Techniques for forming a contact to a buried diffusion layer in a semiconductor memory device

Information

  • Patent Grant
  • 9064730
  • Patent Number
    9,064,730
  • Date Filed
    Monday, April 28, 2014
    10 years ago
  • Date Issued
    Tuesday, June 23, 2015
    9 years ago
Abstract
Techniques for forming a contact to a buried diffusion layer in a semiconductor memory device are disclosed. The techniques may be realized as a semiconductor memory device. The semiconductor memory device may comprise a substrate comprising an upper layer, an array of dummy pillars formed on the upper layer of the substrate and arranged in rows and columns, and an array of active pillars formed on the upper layer of the substrate and arranged in rows and columns. Each of the dummy pillars may extend upward from the upper layer and have a bottom contact that is electrically connected with the upper layer of the substrate. Each of the active pillars may extend upward from the upper layer and have an active first region, an active second region, and an active third region. Each of the active pillars may also be electrically connected with the upper layer of the substrate.
Description
FIELD OF THE DISCLOSURE

The present disclosure relates generally to semiconductor memory devices and, more particularly, to techniques for forming a contact to a buried diffusion layer in a semiconductor memory device.


BACKGROUND OF THE DISCLOSURE

The semiconductor industry has experienced technological advances that have permitted increases in density and/or complexity of semiconductor memory devices. Also, the technological advances have allowed decreases in power consumption and package sizes of various types of semiconductor memory devices. There is a continuing trend to employ and/or fabricate advanced semiconductor memory devices using techniques, materials, and devices that improve performance, reduce leakage current, and enhance overall scaling. Semiconductor-on-insulator (SOI) and bulk substrates are examples of materials that may be used to fabricate such semiconductor memory devices. Such semiconductor memory devices may include, for example, partially depleted (PD) devices, fully depleted (FD) devices, multiple gate devices (for example, double or triple gate), and Fin-FET devices.


A semiconductor memory device may include a memory cell having a memory transistor with an electrically floating body region wherein electrical charges may be stored. The electrical charges stored in the electrically floating body region may represent a logic high (e.g., binary “1” data state) or a logic low (e.g., binary “0” data state). Also, a semiconductor memory device may be fabricated on semiconductor-on-insulator (SOI) substrates or bulk substrates (e.g., enabling body isolation). For example, a semiconductor memory device may be fabricated as a three-dimensional (3-D) device (e.g., multiple gate devices, Fin-FETs, recessed gates and pillars).


In one conventional technique, an array of minimum feature size memory cells may print uniformly in accordance with certain lithographic specifications while the periodicity of a lithographic pattern remains consistent. When the periodicity of the lithographic pattern is interrupted (e.g., at an edge of the array), however, the minimum feature size memory cells may not print uniformly.


In another conventional technique, a storage array of minimum feature size memory cells may use dummy pillar structures to ensure proper printing of active pillar structures near an array edge when the periodicity of a lithographic pattern is interrupted to form a bottom contact to buried diffusion. These dummy pillar structures may be similar to active pillar structures in physical appearance, but may not contribute to any storage function of the array. Likewise, if, for example, the bottom contact to buried diffusion is nested within an array of pillar structures, dummy pillar structures may be formed on both sides of the nested bottom contact to buried diffusion to provide for proper printing of adjacent active pillar structures.


Often, the conventional use of dummy pillar structures may significantly increase area overhead of the array since, for example, two (2) rows of dummy pillar structures may be formed between a row of bottom contacts to buried diffusion and an array of active pillar structures. In certain instances, the area overhead attributed to the use of dummy pillar structures may double when the bottom contacts to buried diffusion are nested within an array of pillar structures. In such instances, for example, two (2) rows of dummy pillar structures may be formed on both sides of the nested bottom contacts. Also, the conventional use of dummy pillar structures may significantly increase the processing cost and complexity of forming array edges that include separate pillar bottom contacts to buried diffusion.


In view of the foregoing, it may be understood that there may be significant problems and shortcomings associated with the conventional use of conventional dummy pillar structures.


SUMMARY OF THE DISCLOSURE

Techniques for forming a contact to a buried diffusion layer in a semiconductor memory device are disclosed. In one particular exemplary embodiment, the techniques may be realized as a semiconductor memory device. The semiconductor memory device may comprise a substrate comprising an upper layer. The semiconductor memory device may also comprise an array of dummy pillars formed on the upper layer of the substrate and arranged in rows and columns. Each of the dummy pillars may extend upward from the upper layer and have a bottom contact that is electrically connected with the upper layer of the substrate. The semiconductor memory device may also comprise an array of active pillars formed on the upper layer of the substrate and arranged in rows and columns. Each of the active pillars may extend upward from the upper layer and have an active first region, an active second region, and an active third region. Each of the active pillars may also be electrically connected with the upper layer of the substrate.


In accordance with other aspects of this particular exemplary embodiment, the rows of the dummy pillars may extend along a word line direction and the columns of the dummy pillars may extend along a bit line direction.


In accordance with further aspects of this particular exemplary embodiment, each of the dummy pillars may have a dummy first region, a dummy second region, and a dummy third region.


In accordance with additional aspects of this particular exemplary embodiment, the dummy first region may comprise a dummy upper region doped with a type of impurity, the dummy second region may comprise a dummy middle region doped with the type of impurity, and the dummy third region may comprise a dummy lower region doped with the type of impurity.


In accordance with other aspects of this particular exemplary embodiment, each dummy middle region may be capacitively coupled to at least one dummy word line.


In accordance with further aspects of this particular exemplary embodiment, the rows of the active pillars may extend along a word line direction and the columns of the active pillars may extend along a bit line direction.


In accordance with additional aspects of this particular exemplary embodiment, the active first region may comprise an active upper region doped with a first type of impurity, the active second region may comprise an active middle region doped with a second type of impurity, and the active third region may comprise an active lower region doped with the first type of impurity.


In accordance with other aspects of this particular exemplary embodiment, the active middle region of each active pillar may be electrically floating and disposed between the active upper region and the active lower region.


In accordance with further aspects of this particular exemplary embodiment, a gate region may be formed on at least one side of the active middle region of each active pillar.


In accordance with additional aspects of this particular exemplary embodiment, the active middle region of each active pillar may be capacitively coupled to an active word line.


In accordance with other aspects of this particular exemplary embodiment, the active upper region of each active pillar may be coupled to at least one active bit line.


In accordance with further aspects of this particular exemplary embodiment, the array of dummy pillars may extend along an outer edge of an array of memory cells formed on the substrate.


In accordance with additional aspects of this particular exemplary embodiment, the array of dummy pillars may be adjacent to the array of active pillars.


In another particular exemplary embodiment, the techniques may be realized as another semiconductor memory device. The semiconductor memory device may comprise a substrate comprising an upper layer. The semiconductor memory device may also comprise a column of dummy pillars formed on the upper layer of the substrate. Each of the dummy pillars may extend upward from the upper layer and have a bottom contact that is electrically connected with the upper layer of the substrate. The semiconductor memory device may also comprise a first array of active pillars formed on the upper layer of the substrate and arranged in rows and columns. The semiconductor memory device may also comprise a second array of active pillars formed on the upper layer of the substrate and arranged in rows and columns. Each of the active pillars may extend upward from the upper layer and have an active first region, an active second region, and an active third region. Each of the active pillars may also be electrically connected with the upper layer of the substrate.


In accordance with other aspects of this particular exemplary embodiment, the column of dummy pillars may extend along a bit line direction.


In accordance with further aspects of this particular exemplary embodiment, each of the dummy pillars may have a dummy first region, a dummy second region, and a dummy third region.


In accordance with additional aspects of this particular exemplary embodiment, the dummy first region may comprise a dummy upper region doped with a type of impurity, the dummy second region may comprise a dummy middle region doped with the type of impurity, and the dummy third region may comprise a dummy lower region doped with the type of impurity.


In accordance with other aspects of this particular exemplary embodiment, the rows of the active pillars may extend along a word line direction and the columns of the active pillars may extend along a bit line direction.


In accordance with further aspects of this particular exemplary embodiment, the active first region may comprise an active upper region doped with a first type of impurity, the active second region may comprise an active middle region doped with a second type of impurity, and the active third region may comprise an active lower region doped with the first type of impurity.


In accordance with additional aspects of this particular exemplary embodiment, the active middle region of each active pillar may be electrically floating and disposed between the active upper region and the active lower region.


In accordance with other aspects of this particular exemplary embodiment, a gate region may be formed on at least one side of the active middle region of each active pillar.


In accordance with further aspects of this particular exemplary embodiment, the active middle region of each active pillar may be capacitively coupled to an active word line.


In accordance with additional aspects of this particular exemplary embodiment, the active upper region of each active pillar may be coupled to at least one active bit line.


In accordance with other aspects of this particular exemplary embodiment, the column of dummy pillars may be nested between the first array of active pillars and the second array of active pillars.


The present disclosure will now be described in more detail with reference to exemplary embodiments thereof as shown in the accompanying drawings. While the present disclosure is described below with reference to exemplary embodiments, it should be understood that the present disclosure is not limited thereto. Those of ordinary skill in the art having access to the teachings herein will recognize additional implementations, modifications, and embodiments, as well as other fields of use, which are within the scope of the present disclosure as described herein, and with respect to which the present disclosure may be of significant utility.





