1 |
20090128833 | Yahav | May 2009 | A1 |
20090129667 | Ho et al. | May 2009 | A1 |
20090140131 | Utagawa | Jun 2009 | A1 |
20090141933 | Wagg | Jun 2009 | A1 |
20090147919 | Goto et al. | Jun 2009 | A1 |
20090152664 | Klem et al. | Jun 2009 | A1 |
20090167922 | Perlman et al. | Jul 2009 | A1 |
20090167923 | Safaee-Rad et al. | Jul 2009 | A1 |
20090167934 | Gupta | Jul 2009 | A1 |
20090175349 | Ye et al. | Jul 2009 | A1 |
20090179142 | Duparre et al. | Jul 2009 | A1 |
20090180021 | Kikuchi et al. | Jul 2009 | A1 |
20090200622 | Tai et al. | Aug 2009 | A1 |
20090201371 | Matsuda et al. | Aug 2009 | A1 |
20090207235 | Francini et al. | Aug 2009 | A1 |
20090219435 | Yuan | Sep 2009 | A1 |
20090225203 | Tanida et al. | Sep 2009 | A1 |
20090237520 | Kaneko et al. | Sep 2009 | A1 |
20090245573 | Saptharishi et al. | Oct 2009 | A1 |
20090245637 | Barman et al. | Oct 2009 | A1 |
20090256947 | Ciurea et al. | Oct 2009 | A1 |
20090263017 | Tanbakuchi | Oct 2009 | A1 |
20090268192 | Koenck et al. | Oct 2009 | A1 |
20090268970 | Babacan et al. | Oct 2009 | A1 |
20090268983 | Stone et al. | Oct 2009 | A1 |
20090273663 | Yoshida | Nov 2009 | A1 |
20090274387 | Jin | Nov 2009 | A1 |
20090279800 | Uetani et al. | Nov 2009 | A1 |
20090284651 | Srinivasan | Nov 2009 | A1 |
20090290811 | Imai | Nov 2009 | A1 |
20090297056 | Lelescu et al. | Dec 2009 | A1 |
20090302205 | Olsen et al. | Dec 2009 | A9 |
20090317061 | Jung et al. | Dec 2009 | A1 |
20090322876 | Lee et al. | Dec 2009 | A1 |
20090323195 | Hembree et al. | Dec 2009 | A1 |
20090323206 | Oliver et al. | Dec 2009 | A1 |
20090324118 | Maslov et al. | Dec 2009 | A1 |
20100002126 | Wenstrand et al. | Jan 2010 | A1 |
20100002313 | Duparre et al. | Jan 2010 | A1 |
20100002314 | Duparre | Jan 2010 | A1 |
20100007714 | Kim et al. | Jan 2010 | A1 |
20100013927 | Nixon | Jan 2010 | A1 |
20100044815 | Chang | Feb 2010 | A1 |
20100045809 | Packard | Feb 2010 | A1 |
20100053342 | Hwang et al. | Mar 2010 | A1 |
20100053347 | Agarwala et al. | Mar 2010 | A1 |
20100053415 | Yun | Mar 2010 | A1 |
20100053600 | Tanida et al. | Mar 2010 | A1 |
20100060746 | Olsen et al. | Mar 2010 | A9 |
20100073463 | Momonoi et al. | Mar 2010 | A1 |
20100074532 | Gordon et al. | Mar 2010 | A1 |
20100085351 | Deb et al. | Apr 2010 | A1 |
20100085425 | Tan | Apr 2010 | A1 |
20100086227 | Sun et al. | Apr 2010 | A1 |
20100091389 | Henriksen et al. | Apr 2010 | A1 |
20100097444 | Lablans | Apr 2010 | A1 |
20100097491 | Farina et al. | Apr 2010 | A1 |
20100103175 | Okutomi et al. | Apr 2010 | A1 |
20100103259 | Tanida et al. | Apr 2010 | A1 |
20100103308 | Butterfield et al. | Apr 2010 | A1 |
20100111444 | Coffman | May 2010 | A1 |
20100118127 | Nam et al. | May 2010 | A1 |
20100128145 | Pitts et al. | May 2010 | A1 |
20100129048 | Pitts et al. | May 2010 | A1 |
20100133230 | Henriksen et al. | Jun 2010 | A1 |
20100133418 | Sargent et al. | Jun 2010 | A1 |
20100141802 | Knight et al. | Jun 2010 | A1 |
20100142828 | Chang et al. | Jun 2010 | A1 |
20100142839 | Lakus-Becker | Jun 2010 | A1 |
20100157073 | Kondo et al. | Jun 2010 | A1 |
20100165152 | Lim | Jul 2010 | A1 |
20100166410 | Chang | Jul 2010 | A1 |
20100171866 | Brady et al. | Jul 2010 | A1 |
20100177411 | Hegde et al. | Jul 2010 | A1 |
20100182406 | Benitez | Jul 2010 | A1 |
20100194860 | Mentz et al. | Aug 2010 | A1 |
20100194901 | van Hoorebeke et al. | Aug 2010 | A1 |
20100195716 | Klein Gunnewiek et al. | Aug 2010 | A1 |
20100201809 | Oyama et al. | Aug 2010 | A1 |
20100201834 | Maruyama et al. | Aug 2010 | A1 |
20100202054 | Niederer | Aug 2010 | A1 |
20100202683 | Robinson | Aug 2010 | A1 |
20100208100 | Olsen et al. | Aug 2010 | A9 |
20100214423 | Ogawa | Aug 2010 | A1 |
20100220212 | Perlman et al. | Sep 2010 | A1 |
20100223237 | Mishra et al. | Sep 2010 | A1 |
20100225740 | Jung et al. | Sep 2010 | A1 |
20100231285 | Boomer et al. | Sep 2010 | A1 |
20100238327 | Griffith et al. | Sep 2010 | A1 |
20100244165 | Lake et al. | Sep 2010 | A1 |
20100245684 | Xiao et al. | Sep 2010 | A1 |
20100254627 | Panahpour Tehrani et al. | Oct 2010 | A1 |
20100259610 | Petersen | Oct 2010 | A1 |
20100265346 | Iizuka | Oct 2010 | A1 |
20100265381 | Yamamoto et al. | Oct 2010 | A1 |
20100265385 | Knight et al. | Oct 2010 | A1 |
20100277629 | Tanaka | Nov 2010 | A1 |
20100281070 | Chan et al. | Nov 2010 | A1 |
20100289878 | Sato | Nov 2010 | A1 |
20100289941 | Ito et al. | Nov 2010 | A1 |
20100290483 | Park et al. | Nov 2010 | A1 |
20100302423 | Adams, Jr. et al. | Dec 2010 | A1 |
20100309292 | Ho et al. | Dec 2010 | A1 |
20100309368 | Choi et al. | Dec 2010 | A1 |
20100321595 | Chiu | Dec 2010 | A1 |
20100321640 | Yeh et al. | Dec 2010 | A1 |
20100329556 | Mitarai et al. | Dec 2010 | A1 |
20100329582 | Albu et al. | Dec 2010 | A1 |
20110001037 | Tewinkle | Jan 2011 | A1 |
20110013006 | Uzenbajakava et al. | Jan 2011 | A1 |
20110018973 | Takayama | Jan 2011 | A1 |
20110019048 | Raynor et al. | Jan 2011 | A1 |
20110019243 | Constant, Jr. et al. | Jan 2011 | A1 |
20110031381 | Tay et al. | Feb 2011 | A1 |
20110032341 | Ignatov et al. | Feb 2011 | A1 |
20110032370 | Ludwig | Feb 2011 | A1 |
20110033129 | Robinson | Feb 2011 | A1 |
20110038536 | Gong | Feb 2011 | A1 |
20110043604 | Peleg et al. | Feb 2011 | A1 |
20110043613 | Rohaly et al. | Feb 2011 | A1 |
20110043661 | Podoleanu | Feb 2011 | A1 |
20110043665 | Ogasahara | Feb 2011 | A1 |
20110043668 | McKinnon et al. | Feb 2011 | A1 |
20110044502 | Liu et al. | Feb 2011 | A1 |
20110051255 | Lee et al. | Mar 2011 | A1 |
20110055729 | Mason et al. | Mar 2011 | A1 |
20110064327 | Dagher et al. | Mar 2011 | A1 |
20110069189 | Venkataraman et al. | Mar 2011 | A1 |
20110080487 | Venkataraman et al. | Apr 2011 | A1 |
20110084893 | Lee et al. | Apr 2011 | A1 |
20110085028 | Samadani et al. | Apr 2011 | A1 |
20110090217 | Mashitani et al. | Apr 2011 | A1 |
20110102553 | Corcoran et al. | May 2011 | A1 |
20110108708 | Olsen et al. | May 2011 | A1 |
20110115886 | Nguyen et al. | May 2011 | A1 |
20110121421 | Charbon et al. | May 2011 | A1 |
20110122308 | Duparre | May 2011 | A1 |
20110128393 | Tavi et al. | Jun 2011 | A1 |
20110128412 | Milnes et al. | Jun 2011 | A1 |
20110129165 | Lim et al. | Jun 2011 | A1 |
20110141309 | Nagashima et al. | Jun 2011 | A1 |
20110142138 | Tian et al. | Jun 2011 | A1 |
20110149408 | Hahgholt et al. | Jun 2011 | A1 |
20110149409 | Haugholt et al. | Jun 2011 | A1 |
20110150321 | Cheong et al. | Jun 2011 | A1 |
20110153248 | Gu et al. | Jun 2011 | A1 |
20110157321 | Nakajima et al. | Jun 2011 | A1 |
20110157451 | Chang | Jun 2011 | A1 |
20110169994 | DiFrancesco et al. | Jul 2011 | A1 |
20110176020 | Chang | Jul 2011 | A1 |
20110181797 | Galstian et al. | Jul 2011 | A1 |
20110193944 | Lian et al. | Aug 2011 | A1 |
20110199458 | Hayasaka et al. | Aug 2011 | A1 |
20110200319 | Kravitz et al. | Aug 2011 | A1 |
20110206291 | Kashani et al. | Aug 2011 | A1 |
20110207074 | Hall-Holt et al. | Aug 2011 | A1 |
20110211068 | Yokota | Sep 2011 | A1 |
20110211077 | Nayar et al. | Sep 2011 | A1 |
20110211824 | Georgiev et al. | Sep 2011 | A1 |
20110221599 | Högasten | Sep 2011 | A1 |
20110221658 | Haddick et al. | Sep 2011 | A1 |
20110221939 | Jerdev | Sep 2011 | A1 |
20110221950 | Oostra et al. | Sep 2011 | A1 |
20110222757 | Yeatman, Jr. et al. | Sep 2011 | A1 |
20110228142 | Brueckner et al. | Sep 2011 | A1 |
20110228144 | Tian et al. | Sep 2011 | A1 |
20110234825 | Liu et al. | Sep 2011 | A1 |
20110234841 | Akeley et al. | Sep 2011 | A1 |
20110241234 | Duparre | Oct 2011 | A1 |
20110242342 | Goma et al. | Oct 2011 | A1 |
20110242355 | Goma et al. | Oct 2011 | A1 |
20110242356 | Aleksic et al. | Oct 2011 | A1 |
20110243428 | Das Gupta et al. | Oct 2011 | A1 |
20110255592 | Sung et al. | Oct 2011 | A1 |
20110255745 | Hodder et al. | Oct 2011 | A1 |
20110255786 | Hunter et al. | Oct 2011 | A1 |
20110261993 | Weiming et al. | Oct 2011 | A1 |
20110267264 | Mccarthy et al. | Nov 2011 | A1 |
20110267348 | Lin et al. | Nov 2011 | A1 |
20110273531 | Ito et al. | Nov 2011 | A1 |
20110274175 | Sumitomo | Nov 2011 | A1 |
20110274366 | Tardif | Nov 2011 | A1 |
20110279705 | Kuang et al. | Nov 2011 | A1 |
20110279721 | McMahon | Nov 2011 | A1 |
20110285701 | Chen et al. | Nov 2011 | A1 |
20110285866 | Bhrugumalla et al. | Nov 2011 | A1 |
20110285910 | Bamji et al. | Nov 2011 | A1 |
20110292216 | Fergus et al. | Dec 2011 | A1 |
20110298898 | Jung et al. | Dec 2011 | A1 |
20110298917 | Yanagita | Dec 2011 | A1 |
20110300929 | Tardif et al. | Dec 2011 | A1 |
20110310980 | Mathew | Dec 2011 | A1 |
20110316968 | Taguchi et al. | Dec 2011 | A1 |
20110317766 | Lim et al. | Dec 2011 | A1 |
20120012748 | Pain | Jan 2012 | A1 |
20120013748 | Stanwood et al. | Jan 2012 | A1 |
20120014456 | Martinez Bauza et al. | Jan 2012 | A1 |
20120019530 | Baker | Jan 2012 | A1 |
20120019700 | Gaber | Jan 2012 | A1 |
20120023456 | Sun et al. | Jan 2012 | A1 |
20120026297 | Sato | Feb 2012 | A1 |
20120026342 | Yu et al. | Feb 2012 | A1 |
20120026366 | Golan et al. | Feb 2012 | A1 |
20120026451 | Nystrom | Feb 2012 | A1 |
20120026478 | Chen et al. | Feb 2012 | A1 |
20120038745 | Yu et al. | Feb 2012 | A1 |
20120039525 | Tian et al. | Feb 2012 | A1 |
20120044249 | Mashitani et al. | Feb 2012 | A1 |
20120044372 | Côtéet al. | Feb 2012 | A1 |
20120051624 | Ando | Mar 2012 | A1 |
20120056982 | Katz et al. | Mar 2012 | A1 |
20120057040 | Park et al. | Mar 2012 | A1 |
20120062697 | Treado et al. | Mar 2012 | A1 |
20120062702 | Jiang et al. | Mar 2012 | A1 |
20120062756 | Tian et al. | Mar 2012 | A1 |
20120069235 | Imai | Mar 2012 | A1 |
20120081519 | Goma et al. | Apr 2012 | A1 |
20120086803 | Malzbender et al. | Apr 2012 | A1 |
20120105590 | Fukumoto et al. | May 2012 | A1 |
20120105654 | Kwatra et al. | May 2012 | A1 |
20120105691 | Waqas et al. | May 2012 | A1 |
20120113232 | Joblove | May 2012 | A1 |
20120113318 | Galstian et al. | May 2012 | A1 |
20120113413 | Miahczylowicz-Wolski et al. | May 2012 | A1 |
20120114224 | Xu et al. | May 2012 | A1 |
20120114260 | Takahashi et al. | May 2012 | A1 |
20120120264 | Lee et al. | May 2012 | A1 |
20120127275 | Von Zitzewitz et al. | May 2012 | A1 |
