The present disclosure generally relates to task assignment systems, more particularly, to techniques for behavioral pairing in a task assignment system.
A typical task assignment system algorithmically assigns tasks arriving at a task assignment center to agents available to handle those tasks. At times, the task assignment center may be in an “L1 state” and have agents available and waiting for assignment to tasks. At other times, the task assignment center may be in an “L2 state” and have tasks waiting in one or more queues for an agent to become available for assignment. At yet other times, the task assignment system may be in an “L3 state” and have multiple agents available and multiple tasks waiting for assignment. An example of a task assignment system is a contact center system that receives contacts (e.g., telephone calls, internet chat sessions, emails, etc.) to be assigned to agents.
In some typical task assignment centers, tasks are assigned to agents ordered based on time of arrival, and agents receive tasks ordered based on the time when those agents became available. This strategy may be referred to as a “first-in, first-out,” “FIFO,” or “round-robin” strategy. For example, in an L2 environment, when an agent becomes available, the task at the head of the queue would be selected for assignment to the agent.
In other typical task assignment centers, a performance-based routing (PBR) strategy for prioritizing higher-performing agents for task assignment may be implemented. Under PBR, for example, the highest-performing agent among available agents receives the next available task. Other PBR and PBR-like strategies may make assignments using specific information about the agents.
“Behavioral Pairing” or “BP” strategies, for assigning tasks to agents, improve upon traditional assignment methods. BP targets balanced utilization of agents while simultaneously improving overall task assignment center performance potentially beyond what FIFO or PBR methods will achieve in practice.
When determining a BP model for a BP strategy, a task assignment system may consider information about its agents and incoming tasks or types of tasks. For example, a contact center system may consider the performance history of each agent, such as an agent's conversion rate in a sales queue, and it may consider customer information about a contact, such as the type of service a customer uses or how many years the customer has had a contract with the company, and other types of data (e.g., customer relationship management (CRM) data, runtime data, third-party data, etc.).
A BP strategy typically maximizes or optimizes the performance or performance gain of a task assignment system. In some task assignment systems, it may be desirable to sub-optimally improve their performances by providing a less powerful BP strategy. Thus, it may be understood that there may be a need to constrain the performance of a BP strategy in a task assignment system.
Techniques for behavioral pairing in a task assignment system are disclosed. In one particular embodiment, the techniques may be realized as a method for behavioral pairing in a task assignment system comprising: determining, by at least one computer processor communicatively coupled to and configured to operate in the task assignment system, at least one behavioral pairing constraint; and applying, by the at least one computer processor, the at least one behavioral pairing constraint to the task assignment system to controllably reduce performance of the task assignment system.
In accordance with other aspects of this particular embodiment, the task assignment system is a contact center system.
In accordance with other aspects of this particular embodiment, determining the at least one behavioral pairing constraint may comprise constraining a number of choices of pairing tasks to agents available to a behavioral pairing strategy.
In accordance with other aspects of this particular embodiment, determining the at least one behavioral pairing constraint may comprise constraining a number of data fields, an amount of data, or a number or a type of data sources.
In accordance with other aspects of this particular embodiment, determining the at least one behavioral pairing constraint may comprise constraining a frequency of behavioral pairing model updates.
In accordance with other aspects of this particular embodiment, determining the at least one behavioral pairing constraint may comprise reducing a technical resource requirement.
In accordance with other aspects of this particular embodiment, the technical resource requirement is a hardware requirement.
In accordance with other aspects of this particular embodiment, the technical resource requirement is a network or a bandwidth requirement.
In accordance with other aspects of this particular embodiment, the technical resource requirement is a system installation, a configuration, or a maintenance requirement.
In accordance with other aspects of this particular embodiment, the method may further comprise receiving an adjustment to the at least one behavioral pairing constraint.
In accordance with other aspects of this particular embodiment, the method may further comprise estimating a performance rating or a performance gain of the task assignment system operating under the at least one behavioral pairing constraint or a change in performance resulting from adjusting the at least one behavioral pairing constraint.
In accordance with other aspects of this particular embodiment, the method may further comprise estimating a cost of the task assignment system operating under the at least one behavioral pairing constraint or a change in cost resulting from adjusting the at least one behavioral pairing constraint.
In another particular embodiment, the techniques may be realized as a system for behavioral pairing in a task assignment system comprising at least one computer processor communicatively coupled to and configured to operate in the task assignment system, wherein the at least one computer processor is further configured to perform the steps in the above-described method.
In another particular embodiment, the techniques may be realized as an article of manufacture for behavioral pairing in a task assignment system comprising a non-transitory processor readable medium and instructions stored on the medium, wherein the instructions are configured to be readable from the medium by at least one computer processor communicatively coupled to and configured to operate in the task assignment system and thereby cause the at least one computer processor to operate so as to perform the steps in the above-described method.
The present disclosure will now be described in more detail with reference to particular embodiments thereof as shown in the accompanying drawings. While the present disclosure is described below with reference to particular embodiments, it should be understood that the present disclosure is not limited thereto. Those of ordinary skill in the art having access to the teachings herein will recognize additional implementations, modifications, and embodiments, as well as other fields of use, which are within the scope of the present disclosure as described herein, and with respect to which the present disclosure may be of significant utility.
To facilitate a fuller understanding of the present disclosure, reference is now made to the accompanying drawings, in which like elements are referenced with like numerals. These drawings should not be construed as limiting the present disclosure, but are intended to be illustrative only.
A typical task assignment system algorithmically assigns tasks arriving at a task assignment center to agents available to handle those tasks. At times, the task assignment center may be in an “L1 state” and have agents available and waiting for assignment to tasks. At other times, the task assignment center may be in an “L2 state” and have tasks waiting in one or more queues for an agent to become available for assignment. At yet other times, the task assignment system may be in an “L3 state” and have multiple agents available and multiple tasks waiting for assignment. An example of a task assignment system is a contact center system that receives contacts (e.g., telephone calls, internet chat sessions, emails, etc.) to be assigned to agents.
In some traditional task assignment centers, tasks are assigned to agents ordered based on time of arrival, and agents receive tasks ordered based on the time when those agents became available. This strategy may be referred to as a “first-in, first-out,” “FIFO,” or “round-robin” strategy. For example, in an L2 environment, when an agent becomes available, the task at the head of the queue would be selected for assignment to the agent. In other traditional task assignment centers, a performance-based routing (PBR) strategy for prioritizing higher-performing agents for task assignment may be implemented. Under PBR, for example, the highest-performing agent among available agents receives the next available task.