BRIEF DESCRIPTION OF THE DRAWINGS

In order to facilitate a fuller understanding of the present disclosure, reference is now made to the accompanying drawings, in which like elements are referenced with like numerals. These drawings should not be construed as limiting the present disclosure, but are intended to be exemplary only.



FIG. 1 shows a cross-sectional view of a pillar array of a semiconductor memory device with bottom contacts to diffusion formed on dummy pillars in accordance with an embodiment of the present disclosure.



FIG. 2 shows a cross-sectional view of a pillar array of a semiconductor memory device with bottom contacts to diffusion formed on dummy pillars and a pillar substrate contact in accordance with an embodiment of the present disclosure.



FIG. 3 shows a two-dimensional top view of a pillar array of a semiconductor memory device with bottom contacts to diffusion formed on dummy pillars in accordance with an embodiment of the present disclosure.



FIG. 4 shows a cross-sectional view of a pillar array of a semiconductor memory device with nested bottom contacts to diffusion formed on dummy pillars in accordance with an embodiment of the present disclosure.



FIG. 5 shows a two-dimensional top view of a pillar array of a semiconductor memory device with nested bottom contacts to diffusion formed on dummy pillars in accordance with an embodiment of the present disclosure.



FIG. 6 shows processing steps for forming nested bottom contacts to diffusion on dummy pillars in accordance with an embodiment of the present disclosure.



FIG. 7A shows processing steps for forming nested bottom contacts to diffusion on dummy pillars in accordance with an alternative embodiment of the present disclosure.



FIG. 7B shows additional processing steps for forming nested bottom contacts to diffusion on dummy pillars in accordance with an alternative embodiment of the present disclosure.





DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

A conventional array of minimum feature size (F) pillar structures may include an active array area that is adjacent to a dummy array area to ensure proper printing of a lithographic pattern when bottom contacts to diffusion are formed. The active array area may include an array of active pillar structures. Each active pillar structure may form a memory cell in a memory device that is configured to store electrical charge. An active pillar structure may store the electrical charge within an electrically floating body region. For example, the active pillar structure may store an electric charge that represents a logic high (e.g., binary “1” data state) or an electric charge that represents a logic low (e.g., binary “0” data state). The dummy array area may include at least two (2) rows of dummy pillar structures that separate the array of active pillar structures from the array edge. On the array-edge-side of the dummy array area, separate pillar bottom contacts to diffusion may be formed.


By way of a non-limiting example, a minimum feature size (F) of 32 nanometers (nm) may be used for 32 nm lithography. Assuming each pillar in a conventional pillar array has a plug contact height of 1 F, an upper region (e.g., drain region, source region) height of 1 F, a body region height of 2 F, and a lower region (e.g., source region, drain region) height of 1 F, forming a separate 5 F tall contact to the bottom diffusion may significantly increase processing costs and the complexity of the conventional pillar array at the array edge. Furthermore, the area overhead of the conventional pillar array may be significantly increased when the separate contacts to the bottom diffusion are nested within the pillar array. In such instances, the area overhead attributed to the formation of the separate contacts to the bottom diffusion may double since at least two (2) rows of dummy pillars may be formed on both sides of the nested contacts to the bottom diffusion.


Referring to FIG. 1, there is shown a cross-sectional view of a pillar array 100 of a semiconductor memory device with bottom contacts to diffusion formed on dummy pillars in accordance with an embodiment of the present disclosure. As illustrated in FIG. 1, the pillar array 100 may include any, or a combination, of a substrate 114, a diffusion layer 112, an active array area 104, one or more active pillars 108A, 108B, a dummy array area 102, and one or more dummy pillars 106A, 106B.


The substrate 114 and the diffusion layer 112 of the substrate 114 may each be formed from a semiconductor material that is doped with a P type impurity concentration, an N type impurity concentration, or any other type of impurity concentration. In one embodiment, the semiconductor material of substrate 114 and the semiconductor material of diffusion layer 112 may be doped with impurity concentrations that are of opposite types. For example, as shown in FIG. 1, the semiconductor material of substrate 114 may be doped with a P type impurity concentration and the semiconductor material of diffusion layer 112 may be doped with an N+ type impurity concentration.


The diffusion layer 112 may include an active array area 104 on which an array of one or more active pillars 108A, 108B are formed. Active pillars 108A, 108B may be vertical transistors that include upper regions 128, 124, middle regions 140, 138, and lower regions 130, 126, respectively. Each of the upper regions 128, 124, middle regions 140, 138, and lower regions 130, 126 may be formed of a semiconductor material that is doped with a P type impurity concentration, an N type impurity concentration, or any other type of impurity concentration. In one embodiment, the semiconductor material of upper regions 128, 124 and the semiconductor material of lower regions 130, 126 may be doped with impurity concentrations that are the same type. In another embodiment, the semiconductor material of middle regions 140, 138 may be doped with an impurity concentration that is of the opposite type of the impurity concentration of the semiconductor material of the upper regions 128, 124 and the lower regions 130, 126. For example, as shown in FIG. 1, the semiconductor material of upper regions 128, 124 and the lower regions 130, 126 may be doped with an N+ type impurity concentration, and the semiconductor material of middle regions 140, 138 may be doped with a P+ type impurity concentration.


The upper regions 128, 124 may be source regions, drain regions, or any other type of region. The lower regions 130, 126 may be drain regions, source regions, or any other type of region. The middle regions 140, 138 may be body regions that are electrically floating.


The middle regions 140, 138 of active pillars 108A, 108B may be coupled (e.g., capacitively coupled) to a gate structure formed from a poly-silicon material, metal material, metal silicide material, and/or any other material that may be used to form a gate of an active pillar. A gate structure may be a single gate structure, a dual gate structure, a triple gate structure, a quadruple gate structure, etc. For example, the middle regions 140, 138 of active pillars 108A, 108B may be coupled to dual gate structures. Each gate of each active pillar may be coupled to gates of one or more additional active pillars positioned in a row to form a word line. In one example, one gate of active pillar 108A may be coupled to gates of one or more additional active pillars (not shown) positioned in a row to form word line 120A, and another gate of active pillar 108A may be coupled to other gates of the one or more additional active pillars to form word line 120B. In another example, one gate of active pillar 108B may be coupled to gates of one or more additional active pillars (not shown) positioned in a row to form word line 122A, and another gate of active pillar 108B may be coupled to other gates of the one or more additional active pillars to form word line 122B. Accordingly, the rows of the active pillars (including active pillars 108A, 108B) may extend in a word line direction that is parallel to diffusion layer 112.


Each upper region of each active pillar may be coupled to a plug contact (e.g., a poly-silicon plug contact) that is coupled to a bit line. For example, the upper region 128 of active pillar 108A may be coupled to plug contact 132 that is coupled to a bit line. Furthermore, the upper region 124 of active pillar 108B may be coupled to plug contact 116 that is coupled to the bit line. The columns of the active pillars may extend in a bit line direction that is parallel to diffusion layer 112.


Active pillars 108A, 108B may operate as memory cells that store electrical charge in middle regions 140, 138 (e.g., body regions) that are electrically floating. For example, the middle regions 140, 138 of active pillars 108A, 108B may store electrical charge that represents a logic high (e.g., binary “1” data state) or a logic low (e.g., binary “0” data state).


The diffusion layer 112 may include a dummy array area 102 on which an array of one or more dummy pillars 106A, 106B are formed. The dummy array area 102 may extend along an array edge of the pillar array 100. Dummy pillars 106A, 106B may be similar to active pillars 108A, 108B in physical appearance, but may not contribute to any storage function of the pillar array 100 except to provide contacts (e.g., electrical connections) to the diffusion layer 112.


Dummy pillars 106A, 106B may include upper regions 142, 144, middle regions 150, 152, and lower regions 146, 148, respectively. Each of the upper regions 142, 144, middle regions 150, 152, and lower regions 146, 148 may be formed of a semiconductor material that is doped with a P type impurity concentration, an N type impurity concentration, or any other type of impurity concentration. In one embodiment, the semiconductor material of upper regions 142, 144, middle regions 150, 152, and lower regions 146, 148 may be doped with impurity concentrations that are the same type. For example, as shown in FIG. 1, the semiconductor material of the upper regions 142, 144, middle regions 150, 152, and lower regions 146, 148 may be doped with an N+ type impurity concentration.


The middle regions 150, 152 of dummy pillars 106A, 106B may be coupled (e.g., capacitively coupled) to a dummy gate structure formed from a poly-silicon material, metal material, metal silicide material, and/or any other material that may be used to form a dummy gate of a dummy pillar. A dummy gate structure may be a single dummy gate structure, a dual dummy gate structure, a triple dummy gate structure, a quadruple dummy gate structure, etc. For example, the middle regions 150, 152 of dummy pillars 106A, 106B may be coupled to dual dummy gate structures. Each dummy gate of each dummy pillar may be coupled to dummy gates of one or more additional dummy pillars positioned in a row to form a dummy word line. In one example, one dummy gate of dummy pillar 106A may be coupled to dummy gates of one or more additional dummy pillars (not shown) positioned in a row to form dummy word line 110A, and another dummy gate of dummy pillar 106A may be coupled to other dummy gates of the one or more additional dummy pillars to form dummy word line 110B. In another example, one dummy gate of dummy pillar 106B may be coupled to dummy gates of one or more additional dummy pillars (not shown) positioned in a row to form dummy word line 118A, and another dummy gate of dummy pillar 106B may be coupled to other dummy gates of the one or more additional dummy pillars to form dummy word line 118B. Accordingly, the rows of the dummy pillars (including dummy pillars 106A, 106B) may extend in a word line direction that is parallel to diffusion layer 112.