20120127284 | Bar-Zeev et al. | May 2012 | A1 |
20120147139 | Li et al. | Jun 2012 | A1 |
20120147205 | Lelescu et al. | Jun 2012 | A1 |
20120153153 | Chang et al. | Jun 2012 | A1 |
20120154551 | Inoue | Jun 2012 | A1 |
20120155830 | Sasaki et al. | Jun 2012 | A1 |
20120162374 | Markas et al. | Jun 2012 | A1 |
20120163672 | McKinnon | Jun 2012 | A1 |
20120163725 | Fukuhara | Jun 2012 | A1 |
20120169433 | Mullins et al. | Jul 2012 | A1 |
20120170134 | Bolis et al. | Jul 2012 | A1 |
20120176479 | Mayhew et al. | Jul 2012 | A1 |
20120176481 | Lukk et al. | Jul 2012 | A1 |
20120188235 | Wu et al. | Jul 2012 | A1 |
20120188341 | Klein Gunnewiek et al. | Jul 2012 | A1 |
20120188389 | Lin et al. | Jul 2012 | A1 |
20120188420 | Black et al. | Jul 2012 | A1 |
20120188634 | Kubala et al. | Jul 2012 | A1 |
20120198677 | Duparre | Aug 2012 | A1 |
20120200669 | Lai et al. | Aug 2012 | A1 |
20120200726 | Bugnariu | Aug 2012 | A1 |
20120200734 | Tang | Aug 2012 | A1 |
20120206582 | DiCarlo et al. | Aug 2012 | A1 |
20120218455 | Imai et al. | Aug 2012 | A1 |
20120219236 | Ali et al. | Aug 2012 | A1 |
20120224083 | Jovanovski et al. | Sep 2012 | A1 |
20120229602 | Chen et al. | Sep 2012 | A1 |
20120229628 | Ishiyama et al. | Sep 2012 | A1 |
20120237114 | Park et al. | Sep 2012 | A1 |
20120249550 | Akeley et al. | Oct 2012 | A1 |
20120249750 | Izzat et al. | Oct 2012 | A1 |
20120249836 | Ali et al. | Oct 2012 | A1 |
20120249853 | Krolczyk et al. | Oct 2012 | A1 |
20120250990 | Bocirnea | Oct 2012 | A1 |
20120262601 | Choi et al. | Oct 2012 | A1 |
20120262607 | Shimura et al. | Oct 2012 | A1 |
20120268574 | Gidon et al. | Oct 2012 | A1 |
20120274626 | Hsieh | Nov 2012 | A1 |
20120287291 | McMahon | Nov 2012 | A1 |
20120290257 | Hodge et al. | Nov 2012 | A1 |
20120293489 | Chen et al. | Nov 2012 | A1 |
20120293624 | Chen et al. | Nov 2012 | A1 |
20120293695 | Tanaka | Nov 2012 | A1 |
20120307084 | Mantzel | Dec 2012 | A1 |
20120307093 | Miyoshi | Dec 2012 | A1 |
20120307099 | Yahata | Dec 2012 | A1 |
20120314033 | Lee et al. | Dec 2012 | A1 |
20120314937 | Kim et al. | Dec 2012 | A1 |
20120327222 | Ng et al. | Dec 2012 | A1 |
20130002828 | Ding et al. | Jan 2013 | A1 |
20130002953 | Noguchi et al. | Jan 2013 | A1 |
20130003184 | Duparre | Jan 2013 | A1 |
20130010073 | Do et al. | Jan 2013 | A1 |
20130016245 | Yuba | Jan 2013 | A1 |
20130016885 | Tsujimoto | Jan 2013 | A1 |
20130022111 | Chen et al. | Jan 2013 | A1 |
20130027580 | Olsen et al. | Jan 2013 | A1 |
20130033579 | Wajs | Feb 2013 | A1 |
20130033585 | Li et al. | Feb 2013 | A1 |
20130038696 | Ding et al. | Feb 2013 | A1 |
20130047396 | Au et al. | Feb 2013 | A1 |
20130050504 | Safaee-Rad et al. | Feb 2013 | A1 |
20130050526 | Keelan | Feb 2013 | A1 |
20130057710 | McMahon | Mar 2013 | A1 |
20130070060 | Chatterjee et al. | Mar 2013 | A1 |
20130076967 | Brunner et al. | Mar 2013 | A1 |
20130077859 | Stauder et al. | Mar 2013 | A1 |
20130077880 | Venkataraman et al. | Mar 2013 | A1 |
20130077882 | Venkataraman et al. | Mar 2013 | A1 |
20130083172 | Baba | Apr 2013 | A1 |
20130088489 | Schmeitz et al. | Apr 2013 | A1 |
20130088637 | Duparre | Apr 2013 | A1 |
20130093842 | Yahata | Apr 2013 | A1 |
20130100254 | Morioka et al. | Apr 2013 | A1 |
20130107061 | Kumar et al. | May 2013 | A1 |
20130113888 | Koguchi | May 2013 | A1 |
20130113899 | Morohoshi et al. | May 2013 | A1 |
20130113939 | Strandemar | May 2013 | A1 |
20130120536 | Song et al. | May 2013 | A1 |
20130120605 | Georgiev et al. | May 2013 | A1 |
20130121559 | Hu et al. | May 2013 | A1 |
20130127988 | Wang et al. | May 2013 | A1 |
20130128049 | Schofield et al. | May 2013 | A1 |
20130128068 | Georgiev et al. | May 2013 | A1 |
20130128069 | Georgiev et al. | May 2013 | A1 |
20130128087 | Georgiev et al. | May 2013 | A1 |
20130128121 | Agarwala et al. | May 2013 | A1 |
20130135315 | Bares et al. | May 2013 | A1 |
20130135448 | Nagumo et al. | May 2013 | A1 |
20130147979 | McMahon et al. | Jun 2013 | A1 |
20130155050 | Rastogi et al. | Jun 2013 | A1 |
20130162641 | Zhang et al. | Jun 2013 | A1 |
20130162980 | Kim et al. | Jun 2013 | A1 |
20130169754 | Aronsson et al. | Jul 2013 | A1 |
20130176394 | Tian et al. | Jul 2013 | A1 |
20130208138 | Li et al. | Aug 2013 | A1 |
20130215108 | McMahon et al. | Aug 2013 | A1 |
20130215231 | Hiramoto et al. | Aug 2013 | A1 |
20130216144 | Robinson et al. | Aug 2013 | A1 |
20130222556 | Shimada | Aug 2013 | A1 |
20130222656 | Kaneko | Aug 2013 | A1 |
20130223759 | Nishiyama | Aug 2013 | A1 |
20130229540 | Farina et al. | Sep 2013 | A1 |
20130230237 | Schlosser et al. | Sep 2013 | A1 |
20130250123 | Zhang et al. | Sep 2013 | A1 |
20130250150 | Malone et al. | Sep 2013 | A1 |
20130258067 | Zhang et al. | Oct 2013 | A1 |
20130259317 | Gaddy | Oct 2013 | A1 |
20130265459 | Duparre et al. | Oct 2013 | A1 |
20130274596 | Azizian et al. | Oct 2013 | A1 |
20130274923 | By | Oct 2013 | A1 |
20130278631 | Border et al. | Oct 2013 | A1 |
20130286236 | Mankowski | Oct 2013 | A1 |
20130293760 | Nisenzon et al. | Nov 2013 | A1 |
20130308197 | Duparre | Nov 2013 | A1 |
20130321581 | El-Ghoroury et al. | Dec 2013 | A1 |
20130321589 | Kirk et al. | Dec 2013 | A1 |
20130335598 | Gustavsson et al. | Dec 2013 | A1 |
20130342641 | Morioka et al. | Dec 2013 | A1 |
20140002674 | Duparre et al. | Jan 2014 | A1 |
20140002675 | Duparre et al. | Jan 2014 | A1 |
20140009586 | McNamer et al. | Jan 2014 | A1 |
20140013273 | Ng | Jan 2014 | A1 |
20140037137 | Broaddus et al. | Feb 2014 | A1 |
20140037140 | Benhimane et al. | Feb 2014 | A1 |
20140043507 | Wang et al. | Feb 2014 | A1 |
20140059462 | Wernersson | Feb 2014 | A1 |
20140076336 | Clayton et al. | Mar 2014 | A1 |
20140078333 | Miao | Mar 2014 | A1 |
20140079336 | Venkataraman et al. | Mar 2014 | A1 |
20140081454 | Nuyujukian et al. | Mar 2014 | A1 |
20140085502 | Lin et al. | Mar 2014 | A1 |
20140092281 | Nisenzon et al. | Apr 2014 | A1 |
20140098266 | Nayar et al. | Apr 2014 | A1 |
20140098267 | Tian et al. | Apr 2014 | A1 |
20140104490 | Hsieh et al. | Apr 2014 | A1 |
20140118493 | Sali et al. | May 2014 | A1 |
20140118584 | Lee et al. | May 2014 | A1 |
20140125760 | Au et al. | May 2014 | A1 |
20140125771 | Grossmann et al. | May 2014 | A1 |
20140132810 | McMahon | May 2014 | A1 |
20140139642 | Ni et al. | May 2014 | A1 |
20140139643 | Hogasten et al. | May 2014 | A1 |
20140140626 | Cho et al. | May 2014 | A1 |
20140146132 | Bagnato et al. | May 2014 | A1 |
20140146201 | Knight et al. | May 2014 | A1 |
20140176592 | Wilburn et al. | Jun 2014 | A1 |
20140183258 | DiMuro | Jul 2014 | A1 |
20140183334 | Wang et al. | Jul 2014 | A1 |
20140186045 | Poddar et al. | Jul 2014 | A1 |
20140192154 | Jeong et al. | Jul 2014 | A1 |
20140192253 | Laroia | Jul 2014 | A1 |
20140198188 | Izawa | Jul 2014 | A1 |
20140204183 | Lee et al. | Jul 2014 | A1 |
20140218546 | McMahon | Aug 2014 | A1 |
20140232822 | Venkataraman et al. | Aug 2014 | A1 |
20140240528 | Venkataraman et al. | Aug 2014 | A1 |
20140240529 | Venkataraman et al. | Aug 2014 | A1 |
20140253738 | Mullis | Sep 2014 | A1 |
20140267243 | Venkataraman et al. | Sep 2014 | A1 |
20140267286 | Duparre | Sep 2014 | A1 |
20140267633 | Venkataraman et al. | Sep 2014 | A1 |
20140267762 | Mullis et al. | Sep 2014 | A1 |
20140267829 | McMahon et al. | Sep 2014 | A1 |
20140267890 | Lelescu et al. | Sep 2014 | A1 |
20140285675 | Mullis | Sep 2014 | A1 |
20140300706 | Song | Oct 2014 | A1 |
20140307058 | Kirk et al. | Oct 2014 | A1 |
20140307063 | Lee | Oct 2014 | A1 |
20140313315 | Shoham et al. | Oct 2014 | A1 |
20140321712 | Ciurea et al. | Oct 2014 | A1 |
20140333731 | Venkataraman et al. | Nov 2014 | A1 |
20140333764 | Venkataraman et al. | Nov 2014 | A1 |
20140333787 | Venkataraman et al. | Nov 2014 | A1 |
20140340539 | Venkataraman et al. | Nov 2014 | A1 |
20140347509 | Venkataraman et al. | Nov 2014 | A1 |
20140347748 | Duparre | Nov 2014 | A1 |
20140354773 | Venkataraman et al. | Dec 2014 | A1 |
20140354843 | Venkataraman et al. | Dec 2014 | A1 |
20140354844 | Venkataraman et al. | Dec 2014 | A1 |
20140354853 | Venkataraman et al. | Dec 2014 | A1 |
20140354854 | Venkataraman et al. | Dec 2014 | A1 |
20140354855 | Venkataraman et al. | Dec 2014 | A1 |
20140355870 | Venkataraman et al. | Dec 2014 | A1 |
20140368662 | Venkataraman et al. | Dec 2014 | A1 |
20140368683 | Venkataraman et al. | Dec 2014 | A1 |
20140368684 | Venkataraman et al. | Dec 2014 | A1 |
20140368685 | Venkataraman et al. | Dec 2014 | A1 |
20140368686 | Duparre | Dec 2014 | A1 |
20140369612 | Venkataraman et al. | Dec 2014 | A1 |
20140369615 | Venkataraman et al. | Dec 2014 | A1 |
20140376825 | Venkataraman et al. | Dec 2014 | A1 |
20140376826 | Venkataraman et al. | Dec 2014 | A1 |
20150002734 | Lee | Jan 2015 | A1 |
20150003752 | Venkataraman et al. | Jan 2015 | A1 |
20150003753 | Venkataraman et al. | Jan 2015 | A1 |
20150009353 | Venkataraman et al. | Jan 2015 | A1 |
20150009354 | Venkataraman et al. | Jan 2015 | A1 |
20150009362 | Venkataraman et al. | Jan 2015 | A1 |
20150015669 | Venkataraman et al. | Jan 2015 | A1 |
20150035992 | Mullis | Feb 2015 | A1 |
20150036014 | Lelescu et al. | Feb 2015 | A1 |
20150036015 | Lelescu et al. | Feb 2015 | A1 |
20150042766 | Ciurea et al. | Feb 2015 | A1 |
20150042767 | Ciurea et al. | Feb 2015 | A1 |
20150042814 | Vaziri | Feb 2015 | A1 |
20150042833 | Lelescu et al. | Feb 2015 | A1 |
20150049915 | Ciurea et al. | Feb 2015 | A1 |
20150049916 | Ciurea et al. | Feb 2015 | A1 |
20150049917 | Ciurea et al. | Feb 2015 | A1 |
20150055884 | Venkataraman et al. | Feb 2015 | A1 |
20150085073 | Bruls et al. | Mar 2015 | A1 |
20150085174 | Shabtay et al. | Mar 2015 | A1 |
20150091900 | Yang et al. | Apr 2015 | A1 |
20150095235 | Dua | Apr 2015 | A1 |
20150098079 | Montgomery et al. | Apr 2015 | A1 |
20150104076 | Hayasaka | Apr 2015 | A1 |
20150104101 | Bryant et al. | Apr 2015 | A1 |
20150122411 | Rodda et al. | May 2015 | A1 |
20150124059 | Georgiev et al. | May 2015 | A1 |
20150124113 | Rodda et al. | May 2015 | A1 |
20150124151 | Rodda et al. | May 2015 | A1 |
20150138346 | Venkataraman et al. | May 2015 | A1 |
20150146029 | Venkataraman et al. | May 2015 | A1 |
20150146030 | Venkataraman et al. | May 2015 | A1 |