The present disclosure refers to optimized strategies, such as “Behavioral Pairing” or “BP” strategies, for assigning tasks to agents that improve upon traditional assignment methods. BP targets balanced utilization of agents while simultaneously improving overall task assignment center performance potentially beyond what FIFO or PBR methods will achieve in practice. This is a remarkable achievement inasmuch as BP acts on the same tasks and same agents as FIFO or PBR methods, approximately balancing the utilization of agents as FIFO provides, while improving overall task assignment center performance beyond what either FIFO or PBR provide in practice. BP improves performance by assigning agent and task pairs in a fashion that takes into consideration the assignment of potential subsequent agent and task pairs such that, when the benefits of all assignments are aggregated, they may exceed those of FIFO and PBR strategies.
Various BP strategies may be used, such as a diagonal model BP strategy or a network flow BP strategy. These task assignment strategies and others are described in detail for a contact center context in, e.g., U.S. Pat. Nos. 9,300,802, 9,781,269, 9,787,841, and 9,930,180, all of which are hereby incorporated by reference herein. BP strategies may be applied in an L1 environment (agent surplus, one task; select among multiple available/idle agents), an L2 environment (task surplus, one available/idle agent; select among multiple tasks in queue), and an L3 environment (multiple agents and multiple tasks; select among pairing permutations).
When determining a BP model for a BP strategy, a task assignment system may consider information about its agents and incoming tasks or types of tasks. For example, a contact center system may consider the performance history of each agent, such as an agent's conversion rate in a sales queue. It may consider customer information about a contact, such as the type of service a customer uses or how many years the customer has had a contract with the company, data found in a typical customer relationship management (CRM) system (e.g., location, age or age range, credit score range, income level, account type, tenure, device type, etc.), data from third-party sources (e.g., demographics, census, industry-specific databases such as telco customer databases, etc.), and runtime data (e.g., Interactive Voice Response (IVR) data).
In some task assignment systems, an optimal BP model may be built based on every available and relevant historical data (i.e., as far back in time as possible) from every data source, and may be updated frequently to account for new data (e.g., continuously, nightly, etc.) to maximize the overall performance of the task assignment systems (i.e., increase sales, increase retention, increase customer satisfaction, decrease handle time, etc.). For every data point, an optimal BP model may include as many data fields or as much metadata as possible. Such an optimal BP model may generate as many pairing choices between waiting tasks and agents as viable such that any of the pairing choices may optimize the overall performance of the task assignment system. However, modeling more data from all data sources with a plurality of data fields and frequent updates, and generating a plurality of task-agent pairing choices increase computational complexity (sometimes exponentially or combinatorically, both in hardware and software), and are thus resource intensive and costly.
As explained in detail below, embodiments of the present disclosure relates to a BP model that may sub-optimally improve or that may constrain the performance of a task assignment system by providing a less powerful BP strategy. While a sub-optimal BP strategy may operate on the same or similar system configurations as an optimal BP strategy, a sub-optimal BP strategy may also allow the reduction of technical resources requirements (e.g., reduced hardware, network or bandwidth, or system installation, configuration, or maintenance) and their related costs to a desired or predetermined level. In other words, a sub-optimal BP strategy may be obtained by constraining the performance of an optimal BP strategy with or without reducing at least one technical resource requirement in a task assignment system.
As shown in
If more than one subcenter is part of the task assignment center 100, each subcenter may include at least one switch (e.g., switches 120A and 120B). The switches 120A and 120B may be communicatively coupled to the central switch 110. Each switch for each subcenter may be communicatively coupled to a plurality (or “pool”) of agents. Each switch may support a certain number of agents (or “seats”) to be logged in at one time. At any given time, a logged-in agent may be available and waiting to be connected to a task, or the logged-in agent may be unavailable for any of a number of reasons, such as being connected to another contact, performing certain post-call functions such as logging information about the call, or taking a break. In the example of
The task assignment center 100 may also be communicatively coupled to an integrated pairing strategy service from, for example, a third-party vendor. In the example of
Behavioral pairing module 140 may receive information from a switch (e.g., switch 120A) about agents logged into the switch (e.g., agents 130A and 130B) and about incoming tasks via another switch (e.g., central switch 110) or, in some embodiments, from a network (e.g., the Internet or a telecommunications network) (not shown). The behavioral pairing module 140 may process this information to determine which tasks should be paired (e.g., matched, assigned, distributed, routed) with which agents.
For example, in an L1 state, multiple agents may be available and waiting for connection to a contact, and a task arrives at the task assignment center 100 via a network or the central switch 110. As explained above, without the behavioral pairing module 140, a switch will typically automatically distribute the new task to whichever available agent has been waiting the longest amount of time for a task under a FIFO strategy, or whichever available agent has been determined to be the highest-performing agent under a PBR strategy. With a behavioral pairing module 140, contacts and agents may be given scores (e.g., percentiles or percentile ranges/bandwidths) according to a pairing model or other artificial intelligence data model, so that a task may be matched, paired, or otherwise connected to a preferred agent.
In an L2 state, multiple tasks are available and waiting for connection to an agent, and an agent becomes available. These tasks may be queued in a switch such as a PBX or ACD device. Without the behavioral pairing module 140, a switch will typically connect the newly available agent to whichever task has been waiting on hold in the queue for the longest amount of time as in a FIFO strategy or a PBR strategy when agent choice is not available. In some task assignment centers, priority queuing may also be incorporated, as previously explained. With a behavioral pairing module 140 in this L2 scenario, as in the L1 state described above, tasks and agents may be given percentiles (or percentile ranges/bandwidths, etc.) according to, for example, a model, such as an artificial intelligence model, so that an agent becoming available may be matched, paired, or otherwise connected to a preferred task.
In the L1 and L2 scenarios described above, the behavioral pairing module 140 may apply an optimal BP strategy model such that the performance of the task assignment center 100 is optimized. When compared to using a FIFO strategy or a PBR strategy, the optimal BP strategy effectively skews the distribution of tasks to agents. For a simplistic example, consider a task assignment system with two agents, Agent A and Agent B, and two types of tasks, Task Type A and Task Type B, which appear in the task assignment system in approximately equal proportion. Under FIFO, Agent A and Agent B each receive approximately 50% of Task Type A and 50% of Task Type B. Under an optimal BP strategy, the types of tasks each agent receives may be skewed. For example, Agent A may receive 80% of Task Type A and 20% of Task Type B, and Agent B may receive 80% of Task Type B and 20% of Task Type A. Although the total number of tasks assigned to each of Agent A and B may remain approximately the same, the types of tasks each agent is assigned has been skewed.