Each upper region of each dummy pillar may be coupled to a plug contact (e.g., a poly-silicon plug contact) that is coupled to metal coupling that, in turn, is coupled to a metal strapping. Thus, each dummy pillar provides an electrical connection between a metal strapping and the diffusion layer 112. For example, the upper region 142 of dummy pillar 106A may be coupled to plug contact 136 that is coupled to a metal coupling that, in turn, is coupled to a metal strapping. Thus, dummy pillar 106A provides an electrical connection between the metal strapping and the diffusion layer 112. Furthermore, the upper region 144 of dummy pillar 106B may be coupled to plug contact 134 that is coupled a metal coupling that, in turn, is coupled to a metal strapping. Thus, dummy pillar 106B provides an electrical connection between the metal strapping and the diffusion layer 112. The columns of the dummy pillars may extend in a bit line direction that is parallel to diffusion layer 112.


Accordingly, dummy pillars 106A, 106B may be used as bottom contacts to the diffusion layer 112 to reduce the area overhead of the pillar array 100 attributed to the formation of separate contacts to the diffusion layer 112. Details of exemplary processing steps for forming contacts to a bottom diffusion layer on dummy pillars are provided below with reference to FIGS. 6-7B.


Referring to FIG. 2, there is shown a cross-sectional view of a pillar array 200 of a semiconductor memory device with bottom contacts to diffusion formed on dummy pillars and a pillar substrate contact in accordance with an embodiment of the present disclosure. As illustrated in FIG. 2, the pillar array 200 may include any, or a combination, of a substrate 114, a diffusion layer 112, an active array area 104 with one or more active pillars, a dummy array area 102 with one or more dummy pillars, and a pillar substrate contact 202. Pillar array 200 may be similar to pillar array 100 described above with reference to FIG. 1.


Pillar substrate contact 202 may be formed on substrate 114 and of a semiconductor material and/or a metal material. For example, the pillar body 204 of pillar substrate contact 202 may be formed from a semiconductor material that is doped with a P type impurity concentration, N type impurity concentration, or any other type of impurity concentration. In one embodiment, the semiconductor material of the pillar body 204 and the semiconductor material of the active pillars, dummy pillars, and diffusion layer 112, may be doped with impurity concentrations that are of the opposite type. In another embodiment, the semiconductor material of the pillar body 204 and the semiconductor material of substrate 114 may be doped with impurity concentrations that are of the same type. For example, the semiconductor material of pillar body 204 may be doped with a P+ type impurity concentration. The contact material of pillar substrate contact 202 may be formed from a metal material (e.g., tungsten), metal-silicide material, metal-like material, or any other material that may be used to provide an electrical connection between the pillar substrate contact 202 and the substrate 114.


The pillar substrate contact 202 may be positioned adjacent to one or more dummy pillars of the dummy array area 102. As previously described with reference to FIG. 1, the one or more dummy pillars may provide bottom contacts to diffusion layer 112 at the array edge of pillar array 200. Further, one or more active pillars of the active array area 104 may be positioned adjacent to the dummy array area 102. The one or more active pillars may operate as memory cells of the pillar array 200.


Referring to FIG. 3, there is shown a two-dimensional top view of a pillar array 312 of a semiconductor memory device with bottom contacts to diffusion formed on dummy pillars in accordance with an embodiment of the present disclosure. As illustrated in FIG. 3, the pillar array 312 may include any, or a combination, of an active array area 104, one or more active pillars 302A, 302B, 302C, 302D, 302E, 302F, a dummy array area 102, and one or more dummy pillars 300A, 300B, 300C, 300D, 300E, 300F. Pillar array 312 may be two-dimensional top view of pillar array 100 described above with reference to FIG. 1.


As previously described with reference to FIG. 1, active array area 104 may include active pillars 302A, 302B, 302C, 302D, 302E, 302F. One gate of active pillars 302A, 302B, 302C may be coupled together in row 316A to form word line 308A. Another gate of active pillars 302A, 302B, 302C may be coupled together in row 316A to form word line 308B. Likewise, one gate of active pillars 302D, 302E, 302F may be coupled together in row 316B to form word line 310A. Another gate of active pillars 302D, 302E, 302F may be coupled together in row 316B to form word line 310B. Accordingly, the rows 316A, 316B of active pillars may extend in a word line direction.


In one embodiment, the upper regions of active pillars 302A, 302D may be coupled to Bit Line 0 to form a column of active pillars. In another embodiment, the upper regions of active pillars 302B, 302E may be coupled to Bit Line 1 to form another column of active pillars. In yet another embodiment, the upper regions of active pillars 302C, 302F may be coupled to Bit Line 2 to form another column of active pillars. Accordingly, the columns of active pillars may extend in a bit line direction.


As previously described with reference to FIG. 1, dummy array area 102 may include dummy pillars 300A, 300B, 300C, 300D, 300E, 300F. One dummy gate of dummy pillars 300A, 300B, 300C may be coupled together in row 314A to form dummy word line 304A. Another dummy gate of dummy pillars 300A, 300B, 300C may be coupled together in row 314A to form dummy word line 304B. Likewise, one dummy gate of dummy pillars 300D, 300E, 300F may be coupled together in row 314B to form dummy word line 306A. Another dummy gate of dummy pillars 300D, 300E, 300F may be coupled together in row 314B to form dummy word line 306B. Accordingly, the rows 314A, 314B of dummy pillars may extend in a dummy word line direction that is parallel to a word line direction.


In one embodiment, the upper regions of dummy pillars 300A, 300D may be coupled to Bottom Contact 0 to form a column of dummy pillars. In another embodiment, the upper regions of dummy pillars 300B, 300E may be coupled to Bottom Contact 1 to form another column of dummy pillars. In yet another embodiment, the upper regions of dummy pillars 300C, 300F may be coupled to Bottom Contact 2 to form another column of dummy pillars. Accordingly, the columns of dummy pillars may extend in a bit line direction.


As illustrated in FIGS. 1 and 3, area overhead at the array edge of pillar array 100 and pillar array 312 may be significantly reduced by eliminating the formation of separate standard (e.g., tungsten) bottom contacts to a diffusion layer. Instead, dummy pillars (e.g., dummy pillars 300A, 300B, 300C, 300D, 300E, 300F) may be used as bottom contacts to a diffusion layer.


Referring to FIG. 4, there is shown a cross-sectional view of a pillar array of a semiconductor memory device with nested bottom contacts to diffusion formed on dummy pillars in accordance with an embodiment of the present disclosure. As illustrated in FIG. 4, a pillar array 400 may include any, or a combination, of a substrate 408, a diffusion layer 406, an active array area 412, an active array area 414, one or more active pillars 402A, 402B, 402C, 402D, a dummy array area 410, and one or more dummy pillars 404. It should be noted that substrate 408 may be similar to substrate 114 of FIG. 1, diffusion layer 406 may be similar to diffusion layer 112 of FIG. 1, active pillars 402A, 402B, 402C, 402D may be similar to active pillars 108A, 108B of FIG. 1, and dummy pillar 404 may be similar to dummy pillars 106A, 106B of FIG. 1.


Active array area 412 may include active pillars 402A, 402B. Each upper region of each active pillar may be coupled to a plug contact (e.g., a poly-silicon plug contact) that is coupled to a bit line. The upper region of active pillar 402A may be coupled to a bit line that is coupled to one or more additional active pillars (not shown) positioned in a column. Likewise, the upper region of active pillar 402B may be coupled to a bit line that is coupled to one or more additional active pillars (not shown) positioned in another column. Accordingly, the columns of pillar array 400 containing active pillars 402A, 402B may extend in a bit line direction that is perpendicular to diffusion layer 406.


Active array area 414 may include active pillars 402C, 402D. Each upper region of each active pillar may be coupled to a plug contact (e.g., a poly-silicon plug contact) that is coupled to a bit line. The upper region of active pillar 402C may be coupled to a bit line that is coupled to one or more additional active pillars (not shown) positioned in a column. Likewise, the upper region of active pillar 402D may be coupled to a bit line that is coupled to one or more additional active pillars (not shown) positioned in another column. Accordingly, the columns of pillar array 400 containing active pillars 402C, 402D may extend in a bit line direction that is perpendicular to diffusion layer 406.


Dummy array area 410 may include dummy pillar 404 and one or more additional dummy pillars (not shown) positioned in a column. Each upper region of each dummy pillar may be coupled to a plug contact (e.g., a poly-silicon plug contact) that is coupled to metal strapping. Thus, each dummy pillar provides an electrical connection between a metal strapping and a diffusion layer. The upper region of dummy pillar 404 may be coupled to a plug contact that is coupled to a metal strapping. Thus, the dummy pillar 404 provides an electrical connection between the metal strapping and the diffusion layer 406. The column of the dummy pillars may extend in a bit line direction that is perpendicular to diffusion layer 406.