20150161798 | Venkataraman et al. | Jun 2015 | A1 |
20150199793 | Venkataraman et al. | Jul 2015 | A1 |
20150199841 | Venkataraman et al. | Jul 2015 | A1 |
20150207990 | Ford et al. | Jul 2015 | A1 |
20150228081 | Kim et al. | Aug 2015 | A1 |
20150235476 | McMahon et al. | Aug 2015 | A1 |
20150237329 | Venkataraman et al. | Aug 2015 | A1 |
20150243480 | Yamada | Aug 2015 | A1 |
20150244927 | Laroia et al. | Aug 2015 | A1 |
20150245013 | Venkataraman et al. | Aug 2015 | A1 |
20150248744 | Hayasaka et al. | Sep 2015 | A1 |
20150254868 | Srikanth et al. | Sep 2015 | A1 |
20150264337 | Venkataraman et al. | Sep 2015 | A1 |
20150288861 | Duparre | Oct 2015 | A1 |
20150296137 | Duparre et al. | Oct 2015 | A1 |
20150312455 | Venkataraman et al. | Oct 2015 | A1 |
20150317638 | Donaldson | Nov 2015 | A1 |
20150326852 | Duparre et al. | Nov 2015 | A1 |
20150332468 | Hayasaka et al. | Nov 2015 | A1 |
20150373261 | Rodda et al. | Dec 2015 | A1 |
20160037097 | Duparre | Feb 2016 | A1 |
20160042548 | Du et al. | Feb 2016 | A1 |
20160044252 | Molina | Feb 2016 | A1 |
20160044257 | Venkataraman et al. | Feb 2016 | A1 |
20160057332 | Ciurea et al. | Feb 2016 | A1 |
20160065934 | Kaza et al. | Mar 2016 | A1 |
20160163051 | Mullis | Jun 2016 | A1 |
20160165106 | Duparre | Jun 2016 | A1 |
20160165134 | Lelescu et al. | Jun 2016 | A1 |
20160165147 | Nisenzon et al. | Jun 2016 | A1 |
20160165212 | Mullis | Jun 2016 | A1 |
20160182786 | Anderson et al. | Jun 2016 | A1 |
20160191768 | Shin et al. | Jun 2016 | A1 |
20160195733 | Lelescu et al. | Jul 2016 | A1 |
20160198096 | McMahon et al. | Jul 2016 | A1 |
20160209654 | Riccomini et al. | Jul 2016 | A1 |
20160210785 | Balachandreswaran et al. | Jul 2016 | A1 |
20160227195 | Venkataraman et al. | Aug 2016 | A1 |
20160249001 | McMahon | Aug 2016 | A1 |
20160255333 | Nisenzon et al. | Sep 2016 | A1 |
20160261844 | Kadambi et al. | Sep 2016 | A1 |
20160266284 | Duparre et al. | Sep 2016 | A1 |
20160267486 | Mitra et al. | Sep 2016 | A1 |
20160267665 | Venkataraman et al. | Sep 2016 | A1 |
20160267672 | Ciurea et al. | Sep 2016 | A1 |
20160269626 | McMahon | Sep 2016 | A1 |
20160269627 | McMahon | Sep 2016 | A1 |
20160269650 | Venkataraman et al. | Sep 2016 | A1 |
20160269651 | Venkataraman et al. | Sep 2016 | A1 |
20160269664 | Duparre | Sep 2016 | A1 |
20160309084 | Venkataraman et al. | Oct 2016 | A1 |
20160309134 | Venkataraman et al. | Oct 2016 | A1 |
20160316140 | Nayar et al. | Oct 2016 | A1 |
20160323578 | Kaneko et al. | Nov 2016 | A1 |
20160344948 | Bamberg | Nov 2016 | A1 |
20170004791 | Aubineau et al. | Jan 2017 | A1 |
20170006233 | Venkataraman et al. | Jan 2017 | A1 |
20170011405 | Pandey | Jan 2017 | A1 |
20170048468 | Pain et al. | Feb 2017 | A1 |
20170053382 | Lelescu et al. | Feb 2017 | A1 |
20170054901 | Venkataraman et al. | Feb 2017 | A1 |
20170070672 | Rodda et al. | Mar 2017 | A1 |
20170070673 | Lelescu et al. | Mar 2017 | A1 |
20170070753 | Kaneko | Mar 2017 | A1 |
20170078568 | Venkataraman et al. | Mar 2017 | A1 |
20170085845 | Venkataraman et al. | Mar 2017 | A1 |
20170094243 | Venkataraman et al. | Mar 2017 | A1 |
20170099465 | Mullis et al. | Apr 2017 | A1 |
20170109742 | Varadarajan | Apr 2017 | A1 |
20170142405 | Shors et al. | May 2017 | A1 |
20170163862 | Molina | Jun 2017 | A1 |
20170178363 | Venkataraman et al. | Jun 2017 | A1 |
20170178399 | Fest | Jun 2017 | A1 |
20170187933 | Duparre | Jun 2017 | A1 |
20170188011 | Panescu et al. | Jun 2017 | A1 |
20170244960 | Ciurea et al. | Aug 2017 | A1 |
20170257562 | Venkataraman et al. | Sep 2017 | A1 |
20170365104 | McMahon et al. | Dec 2017 | A1 |
20180005244 | Govindarajan et al. | Jan 2018 | A1 |
20180007284 | Venkataraman et al. | Jan 2018 | A1 |
20180013945 | Ciurea et al. | Jan 2018 | A1 |
20180024330 | Laroia | Jan 2018 | A1 |
20180035057 | McMahon et al. | Feb 2018 | A1 |
20180040135 | Mullis | Feb 2018 | A1 |
20180048830 | Venkataraman et al. | Feb 2018 | A1 |
20180048879 | Venkataraman et al. | Feb 2018 | A1 |
20180081090 | Duparre et al. | Mar 2018 | A1 |
20180097993 | Nayar et al. | Apr 2018 | A1 |
20180109782 | Duparre et al. | Apr 2018 | A1 |
20180124311 | Lelescu et al. | May 2018 | A1 |
20180131852 | McMahon | May 2018 | A1 |
20180139382 | Venkataraman et al. | May 2018 | A1 |
20180189767 | Bigioi | Jul 2018 | A1 |
20180197035 | Venkataraman et al. | Jul 2018 | A1 |
20180211402 | Ciurea et al. | Jul 2018 | A1 |
20180227511 | McMahon | Aug 2018 | A1 |
20180240265 | Yang et al. | Aug 2018 | A1 |
20180270473 | Mullis | Sep 2018 | A1 |
20180286120 | Fleishman et al. | Oct 2018 | A1 |
20180302554 | Lelescu et al. | Oct 2018 | A1 |
20180330182 | Venkataraman et al. | Nov 2018 | A1 |
20180376122 | Park et al. | Dec 2018 | A1 |
20190012768 | Tafazoli Bilandi et al. | Jan 2019 | A1 |
20190037116 | Molina | Jan 2019 | A1 |
20190037150 | Srikanth et al. | Jan 2019 | A1 |
20190043253 | Lucas et al. | Feb 2019 | A1 |
20190057513 | Jain et al. | Feb 2019 | A1 |
20190063905 | Venkataraman et al. | Feb 2019 | A1 |
20190089947 | Venkataraman et al. | Mar 2019 | A1 |
20190098209 | Venkataraman et al. | Mar 2019 | A1 |
20190109998 | Venkataraman et al. | Apr 2019 | A1 |
20190143412 | Buller | May 2019 | A1 |
20190164341 | Venkataraman | May 2019 | A1 |
20190174040 | Mcmahon | Jun 2019 | A1 |
20190186901 | Kadambi | Jun 2019 | A1 |
20190197735 | Xiong et al. | Jun 2019 | A1 |
20190215496 | Mullis et al. | Jul 2019 | A1 |
20190230348 | Ciurea et al. | Jul 2019 | A1 |
20190235138 | Duparre et al. | Aug 2019 | A1 |
20190243086 | Rodda et al. | Aug 2019 | A1 |
20190244379 | Venkataraman | Aug 2019 | A1 |
20190268586 | Mullis | Aug 2019 | A1 |
20190289176 | Duparre | Sep 2019 | A1 |
20190347768 | Lelescu et al. | Nov 2019 | A1 |
20190356863 | Venkataraman et al. | Nov 2019 | A1 |
20190362515 | Ciurea et al. | Nov 2019 | A1 |
20190364263 | Jannard et al. | Nov 2019 | A1 |
20200026948 | Venkataraman et al. | Jan 2020 | A1 |
20200151894 | Jain et al. | May 2020 | A1 |
20200252597 | Mullis | Aug 2020 | A1 |
20200334905 | Venkataraman | Oct 2020 | A1 |
20200389604 | Venkataraman et al. | Dec 2020 | A1 |
20210042952 | Jain et al. | Feb 2021 | A1 |
20210044790 | Venkataraman et al. | Feb 2021 | A1 |
20210063141 | Venkataraman et al. | Mar 2021 | A1 |
20210133927 | Lelescu et al. | May 2021 | A1 |
20210150748 | Ciurea et al. | May 2021 | A1 |
20210264147 | Kadambi | Aug 2021 | A1 |
20210264607 | Kalra | Aug 2021 | A1 |
20210356572 | Kadambi | Nov 2021 | A1 |
20220157070 | Kadambi | May 2022 | A1 |
20220198673 | Kalra | Jun 2022 | A1 |
Number | Date | Country |
---|---|---|
2488005 | Apr 2002 | CN |
1619358 | May 2005 | CN |
1669332 | Sep 2005 | CN |
1727991 | Feb 2006 | CN |
1839394 | Sep 2006 | CN |
1985524 | Jun 2007 | CN |
1992499 | Jul 2007 | CN |
101010619 | Aug 2007 | CN |
101046882 | Oct 2007 | CN |
101064780 | Oct 2007 | CN |
101102388 | Jan 2008 | CN |
101147392 | Mar 2008 | CN |
201043890 | Apr 2008 | CN |
101212566 | Jul 2008 | CN |
101312540 | Nov 2008 | CN |
101427372 | May 2009 | CN |
101551586 | Oct 2009 | CN |
101593350 | Dec 2009 | CN |
101606086 | Dec 2009 | CN |
101785025 | Jul 2010 | CN |
101883291 | Nov 2010 | CN |
102037717 | Apr 2011 | CN |
102047651 | May 2011 | CN |
102164298 | Aug 2011 | CN |
102184720 | Sep 2011 | CN |
102375199 | Mar 2012 | CN |
103004180 | Mar 2013 | CN |
103765864 | Apr 2014 | CN |
104081414 | Oct 2014 | CN |
104508681 | Apr 2015 | CN |
104662589 | May 2015 | CN |
104685513 | Jun 2015 | CN |
104685860 | Jun 2015 | CN |
105409212 | Mar 2016 | CN |
103765864 | Jul 2017 | CN |
104081414 | Aug 2017 | CN |
104662589 | Aug 2017 | CN |
107077743 | Aug 2017 | CN |
107230236 | Oct 2017 | CN |
107251539 | Oct 2017 | CN |
107346061 | Nov 2017 | CN |
107404609 | Nov 2017 | CN |
104685513 | Apr 2018 | CN |
107924572 | Apr 2018 | CN |
108307675 | Jul 2018 | CN |
104335246 | Sep 2018 | CN |
109642787 | Apr 2019 | CN |
107404609 | Feb 2020 | CN |
107346061 | Apr 2020 | CN |
111402395 | Jul 2020 | CN |
107230236 | Dec 2020 | CN |
108307675 | Dec 2020 | CN |
107077743 | Mar 2021 | CN |
602011041799.1 | Sep 2017 | DE |
0677821 | Oct 1995 | EP |
0840502 | May 1998 | EP |
1201407 | May 2002 | EP |
1355274 | Oct 2003 | EP |
1734766 | Dec 2006 | EP |
1991145 | Nov 2008 | EP |
1243945 | Jan 2009 | EP |
2026563 | Feb 2009 | EP |
2031592 | Mar 2009 | EP |
2041454 | Apr 2009 | EP |
2072785 | Jun 2009 | EP |
2104334 | Sep 2009 | EP |
2136345 | Dec 2009 | EP |
2156244 | Feb 2010 | EP |
2244484 | Oct 2010 | EP |
0957642 | Apr 2011 | EP |
2336816 | Jun 2011 | EP |
2339532 | Jun 2011 | EP |
2381418 | Oct 2011 | EP |
2386554 | Nov 2011 | EP |
2462477 | Jun 2012 | EP |
2502115 | Sep 2012 | EP |
2569935 | Mar 2013 | EP |
2652678 | Oct 2013 | EP |
2677066 | Dec 2013 | EP |
2708019 | Mar 2014 | EP |
2761534 | Aug 2014 | EP |
2777245 | Sep 2014 | EP |
2867718 | May 2015 | EP |
2873028 | May 2015 | EP |
2888698 | Jul 2015 | EP |
2888720 | Jul 2015 | EP |
2901671 | Aug 2015 | EP |
2973476 | Jan 2016 | EP |
3066690 | Sep 2016 | EP |
2569935 | Dec 2016 | EP |
3201877 | Aug 2017 | EP |
2652678 | Sep 2017 | EP |
3284061 | Feb 2018 | EP |
3286914 | Feb 2018 | EP |
3201877 | Mar 2018 | EP |
2817955 | Apr 2018 | EP |
3328048 | May 2018 | EP |
3075140 | Jun 2018 | EP |
3201877 | Dec 2018 | EP |
3467776 | Apr 2019 | EP |
2708019 | Oct 2019 | EP |
3286914 | Dec 2019 | EP |
2761534 | Nov 2020 | EP |
2888720 | Mar 2021 | EP |
3328048 | Apr 2021 | EP |
2482022 | Jan 2012 | GB |
2708CHENP2014 | Aug 2015 | IN |
361194 | Mar 2021 | IN |
59-025483 | Feb 1984 | JP |
64-037177 | Feb 1989 | JP |
02-285772 | Nov 1990 | JP |
06129851 | May 1994 | JP |
07-015457 | Jan 1995 | JP |
H0756112 | Mar 1995 | JP |
09171075 | Jun 1997 | JP |
09181913 | Jul 1997 | JP |
10253351 | Sep 1998 | JP |
11142609 | May 1999 | JP |
11223708 | Aug 1999 | JP |
11325889 | Nov 1999 | JP |
2000209503 | Jul 2000 | JP |
2001008235 | Jan 2001 | JP |
2001194114 | Jul 2001 | JP |
2001264033 | Sep 2001 | JP |
2001277260 | Oct 2001 | JP |
2001337263 | Dec 2001 | JP |
2002195910 | Jul 2002 | JP |
2002205310 | Jul 2002 | JP |
2002209226 | Jul 2002 | JP |
2002250607 | Sep 2002 | JP |
2002252338 | Sep 2002 | JP |