In some embodiments, the behavioral pairing module 140 may employ a sub-optimal BP strategy such that, compared to the optimal BP strategy, the skew of tasks to agents is reduced. For example, referring to the simple hypothetical task assignment system described above, Agent A may receive 65% of Task Type A and 35% of Task Type B, and Agent B may receive 65% of Task Type B and 35% of Task Type A. The sub-optimal BP strategy may still improve the performance of the task assignment center 100 relative to a FIFO strategy or a PBR strategy, despite the improvement in performance being reduced compared to an optimal BP strategy.
The task assignment system 200 may include a task assignment module 210 that is configured to pair (e.g., match, assign) incoming tasks to available agents. In the example of
In some embodiments, a task assignment strategy module 240 may be communicatively coupled to and/or configured to operate in the task assignment system 200. The task assignment strategy module 240 may implement one or more task assignment strategies (or “pairing strategies”) for assigning individual tasks to individual agents (e.g., pairing contacts with contact center agents). A variety of different task assignment strategies may be devised and implemented by the task assignment strategy module 240. In some embodiments, a FIFO strategy may be implemented in which, for example, the longest-waiting agent receives the next available task (in L1 environments) or the longest-waiting task is assigned to the next available agent (in L2 environments). In other embodiments, a PBR strategy for prioritizing higher-performing agents for task assignment may be implemented. Under PBR, for example, the highest-performing agent among available agents receives the next available task. In yet other embodiments, an optimal BP strategy or a sub-optimal BP strategy may be used for optimally or sub-optimally assigning tasks to agents using information about either tasks or agents, or both. Various BP strategies may be used, such as a diagonal model BP strategy or a network flow BP strategy. See U.S. Pat. Nos. 9,300,802, 9,781,269, 9,787,841, and 9,930,180.
In some embodiments, a historical assignment module 250 may be communicatively coupled to and/or configured to operate in the task assignment system 200 via other modules such as the task assignment module 210 and/or the task assignment strategy module 240. The historical assignment module 250 may be responsible for various functions such as monitoring, storing, retrieving, and/or outputting information about task-agent assignments that have already been made. For example, the historical assignment module 250 may monitor the task assignment module 210 to collect information about task assignments in a given period. Each record of a historical task assignment may include information such as an agent identifier, a task or task type identifier, offer or offer set identifier, outcome information, or a pairing strategy identifier (i.e., an identifier indicating whether a task assignment was made using an optimal BP strategy, a sub-optimal BP strategy, or some other pairing strategy such as a FIFO or PBR pairing strategy).
In some embodiments and for some contexts, the historical assignment module 250 may store additional information. For example, in a call center context, the historical assignment module 250 may also store information about the time a call started, the time a call ended, the phone number dialed, and the caller's phone number. For another example, in a dispatch center (e.g., “truck roll”) context, the historical assignment module 250 may also store information about the time a driver (i.e., field agent) departs from the dispatch center, the route recommended, the route taken, the estimated travel time, the actual travel time, the amount of time spent at the customer site handling the customer's task, etc. The historical assignment module 250 may obtain data from typical CRM systems (e.g., location, age or age range, credit score range, income level, account type, tenure, device type, etc.), data from third-party sources (e.g., demographics, census, industry-specific databases such as telco customer databases, etc.), and runtime data (e.g., IVR data).
In some embodiments, the historical assignment module 250 may generate a pairing model, an optimal BP model or a sub-optimal BP model, or similar computer processor-generated model, which may be used by the task assignment strategy module 240 to make task assignment recommendations or instructions to the task assignment module 210. The optimal BP model or sub-optimal BP model may be based on a set of historical assignments and any other additional data stored by the historical assignment module 250.
In some embodiments, the goal may be for the historical assignment module 250 to generate an optimal BP model that maximizes the overall performance of the task assignment system (i.e., increase sales, increase retention, increase customer satisfaction, decrease handle time, etc.). Such an optimal BP model may be built based on every available and relevant historical data (i.e., as far back in time as possible) from every data source, and may be updated frequently to account for new data (e.g., continuously, nightly, etc.). For every data point, an optimal BP model may include as many data fields or as much metadata as possible. Such an optimal BP model may then generate as many pairing choices between waiting tasks and agents as viable such that any of the pairing choices optimizes the overall performance of the task assignment system.
In other embodiments, the historical assignment module 250 may generate a sub-optimal BP model that improves the overall performance of the task assignment system, despite the improved performance being reduced compared to when an optimal BP model is employed. In some embodiments, employing a sub-optimal BP model may help to reduce technical resources requirements in a task assignment system (e.g., reduced hardware, network or bandwidth, or system installation, configuration, or maintenance) and their related costs to a desired or predetermined level. A sub-optimal BP model may be less powerful and have less functionality than an optimal BP model. It may require less data, from fewer data sources, with less frequent updates, etc., and may also restrict the number of task-agent pairing choices.
For example, the historical assignment module 250 may constrain a sub-optimal BP model to consider 30 days, 60 days, 90 days, etc. of historical task-agent outcome data, for 50, 100, 1000, etc. of agents. The number of data sources (e.g., CRM, IVR, runtime data) may be limited. Similarly, a sub-optimal BP model may constrain the number of data fields or metadata, for example, by allowing by a user to specify a maximum number of data fields or adjust the number of data fields (e.g., by adding or removing data fields via a user interface). Excluding runtime data or third-party data packs, and/or reducing the number of data fields may eliminate additional sources and their associated costs (e.g., from acquiring or licensing the data), and reduce computation, networking, and bandwidth requirements, etc. In some embodiments, a sub-optimal BP model may provide an upgrade tier of service that may enable sending pairing requests to a cloud or an optimal BP model provider to augment the pairing requests with data about the task from one or more data packs available for subscription. The frequency at which the considered historical data (i.e., effectively the BP model) is updated may also be constrained or adjusted (e.g., via a user interface). Less frequent updates (e.g., weekly, monthly, etc.) may reduce computational resource requirements. A sub-optimal BP model may further reduce computational complexity by constraining the number of task-agent pairing choices. Unlike an optimal BP model that provides every plausible task-agent pairing choice, a sub-optimal BP model may allow a user to specify a maximum number or adjust the number of task-agent pairing choices (e.g., by increasing or decreasing the number of choices, via a user interface). See e.g., U.S. patent application Ser. No. 15/837,911, which is hereby incorporated by reference herein. Reduced computation, networking, and bandwidth requirements may reduce hardware requirements, software requirements, hardware or software installation, configuration, and/or maintenance time or complexity, employee training time or complexity, security requirements, etc. and their associated costs.