One gate (or dummy gate) of active pillars 402A, 402B, 402C, 402D, and dummy pillar 404 may be coupled together in a row to form a word line. Accordingly, the rows of the pillar array 400 may extend in a word line direction that is parallel to diffusion layer 406.


The dummy array area 410 may be nested between active array area 412 and active array area 414. Since the periodicity of a lithographic pattern is not broken to form separate nested bottom contacts to a buried diffusion layer, multiple columns of dummy pillars may be eliminated. Accordingly, the area overhead of pillar array 400 may be significantly reduced by forming bottom contacts to the diffusion layer on and/or within a nested column of dummy pillars that includes dummy pillar 404.


Referring to FIG. 5, there is shown a two-dimensional top view of a pillar array of a semiconductor memory device with nested bottom contacts to diffusion formed on dummy pillars in accordance with an embodiment of the present disclosure. As illustrated in FIG. 5, a pillar array 500 may include any, or a combination, of an active array area 414, an active array area 412, one or more active pillars 504A, 504B, 504C, 504D, 504E, 504F, 504G, 504H, 504I, 504J, a dummy array area 410, and one or more dummy pillars 502A, 502B, 502C, 502D, 502E. Pillar array 500 may be two-dimensional top view of a portion of pillar array 400 described above with reference to FIG. 4.


As previously described with reference to FIG. 4, active array area 414 may include active pillars 504A, 504B, 504C, 504D, 504E. Active array area 412 may include active pillars 504F, 504G, 504H, 504I, 504J. Dummy array area 410 may include dummy pillars 502A, 502B, 502C, 502D, 502E. One gate (or dummy gate) of active pillar 504A, dummy pillar 502A, and active pillar 504F may be coupled together in row 516 to form word line 306A. Another gate (or another dummy gate) of active pillar 504A, dummy pillar 502A, and active pillar 504F may be coupled together in row 516 to form word line 306B. One gate (or dummy gate) of active pillar 504B, dummy pillar 502B, and active pillar 504G may be coupled together in row 518 to form word line 308A. Another gate (or another dummy gate) of active pillar 504B, dummy pillar 502B, and active pillar 504G may be coupled together in row 518 to form word line 308B. One gate (or dummy gate) of active pillar 504C, dummy pillar 502C, and active pillar 504H may be coupled together in row 520 to form word line 310A. Another gate (or another dummy gate) of active pillar 504C, dummy pillar 502C, and active pillar 504H may be coupled together in row 520 to form word line 310B. One gate (or dummy gate) of active pillar 504D, dummy pillar 502D, and active pillar 504I may be coupled together in row 522 to form word line 312A. Another gate (or another dummy gate) of active pillar 504D, dummy pillar 502D, and active pillar 504I may be coupled together in row 522 to form word line 312B. Finally, one gate (or dummy gate) of active pillar 504E, dummy pillar 502E, and active pillar 504J may be coupled together in row 524 to form word line 314A. Another gate (or another dummy gate) of active pillar 504E, dummy pillar 502E, and active pillar 504J may be coupled together in row 524 to form word line 314B. Accordingly, the rows 516, 518, 520, 522, 524 of pillar array 500 may extend in a word line direction.


In one embodiment, the upper regions of active pillars 504A, 504B, 504C, 504D, 504E may be coupled to Bit Line M to form a column of active pillars. In another embodiment, the upper regions of active pillars 504F, 504G, 504H, 504I, 504J may be coupled to Bit Line N to form another column of active pillars. In yet another embodiment, the dummy pillars 502A, 502B, 502C, 502D, 502E may be positioned in a nested column (between the columns of active pillars). Accordingly, the columns of pillar array 500 may extend in a bit line direction.


The upper region of each dummy pillar may be coupled to a metal coupling. For example, the upper region of dummy pillar 502A may be coupled to Metal Coupling A that extends in a word line direction. In another example, the upper region of dummy pillar 502B may be coupled to Metal Coupling B that extends in a word line direction. In another example, the upper region of dummy pillar 502C may be coupled to Metal Coupling C that extends in a word line direction. In another example, the upper region of dummy pillar 502D may be coupled to Metal Coupling D that extends in a word line direction. In yet another example, the upper region of dummy pillar 502E may be coupled to Metal Coupling E that extends in a word line direction. Accordingly, Metal Couplings A, B, C, D, E may extend in a direction that is parallel to a word line direction and perpendicular to a bit line direction. It should be noted that Metal Couplings A, B, C, D, E may not be coupled to any active pillars.


As illustrated in FIGS. 4 and 5, the periodicity of a lithographic pattern may not be broken to form separate nested bottom contacts to a buried diffusion layer. Accordingly, multiple columns of dummy pillars may be eliminated and the area overhead of pillar array 400 and pillar array 500 may be significantly reduced by forming bottom contacts to the diffusion layer on and/or within a nested column of dummy pillars 502A, 502B, 502C, 502D, 502E.


Referring to FIG. 6, there is shown processing steps for forming nested bottom contacts to diffusion on dummy pillars in accordance with an embodiment of the present disclosure. As illustrated in FIG. 6, the process may include any, or a combination, of steps 602, 604, 606, 608, 610. Step 602 may include implanting (e.g., ion implanting) a diffusion layer (e.g., diffusion layer 112, diffusion layer 406) on a substrate. Step 604 may include covering the active array areas with a hard mask to ensure that the active array areas are not exposed. Step 606 may include exposing the dummy array area to open the dummy array area for a contact body implant (e.g., a bottom contact) and a body ion implant. Step 608 may include removing the hard masks and implanting (e.g., ion implanting) a top diffusion. Step 610 may include masking and etching the active pillars and a nested bottom contact dummy pillar.


Referring to FIG. 7A, there is shown processing steps for forming nested bottom contacts to diffusion on dummy pillars in accordance with an alternative embodiment of the present disclosure. As illustrated in FIG. 7A, the process may include any, or a combination, of steps 702, 704. Step 702 may include having pillars with contacts (e.g., poly-silicon). Step 704 may include covering the active array areas with a hard mask to ensure that the active array areas are not etched.


Referring to FIG. 7B, there is shown additional processing steps for forming nested bottom contacts to diffusion on dummy pillars in accordance with an alternative embodiment of the present disclosure. As illustrated in FIG. 7B, the process may include any, or a combination, of steps 706, 708. Step 706 may include etching the poly-silicon from an active pillar. Step 708 may include removing the hard mask and filling in the contacts with a poly-silicon material, metal material (e.g., tungsten), metal silicide material, or any other material that may be used as a contact. After step 708, the nested bottom contact dummy pillar may provide an electrical connection to the diffusion layer.


The present disclosure is not to be limited in scope by the specific embodiments described herein. Indeed, other various embodiments of and modifications to the present disclosure, in addition to those described herein, will be apparent to those of ordinary skill in the art from the foregoing description and accompanying drawings. Thus, such other embodiments and modifications are intended to fall within the scope of the present disclosure. Further, although the present disclosure has been described herein in the context of a particular implementation in a particular environment for a particular purpose, those of ordinary skill in the art will recognize that its usefulness is not limited thereto and that the present disclosure may be beneficially implemented in any number of environments for any number of purposes. Accordingly, the claims set forth below should be construed in view of the full breadth and spirit of the present disclosure as described herein.