2003094445 | Apr 2003 | JP |
2003139910 | May 2003 | JP |
2003163938 | Jun 2003 | JP |
2003187265 | Jul 2003 | JP |
2003298920 | Oct 2003 | JP |
2004221585 | Aug 2004 | JP |
2005116022 | Apr 2005 | JP |
2005181460 | Jul 2005 | JP |
2005295381 | Oct 2005 | JP |
2005303694 | Oct 2005 | JP |
2005341569 | Dec 2005 | JP |
2005354124 | Dec 2005 | JP |
2006033228 | Feb 2006 | JP |
2006033493 | Feb 2006 | JP |
2006047944 | Feb 2006 | JP |
2006258930 | Sep 2006 | JP |
2007520107 | Jul 2007 | JP |
2007259136 | Oct 2007 | JP |
2008039852 | Feb 2008 | JP |
2008055908 | Mar 2008 | JP |
2008507874 | Mar 2008 | JP |
2008172735 | Jul 2008 | JP |
2008258885 | Oct 2008 | JP |
2009064421 | Mar 2009 | JP |
2009132010 | Jun 2009 | JP |
2009300268 | Dec 2009 | JP |
2010139288 | Jun 2010 | JP |
2011017764 | Jan 2011 | JP |
2011030184 | Feb 2011 | JP |
2011109484 | Jun 2011 | JP |
2011523538 | Aug 2011 | JP |
2011203238 | Oct 2011 | JP |
2012504805 | Feb 2012 | JP |
2011052064 | Mar 2013 | JP |
2013509022 | Mar 2013 | JP |
2013526801 | Jun 2013 | JP |
2014519741 | Aug 2014 | JP |
2014521117 | Aug 2014 | JP |
2014535191 | Dec 2014 | JP |
2015022510 | Feb 2015 | JP |
2015522178 | Aug 2015 | JP |
2015534734 | Dec 2015 | JP |
5848754 | Jan 2016 | JP |
2016524125 | Aug 2016 | JP |
6140709 | May 2017 | JP |
2017163550 | Sep 2017 | JP |
2017163587 | Sep 2017 | JP |
2017531976 | Oct 2017 | JP |
2019039909 | Mar 2019 | JP |
6546613 | Jul 2019 | JP |
2019-220957 | Dec 2019 | JP |
6630891 | Dec 2019 | JP |
2020017999 | Jan 2020 | JP |
6767543 | Sep 2020 | JP |
6767558 | Sep 2020 | JP |
1020050004239 | Jan 2005 | KR |
100496875 | Jun 2005 | KR |
1020110097647 | Aug 2011 | KR |
20140045373 | Apr 2014 | KR |
20170063827 | Jun 2017 | KR |
101824672 | Feb 2018 | KR |
101843994 | Mar 2018 | KR |
101973822 | Apr 2019 | KR |
10-2002165 | Jul 2019 | KR |
10-2111181 | May 2020 | KR |
191151 | Jul 2013 | SG |
11201500910 | Oct 2015 | SG |
200828994 | Jul 2008 | TW |
200939739 | Sep 2009 | TW |
201228382 | Jul 2012 | TW |
I535292 | May 2016 | TW |
1994020875 | Sep 1994 | WO |
2005057922 | Jun 2005 | WO |
2006039906 | Apr 2006 | WO |
2006039906 | Apr 2006 | WO |
2007013250 | Feb 2007 | WO |
2007083579 | Jul 2007 | WO |
2007134137 | Nov 2007 | WO |
2008045198 | Apr 2008 | WO |
2008050904 | May 2008 | WO |
2008108271 | Sep 2008 | WO |
2008108926 | Sep 2008 | WO |
2008150817 | Dec 2008 | WO |
2009073950 | Jun 2009 | WO |
2009151903 | Dec 2009 | WO |
2009157273 | Dec 2009 | WO |
2010037512 | Apr 2010 | WO |
2011008443 | Jan 2011 | WO |
2011026527 | Mar 2011 | WO |
2011046607 | Apr 2011 | WO |
2011055655 | May 2011 | WO |
2011063347 | May 2011 | WO |
2011105814 | Sep 2011 | WO |
2011116203 | Sep 2011 | WO |
2011063347 | Oct 2011 | WO |
2011121117 | Oct 2011 | WO |
WO 2009147814 | Oct 2011 | WO |
2011143501 | Nov 2011 | WO |
2012057619 | May 2012 | WO |
2012057620 | May 2012 | WO |
2012057621 | May 2012 | WO |
2012057622 | May 2012 | WO |
2012057623 | May 2012 | WO |
2012057620 | Jun 2012 | WO |
2012074361 | Jun 2012 | WO |
2012078126 | Jun 2012 | WO |
2012082904 | Jun 2012 | WO |
2012155119 | Nov 2012 | WO |
2013003276 | Jan 2013 | WO |
2013043751 | Mar 2013 | WO |
2013043761 | Mar 2013 | WO |
2013049699 | Apr 2013 | WO |
2013055960 | Apr 2013 | WO |
2013119706 | Aug 2013 | WO |
2013126578 | Aug 2013 | WO |
2013166215 | Nov 2013 | WO |
2014004134 | Jan 2014 | WO |
2014005123 | Jan 2014 | WO |
2014031795 | Feb 2014 | WO |
2014052974 | Apr 2014 | WO |
2014032020 | May 2014 | WO |
2014078443 | May 2014 | WO |
2014130849 | Aug 2014 | WO |
2014131038 | Aug 2014 | WO |
2014133974 | Sep 2014 | WO |
2014138695 | Sep 2014 | WO |
2014138697 | Sep 2014 | WO |
2014144157 | Sep 2014 | WO |
2014145856 | Sep 2014 | WO |
2014149403 | Sep 2014 | WO |
2014149902 | Sep 2014 | WO |
2014150856 | Sep 2014 | WO |
2014153098 | Sep 2014 | WO |
2014159721 | Oct 2014 | WO |
2014159779 | Oct 2014 | WO |
2014160142 | Oct 2014 | WO |
2014164550 | Oct 2014 | WO |
2014164909 | Oct 2014 | WO |
2014165244 | Oct 2014 | WO |
2014133974 | Apr 2015 | WO |
2015048694 | Apr 2015 | WO |
2015048906 | Apr 2015 | WO |
2015070105 | May 2015 | WO |
2015074078 | May 2015 | WO |
2015081279 | Jun 2015 | WO |
2015134996 | Sep 2015 | WO |
2015183824 | Dec 2015 | WO |
2016054089 | Apr 2016 | WO |
2016172125 | Oct 2016 | WO |
2016167814 | Oct 2016 | WO |
2016172125 | Apr 2017 | WO |
WO 2016136086 | Dec 2017 | WO |
2018053181 | Mar 2018 | WO |
WO 2018182751 | Oct 2018 | WO |
WO 2018210183 | Nov 2018 | WO |
2019038193 | Feb 2019 | WO |
WO 2019089049 | May 2019 | WO |
Entry |
---|
US 8,957,977 B2, 02/2015, Venkataraman et al. (withdrawn) |
Office Action in German Appln. No. 112020004810.1, dated Aug. 4, 2022, 12 pages (with English summary). |
Office Action in Japanese Appln. No. 2022-521137, dated Apr. 4, 2023, 10 pages (with English translation). |
Ansari et al., “3-D Face Modeling Using Two Views and a Generic Face Model with Application to 3-D Face Recognition”, Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance, Jul. 22, 2003, 9 pgs. |
Aufderheide et al., “A MEMS-based Smart Sensor System for Estimation of Camera Pose for Computer Vision Applications”, Research and Innovation Conference 2011, Jul. 29, 2011, pp. 1-10. |
Baker et al., “Limits on Super-Resolution and How to Break Them”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Sep. 2002, vol. 24, No. 9, pp. 1167-1183. |
Banz et al., “Real-Time Semi-Global Matching Disparity Estimation on the GPU”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Sep. 2002, vol. 24, No. 9, pp. 1167-1183. |
Barron et al., “Intrinsic Scene Properties from a Single RGB-D Image”, 2013 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2013, Portland, OR, USA, pp. 17-24. |
Bennett et al., “Multispectral Bilateral Video Fusion”, Computer Graphics (ACM SIGGRAPH Proceedings), Jul. 25, 2006, published Jul. 30, 2006, 1 pg. |
Bennett et al., “Multispectral Video Fusion”, Computer Graphics (ACM SIGGRAPH Proceedings), Jul. 25, 2006, published Jul. 30, 2006, 1 pg. |
Berretti et al., “Face Recognition by Super-Resolved 3D Models from Consumer Depth Cameras”, IEEE Transactions on Information Forensics and Security, vol. 9, No. 9, Sep. 2014, pp. 1436-1448. |
Bertalmio et al., “Image Inpainting”, Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, 2000, ACM Pres/Addison-Wesley Publishing Co., pp. 417-424. |
Bertero et al., “Super-resolution in computational imaging”, Micron, Jan. 1, 2003, vol. 34, Issues 6-7, 17 pgs. |
Bishop et al., “Full-Resolution Depth Map Estimation from an Aliased Plenoptic Light Field”, ACCV Nov. 8, 2010, Part II, LNCS 6493, pp. 186-200. |
Bishop et al., “Light Field Superresolution”, Computational Photography (ICCP), 2009 IEEE International Conference, Conference Date Apr. 16-17, published Jan. 26, 2009, 9 pgs. |
Bishop et al., “The Light Field Camera: Extended Depth of Field, Aliasing, and Superresolution”, IEEE Transactions on Pattern Analysis and Machine Intelligence, May 2012, vol. 34, No. 5, published Aug. 18, 2011, pp. 972-986. |
Blanz et al., “A Morphable Model for The Synthesis of 3D Faces”, In Proceedings of ACM SIGGRAPH 1999, Jul. 1, 1999, pp. 187-194. |
Borman, “Topics in Multiframe Superresolution Restoration”, Thesis of Sean Borman, Apr. 2004, 282 pgs. |
Borman et al., “Image Sequence Processing”, Dekker Encyclopedia of Optical Engineering, Oct. 14, 2002, 81 pgs. |
Borman et al., “Linear models for multi-frame super-resolution restoration under non-affine registration and spatially varying PSF”, Proc. SPIE, May 21, 2004, vol. 5299, 12 pgs. |
Borman et al., “Simultaneous Multi-Frame MAP Super-Resolution Video Enhancement Using Spatio-Temporal Priors”, Image Processing, 1999, ICIP 99 Proceedings, vol. 3, pp. 469-473. |
Borman et al., “Super-Resolution from Image Sequences—A Review”, Circuits & Systems, 1998, pp. 374-378. |
Borman et al., “Nonlinear Prediction Methods for Estimation of Clique Weighting Parameters in NonGaussian Image Models”, Proc. SPIE, Sep. 22, 1998, vol. 3459, 9 pgs. |
Borman et al., “Block-Matching Sub-Pixel Motion Estimation from Noisy, Under-Sampled Frames—An Empirical Performance Evaluation”, Proc SPIE, Dec. 28, 1998, vol. 3653, 10 pgs. |
Borman et al., “Image Resampling and Constraint Formulation for Multi-Frame Super-Resolution Restoration”, Proc SPIE, Dec. 28, 1998, vol. 3653, 10 pgs. |
Bose et al., “Superresolution and Noise Filtering Using Moving Least Squares”, IEEE Transactions on Image Processing, Aug. 2006, vol. 15, Issue 8, published Jul. 17, 2006, pp. 2239-2248. |
Boye et al., “Comparison of Subpixel Image Registration Algorithms”, Proc. of SPIE—IS&T Electronic Imaging, Feb. 3, 2009, vol. 7246, pp. 72460X-1-72460X-9; doi: 10.1117/12.810369. |
Bruckner et al., “Thin wafer-level camera lenses inspired by insect compound eyes”, Optics Express, Nov. 22, 2010, vol. 18, No. 24, pp. 24379-24394. |
Bruckner et al., “Artificial compound eye applying hyperacuity”, Optics Express, Dec. 11, 2006, vol. 14, No. 25, pp. 12076-12084. |
Bruckner et al., “Driving microoptical imaging systems towards miniature camera applications”, Proc. SPIE, Micro-Optics, May 13, 2010, 11 pgs. |
Bryan et al., “Perspective Distortion from Interpersonal Distance Is an Implicit Visual Cue for Social Judgments of Faces”, PLOS One, vol. 7, Issue 9, Sep. 26, 2012, e45301, doi:10.1371/journal.pone.0045301, 9 pgs. |
Bulat et al., “How far are we from solving the 2D & 3D Face Alignment problem? (and a dataset of 230,000 3D facial landmarks)”, arxiv.org, Cornell University Library, 201 Olin Library Cornell University Ithaca, NY 14853, Mar. 21, 2017. |
Cai et al., “3D Deformable Face Tracking with a Commodity Depth Camera”, Proceedings of the European Conference on Computer Vision: Part III, Sep. 5-11, 2010, 14pgs. |
Capel, “Image Mosaicing and Super-resolution”, Retrieved on Nov. 10, 2012, Retrieved from the Internet at URL:<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.226.2643&rep=rep1 &type=pdf>, 2001, 269 pgs. |
Caron et al., “Multiple camera types simultaneous stereo calibration, Robotics and Automation (ICRA)”, 2011 IEEE International Conference On, May 1, 2011 (May 1, 2011), pp. 2933-2938. |