In some embodiments, a benchmarking module 260 may be communicatively coupled to and/or configured to operate in the task assignment system 200 via other modules such as the task assignment module 210 and/or the historical assignment module 250. The benchmarking module 260 may benchmark the relative performance of two or more pairing strategies (e.g., FIFO, PBR, optimal BP, sub-optimal BP, etc.) using historical assignment information, which may be received from, for example, the historical assignment module 250. In some embodiments, the benchmarking module 260 may perform other functions, such as establishing a benchmarking schedule for cycling among various pairing strategies, tracking cohorts (e.g., base and measurement groups of historical assignments), etc. Benchmarking is described in detail for the contact center context in, e.g., U.S. Pat. No. 9,712,676, which is hereby incorporated by reference herein.
In some embodiments, the benchmarking module 260 may output or otherwise report or use the relative performance measurements. The relative performance measurements may be used to assess the quality of the task assignment strategy to determine, for example, whether a different task assignment strategy (or a different pairing model) should be used, or to measure the overall performance (or performance gain) that was achieved within the task assignment system 200 while it was optimized or otherwise configured to use one task assignment strategy instead of another.
In some embodiments, when a sub-optimal BP model is employed, the benchmarking module 260 may estimate a performance or a performance gain of a task assignment system operating under at least one behavioral pairing constraint (e.g., reduced task-agent pairing choices or skew, reduced data, number or type of data sources, number of data fields, frequency of model updates, etc.) or a change in performance resulting from adjusting at least one constraint. The benchmarking module 260 may also estimate a cost of the task assignment system operating under at least one constraint or a change in cost resulting from adjusting at least one constraint. The benchmarking module 260 may report performance, performance gain, cost, and/or change in cost to a user of a task assignment system (e.g., an operator a call center) to inform the user and allow the user to further choose or adjust a constraint to achieve a desired performance level and/or operating cost for the task assignment system.
At this point it should be noted that task assignment in accordance with the present disclosure as described above may involve the processing of input data and the generation of output data to some extent. This input data processing and output data generation may be implemented in hardware or software. For example, specific electronic components may be employed in a behavioral pairing module or similar or related circuitry for implementing the functions associated with task assignment in accordance with the present disclosure as described above. Alternatively, one or more processors operating in accordance with instructions may implement the functions associated with task assignment in accordance with the present disclosure as described above. If such is the case, it is within the scope of the present disclosure that such instructions may be stored on one or more non-transitory processor readable storage media (e.g., a magnetic disk or other storage medium), or transmitted to one or more processors via one or more signals embodied in one or more carrier waves.
The present disclosure is not to be limited in scope by the specific embodiments described herein. Indeed, other various embodiments of and modifications to the present disclosure, in addition to those described herein, will be apparent to those of ordinary skill in the art from the foregoing description and accompanying drawings. Thus, such other embodiments and modifications are intended to fall within the scope of the present disclosure. Further, although the present disclosure has been described herein in the context of at least one particular implementation in at least one particular environment for at least one particular purpose, those of ordinary skill in the art will recognize that its usefulness is not limited thereto and that the present disclosure may be beneficially implemented in any number of environments for any number of purposes.
This patent application is a continuation of U.S. patent application Ser. No. 17/162,133, filed Jan. 29, 2021, which claims priority to U.S. Provisional Patent Application No. 62/969,543, filed Feb. 3, 2020, which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5155763 | Bigus et al. | Oct 1992 | A |
5206903 | Kohler et al. | Apr 1993 | A |
5327490 | Cave | Jul 1994 | A |
5537470 | Lee | Jul 1996 | A |
5702253 | Bryce et al. | Dec 1997 | A |
5825869 | Brooks et al. | Oct 1998 | A |
5903641 | Tonisson | May 1999 | A |
5907601 | David et al. | May 1999 | A |