Claims
  • 1. A semiconductor memory device comprising: a substrate comprising a diffusion layer;an array of active pillars formed on the diffusion layer and arranged in rows and columns, each active pillar of the array of active pillars extending upward from the diffusion layer and having an active first region, an active second region, and an active third region, wherein the active first region, the active second region and the active third region comprise a vertical transistor; anda plurality of dummy pillars formed on the diffusion layer and arranged in rows and columns external to the array of active pillars, each dummy pillar of the plurality of dummy pillars extending upward from the diffusion layer and having a dummy upper region, a dummy middle region, and a dummy lower region, wherein the dummy upper region, the dummy middle region, and the dummy lower region are formed with a semiconductor material that is doped with a common first dopant type;wherein the diffusion layer, the active first region, and the dummy lower region are formed with the semiconductor material that is doped with the common first dopant type;wherein a height of each active pillar of the array of active pillars and a height of each dummy pillar of the plurality of dummy pillars are substantially equal.
  • 2. The semiconductor memory device of claim 1, wherein the rows of the dummy pillars extend along a word line direction.
  • 3. The semiconductor memory device of claim 1, wherein each dummy middle region is capacitively coupled to at least one dummy word line.
  • 4. The semiconductor memory device of claim 1, wherein the rows of the active pillars extend along a word line direction and the columns of the active pillars extend along a bit line direction.
  • 5. The semiconductor memory device of claim 1, wherein the active first region comprises an active upper region doped with a first type of impurity, the active second region comprises an active middle region doped with a second type of impurity, and the active third region comprises an active lower region doped with the first type of impurity.
  • 6. The semiconductor memory device of claim 5, wherein the active middle region of each active pillar is electrically floating and disposed between the active upper region and the active lower region.
  • 7. The semiconductor memory device of claim 5, further comprising a gate region formed on at least one side of the active middle region of each active pillar.
  • 8. The semiconductor memory device of claim 5, wherein the active middle region of each active pillar is capacitively coupled to at least one active word line.
  • 9. The semiconductor memory device of claim 5, wherein the active upper region of each active pillar is coupled to at least one active bit line.
  • 10. The semiconductor memory device of claim 1, wherein the plurality of dummy pillars extends along an outer edge of an array of memory cells formed on the substrate.
  • 11. The semiconductor memory device of claim 1, wherein the plurality of dummy pillars is directly adjacent to the array of active pillars.
  • 12. A semiconductor memory device comprising: a substrate comprising a diffusion layer;a first array of active pillars formed on the diffusion layer and arranged in rows and columns;a second array of active pillars formed on the diffusion layer and arranged in rows and columns; anda column of dummy pillars formed on the diffusion layer directly between and adjacent to the first and second arrays of active pillars, each dummy pillar of the column of dummy pillars extending upward from the diffusion layer and having a dummy upper region, a dummy middle region, and a dummy lower region, wherein the dummy upper region, the dummy middle region, and the dummy lower region are formed with a semiconductor material that is doped with a common first dopant type;wherein each active pillar of the first and second arrays of active pillars extend upward from the diffusion layer and have an active first region, an active second region, and an active third region, wherein the active first region, the active second region, and the active third region comprise a vertical transistor;wherein the diffusion layer, the active first region, and the dummy lower region are formed with the semiconductor material that is doped with the common first dopant type;wherein a height of each active pillar of the first and second arrays of active pillars and a height of each dummy pillar of the column of dummy pillars are substantially equal.
  • 13. The semiconductor memory device of claim 12, wherein the column of dummy pillars extends along a bit line direction.
  • 14. The semiconductor memory device of claim 12, wherein each dummy middle region is capacitively coupled to at least one dummy word line.
  • 15. The semiconductor memory device of claim 12, wherein the rows of the active pillars extend along a word line direction and the columns of the active pillars extend along a bit line direction.
  • 16. The semiconductor memory device of claim 12, wherein the active first region comprises an active upper region doped with a first type of impurity, the active second region comprises an active middle region doped with a second type of impurity, and the active third region comprises an active lower region doped with the first type of impurity.
  • 17. The semiconductor memory device of claim 16, wherein the active middle region of each active pillar is electrically floating and disposed between the active upper region and the active lower region.
  • 18. The semiconductor memory device of claim 16, further comprising a gate region formed on at least one side of the active middle region of each active pillar.
  • 19. The semiconductor memory device of claim 16, wherein the active middle region of each active pillar is capacitively coupled to at least one active word line.
  • 20. The semiconductor memory device of claim 16, wherein the active upper region of each active pillar is coupled to at least one active bit line.
  • 21. The semiconductor memory device of claim 12, wherein the column of dummy pillars is nested between the first array of active pillars and the second array of active pillars.
  • 22. The semiconductor memory device of claim 1, further comprising a pillar substrate contact formed on the substrate, wherein the pillar substrate contact is doped with a second dopant type that is opposite to the first dopant type.
  • 23. The semiconductor memory device of claim 12, further comprising a pillar substrate contact formed on the substrate, wherein the pillar substrate contact is doped with a second dopant type that is opposite to the first dopant type.
CROSS-REFERENCE TO RELATED APPLICATIONS

This patent application is a continuation of U.S. patent application Ser. No. 12/717,776, filed Mar. 4, 2010, which claims priority to U.S. Provisional Patent Application No. 61/157,504, filed Mar. 4, 2009, each of which is hereby incorporated by reference herein in its entirety.