Carroll et al., “Image Warps for Artistic Perspective Manipulation”, ACM Transactions on Graphics (TOG), vol. 29, No. 4, Jul. 26, 2010, Article No. 127, 9 pgs. |
Chan et al., “Investigation of Computational Compound-Eye Imaging System with Super-Resolution Reconstruction”, IEEE, ISASSP, Jun. 19, 2006, pp. 1177-1180. |
Chan et al., “Extending the Depth of Field in a Compound-Eye Imaging System with Super-Resolution Reconstruction”, Proceedings—International Conference on Pattern Recognition, Jan. 1, 2006, vol. 3, pp. 623-626. |
Chan et al., “Super-resolution reconstruction in a computational compound-eye imaging system”, Multidim. Syst. Sign. Process, published online Feb. 23, 2007, vol. 18, pp. 83-101. |
Chen et al., “Interactive deformation of light fields”, Symposium on Interactive 3D Graphics, 2005, pp. 139-146. |
Chen et al., “KNN Matting”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Sep. 2013, vol. 35, No. 9, pp. 2175-2188. |
Chen et al., “KNN matting”, 2012 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 16-21, 2012, Providence, RI, USA, pp. 869-876. |
Chen et al., “Image Matting with Local and Nonlocal Smooth Priors” CVPR '13 Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23, 2013, pp. 1902-1907. |
Chen et al., “Human Face Modeling and Recognition Through Multi-View High Resolution Stereopsis”, IEEE Conference on Computer Vision and Pattern Recognition Workshop, Jun. 17-22, 2006, 6 pgs. |
Collins et al., “An Active Camera System for Acquiring Multi-View Video”, IEEE 2002 International Conference on Image Processing, Date of Conference: Sep. 22-25, 2002, Rochester, NY, 4 pgs. |
Cooper et al., “The perceptual basis of common photographic practice”, Journal of Vision, vol. 12, No. 5, Article 8, May 25, 2012, pp. 1-14. |
Crabb et al., “Real-time foreground segmentation via range and color imaging”, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Anchorage, AK, USA, Jun. 23-28, 2008, pp. 1-5. |
Dainese et al., “Accurate Depth-Map Estimation for 3D Face Modeling”, IEEE European Signal Processing Conference, Sep. 4-8, 2005, 4 pgs. |
Debevec et al., “Recovering High Dynamic Range Radiance Maps from Photographs”, Computer Graphics (ACM SIGGRAPH Proceedings), Aug. 16, 1997, 10 pgs. |
Do, Minh N. “Immersive Visual Communication with Depth”, Presented at Microsoft Research, Jun. 15, 2011, Retrieved from: http://minhdo.ece.illinois.edu/talks/ImmersiveComm.pdf, 42 pgs. |
Do et al., Immersive Visual Communication, IEEE Signal Processing Magazine, vol. 28, Issue 1, Jan. 2011, DOI: 10.1109/MSP.2010.939075, Retrieved from: http://minhdo.ece.illinois.edu/publications/ImmerComm_SPM.pdf, pp. 58-66. |
Dou et al., “End-to-end 3D face reconstruction with deep neural networks” arXiv:1704.05020v1, Apr. 17, 2017, 10 pgs. |
Drouin et al., “Improving Border Localization of Multi-Baseline Stereo Using Border-Cut”, International Journal of Computer Vision, Jul. 5, 2006, vol. 83, Issue 3, 8 pgs. |
Drouin et al., “Fast Multiple-Baseline Stereo with Occlusion”, Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05), Ottawa, Ontario, Canada, Jun. 13-16, 2005, pp. 540-547. |
Drouin et al., “Geo-Consistency for Wide Multi-Camera Stereo”, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), vol. 1, Jun. 20-25, 2005, pp. 351-358. |
Drulea et al., “Motion Estimation Using the Correlation Transform”, IEEE Transactions on Image Processing, Aug. 2013, vol. 22, No. 8, pp. 3260-3270, first published May 14, 2013. |
Duparre et al., “Microoptical artificial compound eyes—from design to experimental verification of two different concepts”, Proc. of SPIE, Optical Design and Engineering II, vol. 5962, Oct. 17, 2005, pp. 59622A-1-59622A-12. |
Duparre et al., Novel Optics/Micro-Optics for Miniature Imaging Systems, Proc. of SPIE, Apr. 21, 2006, vol. 6196, pp. 619607-1-619607-15. |
Duparre et al., “Micro-optical artificial compound eyes”, Bioinspiration & Biomimetics, Apr. 6, 2006, vol. 1, pp. R1-R16. |
Duparre et al., “Artificial compound eye zoom camera”, Bioinspiration & Biomimetics, Nov. 21, 2008, vol. 3, pp. 1-6. |
Duparre et al., “Artificial apposition compound eye fabricated by micro-optics technology”, Applied Optics, Aug. 1, 2004, vol. 43, No. 22, pp. 4303-4310. |
Duparre et al., “Micro-optically fabricated artificial apposition compound eye”, Electronic Imaging—Science and Technology, Prod. SPIE 5301, Jan. 2004, pp. 25-33. |
Duparre et al., “Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence”, Optics Express, Dec. 26, 2005, vol. 13, No. 26, pp. 10539-10551. |
Duparre et al., “Artificial compound eyes—different concepts and their application to ultra flat image acquisition sensors”, MOEMS and Miniaturized Systems IV, Proc. SPIE 5346, Jan. 24, 2004, pp. 89-100. |
Duparre et al., “Ultra-Thin Camera Based on Artificial Apposition Compound Eyes”, 10th Microoptics Conference, Sep. 1-3, 2004, 2 pgs. |
Duparre et al., “Microoptical telescope compound eye”, Optics Express, Feb. 7, 2005, vol. 13, No. 3, pp. 889-903. |
Duparre et al., “Theoretical analysis of an artificial superposition compound eye for application in ultra flat digital image acquisition devices”, Optical Systems Design, Proc. SPIE 5249, Sep. 2003, pp. 408-418. |
Duparre et al., “Thin compound-eye camera”, Applied Optics, May 20, 2005, vol. 44, No. 15, pp. 2949-2956. |
Duparre et al., “Microoptical Artificial Compound Eyes—Two Different Concepts for Compact Imaging Systems”, 11th Microoptics Conference, Oct. 30-Nov. 2, 2005, 2 pgs. |
Eng et al., “Gaze correction for 3D tele-immersive communication system”, IVMSP Workshop, 2013 IEEE 11th. IEEE, Jun. 10, 2013. |
Fanaswala, “Regularized Super-Resolution of Multi-View Images”, Retrieved on Nov. 10, 2012 (Nov. 10, 2012). Retrieved from the Internet at URL:<http://www.site.uottawa.ca/-edubois/theses/Fanaswala_thesis.pdf>, 2009, 163 pgs. |
Fang et al., “Volume Morphing Methods for Landmark Based 3D Image Deformation”, SPIE vol. 2710, Proc. 1996 SPIE Intl Symposium on Medical Imaging, Newport Beach, CA, Feb. 10, 1996, pp. 404-415. |
Fangmin et al., “3D Face Reconstruction Based on Convolutional Neural Network”, 2017 10th International Conference on Intelligent Computation Technology and Automation, Oct. 9-10, 2017, Changsha, China. |
Farrell et al., “Resolution and Light Sensitivity Tradeoff with Pixel Size”, Proceedings of the SPIE Electronic Imaging 2006 Conference, Feb. 2, 2006, vol. 6069, 8 pgs. |
Farsiu et al., “Advances and Challenges in Super-Resolution”, International Journal of Imaging Systems and Technology, Aug. 12, 2004, vol. 14, pp. 47-57. |
Farsiu et al., “Fast and Robust Multiframe Super Resolution”, IEEE Transactions on Image Processing, Oct. 2004, published Sep. 3, 2004, vol. 13, No. 10, pp. 1327-1344. |
Farsiu et al., “Multiframe Demosaicing and Super-Resolution of Color Images”, IEEE Transactions on Image Processing, Jan. 2006, vol. 15, No. 1, date of publication Dec. 12, 2005, pp. 141-159. |
Fechteler et al., Fast and High Resolution 3D Face Scanning, IEEE International Conference on Image Processing, Sep. 16-Oct. 19, 2007, 4 pgs. |
Fecker et al., “Depth Map Compression for Unstructured Lumigraph Rendering”, Proc. SPIE 6077, Proceedings Visual Communications and Image Processing 2006, Jan. 18, 2006, pp. 60770B-1-60770B-8. |
Feris et al., “Multi-Flash Stereopsis: Depth Edge Preserving Stereo with Small Baseline Illumination”, IEEE Trans on PAMI, 2006, 31 pgs. |
Fife et al., “A 3D Multi-Aperture Image Sensor Architecture”, Custom Integrated Circuits Conference, 2006, CICC '06, IEEE, pp. 281-284. |
Fife et al., “A 3MPixel Multi-Aperture Image Sensor with 0.7Mu Pixels in 0.11Mu CMOS”, ISSCC 2008, Session 2, Image Sensors & Technology, 2008, pp. 48-50. |
Fischer et al., “Optical System Design”, 2nd Edition, SPIE Press, Feb. 14, 2008, pp. 49-58. |
Fischer et al., “Optical System Design”, 2nd Edition, SPIE Press, Feb. 14, 2008, pp. 191-198. |
Garg et al., “Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue”, In European Conference on Computer Vision, Springer, Cham, Jul. 2016, 16 pgs. |
Gastal et al., “Shared Sampling for Real-Time Alpha Matting”, Computer Graphics Forum, Eurographics 2010, vol. 29, Issue 2, May 2010, pp. 575-584. |
Georgeiv et al., “Light Field Camera Design for Integral View Photography”, Adobe Systems Incorporated, Adobe Technical Report, 2003, 13 pgs. |
Georgiev et al., “Light-Field Capture by Multiplexing in the Frequency Domain”, Adobe Systems Incorporated, Adobe Technical Report, 2003, 13 pgs. |
Godard et al., “Unsupervised Monocular Depth Estimation with Left-Right Consistency”, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, 14 pgs. |
Goldman et al., “Video Object Annotation, Navigation, and Composition”, In Proceedings of UIST 2008, Oct. 19-22, 2008, Monterey CA, USA, pp. 3-12. |
Goodfellow et al., “Generative Adversarial Nets, 2014. Generative adversarial nets”, In Advances in Neural Information Processing Systems (pp. 2672-2680). |
Gortler et al., “The Lumigraph”, In Proceedings of SIGGRAPH 1996, published Aug. 1, 1996, pp. 43-54. |
Gupta et al., “Perceptual Organization and Recognition of Indoor Scenes from RGB-D Images”, 2013 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2013, Portland, OR, USA, pp. 564-571. |
Hacohen et al., “Non-Rigid Dense Correspondence with Applications for Image Enhancement”, ACM Transactions on Graphics, vol. 30, No. 4, Aug. 7, 2011, 9 pgs. |
Hamilton, “JPEG File Interchange Format, Version 1.02”, Sep. 1, 1992, 9 pgs. |
Hardie, “A Fast Image Super-Algorithm Using an Adaptive Wiener Filter”, IEEE Transactions on Image Processing, Dec. 2007, published Nov. 19, 2007, vol. 16, No. 12, pp. 2953-2964. |
Hasinoff et al., “Search-and-Replace Editing for Personal Photo Collections”, 2010 International Conference: Computational Photography (ICCP) Mar. 2010, pp. 1-8. |
Hernandez et al., “Laser Scan Quality 3-D Face Modeling Using a Low-Cost Depth Camera”, 20th European Signal Processing Conference, Aug. 27-31, 2012, Bucharest, Romania, pp. 1995-1999. |
Hernandez-Lopez et al., “Detecting objects using color and depth segmentation with Kinect sensor”, Procedia Technology, vol. 3, Jan. 1, 2012, pp. 196-204, XP055307680, ISSN: 2212-0173, DOI: 10.1016/j.protcy.2012.03.021. |