5926538 | Deryugin et al. | Jul 1999 | A |
6021428 | Miloslavsky | Feb 2000 | A |
6044355 | Crockett et al. | Mar 2000 | A |
6044468 | Osmond | Mar 2000 | A |
6049603 | Schwartz et al. | Apr 2000 | A |
6052460 | Fisher et al. | Apr 2000 | A |
6064731 | Flockhart et al. | May 2000 | A |
6088444 | Walker et al. | Jul 2000 | A |
6163607 | Bogart et al. | Dec 2000 | A |
6222919 | Hollatz et al. | Apr 2001 | B1 |
6292555 | Okamoto | Sep 2001 | B1 |
6324282 | McIllwaine et al. | Nov 2001 | B1 |
6333979 | Bondi et al. | Dec 2001 | B1 |
6389132 | Price | May 2002 | B1 |
6389400 | Bushey et al. | May 2002 | B1 |
6408066 | Andruska et al. | Jun 2002 | B1 |
6411687 | Bohacek et al. | Jun 2002 | B1 |
6424709 | Doyle et al. | Jul 2002 | B1 |
6434230 | Gabriel | Aug 2002 | B1 |
6496580 | Chack | Dec 2002 | B1 |
6504920 | Okon et al. | Jan 2003 | B1 |
6519335 | Bushnell | Feb 2003 | B1 |
6519568 | Harvey et al. | Feb 2003 | B1 |
6535600 | Fisher et al. | Mar 2003 | B1 |
6535601 | Flockhart et al. | Mar 2003 | B1 |
6570980 | Baruch | May 2003 | B1 |
6587556 | Judkins et al. | Jul 2003 | B1 |
6603854 | Judkins et al. | Aug 2003 | B1 |
6639976 | Shellum et al. | Oct 2003 | B1 |
6661889 | Flockhart et al. | Dec 2003 | B1 |
6704410 | McFarlane et al. | Mar 2004 | B1 |
6707904 | Judkins et al. | Mar 2004 | B1 |
6714643 | Gargeya et al. | Mar 2004 | B1 |
6744878 | Komissarchik et al. | Jun 2004 | B1 |
6763104 | Judkins et al. | Jul 2004 | B1 |
6774932 | Ewing et al. | Aug 2004 | B1 |
6775378 | Villena et al. | Aug 2004 | B1 |
6798876 | Bala | Sep 2004 | B1 |
6829348 | Schroeder et al. | Dec 2004 | B1 |
6832203 | Villena et al. | Dec 2004 | B1 |
6859529 | Duncan et al. | Feb 2005 | B2 |
6895083 | Bers et al. | May 2005 | B1 |
6922466 | Peterson et al. | Jul 2005 | B1 |
6937715 | Delaney | Aug 2005 | B2 |
6956941 | Duncan et al. | Oct 2005 | B1 |
6970821 | Shambaugh et al. | Nov 2005 | B1 |
6978006 | Polcyn | Dec 2005 | B1 |
7023979 | Wu et al. | Apr 2006 | B1 |
7039166 | Peterson et al. | May 2006 | B1 |
7050566 | Becerra et al. | May 2006 | B2 |
7050567 | Jensen | May 2006 | B1 |
7062031 | Becerra et al. | Jun 2006 | B2 |
7068775 | Lee | Jun 2006 | B1 |
7092509 | Mears et al. | Aug 2006 | B1 |
7103172 | Brown et al. | Sep 2006 | B2 |
7158628 | McConnell et al. | Jan 2007 | B2 |
7184540 | Dezonno et al. | Feb 2007 | B2 |
7209549 | Reynolds et al. | Apr 2007 | B2 |
7231032 | Nevman et al. | Jun 2007 | B2 |
7231034 | Rikhy et al. | Jun 2007 | B1 |
7236584 | Torba | Jun 2007 | B2 |
7245716 | Brown et al. | Jul 2007 | B2 |
7245719 | Kawada et al. | Jul 2007 | B2 |
7266251 | Rowe | Sep 2007 | B2 |
7269253 | Wu et al. | Sep 2007 | B1 |
7353388 | Gilman et al. | Apr 2008 | B1 |
7372952 | Wu et al. | May 2008 | B1 |
7398224 | Cooper | Jul 2008 | B2 |
7593521 | Becerra et al. | Sep 2009 | B2 |
7676034 | Wu et al. | Mar 2010 | B1 |
7725339 | Aykin | May 2010 | B1 |
7734032 | Kiefhaber et al. | Jun 2010 | B1 |
7798876 | Mix | Sep 2010 | B2 |
7826597 | Berner et al. | Nov 2010 | B2 |
7864944 | Khouri et al. | Jan 2011 | B2 |
7899177 | Bruening et al. | Mar 2011 | B1 |
7916858 | Heller et al. | Mar 2011 | B1 |
7940917 | Lauridsen et al. | May 2011 | B2 |
7961866 | Boutcher et al. | Jun 2011 | B1 |
7995717 | Conway et al. | Aug 2011 | B2 |
8000989 | Kiefhaber et al. | Aug 2011 | B1 |
8010607 | McCormack et al. | Aug 2011 | B2 |
8094790 | Conway et al. | Jan 2012 | B2 |
8126133 | Everingham et al. | Feb 2012 | B1 |
8140441 | Cases et al. | Mar 2012 | B2 |
8175253 | Knott et al. | May 2012 | B2 |
8229102 | Knott et al. | Jul 2012 | B2 |
8249245 | Jay et al. | Aug 2012 | B2 |
8295471 | Spottiswoode et al. | Oct 2012 | B2 |
8300798 | Wu et al. | Oct 2012 | B1 |
8306212 | Arora | Nov 2012 | B2 |
8359219 | Chishti et al. | Jan 2013 | B2 |
8433597 | Chishti et al. | Apr 2013 | B2 |
8472611 | Chishti | Jun 2013 | B2 |
8565410 | Chishti et al. | Oct 2013 | B2 |
8634542 | Spottiswoode et al. | Jan 2014 | B2 |
8644490 | Stewart | Feb 2014 | B2 |
8670548 | Xie et al. | Mar 2014 | B2 |
8699694 | Chishti et al. | Apr 2014 | B2 |
8712821 | Spottiswoode | Apr 2014 | B2 |
8718271 | Spottiswoode | May 2014 | B2 |
8724797 | Chishti et al. | May 2014 | B2 |
8731178 | Chishti et al. | May 2014 | B2 |
8737595 | Chishti et al. | May 2014 | B2 |
8750488 | Spottiswoode et al. | Jun 2014 | B2 |
8761380 | Kohler et al. | Jun 2014 | B2 |
8781100 | Spottiswoode et al. | Jul 2014 | B2 |
8781106 | Afzal | Jul 2014 | B2 |
8792630 | Chishti et al. | Jul 2014 | B2 |
8824658 | Chishti | Sep 2014 | B2 |
8831207 | Agarwal | Sep 2014 | B1 |
8856869 | Brinskelle | Oct 2014 | B1 |
8879715 | Spottiswoode et al. | Nov 2014 | B2 |
8903079 | Xie et al. | Dec 2014 | B2 |
8913736 | Kohler et al. | Dec 2014 | B2 |
8929537 | Chishti et al. | Jan 2015 | B2 |
8938063 | Hackbarth et al. | Jan 2015 | B1 |
8995647 | Li et al. | Mar 2015 | B2 |
9020137 | Chishti et al. | Apr 2015 | B2 |
9025757 | Spottiswoode et al. | May 2015 | B2 |
9215323 | Chishti | Dec 2015 | B2 |