US Referenced Citations (296)
Number Name Date Kind
3439214 Kabell Apr 1969 A
3997799 Baker Dec 1976 A
4032947 Kesel et al. Jun 1977 A
4250569 Sasaki et al. Feb 1981 A
4262340 Sasaki et al. Apr 1981 A
4298962 Hamano et al. Nov 1981 A
4371955 Sasaki Feb 1983 A
4630089 Sasaki et al. Dec 1986 A
4658377 McElroy Apr 1987 A
4791610 Takemae Dec 1988 A
4807195 Busch et al. Feb 1989 A
4954989 Auberton-Herve et al. Sep 1990 A
4979014 Hieda et al. Dec 1990 A
5010524 Fifield et al. Apr 1991 A
5144390 Matloubian Sep 1992 A
5164805 Lee Nov 1992 A
5258635 Nitayama et al. Nov 1993 A
5313432 Lin et al. May 1994 A
5315541 Harari et al. May 1994 A
5350938 Matsukawa et al. Sep 1994 A
5355330 Hisamoto et al. Oct 1994 A
5388068 Ghoshal et al. Feb 1995 A
5397726 Bergemont Mar 1995 A
5432730 Shubat et al. Jul 1995 A
5446299 Acovic et al. Aug 1995 A
5448513 Hu et al. Sep 1995 A
5466625 Hsieh et al. Nov 1995 A
5489792 Hu et al. Feb 1996 A
5506436 Hayashi et al. Apr 1996 A
5515383 Katoozi May 1996 A
5526307 Yiu et al. Jun 1996 A
5528062 Hsieh et al. Jun 1996 A
5568356 Schwartz Oct 1996 A
5583808 Brahmbhatt Dec 1996 A
5593912 Rajeevakumar Jan 1997 A
5606188 Bronner et al. Feb 1997 A
5608250 Kalnitsky Mar 1997 A
5627092 Alsmeier et al. May 1997 A
5631186 Park et al. May 1997 A
5677867 Hazani Oct 1997 A
5696718 Hartmann Dec 1997 A
5740099 Tanigawa Apr 1998 A
5754469 Hung et al. May 1998 A
5774411 Hsieh et al. Jun 1998 A
5778243 Aipperspach et al. Jul 1998 A
5780906 Wu et al. Jul 1998 A
5784311 Assaderaghi et al. Jul 1998 A
5798968 Lee et al. Aug 1998 A
5811283 Sun Sep 1998 A
5847411 Morii Dec 1998 A
5877978 Morishita et al. Mar 1999 A
5886376 Acovic et al. Mar 1999 A
5886385 Arisumi et al. Mar 1999 A
5897351 Forbes Apr 1999 A
5929479 Oyama Jul 1999 A
5930648 Yang Jul 1999 A
5936265 Koga Aug 1999 A
5939745 Park et al. Aug 1999 A
5943258 Houston et al. Aug 1999 A
5943581 Lu et al. Aug 1999 A
5960265 Acovic et al. Sep 1999 A
5963473 Norman Oct 1999 A
5968840 Park et al. Oct 1999 A
5977578 Tang Nov 1999 A
5982003 Hu et al. Nov 1999 A
5986914 McClure Nov 1999 A
6018172 Hidaka et al. Jan 2000 A
6048756 Lee et al. Apr 2000 A
6081443 Morishita et al. Jun 2000 A
6096598 Furukawa et al. Aug 2000 A
6097056 Hsu et al. Aug 2000 A
6097624 Chung et al. Aug 2000 A
6111778 MacDonald et al. Aug 2000 A
6114725 Furukawa et al. Sep 2000 A
6121077 Hu et al. Sep 2000 A
6133597 Li et al. Oct 2000 A
6157216 Lattimore et al. Dec 2000 A
6171923 Chi et al. Jan 2001 B1
6177300 Houston et al. Jan 2001 B1
6177698 Gruening et al. Jan 2001 B1
6177708 Kuang et al. Jan 2001 B1
6214694 Leobandung et al. Apr 2001 B1
6222217 Kunikiyo Apr 2001 B1
6225158 Furukawa et al. May 2001 B1
6229161 Nemati et al. May 2001 B1
6245613 Hsu et al. Jun 2001 B1
6252281 Yamamoto et al. Jun 2001 B1
6262935 Parris et al. Jul 2001 B1
6292424 Ohsawa Sep 2001 B1
6297090 Kim Oct 2001 B1
6300649 Hu et al. Oct 2001 B1
6333532 Davari et al. Dec 2001 B1
6333866 Ogata Dec 2001 B1
6350653 Adkisson et al. Feb 2002 B1
6351426 Ohsawa Feb 2002 B1
6359802 Lu et al. Mar 2002 B1
6384445 Hidaka et al. May 2002 B1
6391658 Gates et al. May 2002 B1
6403435 Kang et al. Jun 2002 B1
6421269 Somasekhar et al. Jul 2002 B1
6424011 Assaderaghi et al. Jul 2002 B1
6424016 Houston Jul 2002 B1
6429477 Mandelman et al. Aug 2002 B1
6432769 Fukuda et al. Aug 2002 B1
6440872 Mandelman et al. Aug 2002 B1
6441435 Chan Aug 2002 B1
6441436 Wu et al. Aug 2002 B1
6466511 Fujita et al. Oct 2002 B2
6479862 King et al. Nov 2002 B1
6480407 Keeth Nov 2002 B1
6492211 Divakaruni et al. Dec 2002 B1
6518105 Yang et al. Feb 2003 B1
6531754 Nagano et al. Mar 2003 B1
6537871 Forbes et al. Mar 2003 B2
6538916 Ohsawa Mar 2003 B2
6544837 Divakauni et al. Apr 2003 B1
6548848 Horiguchi et al. Apr 2003 B2
6549450 Hsu et al. Apr 2003 B1
6552398 Hsu et al. Apr 2003 B2
6552932 Cernea Apr 2003 B1
6556477 Hsu et al. Apr 2003 B2
6560142 Ando May 2003 B1
6563733 Liu et al. May 2003 B2
6566177 Radens et al. May 2003 B1
6567330 Fujita et al. May 2003 B2
6573566 Ker et al. Jun 2003 B2
6574135 Komatsuzaki Jun 2003 B1
6590258 Divakauni et al. Jul 2003 B2
6590259 Adkisson et al. Jul 2003 B2
6617651 Ohsawa Sep 2003 B2
6621725 Ohsawa Sep 2003 B2
6632723 Watanabe et al. Oct 2003 B2
6650565 Ohsawa Nov 2003 B1
6653175 Nemati et al. Nov 2003 B1
6686624 Hsu Feb 2004 B2
6703673 Houston Mar 2004 B2
6707118 Muljono et al. Mar 2004 B2
6714436 Burnett et al. Mar 2004 B1
6721222 Somasekhar et al. Apr 2004 B2
6825524 Ikehashi et al. Nov 2004 B1
6861689 Burnett Mar 2005 B2
6870225 Bryant et al. Mar 2005 B2
6882566 Nejad et al. Apr 2005 B2
6888770 Ikehashi May 2005 B2
6891225 Horiguchi et al. May 2005 B2
6894913 Yamauchi May 2005 B2
6897098 Hareland et al. May 2005 B2
6903984 Tang et al. Jun 2005 B1
6909151 Hareland et al. Jun 2005 B2
6912150 Portman et al. Jun 2005 B2
6913964 Hsu Jul 2005 B2
6936508 Visokay et al. Aug 2005 B2
6969662 Fazan et al. Nov 2005 B2
6975536 Maayan et al. Dec 2005 B2
6982902 Gogl et al. Jan 2006 B2
6987041 Ohkawa Jan 2006 B2
7030436 Forbes Apr 2006 B2
7037790 Chang et al. May 2006 B2
7041538 Ieong et al. May 2006 B2
7042765 Sibigtroth et al. May 2006 B2
7061806 Tang et al. Jun 2006 B2
7085153 Ferrant et al. Aug 2006 B2
7085156 Ferrant et al. Aug 2006 B2
7170807 Fazan et al. Jan 2007 B2
7177175 Fazan et al. Feb 2007 B2
7187581 Ferrant et al. Mar 2007 B2
7230846 Keshavarzi et al. Jun 2007 B2
7233024 Scheuerlein et al. Jun 2007 B2
7256459 Shino Aug 2007 B2
7301803 Okhonin et al. Nov 2007 B2
7301838 Waller et al. Nov 2007 B2
7317641 Scheuerlein Jan 2008 B2
7324387 Bergemont et al. Jan 2008 B1
7335934 Fazan Feb 2008 B2
7341904 Willer Mar 2008 B2
7416943 Figura et al. Aug 2008 B2
7456439 Horch Nov 2008 B1
7460395 Cho et al. Dec 2008 B1
7477540 Okhonin et al. Jan 2009 B2
7492632 Carman Feb 2009 B2
7517744 Mathew et al. Apr 2009 B2
7539041 Kim et al. May 2009 B2
7542340 Fisch et al. Jun 2009 B2
7542345 Okhonin et al. Jun 2009 B2
7545694 Srinivasa Raghavan et al. Jun 2009 B2
7606066 Okhonin et al. Oct 2009 B2
7688629 Kim Mar 2010 B2
7696032 Kim et al. Apr 2010 B2
8315099 Van Buskirk et al. Nov 2012 B2
20010050406 Akita et al. Dec 2001 A1
20010055859 Yamada et al. Dec 2001 A1
20020030214 Horiguchi Mar 2002 A1
20020034855 Horiguchi et al. Mar 2002 A1
20020036322 Divakauni et al. Mar 2002 A1
20020051378 Ohsawa May 2002 A1
20020064913 Adkisson et al. May 2002 A1
20020070411 Vermandel et al. Jun 2002 A1
20020072155 Liu et al. Jun 2002 A1
20020076880 Yamada et al. Jun 2002 A1
20020086463 Houston et al. Jul 2002 A1
20020089038 Ning Jul 2002 A1
20020098643 Kawanaka et al. Jul 2002 A1
20020110018 Ohsawa Aug 2002 A1
20020110039 Forbes et al. Aug 2002 A1
20020114191 Iwata et al. Aug 2002 A1
20020130341 Horiguchi et al. Sep 2002 A1
20020160581 Watanabe et al. Oct 2002 A1
20020180069 Houston Dec 2002 A1
20030003608 Arikado et al. Jan 2003 A1
20030015757 Ohsawa Jan 2003 A1
20030035324 Fujita et al. Feb 2003 A1
20030042516 Forbes et al. Mar 2003 A1
20030047784 Matsumoto et al. Mar 2003 A1
20030057487 Yamada et al. Mar 2003 A1
20030057490 Nagano et al. Mar 2003 A1
20030102497 Fried et al. Jun 2003 A1
20030112659 Ohsawa Jun 2003 A1
20030123279 Aipperspach et al. Jul 2003 A1
20030146474 Ker et al. Aug 2003 A1
20030146488 Nagano et al. Aug 2003 A1
20030151112 Yamada et al. Aug 2003 A1
20030231521 Ohsawa Dec 2003 A1
20040021137 Fazan et al. Feb 2004 A1
20040021179 Lee et al. Feb 2004 A1
20040029335 Lee et al. Feb 2004 A1
20040075143 Bae et al. Apr 2004 A1
20040108532 Forbes Jun 2004 A1
20040188714 Scheuerlein et al. Sep 2004 A1
20040217420 Yeo et al. Nov 2004 A1
20050001257 Schloesser et al. Jan 2005 A1
20050001269 Hayashi et al. Jan 2005 A1
20050017240 Fazan Jan 2005 A1
20050047240 Ikehashi et al. Mar 2005 A1
20050062088 Houston Mar 2005 A1
20050063224 Fazan et al. Mar 2005 A1
20050064659 Willer Mar 2005 A1