Higo et al., “A Hand-held Photometric Stereo Camera for 3-D Modeling”, IEEE International Conference on Computer Vision, 2009, pp. 1234-1241. |
Hirschmuller, “Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual Information”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA, Jun. 20-26, 2005, 8 pgs. |
Hirschmuller et al., “Memory Efficient Semi-Global Matching, ISPRS Annals of the Photogrammetry”, Remote Sensing and Spatial Information Sciences, vol. 1-3, 2012, XXII ISPRS Congress, Aug. 25-Sep. 1, 2012, Melbourne, Australia, 6 pgs. |
Holoeye Photonics AG, “Spatial Light Modulators”, Oct. 2, 2013, Brochure retrieved from https://web.archive.org/web/20131002061028/http://holoeye.com/wp-content/uploads/Spatial_Light_Modulators.pdf on Oct. 13, 2017, 4 pgs. |
Holoeye Photonics AG, “Spatial Light Modulators”, Sep. 18, 2013, retrieved from https://web.archive.org/web/20130918113140/http://holoeye.com/spatial-light-modulators/ on Oct. 13, 2017, 4 pgs. |
Holoeye Photonics AG, “LC 2012 Spatial Light Modulator (transmissive)”, Sep. 18, 2013, retrieved from https://web.archive.org/web/20130918151716/http://holoeye.com/spatial-light-modulators/lc-2012-spatial-light-modulator/ on Oct. 20, 2017, 3 pgs. |
Horisaki et al., “Superposition Imaging for Three-Dimensionally Space-Invariant Point Spread Functions”, Applied Physics Express, Oct. 13, 2011, vol. 4, pp. 112501-1-112501-3. |
Horisaki et al., “Irregular Lens Arrangement Design to Improve Imaging Performance of Compound-Eye Imaging Systems”, Applied Physics Express, Jan. 29, 2010, vol. 3, pp. 022501-1-022501-3. |
Horn et al., “LightShop: Interactive Light Field Manipulation and Rendering”, In Proceedings of I3D, Jan. 1, 2007, pp. 121-128. |
Hossain et al., “Inexpensive Construction of a 3D Face Model from Stereo Images”, IEEE International Conference on Computer and Information Technology, Dec. 27-29, 2007, 6 pgs. |
Hu et al., “A Quantitative Evaluation of Confidence Measures for Stereo Vision”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, Issue 11, Nov. 2012, pp. 2121-2133. |
Humenberger Er Al., “A Census-Based Stereo Vision Algorithm Using Modified Semi-Global Matching and Plane Fitting to Improve Matching Quality”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), IEEE, Jun. 13-18, 2010, San Francisco, CA, 8 pgs. |
Isaksen et al., “Dynamically Reparameterized Light Fields”, In Proceedings of SIGGRAPH 2000, 2000, pp. 297-306. |
Izadi et al., “KinectFusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera”, UIST'11, Oct. 16-19, 2011, Santa Barbara, CA, pp. 559-568. |
Jackson et al., “Large Post 3D Face Reconstruction from a Single Image via Direct Volumetric CNN Regression”, arXiv: 1703.07834v2, Sep. 8, 2017, 9 pgs. |
Janoch et al., “A category-level 3-D object dataset: Putting the Kinect to work”, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Nov. 6-13, 2011, Barcelona, Spain, pp. 1168-1174. |
Jarabo et al., “Efficient Propagation of Light Field Edits”, In Proceedings of SIACG 2011, 2011, pp. 75-80. |
Jiang et al., “Panoramic 3D Reconstruction Using Rotational Stereo Camera with Simple Epipolar Constraints”, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), vol. 1, Jun. 17-22, 2006, New York, NY, USA, pp. 371-378. |
Joshi, Color Calibration for Arrays of Inexpensive Image Sensors, Mitsubishi Electric Research Laboratories, Inc., TR2004-137, Dec. 2004, 6 pgs. |
Joshi et al., “Synthetic Aperture Tracking: Tracking Through Occlusions”, ICCV IEEE 11th International Conference on Computer Vision; Publication [online]. Oct. 2007 [retrieved Jul. 28, 2014]. Retrieved from the Internet: <URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4409032&isnumber=4408819>, pp. 1-8. |
Jourabloo, “Large-Pose Face Alignment via CNN-Based Dense 3D Model Fitting”, ICCV IEEE 11th International Conference on Computer Vision; Publication [online]. Oct. 2007 [retrieved Jul. 28, 2014]. Retrieved from the Internet: <URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4409032&isnumber=4408819>; pp. 1-8. |
Kang et al., “Handling Occlusions in Dense Multi-view Stereo”, Computer Vision and Pattern Recognition, 2001, vol. 1, pp. 1-103-1-110. |
Keeton, “Memory-Driven Computing”, Hewlett Packard Enterprise Company, Oct. 20, 2016, 45 pgs. |
Kim, “Scene Reconstruction from a Light Field”, Master Thesis, Sep. 1, 2010 (Sep. 1, 2010), pp. 1-72. |
Kim et al., “Scene reconstruction from high spatio-angular resolution light fields”, ACM Transactions on Graphics (TOG)—SIGGRAPH 2013 Conference Proceedings, vol. 32 Issue 4, Article 73, Jul. 21, 2013, 11 pages. |
Kitamura et al., “Reconstruction of a high-resolution image on a compound-eye image-capturing system”, Applied Optics, Mar. 10, 2004, vol. 43, No. 8, pp. 1719-1727. |
Kittler et al., “3D Assisted Face Recognition: A Survey of 3D Imaging, Modelling, and Recognition Approaches”, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Jul. 2005, 7 pgs. |
Konolige, Kurt “Projected Texture Stereo”, 2010 IEEE International Conference on Robotics and Automation, May 3-7, 2010, pp. 148-155. |
Kotsia et al., “Facial Expression Recognition in Image Sequences Using Geometric Deformation Features and Support Vector Machines”, IEEE Transactions on Image Processing, Jan. 2007, vol. 16, No. 1, pp. 172-187. |
Krishnamurthy et al., “Compression and Transmission of Depth Maps for Image-Based Rendering”, Image Processing, 2001, pp. 828-831. |
Kubota et al., “Reconstructing Dense Light Field From Array of Multifocus Images for Novel View Synthesis”, IEEE Transactions on Image Processing, vol. 16, No. 1, Jan. 2007, pp. 269-279. |
Kutulakos et al., “Occluding Contour Detection Using Affine Invariants and Purposive Viewpoint Control”, Computer Vision and Pattern Recognition, Proceedings CVPR 94, Seattle, Washington, Jun. 21-23, 1994, 8 pgs. |
Lai et al., “A Large-Scale Hierarchical Multi-View RGB-D Object Dataset”, Proceedings—IEEE International Conference on Robotics and Automation, Conference Date May 9-13, 2011, 8 pgs., DOI:10.1109/ICRA.201135980382. |
Lane et al., “A Survey of Mobile Phone Sensing”, IEEE Communications Magazine, vol. 48, Issue 9, Sep. 2010, pp. 140-150. |
Lao et al., “3D template matching for pose invariant face recognition using 3D facial model built with isoluminance line based stereo vision”, Proceedings 15th International Conference on Pattern Recognition, Sep. 3-7, 2000, Barcelona, Spain, pp. 911-916. |
Lee, “NFC Hacking: The Easy Way”, Defcon Hacking Conference, 2012, 24 pgs. |
Lee et al., “Electroactive Polymer Actuator for Lens-Drive Unit in Auto-Focus Compact Camera Module”, ETRI Journal, vol. 31, No. 6, Dec. 2009, pp. 695-702. |
Lee et al., “Nonlocal matting”, CVPR 2011, Jun. 20-25, 2011, pp. 2193-2200. |
Lee et al., “Automatic Upright Adjustment of Photographs”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 877-884. |
LensVector, “How LensVector Autofocus Works”, 2010, printed Nov. 2, 2012 from http://www.lensvector.com/overview.html, 1 pg. |
Levin et al., “A Closed Form Solution to Natural Image Matting”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2006, vol. 1, pp. 61-68. |
Levin et al., “Spectral Matting”, 2007 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 17-22, 2007, Minneapolis, MN, USA, pp. 1-8. |
Levoy, “Light Fields and Computational Imaging”, IEEE Computer Society, Sep. 1, 2006, vol. 39, Issue No. 8, pp. 46-55. |
Levoy et al., “Light Field Rendering”, Proc. ADM SIGGRAPH '96, 1996, pp. 1-12. |
Li et al., “A Hybrid Camera for Motion Deblurring and Depth Map Super-Resolution”, Jun. 23-28, 2008, IEEE Conference on Computer Vision and Pattern Recognition, 8 pgs. Retrieved from www.eecis.udel.edu/˜jye/lab_research/08/deblur-feng.pdf on Feb. 5, 2014. |
Li et al., “Fusing Images with Different Focuses Using Support Vector Machines”, IEEE Transactions on Neural Networks, vol. 15, No. 6, Nov. 8, 2004, pp. 1555-1561. |
Lim, “Optimized Projection Pattern Supplementing Stereo Systems”, 2009 IEEE International Conference on Robotics and Automation, May 12-17, 2009, pp. 2823-2829. |
Liu et al., “Virtual View Reconstruction Using Temporal Information”, 2012 IEEE International Conference on Multimedia and Expo, 2012, pp. 115-120. |
Lo et al., “Stereoscopic 3D Copy & Paste”, ACM Transactions on Graphics, vol. 29, No. 6, Article 147, Dec. 2010, pp. 147:1-147:10. |
Ma et al., “Constant Time Weighted Median Filtering for Stereo Matching and Beyond”, ICCV '13 Proceedings of the 2013 IEEE International Conference on Computer Vision, IEEE Computer Society, Washington DC, USA, Dec. 1-8, 2013, 8 pgs. |
Martinez et al., “Simple Telemedicine for Developing Regions: Camera Phones and Paper-Based Microfluidic Devices for Real-Time, Off-Site Diagnosis”, Analytical Chemistry (American Chemical Society), vol. 80, No. 10, May 15, 2008, pp. 3699-3707. |
McGuire et al., “Defocus video matting”, ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH 2005, vol. 24, Issue 3, Jul. 2005, pp. 567-576. |
Medioni et al., “Face Modeling and Recognition in 3-D”, Proceedings of the IEEE International Workshop on Analysis and Modeling of Faces and Gestures, 2013, 2 pgs. |
Merkle et al., “Adaptation and optimization of coding algorithms for mobile 3DTV”, Mobile3DTV Project No. 216503, Nov. 2008, 55 pgs. |
Michael et al., “Real-time Stereo Vision: Optimizing Semi-Global Matching”, 2013 IEEE Intelligent Vehicles Symposium (IV), IEEE, Jun. 23-26, 2013, Australia, 6 pgs. |
Milella et al., “3D reconstruction and classification of natural environments by an autonomous vehicle using multi-baseline stereo”, Intelligent Service Robotics, vol. 7, No. 2, Mar. 2, 2014, pp. 79-92. |
Min et al., “Real-Time 3D Face Identification from a Depth Camera”, Proceedings of the IEEE International Conference on Pattern Recognition, Nov. 11-15, 2012, 4 pgs. |
Mitra et al., “Light Field Denoising, Light Field Superresolution and Stereo Camera Based Refocussing using a GMM Light Field Patch Prior”, Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer Society Conference on Jun. 16-21, 2012, pp. 22-28. |