9277055 | Spottiswoode et al. | Mar 2016 | B2 |
9300802 | Chishti | Mar 2016 | B1 |
9426296 | Chishti et al. | Aug 2016 | B2 |
9712676 | Chishti | Jul 2017 | B1 |
9712679 | Chishti et al. | Jul 2017 | B2 |
9781269 | Chishti et al. | Oct 2017 | B2 |
9787841 | Chishti et al. | Oct 2017 | B2 |
9930180 | Kan et al. | Mar 2018 | B1 |
9942405 | Kan et al. | Apr 2018 | B1 |
RE46986 | Chishti et al. | Aug 2018 | E |
10116800 | Kan et al. | Oct 2018 | B1 |
10135987 | Chishti et al. | Nov 2018 | B1 |
RE47201 | Chishti et al. | Jan 2019 | E |
10284727 | Kan et al. | May 2019 | B2 |
10404861 | Kan et al. | Sep 2019 | B2 |
10757262 | O'Brien | Aug 2020 | B1 |
20010032120 | Stuart et al. | Oct 2001 | A1 |
20010044896 | Schwartz et al. | Nov 2001 | A1 |
20020018554 | Jensen et al. | Feb 2002 | A1 |
20020046030 | Haritsa et al. | Apr 2002 | A1 |
20020059164 | Shtivelman | May 2002 | A1 |
20020082736 | Lech et al. | Jun 2002 | A1 |
20020110234 | Walker et al. | Aug 2002 | A1 |
20020111172 | DeWolf et al. | Aug 2002 | A1 |
20020131399 | Philonenko | Sep 2002 | A1 |
20020138285 | DeCotiis et al. | Sep 2002 | A1 |
20020143599 | Nourbakhsh et al. | Oct 2002 | A1 |
20020161765 | Kundrot et al. | Oct 2002 | A1 |
20020184069 | Kosiba et al. | Dec 2002 | A1 |
20020196845 | Richards et al. | Dec 2002 | A1 |
20030002653 | Uckun | Jan 2003 | A1 |
20030059029 | Mengshoel et al. | Mar 2003 | A1 |
20030081757 | Mengshoel et al. | May 2003 | A1 |
20030095652 | Mengshoel et al. | May 2003 | A1 |
20030169870 | Stanford | Sep 2003 | A1 |
20030174830 | Boyer et al. | Sep 2003 | A1 |
20030217016 | Pericle | Nov 2003 | A1 |
20040028211 | Culp et al. | Feb 2004 | A1 |
20040057416 | McCormack | Mar 2004 | A1 |
20040096050 | Das et al. | May 2004 | A1 |
20040098274 | Dezonno et al. | May 2004 | A1 |
20040101127 | Dezonno et al. | May 2004 | A1 |
20040109555 | Williams | Jun 2004 | A1 |
20040133434 | Szlam et al. | Jul 2004 | A1 |
20040210475 | Starnes et al. | Oct 2004 | A1 |
20040230438 | Pasquale et al. | Nov 2004 | A1 |
20040267816 | Russek | Dec 2004 | A1 |
20050013428 | Walters | Jan 2005 | A1 |
20050043986 | McConnell et al. | Feb 2005 | A1 |
20050047581 | Shaffer et al. | Mar 2005 | A1 |
20050047582 | Shaffer et al. | Mar 2005 | A1 |
20050071223 | Jain et al. | Mar 2005 | A1 |
20050129212 | Parker | Jun 2005 | A1 |
20050135593 | Becerra et al. | Jun 2005 | A1 |
20050135596 | Zhao | Jun 2005 | A1 |
20050187802 | Koeppel | Aug 2005 | A1 |
20050195960 | Shaffer et al. | Sep 2005 | A1 |
20050286709 | Horton et al. | Dec 2005 | A1 |
20060098803 | Bushey et al. | May 2006 | A1 |
20060110052 | Finlayson | May 2006 | A1 |
20060124113 | Roberts | Jun 2006 | A1 |
20060184040 | Keller et al. | Aug 2006 | A1 |
20060222164 | Contractor et al. | Oct 2006 | A1 |
20060233346 | McIlwaine et al. | Oct 2006 | A1 |
20060262918 | Karnalkar et al. | Nov 2006 | A1 |
20060262922 | Margulies et al. | Nov 2006 | A1 |
20070036323 | Travis | Feb 2007 | A1 |
20070071222 | Flockhart et al. | Mar 2007 | A1 |
20070116240 | Foley et al. | May 2007 | A1 |
20070121602 | Sin et al. | May 2007 | A1 |
20070121829 | Tal et al. | May 2007 | A1 |
20070136342 | Singhai et al. | Jun 2007 | A1 |
20070153996 | Hansen | Jul 2007 | A1 |
20070154007 | Bernhard | Jul 2007 | A1 |
20070174111 | Anderson et al. | Jul 2007 | A1 |
20070198322 | Bourne et al. | Aug 2007 | A1 |
20070211881 | Parker-Stephen | Sep 2007 | A1 |
20070219816 | Van Luchene et al. | Sep 2007 | A1 |
20070274502 | Brown | Nov 2007 | A1 |
20080002823 | Fama et al. | Jan 2008 | A1 |
20080008309 | Dezonno et al. | Jan 2008 | A1 |
20080046386 | Pieraccinii et al. | Feb 2008 | A1 |
20080065476 | Klein et al. | Mar 2008 | A1 |
20080118052 | Houmaidi et al. | May 2008 | A1 |
20080144803 | Jaiswal et al. | Jun 2008 | A1 |
20080152122 | Idan et al. | Jun 2008 | A1 |
20080181389 | Bourne et al. | Jul 2008 | A1 |
20080199000 | Su et al. | Aug 2008 | A1 |
20080205611 | Jordan et al. | Aug 2008 | A1 |
20080267386 | Cooper | Oct 2008 | A1 |
20080273687 | Knott et al. | Nov 2008 | A1 |
20090043670 | Johansson et al. | Feb 2009 | A1 |
20090086933 | Patel et al. | Apr 2009 | A1 |
20090190740 | Chishti et al. | Jul 2009 | A1 |
20090190743 | Spottiswoode | Jul 2009 | A1 |
20090190744 | Xie et al. | Jul 2009 | A1 |
20090190745 | Xie et al. | Jul 2009 | A1 |
20090190746 | Chishti et al. | Jul 2009 | A1 |
20090190747 | Spottiswoode | Jul 2009 | A1 |
20090190748 | Chishti et al. | Jul 2009 | A1 |
20090190749 | Xie et al. | Jul 2009 | A1 |
20090190750 | Xie et al. | Jul 2009 | A1 |
20090232294 | Xie et al. | Sep 2009 | A1 |
20090234710 | Belgaied Hassine et al. | Sep 2009 | A1 |
20090245493 | Chen et al. | Oct 2009 | A1 |
20090249083 | Forlenza et al. | Oct 2009 | A1 |
20090304172 | Becerra et al. | Dec 2009 | A1 |
20090305172 | Tanaka et al. | Dec 2009 | A1 |
20090318111 | Desai et al. | Dec 2009 | A1 |
20090323921 | Spottiswoode et al. | Dec 2009 | A1 |
20100020959 | Spottiswoode | Jan 2010 | A1 |
20100020961 | Spottiswoode | Jan 2010 | A1 |