20050105342 Tang et al. May 2005 A1
20050111255 Tang et al. May 2005 A1
20050121710 Shino Jun 2005 A1
20050135169 Somasekhar et al. Jun 2005 A1
20050141262 Yamada et al. Jun 2005 A1
20050141290 Tang et al. Jun 2005 A1
20050145886 Keshavarzi et al. Jul 2005 A1
20050145935 Keshavarzi et al. Jul 2005 A1
20050167751 Nakajima et al. Aug 2005 A1
20050189576 Ohsawa Sep 2005 A1
20050208716 Takaura et al. Sep 2005 A1
20050213365 Salling Sep 2005 A1
20050226070 Ohsawa Oct 2005 A1
20050232043 Ohsawa Oct 2005 A1
20050242396 Park et al. Nov 2005 A1
20050265107 Tanaka Dec 2005 A1
20060043484 Cabral et al. Mar 2006 A1
20060084247 Liu Apr 2006 A1
20060091462 Okhonin et al. May 2006 A1
20060098481 Okhonin et al. May 2006 A1
20060126374 Waller et al. Jun 2006 A1
20060131650 Okhonin et al. Jun 2006 A1
20060223302 Chang et al. Oct 2006 A1
20060256606 Park Nov 2006 A1
20070008811 Keeth et al. Jan 2007 A1
20070023833 Okhonin et al. Feb 2007 A1
20070045709 Yang Mar 2007 A1
20070058427 Okhonin et al. Mar 2007 A1
20070064489 Bauser Mar 2007 A1
20070085140 Bassin Apr 2007 A1
20070097751 Popoff et al. May 2007 A1
20070114599 Hshieh May 2007 A1
20070133330 Ohsawa Jun 2007 A1
20070138524 Kim et al. Jun 2007 A1
20070138530 Okhonin Jun 2007 A1
20070187751 Hu et al. Aug 2007 A1
20070187775 Okhonin et al. Aug 2007 A1
20070200176 Kammler et al. Aug 2007 A1
20070252205 Hoentschel et al. Nov 2007 A1
20070263466 Morishita et al. Nov 2007 A1
20070278578 Yoshida et al. Dec 2007 A1
20080049486 Gruening-von Schwerin Feb 2008 A1
20080083949 Zhu et al. Apr 2008 A1
20080099808 Burnett et al. May 2008 A1
20080130379 Ohsawa Jun 2008 A1
20080133849 Deml et al. Jun 2008 A1
20080144378 Park et al. Jun 2008 A1
20080165577 Fazan et al. Jul 2008 A1
20080251830 Higashi et al. Oct 2008 A1
20080253179 Slesazeck Oct 2008 A1
20080258206 Hofmann Oct 2008 A1
20090086535 Ferrant et al. Apr 2009 A1
20090121269 Caillat et al. May 2009 A1
20090127592 El-Kareh et al. May 2009 A1
20090201723 Okhonin et al. Aug 2009 A1
20090273088 Chung et al. Nov 2009 A1
20100085813 Shino Apr 2010 A1
20100091586 Carman Apr 2010 A1
20100110816 Nautiyal et al. May 2010 A1
20110024827 Arai et al. Feb 2011 A1
Foreign Referenced Citations (102)
Number Date Country
272437 Jul 1927 CA
030856 Jun 1981 EP
175378 Mar 1986 EP
202515 Nov 1986 EP
207619 Jan 1987 EP
245515 Nov 1987 EP
253631 Jan 1988 EP
300157 Jan 1989 EP
333426 Sep 1989 EP
350057 Jan 1990 EP
354348 Feb 1990 EP
359551 Mar 1990 EP
362961 Apr 1990 EP
366882 May 1990 EP
465961 Jan 1992 EP
510607 Oct 1992 EP
513923 Nov 1992 EP
537677 Apr 1993 EP
564204 Oct 1993 EP
579566 Jan 1994 EP
599388 Jun 1994 EP
599506 Jun 1994 EP
601590 Jun 1994 EP
606758 Jul 1994 EP
642173 Mar 1995 EP
682370 Nov 1995 EP
689252 Dec 1995 EP
694977 Jan 1996 EP
725402 Aug 1996 EP
726601 Aug 1996 EP
727820 Aug 1996 EP
727822 Aug 1996 EP
731972 Sep 1996 EP
739097 Oct 1996 EP
744772 Nov 1996 EP
788165 Aug 1997 EP
801427 Oct 1997 EP
836194 Apr 1998 EP
844671 May 1998 EP
858109 Aug 1998 EP
860878 Aug 1998 EP
869511 Oct 1998 EP
878804 Nov 1998 EP
920059 Jun 1999 EP
924766 Jun 1999 EP
933820 Aug 1999 EP
951072 Oct 1999 EP
971360 Jan 2000 EP
980101 Feb 2000 EP
993037 Apr 2000 EP
1073121 Jan 2001 EP
1162663 Dec 2001 EP
1162744 Dec 2001 EP
1179850 Feb 2002 EP
1180799 Feb 2002 EP
1191596 Mar 2002 EP
1204146 May 2002 EP
1204147 May 2002 EP
1209747 May 2002 EP
1233454 Aug 2002 EP
1237193 Sep 2002 EP
1241708 Sep 2002 EP
1253634 Oct 2002 EP
1280205 Jan 2003 EP
1288955 Mar 2003 EP
2197494 Mar 1974 FR
1414228 Nov 1975 GB
S62-007149 Jan 1987 JP
62-272561 Nov 1987 JP
02-294076 Dec 1990 JP
03-171768 Jul 1991 JP
H04-176163 Jun 1992 JP
04-239177 Aug 1992 JP
05-347419 Dec 1993 JP
08-213624 Aug 1996 JP
08-274277 Oct 1996 JP
H08-316337 Nov 1996 JP
09-046688 Feb 1997 JP
09-082912 Mar 1997 JP
10-242470 Sep 1998 JP
11-087649 Mar 1999 JP
12-247735 Aug 2000 JP
12-389106 Dec 2000 JP
13-180633 Jun 2001 JP
2002-009081 Jan 2002 JP
2002-094027 Mar 2002 JP
2002-176154 Jun 2002 JP
2002-246571 Aug 2002 JP
2002-329795 Nov 2002 JP
2002-343886 Nov 2002 JP
2002-353080 Dec 2002 JP
2003-031693 Jan 2003 JP
2003-68877 Mar 2003 JP
2003-086712 Mar 2003 JP
2003-100641 Apr 2003 JP
2003-100900 Apr 2003 JP
2003-132682 May 2003 JP
2003-203967 Jul 2003 JP
2003-243528 Aug 2003 JP
2004-335553 Nov 2004 JP
WO-0124268 Apr 2001 WO
WO-2005008778 Jan 2005 WO
Non-Patent Literature Citations (172)
Entry
Arimoto et al., A Configurable Enhanced T2RAM Macro for System-Level Power Management Unified Memory, 2006, VLSI Symposium, 2 pages.
Arimoto, A High-Density Scalable Twin Transistor RAM (T2RAM) With Verify Control for SOI Platform Memory IPs, Nov. 2007, IEEE J. Solid-State Circuits, vol. 22, No. 11, p. 2611-2619.
Asian Technology Information Program (ATIP) Scoops™, “Novel Capacitorless 1T-DRAM From Single-Gate PD-SOI to Double-Gate FinDRAM”, May 9, 2005, 9 pages.
Assaderaghi et al., “A Dynamic Threshold Voltage MOSFET (DTMOS) for Ultra-Low Voltage Operation”, IEEE IEDM, 1994, p. 809-812.
Assaderaghi et al., “A Dynamic Threshold Voltage MOSFET (DTMOS) for Very Low Voltage Operation”, IEEE Electron Device Letters, vol. 15, No. 12, Dec. 1994, p. 510-512.
Assaderaghi et al., “A Novel Silicon-On-Insulator (SOI) MOSFET for Ultra Low Voltage Operation”, 1994 IEEE Symposium on Low Power Electronics, p. 58-59.
Assaderaghi et al., “Dynamic Threshold-Voltage MOSFET (DTMOS) for Ultra-Low Voltage VLSI”, IEEE Transactions on Electron Devices, vol. 44, No. 3, Mar. 1997, p. 414-422.
Assaderaghi et al., “High-Field Transport of Inversion-Layer Electrons and Holes Including Velocity Overshoot”, IEEE Transactions on Electron Devices, vol. 44, No. 4, Apr. 1997, p. 664-671.
Avci, Floating Body Cell (FBC) Memory for 16-nm Technology with Low Variation on Thin Silicon and 10-nm BOX, Oct. 2008, SOI Conference, 2 pages.
Bae, Evaluation of 1T RAM using Various Operation Methods with SOONO (Silicon-On-ONO) device, Dec. 2008, IEDM, p. 805-808.
Ban et al., Integration of Back-Gate Doping for 15-nm Node Floating Body Cell (FBC) Memory, Components Research, Process Technology Modeling, presented in the 2010 VLSI Symposium on Jun. 17, 2010, 2 pages.
Ban, A Scaled Floating Body Cell (FBC) Memory with High-k+Metal Gate on Thin-Silicon and Thin-BOX for 16-nm Technology Node and Beyond, Jun. 2008, VLSI Symposium, p. 92-93.
Ban, Ibrahim, et al., “Floating Body Cell with Independently-Controlled Double Gates for High Density Memory,” Electron Devices Meeting, 2006. IEDM '06. International, IEEE, p. 1-4, Dec. 2006.
Bawedin, Maryline, et al., A Capacitorless 1T DRAM on SOI Based on Dynamic Coupling and Double-Gate Operation, IEEE Electron Device Letters, vol. 29, No. 7, Jul. 2008, p. 795-798.
Blagojevic et al., Capacitorless 1T DRAM Sensing Scheme Automatice Reference Generation, IEEE J.Solid State Circuits, vol. 41, No. 6, pp. 1463-1470, 2006.
Blalock, T., “A High-Speed Clamped Bit-Line Current-Mode Sense Amplifier”, IEEE Journal of Solid-State Circuits, vol. 26, No. 4, Apr. 1991, p. 542-548.
Butt, Scaling Limits of Double Gate and Surround Gate Z-RAM Cells, IEEE Trans. Elec. Dev., vol. 54, No. 9, p. 2255-2262, Sep. 2007.
Chan et al., “Effects of Floating Body on Double Polysilicon Partially Depleted SOI Nonvolatile Memory Cell”, IEEE Electron Device Letters, vol. 24, No. 2, Feb. 2003, p. 75-77.
Chan, et al., “SOI MOSFET Design for All-Dimensional Scaling with Short Channel, Narrow Width and Ultra-thin Films”, IEEE IEDM, 1995, pp. 631-634.
Chi et al., “Programming and Erase with Floating-Body for High Density Low Voltage Flash EEPROM Fabricated on SOI Wafers”, Proceedings 1995 IEEE International SOI Conference, Oct. 1995, pp. 129-130.
Cho et al., “Novel DRAM Cell with Amplified Capacitor for Embedded Application”, IEEE, Jun. 2009, p. 11.2.1-11.2.4.