Moreno-Noguer et al., “Active Refocusing of Images and Videos”, ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH 2007, vol. 26, Issue 3, Jul. 2007, 10 pgs. |
Muehlebach, “Camera Auto Exposure Control for VSLAM Applications”, Studies on Mechatronics, Swiss Federal Institute of Technology Zurich, Autumn Term 2010 course, 67 pgs. |
Nayar, “Computational Cameras: Redefining the Image”, IEEE Computer Society, Aug. 14, 2006, pp. 30-38. |
Ng, “Digital Light Field Photography”, Thesis, Jul. 2006, 203 pgs. |
Ng et al., “Super-Resolution Image Restoration from Blurred Low-Resolution Images”, Journal of Mathematical Imaging and Vision, 2005, vol. 23, pp. 367-378. |
Ng et al., “Light Field Photography with a Hand-held Plenoptic Camera”, Stanford Tech Report CTSR Feb. 2005, Apr. 20, 2005, pp. 1-11. |
Nguyen et al., “Image-Based Rendering with Depth Information Using the Propagation Algorithm”, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005, vol. 5, Mar. 23-23, 2005, pp. II-589-II-592. |
Nguyen et al., “Error Analysis for Image-Based Rendering with Depth Information”, IEEE Transactions on Image Processing, vol. 18, Issue 4, Apr. 2009, pp. 703-716. |
Nishihara, H.K. “PRISM: A Practical Real-Time Imaging Stereo Matcher”, Massachusetts Institute of Technology, A.I. Memo 780, May 1984, 32 pgs. |
Nitta et al., “Image reconstruction for thin observation module by bound optics by using the iterative backprojection method”, Applied Optics, May 1, 2006, vol. 45, No. 13, pp. 2893-2900. |
Nomura et al., “Scene Collages and Flexible Camera Arrays”, Proceedings of Eurographics Symposium on Rendering, Jun. 2007, 12 pgs. |
Park et al., “Super-Resolution Image Reconstruction”, IEEE Signal Processing Magazine, May 2003, pp. 21-36. |
Park et al., “Multispectral Imaging Using Multiplexed Illumination”, 2007 IEEE 11th International Conference on Computer Vision, Oct. 14-21, 2007, Rio de Janeiro, Brazil, pp. 1-8. |
Park et al., “3D Face Reconstruction from Stereo Video”, First International Workshop on Video Processing for Security, Jun. 7-9, 2006, Quebec City, Canada, 2006, 8 pgs. |
Parkkinen et al., “Characteristic Spectra of Munsell Colors”, Journal of the Optical Society of America A, vol. 6, Issue 2, Feb. 1989, pp. 318-322. |
Perwass et al., “Single Lens 3D-Camera with Extended Depth-of-Field”, printed from www.raytrix.de, Jan. 22, 2012, 15 pgs. |
Pham et al., “Robust Super-Resolution without Regularization”, Journal of Physics: Conference Series 124, Jul. 2008, pp. 1-19. |
Philips 3D Solutions, “3D Interface Specifications, White Paper”, Feb. 15, 2008, 2005-2008 Philips Electronics Nederland B.V., Philips 3D Solutions retrieved from www.philips.com/3dsolutions, 29 pgs. |
Polight, “Designing Imaging Products Using Reflowable Autofocus Lenses”, printed Nov. 2, 2012 from http://www.polight.no/tunable-polymer-autofocus-lens-html--11.html, 1 pg. |
Pouydebasque et al., “Varifocal liquid lenses with integrated actuator, high focusing power and low operating voltage fabricated on 200 mm wafers”, Sensors and Actuators A: Physical, vol. 172, Issue 1, Dec. 2011, pp. 280-286. |
Protter et al., “Generalizing the Nonlocal-Means to Super-Resolution Reconstruction”, IEEE Transactions on Image Processing, Dec. 2, 2008, vol. 18, No. 1, pp. 36-51. |
Radtke et al., “Laser lithographic fabrication and characterization of a spherical artificial compound eye”, Optics Express, Mar. 19, 2007, vol. 15, No. 6, pp. 3067-3077. |
Rajan et al., “Simultaneous Estimation of Super Resolved Scene and Depth Map from Low Resolution Defocused Observations”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, No. 9, Sep. 8, 2003, pp. 1-16. |
Rander et al., “Virtualized Reality: Constructing Time-Varying Virtual Worlds from Real World Events”, Proc. of IEEE Visualization '97, Phoenix, Arizona, Oct. 19-24, 1997, pp. 277-283, 552. |
Ranjan et al., “HyperFace: A Deep Multi-Task Learning Framework for Face Detection, Landmark Localization, Pose Estimation, and Gender Recognition”, May 11, 2016 (May 11, 2016), pp. 1-16. |
Rhemann et al., “Fast Cost-Volume Filtering for Visual Correspondence and Beyond”, IEEE Trans. Pattern Anal. Mach. Intell, 2013, vol. 35, No. 2, pp. 504-511. |
Rhemann et al., “A perceptually motivated online benchmark for image matting”, 2009 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 20-25, 2009, Miami, FL, USA, pp. 1826-1833. |
Robert et al., “Dense Depth Map Reconstruction: A Minimization and Regularization Approach which Preserves Discontinuities”, European Conference on Computer Vision (ECCV), pp. 439-451, (1996). |
Robertson et al., “Dynamic Range Improvement Through Multiple Exposures”, In Proc. of the Int. Conf. on Image Processing, 1999, 5 pgs. |
Robertson et al., “Estimation-theoretic approach to dynamic range enhancement using multiple exposures”, Journal of Electronic Imaging, Apr. 2003, vol. 12, No. 2, pp. 219-228. |
Roy et al., “Non-Uniform Hierarchical Pyramid Stereo for Large Images”, Computer and Robot Vision, 2002, pp. 208-215. |
Rusinkiewicz et al., “Real-Time 3D Model Acquisition”, ACM Transactions on Graphics (TOG), vol. 21, No. 3, Jul. 2002, pp. 438-446. |
Saatci et al., “Cascaded Classification of Gender and Facial Expression using Active Appearance Models”, IEEE, FGR'06, 2006, 6 pgs. |
Sauer et al., “Parallel Computation of Sequential Pixel Updates in Statistical Tomographic Reconstruction”, ICIP 1995 Proceedings of the 1995 International Conference on Image Processing, Date of Conference: Oct. 23-26, 1995, pp. 93-96. |
Scharstein et al., “High-Accuracy Stereo Depth Maps Using Structured Light”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2003), Jun. 2003, vol. 1, pp. 195-202. |
Seitz et al., “Plenoptic Image Editing”, International Journal of Computer Vision 48, Conference Date Jan. 7, 1998, 29 pgs., DOI: 10.1109/ICCV.1998.710696 ⋅ Source: DBLP Conference: Computer Vision, Sixth International Conference. |
Shechtman et al., “Increasing Space-Time Resolution in Video”, European Conference on Computer Vision, LNCS 2350, May 28-31, 2002, pp. 753-768. |
Shotton et al., “Real-time human pose recognition in parts from single depth images”, CVPR 2011, Jun. 20-25, 2011, Colorado Springs, CO, USA, pp. 1297-1304. |
Shum et al., “Pop-Up Light Field: An Interactive Image-Based Modeling and Rendering System”, Apr. 2004, ACM Transactions on Graphics, vol. 23, No. 2, pp. 143-162, Retrieved from http://131.107.65.14/en-us/um/people/jiansun/papers/PopupLightField_TOG.pdf on Feb. 5, 2014. |
Shum et al., “A Review of Image-based Rendering Techniques”, Visual Communications and Image Processing 2000, May 2000, 12 pgs. |
Sibbing et al., “Markerless reconstruction of dynamic facial expressions”, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshop: Kyoto, Japan, Sep. 27-Oct. 4, 2009, Institute of Electrical and Electronics Engineers, Piscataway, NJ, Sep. 27, 2009 (Sep. 27, 2009), pp. 1778-1785. |
Silberman et al., “Indoor segmentation and support inference from RGBD images”, ECCV'12 Proceedings of the 12th European conference on Computer Vision, vol. Part V, Oct. 7-13, 2012, Florence, Italy, pp. 746-760. |
Stober, “Stanford researchers developing 3-D camera with 12,616 lenses”, Stanford Report, Mar. 19, 2008, Retrieved from: http://news.stanford.edu/news/2008/march19/camera-031908.html, 5 pgs. |
Stollberg et al., “The Gabor superlens as an alternative wafer-level camera approach inspired by superposition compound eyes of nocturnal insects”, Optics Express, Aug. 31, 2009, vol. 17, No. 18, pp. 15747-15759. |
Sun et al., “Image Super-Resolution Using Gradient Profile Prior”, 2008 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2008, 8 pgs.; DOI: 10.1109/CVPR.2008.4587659. |
Taguchi et al., “Rendering-Oriented Decoding for a Distributed Multiview Coding System Using a Coset Code”, Hindawi Publishing Corporation, EURASIP Journal on Image and Video Processing, vol. 2009, Article ID 251081, Online: Apr. 22, 2009, 12 pgs. |
Takeda et al., “Super-resolution Without Explicit Subpixel Motion Estimation”, IEEE Transaction on Image Processing, Sep. 2009, vol. 18, No. 9, pp. 1958-1975. |
Tallon et al., “Upsampling and Denoising of Depth Maps via Joint-Segmentation”, 20th European Signal Processing Conference, Aug. 27-31, 2012, 5 pgs. |
Tanida et al., “Thin observation module by bound optics (TOMBO): concept and experimental verification”, Applied Optics, Apr. 10, 2001, vol. 40, No. 11, pp. 1806-1813. |
Tanida et al., “Color imaging with an integrated compound imaging system”, Optics Express, Sep. 8, 2003, vol. 11, No. 18, pp. 2109-2117. |
Tao et al., “Depth from Combining Defocus and Correspondence Using Light-Field Cameras”, ICCV '13 Proceedings of the 2013 IEEE International Conference on Computer Vision, Dec. 1, 2013, pp. 673-680. |
Taylor, “Virtual camera movement: The way of the future?”, American Cinematographer, vol. 77, No. 9, Sep. 1996, pp. 93-100. |
Tseng et al., “Automatic 3-D depth recovery from a single urban-scene image”, 2012 Visual Communications and Image Processing, Nov. 27-30, 2012, San Diego, CA, USA, pp. 1-6. |
Uchida et al., 3D Face Recognition Using Passive Stereo Vision, IEEE International Conference on Image Processing 2005, Sep. 14, 2005, 4 pgs. |
Vaish et al., “Reconstructing Occluded Surfaces Using Synthetic Apertures: Stereo, Focus and Robust Measures”, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), vol. 2, Jun. 17-22, 2006, pp. 2331-2338. |
Vaish et al., “Using Plane + Parallax for Calibrating Dense Camera Arrays”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2004, 8 pgs. |
Vaish et al., “Synthetic Aperture Focusing Using a Shear-Warp Factorization of the Viewing Transform”, IEEE Workshop on A3DISS, CVPR, 2005, 8 pgs. |
Van Der Wal et al., “The Acadia Vision Processor”, Proceedings Fifth IEEE International Workshop on Computer Architectures for Machine Perception, Sep. 13, 2000, Padova, Italy, pp. 31-40. |
Veilleux, “CCD Gain Lab: The Theory”, University of Maryland, College Park-Observational Astronomy (ASTR 310), Oct. 19, 2006, pp. 1-5 (online], [retrieved on May 13, 2014]. Retrieved from the Internet <URL: http://www.astro.umd.edu/˜veilleux/ASTR310/fall06/ccd_theory.pdf, 5 pgs. |