20100054431 | Jaiswal et al. | Mar 2010 | A1 |
20100054452 | Afzal | Mar 2010 | A1 |
20100054453 | Stewart | Mar 2010 | A1 |
20100086120 | Brussat et al. | Apr 2010 | A1 |
20100111285 | Chishti | May 2010 | A1 |
20100111286 | Chishti | May 2010 | A1 |
20100111287 | Xie et al. | May 2010 | A1 |
20100111288 | Afzal et al. | May 2010 | A1 |
20100142689 | Hansen et al. | Jun 2010 | A1 |
20100142698 | Spottiswoode et al. | Jun 2010 | A1 |
20100158238 | Saushkin | Jun 2010 | A1 |
20100183138 | Spottiswoode et al. | Jul 2010 | A1 |
20110022357 | Vock et al. | Jan 2011 | A1 |
20110031112 | Birang et al. | Feb 2011 | A1 |
20110069821 | Korolev et al. | Mar 2011 | A1 |
20110125048 | Causevic et al. | May 2011 | A1 |
20110206199 | Arora | Aug 2011 | A1 |
20120051536 | Chishti et al. | Mar 2012 | A1 |
20120051537 | Chishti et al. | Mar 2012 | A1 |
20120183131 | Kohler et al. | Jul 2012 | A1 |
20120224680 | Spottiswoode et al. | Sep 2012 | A1 |
20120278136 | Flockhart et al. | Nov 2012 | A1 |
20130003959 | Nishikawa et al. | Jan 2013 | A1 |
20130051545 | Ross et al. | Feb 2013 | A1 |
20130251137 | Chishti et al. | Sep 2013 | A1 |
20130287202 | Flockhart et al. | Oct 2013 | A1 |
20140044246 | Klemm et al. | Feb 2014 | A1 |
20140079210 | Kohler et al. | Mar 2014 | A1 |
20140119531 | Tuchman et al. | May 2014 | A1 |
20140119533 | Spottiswoode et al. | May 2014 | A1 |
20140188895 | Wang et al. | Jul 2014 | A1 |
20140270133 | Conway et al. | Sep 2014 | A1 |
20140341370 | Li et al. | Nov 2014 | A1 |
20150055772 | Klemm et al. | Feb 2015 | A1 |
20150281448 | Putra et al. | Oct 2015 | A1 |
20160080573 | Chishti | Mar 2016 | A1 |
20170013131 | Craib | Jan 2017 | A1 |
20170064080 | Chishti et al. | Mar 2017 | A1 |
20170064081 | Chishti et al. | Mar 2017 | A1 |
20170316438 | Konig et al. | Nov 2017 | A1 |
20180316793 | Kan et al. | Nov 2018 | A1 |
20180316794 | Kan et al. | Nov 2018 | A1 |
20190166254 | Chishti | May 2019 | A1 |
20190222697 | Kan et al. | Jul 2019 | A1 |
20200175458 | Delellis et al. | Jun 2020 | A1 |
Number | Date | Country |
---|---|---|
2008349500 | May 2014 | AU |
2009209317 | May 2014 | AU |
2009311534 | Aug 2014 | AU |
2015203175 | Jul 2015 | AU |
2015243001 | Nov 2015 | AU |
101093590 | Dec 2007 | CN |
102164073 | Aug 2011 | CN |
102390184 | Mar 2012 | CN |
102555536 | Jul 2012 | CN |
202965525 | Jun 2013 | CN |
203311505 | Nov 2013 | CN |
102301688 | May 2014 | CN |
102017591 | Nov 2014 | CN |
0493292 | Jul 1992 | EP |
0863651 | Sep 1998 | EP |
0949793 | Oct 1999 | EP |
1011974 | Jun 2000 | EP |
1032188 | Aug 2000 | EP |
1107557 | Jun 2001 | EP |
1335572 | Aug 2003 | EP |
2338270 | Apr 2018 | EP |
2339643 | Feb 2000 | GB |
11-098252 | Apr 1999 | JP |
2000-069168 | Mar 2000 | JP |
2000-078291 | Mar 2000 | JP |
2000-078292 | Mar 2000 | JP |
2000-092213 | Mar 2000 | JP |
2000-507420 | Jun 2000 | JP |
2000-236393 | Aug 2000 | JP |
2000-253154 | Sep 2000 | JP |
2001-292236 | Oct 2001 | JP |
2001-518753 | Oct 2001 | JP |
2002-297900 | Oct 2002 | JP |
3366565 | Jan 2003 | JP |
2003-187061 | Jul 2003 | JP |
2004-056517 | Feb 2004 | JP |
2004-227228 | Aug 2004 | JP |
2006-345132 | Dec 2006 | JP |
2007-324708 | Dec 2007 | JP |
2009-081627 | Apr 2009 | JP |
2011-511533 | Apr 2011 | JP |
2011-511536 | Apr 2011 | JP |
2012-075146 | Apr 2012 | JP |
5421928 | Feb 2014 | JP |
5631326 | Nov 2014 | JP |
5649575 | Jan 2015 | JP |
2015-514268 | May 2015 | JP |
2015-514371 | May 2015 | JP |
10-2002-0044077 | Jun 2002 | KR |
10-2013-0099554 | Sep 2013 | KR |
316118 | Dec 2013 | MX |
322251 | Jul 2014 | MX |
587100 | Oct 2013 | NZ |
587101 | Oct 2013 | NZ |
591486 | Jan 2014 | NZ |
592781 | Mar 2014 | NZ |
1-2010-501704 | Feb 2014 | PH |
1-2010-501705 | Feb 2015 | PH |
1-2011-500868 | Jun 2015 | PH |
WO-199917517 | Apr 1999 | WO |
WO-0070849 | Nov 2000 | WO |
WO-2001063894 | Aug 2001 | WO |
WO-2006124113 | Nov 2006 | WO |
WO-2009097018 | Aug 2009 | WO |
WO-2009097210 | Aug 2009 | WO |
WO-2010053701 | May 2010 | WO |
WO-2011081514 | Jul 2011 | WO |
WO-2013148453 | Oct 2013 | WO |
WO-2015019806 | Feb 2015 | WO |
WO-2016048290 | Mar 2016 | WO |
Entry |
---|
Afiniti, “Afiniti® Enterprise Behavioral Pairing™ Improves Contact Center Performance,” White Paper, retrieved online from URL: <http://www.afinitit,com/wp-content/uploads/2016/04/Afiniti_White-Paper_Web-Email.pdf> 2016, (11 pages). |
Anonymous, (2006) “Performance Based Routing in Profit Call Centers,” The Decision Makers' Direct, located at www.decisioncraft.com, Issue Jun. 2002, (3 pages). |
Chen, G., et al., “Enhanced Locality Sensitive Clustering in High Dimensional Space”, Transactions on Electrical and Electronic Materials, vol. 15, No. 3, Jun. 25, 2014, pp. 125-129 (5 pages). |
Cleveland, William S., “Robust Locally Weighted Regression and Smoothing Scatterplots,” Journal of the American Statistical Association, vol. 74, No. 368, pp. 829-836 (Dec. 1979). |
Cormen, T.H., et al., “Introduction to Algorithms”, Third Edition, Chapter 26 and 29, 2009, (116 pages). |