Venkataraman et al., “PiCam: An Ultra-Thin High Performance Monolithic Camera Array”, ACM Transactions on Graphics (TOG), ACM, US, vol. 32, No. 6, 1 Nov. 1, 2013, pp. 1-13. |
Vetro et al., “Coding Approaches for End-To-End 3D TV Systems”, Mitsubishi Electric Research Laboratories, Inc., TR2004-137, Dec. 2004, 6 pgs. |
Viola et al., “Robust Real-time Object Detection”, Cambridge Research Laboratory, Technical Report Series, Compaq, CRL 2001/01, Feb. 2001, Printed from: http://www.hpl.hp.com/techreports/Compaq-DEC/CRL-2001-1.pdf, 30 pgs. |
Vuong et al., “A New Auto Exposure and Auto White-Balance Algorithm to Detect High Dynamic Range Conditions Using CMOS Technology”, Proceedings of the World Congress on Engineering and Computer Science 2008, WCECS 2008, Oct. 22-24, 2008, 5 pgs. |
Wang, “Calculation of Image Position, Size and Orientation Using First Order Properties”, Dec. 29, 2010, OPTI521 Tutorial, 10 pgs. |
Wang et al., “Soft scissors: an interactive tool for realtime high quality matting”, ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH 2007, vol. 26, Issue 3, Article 9, Jul. 2007, 6 pg., published Aug. 5, 2007. |
Wang et al., “Automatic Natural Video Matting with Depth”, 15th Pacific Conference on Computer Graphics and Applications, PG '07, Oct. 29-Nov. 2, 2007, Maui, HI, USA, pp. 469-472. |
Wang et al., “Image and Video Matting: A Survey”, Foundations and Trends, Computer Graphics and Vision, vol. 3, No. 2, 2007, pp. 91-175. |
Wang et al., “Facial Feature Point Detection: A Comprehensive Survey”, arXiv: 1410.1037v1, Oct. 4, 2014, 32 pgs. |
Wetzstein et al., “Computational Plenoptic Imaging”, Computer Graphics Forum, 2011, vol. 30, No. 8, pp. 2397-2426. |
Wheeler et al., “Super-Resolution Image Synthesis Using Projections Onto Convex Sets in the Frequency Domain”, Proc. SPIE, Mar. 11, 2005, vol. 5674, 12 pgs. |
Widanagamaachchi et al., “3D Face Recognition from 2D Images: A Survey”, Proceedings of the International Conference on Digital Image Computing: Techniques and Applications, Dec. 1-3, 2008, 7 pgs. |
Wieringa et al., “Remote Non-invasive Stereoscopic Imaging of Blood Vessels: First In-vivo Results of a New Multispectral Contrast Enhancement Technology”, Annals of Biomedical Engineering, vol. 34, No. 12, Dec. 2006, pp. 1870-1878, Published online Oct. 12, 2006. |
Wikipedia, “Polarizing Filter (Photography)”, retrieved from http://en.wikipedia.org/wiki/Polarizing_filter_(photography) on Dec. 12, 2012, last modified on Sep. 26, 2012, 5 pgs. |
Wilburn, “High Performance Imaging Using Arrays of Inexpensive Cameras”, Thesis of Bennett Wilburn, Dec. 2004, 128 pgs. |
Wilburn et al., “High Performance Imaging Using Large Camera Arrays”, ACM Transactions on Graphics, Jul. 2005, vol. 24, No. 3, pp. 1-12. |
Wilburn et al., “High-Speed Videography Using a Dense Camera Array”, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., vol. 2, Jun. 27-Jul. 2, 2004, pp. 294-301. |
Wilburn et al., “The Light Field Video Camera”, Proceedings of Media Processors 2002, SPIE Electronic Imaging, 2002, 8 pgs. |
Wippermann et al., “Design and fabrication of a chirped array of refractive ellipsoidal micro-lenses for an apposition eye camera objective”, Proceedings of SPIE, Optical Design and Engineering II, Oct. 15, 2005, pp. 59622C-1-59622C-11. |
Wu et al., “A virtual view synthesis algorithm based on image inpainting”, 2012 Third International Conference on Networking and Distributed Computing, Hangzhou, China, Oct. 21-24, 2012, pp. 153-156. |
Xu, “Real-Time Realistic Rendering and High Dynamic Range Image Display and Compression”, Dissertation, School of Computer Science in the College of Engineering and Computer Science at the University of Central Florida, Orlando, Florida, Fall Term 2005, 192 pgs. |
Yang et al., “Superresolution Using Preconditioned Conjugate Gradient Method”, Proceedings of SPIE—The International Society for Optical Engineering, Jul. 2002, 8 pgs. |
Yang et al., “A Real-Time Distributed Light Field Camera”, Eurographics Workshop on Rendering (2002), published Jul. 26, 2002, pp. 1-10. |
Yang et al., Model-based Head Pose Tracking with Stereovision, Microsoft Research, Technical Report, MSR-TR-2001-102, Oct. 2001, 12 pgs. |
Yokochi et al., “Extrinsic Camera Parameter Estimation Based-on Feature Tracking and GPS Data”, 2006, Nara Institute of Science and Technology, Graduate School of Information Science, LNCS 3851, pp. 369-378. |
Zbontar et al., Computing the Stereo Matching Cost with a Convolutional Neural Network, CVPR, 2015, pp. 1592-1599. |
Zhang et al., “A Self-Reconfigurable Camera Array”, Eurographics Symposium on Rendering, published Aug. 8, 2004, 12 pgs. |
Zhang et al., “Depth estimation, spatially variant image registration, and super-resolution using a multi-lenslet camera”, proceedings of SPIE, vol. 7705, Apr. 23, 2010, pp. 770505-770505-8, XP055113797 ISSN: 0277-786X, DOI: 10.1117/12.852171. |
Zhang et al., “Spacetime Faces: High Resolution Capture for Modeling and Animation”, ACM Transactions on Graphics, 2004, 11pgs. |
Zheng et al., “Balloon Motion Estimation Using Two Frames”, Proceedings of the Asilomar Conference on Signals, Systems and Computers, IEEE, Comp. Soc. Press, US, vol. 2 of 2, Nov. 4, 1991, pp. 1057-1061. |
Zhu et al., “Fusion of Time-of-Flight Depth and Stereo for High Accuracy Depth Maps”, 2008 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2008, Anchorage, AK, USA, pp. 1-8. |
Zomet et al., “Robust Super-Resolution”, IEEE, 2001, pp. 1-6. |
“File Formats Version 6”, Alias Systems, 2004, 40 pgs. |
“Light fields and computational photography”, Stanford Computer Graphics Laboratory, Retrieved from: http://graphics.stanford.edu/projects/lightfield/, Earliest publication online: Feb. 10, 1997, 3 pgs. |
“Exchangeable image file format for digital still cameras: Exif Version 2.2”_, Japan Electronics and Information Technology Industries Association, Prepared by Technical Standardization Committee on AV & IT Storage Systems and Equipment, JEITA CP-3451, Apr. 2002, Retrieved from: http://www.exif.org/Exif2-2.PDF, 154 pgs. |
Systems and Equipment, JEITA CP-3451, April 2002, Retrieved from: http://wwwexif.org/Exif2-2.PDF, 154 pgs. |
Atkinson, Gary A., et al. “Multi-view Surface Reconstruction using Polarization.” Tenth IEEE International Conference on Computer Vision (ICCV'05) vol. 1. vol. 1. IEEE, 2005, 8 pages. |
Atkinson, Gary A., et al. “Recovery of Surface Orientation From Diffuse Polarization.” IEEE transactions on image processing 15.6 (2006): 1653-1664. |
Bajard, Alban, et al. “Non conventional Imaging Systems for 3D Digitization of transparent and/or specular manufactured objects.” QCAV2013, 11th Interntional Conference on Quality Control by Artificial Vision. 2013, 9 pages. |
Garcia, N. Missael, et al. “Surface normal reconstruction using circularly polarized light.” Optics express 23.11 (2015): 14391-14406. |
Huynh, Cong Phuoc, et al. “Robust Shape from Polarisation and Shading.” 2010 20th International Conference on Pattern Recognition. IEEE, 2010, 4 pages. |
Jinglei, H. A. O., et al. “3D Reconstruction of High-reflective and Textureless Targets Based on Multispectral Polarization and Machine Vision.” Acta Geodaetica et Cartographica Sinica 47.6 (2018): 816, 9 pages. |
Miyazaki, Daisuke, et al. “Polarization-based surface normal estimation of black specular objects from multiple viewpoints.” 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission. IEEE, 2012, 8 pages. |
Miyazaki, Daisuke, et al. “Surface normal estimation of black specular objects from multiview polarization images.” Optical Engineering 56.4 (2016): 041303, 18 pages. |
Miyazaki, Daisuke, et al. “Determining Surface Orientations of Transparent Objects Based on Polarization Degrees in Visible and Infrared Wavelengths.” JOSA A 19.4 (2002): 687-694. |
Rahmann, Stefan, et al. “Reconstruction of Specular Surfaces using Polarization Imaging.” Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001. vol. 1. IEEE, 2001, 7 pages. |
Rahmann, Stefan. “Polarization images: a geometric interpretation for shape analysis.” Proceedings 15th International Conference on Pattern Recognition. ICPR-2000. vol. 3. IEEE, 2000, 5 pages. |
Stolz, Christophe, Mathias Ferraton, and Fabrice Meriaudeau. “Shape from polarization: a method for solving zenithal angle ambiguity.” Optics letters 37.20 (2012): 4218-4220. |
Stolz, Christophe, Abir Zanzouri Kechiche, and Olivier Aubreton. “Short review of polarimetric imaging based method for 3D measurements.” Optics, Photonics and Digital Technologies for Imaging Applications IV. vol. 9896. International Society for Optics and Photonics, 2016, 9 pages. |
Xu, Xinyang, et al. “Reconstructing the surface of transparent objects by polarized light measurements.” Optics Express vol. 25, No. 21, (2017): 26296-26309. |
Fischler et al., “Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography,” Communications of the ACM, Jun. 1981, 24(6):381-395. |
International Preliminary Report on Patentability in International Appln. No. PCT/US20/54645, dated Apr. 21, 2022, 9 pages. |
International Search Report and Written Opinion in International Appln. No. PCT/US20/54645, dated Feb. 17, 2021, 12 pages. |
Kadambi et al., “Polarized 3D: High-quality depth sensing 30 with polarization cues,” Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 3370-3378. |
Office Action in Chinese Appln. No. 202080084465.3, dated Mar. 29, 2024, 16 pages (with English translation). |
Office Action in Korean Appln. No. 10-2022-7015074, dated Feb. 28, 2024, 12 pages (with English translation). |
Extended Search Report in European Appln. No. 20873490.5, dated Oct. 20, 2023, 7 pages. |
Gruev et al., “Material detection with a CCD polarization imager,” Applied imagery pattern recognition workshop, 2010 IEEE, Oct. 13, 2010, 1-7. |
Office Action in Canadian Appln. No. 3,157,197, dated Jun. 27, 2023, 5 pages. |
Office Action in Japanese Appln. No. 2022-521137, dated Dec. 5, 2023, 12 pages (with English translation). |
Number | Date | Country | |
---|---|---|---|
20220307819 A1 | Sep 2022 | US |
Number | Date | Country | |
---|---|---|---|
63001445 | Mar 2020 | US | |
62942113 | Nov 2019 | US | |
62911952 | Oct 2019 | US |