Gans, N. et al., “Telephone Call Centers: Tutorial, Review and Research Prospects,” Manufacturing & Service Operations Management, vol. 5, No. 2, 2003, pp. 79-141, (84 pages). |
International Preliminary Report on Patentability and Written Opinion issued in connection with PCT/US2009/066254 dated Jun. 14, 2011, (6 pages). |
International Search Report and Written Opinion issued by the European Patent Office as International Searching Authority for PCT/IB2016/001762 dated Feb. 20, 2017, (15 pages). |
International Search Report and Written Opinion issued by the European Patent Office as International Searching Authority for PCT/IB2016/001776 dated Mar. 3, 2017, (16 pages). |
International Search Report and Written Opinion issued by the European Patent Office as International Searching Authority for PCT/IB2017/000570 dated Jun. 30, 2017, (13 pages). |
International Search Report and Written Opinion issued by the European Patent Office as International Searching Authority for PCT/IB2018/000434 dated Jun. 20, 2018, (14 pages). |
International Search Report and Written Opinion issued in connection with PCT/IB2018/000886 dated Dec. 4, 2018, (13 pages). |
International Search Report and Written Opinion issued in connection with PCT/IB2018/000907 dated Nov. 26, 2018, (11 pages). |
International Search Report issued in connection with PCT/US2008/077042 dated Mar. 13, 2009, (3 pages). |
International Search Report issued in connection with PCT/US2009/031611 dated Jun. 3, 2009, (5 pages). |
International Search Report issued in connection with PCT/US2009/054352 dated Mar. 12, 2010, (5 pages). |
International Search Report issued in connection with PCT/US2009/061537 dated Jun. 7, 2010, (5 pages). |
International Search Report issued in connection with PCT/US2009/066254 dated Feb. 24, 2010, (4 pages). |
International Search Report issued in connection with PCT/US2013/033261 dated Jun. 14, 2013, (3 pages). |
International Search Report issued in connection with PCT/US2013/033265 dated Jul. 9, 2013, (2 pages). |
International Search Report issued in connection with PCT/US2013/033268 dated May 31, 2013, (2 pages). |
Ioannis Ntzoufras “Bayesian Modeling Using Winbugs An Introduction”, Department of Statistics, Athens University of Economics and Business, Wiley-Interscience, A John Wiley & Sons, Inc., Publication, Chapter 5, Jan. 1, 2007, pp. 155-220 (67 pages). |
Koole, G. et al., “An Overview of Routing and Staffing Algorithms in Multi-Skill Customer Contact Centers,” Manuscript, Mar. 6, 2006, (42 pages). |
Koole, G., “Performance Analysis and Optimization in Customer Contact Centers,” Proceedings of the Quantitative Evaluation of Systems, First International Conference, Sep. 27-30, 2004, (4 pages). |
Nocedal, J. and Wright, S. J., “Numerical Optimization,” Chapter 16 Quadratic Programming, 2006, pp. 448-496 (50 pages). |
Ntzoufras, “Bayesian Modeling Using Winbugs”. Wiley Interscience, Chapter 5, Normal Regression Models, Oct. 18, 2007, Redacted version, pp. 155-220 (67 pages). |
Press, W. H. and Rybicki, G. B., “Fast Algorithm for Spectral Analysis of Unevenly Sampled Data,” The Astrophysical Journal, vol. 338, Mar. 1, 1989, pp. 277-280 (4 pages). |
Riedmiller, M. et al., “A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm,” 1993 IEEE International Conference on Neural Networks, San Francisco, CA, Mar. 28-Apr. 1, 1993, 1:586-591 (8 pages). |
Stanley et al., “Improving Call Center Operations Using Performance-Based Routing Strategies,” California Journal of Operations Management, 6(1), 24-32, Feb. 2008; retrieved from http://userwww.sfsu.edu/saltzman/Publist.html (9 pages). |
Written Opinion of the International Searching Authority issued in connection with PCT/US2008/077042 dated Mar. 13, 2009, (6 pages). |
Written Opinion of the International Searching Authority issued in connection with PCT/US2009/031611 dated Jun. 3, 2009, (7 pages). |
Written Opinion of the International Searching Authority issued in connection with PCT/US2009/054352 dated Mar. 12, 2010, (5 pages). |
Written Opinion of the International Searching Authority issued in connection with PCT/US2009/061537 dated Jun. 7, 2010, (10 pages). |
Written Opinion of the International Searching Authority issued in connection with PCT/US2009/066254 dated Feb. 24, 2010, (5 pages). |
Written Opinion of the International Searching Authority issued in connection with PCT/US2013/033261 dated Jun. 14, 2013, (7 pages). |
Written Opinion of the International Searching Authority issued in connection with PCT/US2013/033265 dated Jul. 9, 2013, (7 pages). |
Written Opinion of the International Searching Authority issued in connection with PCT/US2013/033268 dated May 31, 2013, (7 pages). |
Number | Date | Country | |
---|---|---|---|
20230208974 A1 | Jun 2023 | US |
Number | Date | Country | |
---|---|---|---|
62969543 | Feb 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17162133 | Jan 2021 | US |
Child | 18112890 | US |