Cho, A novel capacitor-less DRAM cell using Thin Capacitively-Coupled Thyristor (TCCT), 2005, IEDM, 4 pages.
Choi et al., Current Flow Mechanism in Schottky-Barrier MOSFET and Application to the 1T-DRAM, 2008, International Conference on SSDM, pp. 226-227.
Choi, High Speed Flash Memory and 1T-DRAM on Dopant Segregated Schottky Barrier (DSSB) FinFET SONOS Device for Multi-functional SoC Applications, Dec. 2008, IEDM, pp. 223-226.
Clarke, Junctionless Transistors Could Simply Chip Making, Say Researchers, EE Times, Feb. 2010, www.eetimes.com/showArticle.jhtml?articleID=223100050, 3 pages.
Colinge, J.P., “An SOI voltage-controlled bipolar-MOS device”, IEEE Transactions on Electron Devices, vol. ED-34, No. 4, Apr. 1987, pp. 845-849.
Colinge, Nanowire Transistors Without Junctions, Nature NanoTechnology, vol. 5, 2010, pp. 225-229.
Collaert et al., Optimizing the Readout Bias for the Capacitorless 1T Bulk FinFET RAM Cell, IEEE EDL, vol. 30, No. 12, pp. 1377-1379, Dec. 2009.
Collaert, Comparison of scaled floating body RAM architectures, Oct. 2008, SOI Conference, 2 pages.
Ershov, Optimization of Substrate Doping for Back-Gate Control in SOI T-RAM Memory Technology, 2005, SOI Conference, pp. 1-2.
Ertosun et al., A Highly Scalable Capacitorless Double Gate Quantum Well Single Transistor DRAM: 1T-QW DRAM, 2008, IEEE EDL, pp. 1-3.
Fazan et al., “A Simple 1-Transistor Capacitor-Less Memory Cell for High Performance Embedded DRAMs”, IEEE 2002 Custom Integrated Circuits Conference, Jun. 2002, pp. 99-102.
Fazan, A Highly Manufacturable Capacitor-less 1T-DRAM Concept, 2002, SPIE, 14 pages.
Fazan, et al., “Capacitor-Less 1-Transistor DRAM”, 2002 IEEE International SOI Conference, Oct. 2002, pp. 10-13.
Fazan, P., “MOSFET Design Simplifies DRAM”, EE Times, May 14, 2002 (3 pages).
Fisch, et al., Customizing SOI Floating Body Memory Architecture for System Performance and Lower Cost, 2006, Same Forum, Lausanne, Switzerland, 3 pages.
Fisch, et al., Soft Error Performance of Z-RAM Floating Body Memory, 2006, SOI Conference, Lausanne, Switzerland, 2 pages.
Fisch, Z-RAM® Ultra-Dense Memory for 90nm and Below, 2006, Hot Chips, 35 pages.
Fossum et al., New Insights on Capacitorless Floating Body DRAM Cells, IEEE EDL, vol. 28, No. 6, pp. 513-516, Jun. 2007.
Fujita, Array Architecture of Floating Body Cell (FBC) with Quasi-Shielded Open Bit Line Scheme for sub-40nm Node, 2008, SOI Conference, 2 pages.
Furuhashi, et al., Scaling Scenario of Floating Body Cell (FBC) Suppressing Vth Variation Due to Random Dopant Fluctuation, Dec. 2008, SOI Conference, 2 pages.
Furuyama et al., “An Experimental 2-bit/Cell Storage DRAM for Macrocell or Memory-on-Logic Application”, IEEE Journal of Solid-State Circuits, vol. 24, No. 2, Apr. 1989, pp. 388-393.
Giffard et al., “Dynamic Effects in SOI MOSFET's”, IEEE, 1991, pp. 160-161.
Gupta et al., SPICE Modeling of Self Sustained Operation (SSO) to Program Sub-90nm Floating Body Cells, Oct. 2009, Conf on Simulation of Semiconductor Processes & Devices, 4 pages.
Han et al., Bulk FinFET Unified-RAM (URAM) Cell for Multifunctioning NVM and Capacitorless 1T-DRAM, IEEE EDL, vol. 29, No. 6, pp. 632-634, Jun. 2008.
Han et al., Partially Depleted SONOS FinFET for Unified RAM (URAM) Unified Function for High-Speed 1T DRAM and Nonvolatile Memory, IEEE EDL, vol. 29, No. 7, pp. 781-783, Jul. 2008.
Han, Energy Band Engineered Unified-RAM (URAM) for Multi-Functioning 1T-DRAM and NVM, Dec. 2008, IEDM, pp. 227-230.
Han, Parasitic BJT Read Method for High-Performance Capacitorless 1T-DRAM Mode in Unified RAM, IEEE EDL, vol. 30, No. 10, pp. 1108-1110, Oct. 2009.
Hara, Y., “Toshiba's DRAM Cell Piggybacks on SOI Wafer”, EE Times, Jun. 2003, 1 page.
Hu, C., “SOI (Silicon-on-Insulator) for High Speed Ultra Large Scale Integration”, Jpn. J. Appl. Phys. vol. 33 (1994) pp. 365-369, Part 1, No. 1B, Jan. 1994.
Idei et al., “Soft-Error Characteristics in Bipolar Memory Cells with Small Critical Charge”, IEEE Transactions on Electron Devices, vol. 38, No. 11, Nov. 1991, pp. 2465-2471.
Ikeda et al., “3-Dimensional Simulation of Turn-off Current in Partially Depleted SOI MOSFETs”, IEIC Technical Report, Institute of Electronics, Information and Communication Engineers, 1998, vol. 97, No. 557 (SDM97 186-198), pp. 27-34.
Inoh et al., “FBC (Floating Body Cell) for Embedded DRAM on SOI”, 2003 Symposium on VLSI Circuits Digest of Technical Papers, Jun. 2003 (2 pages).
Iyer et al., “SOI MOSFET on Low Cost SPIMOX Substrate”, IEEE IEDM, Sep. 1998, pp. 1001-1004.
Jang et al., Highly scalable Z-RAM with remarkably long data retention for DRAM application, Jun. 2009, VLSI, 21 pages.
Jeong et al., “A Capacitor-less 1T DRAM Cell Based on a Surrounding Gate MOSFET with a Vertical Channel”, Technology Development Team, Technology Development Team, Samsung Electronics Co., Ltd., pp. 92-93, May 2007.
Jeong et al., “A New Capacitorless 1T DRAM Cell: Surrounding Gate MOSFET with Vertical Channel (SGVC Cell)”, IEEE Transactions on Nanotechnology, vol. 6, No. 3, May 2007, pp. 352-357.
Jeong et al., “Capacitorless DRAM Cell with Highly Scalable Surrounding Gate Structure”, Extended Abstracts of the 2006 International Conference on Solid State Devices and Materials, pp. 574-575, Yokohama (2006).
Jeong et al., “Capacitorless Dynamic Random Access Memory Cell with Highly Scalable Surrounding Gate Structure”, Japanese Journal of Applied Physics, vol. 46, No. 4B, pp. 2143-2147 (2007).
Kedzierski, J.; “Design Analysis of Thin-Body Silicide Source/Drain Devices”, 2001 IEEE International SOI Conference, Oct. 2001, pp. 21-22.
Kim et al., “Chip Level Reliability on SOI Embedded Memory”, Proceedings 1998 IEEE International SOI Conference, Oct. 1998, pp. 135-136.
Kuo et al., “A Capacitorless Double-Gate DRAM Cell Design for High Density Applications”, IEEE IEDM, Feb. 2002, pp. 843-846.
Kuo et al., “A Capacitorless Double-Gate DRAM Cell”, IEEE Electron Device Letters, vol. 23, No. 6, Jun. 2002, pp. 345-347.
Kuo et al., A Capacitorless Double Gate DRAM Technology for Sub—100-nm Embedded and Stand-Alone Memory Applications, IEEE Trans. Elec.. Dev., vol. 50, No. 12, pp. 2408-2416, Dec. 2003.
Kwon et al., “A Highly Scalable 4F2 DRAM Cell Utilizing a Doubly Gated Vertical Channel”, Extended Abstracts of the 2009 International Conference on Solid State Devices and Materials, UC Berkley, p. 142-143, Sendai (2009).
Lee et al., “A Novel Pattern Transfer Process for Bonded SOI Giga-bit DRAMs”, Proceedings 1996 IEEE International SOI Conference, Oct. 1996, pp. 114-115.
Leiss et al., dRAM Design Using the Taper-Isolated Dynamic RAM Cell, IEEE Transactions on Electron Devices, vol. ED-29, No. 4, Apr. 1982, pp. 707-714.
Lin et al., “Opposite Side Floating Gate SOI Flash Memory Cell”, IEEE, Mar. 2000, pp. 12- 15.
Liu et al., Surface Generation-Recombination Processes of Gate and STI Oxide Interfaces Responsible for Junction Leakage on SOI, Sep. 2009, ECS Transactions, vol. 25, 10 pages.
Liu, Surface Recombination-Generation Processes of Gate, STI and Buried Oxide Interfaces, Responsible for Junction Leakage on SOI, ICSI, May 19, 2009, 2 pages.
Loncar et al., “One of Application of SOI Memory Cell—Memory Array”, IEEE Proc. 22nd International Conference on Microelectronics (MIEL 2000), vol. 2, NI{hacek over (S)}, Serbia, May 14-17, 2000, pp. 455-458.
Lu et al., A Novel Two-Transistor Floating Body/Gate Cell for Low Power Nanoscale Embedded DRAM, Jun. 2008, IEEE Trans. Elec. Dev., vol. 55, No. 6, pp. 1511-1518.
Ma, et al., “Hot-Carrier Effects in Thin-Film Fully Depleted SOI MOSFET's”, IEEE Electron Device Letters, vol. 15, No. 6, Jun. 1994, pp. 218-220.
Malhi et al., “Characteristics and Three-Dimensional Integration of MOSFET's in Small-Grain LPCVD Polycrystalline Silicon”, IEEE Transactions on Electron Devices, vol. ED-32, No. 2, Feb. 1985, pp. 258-281.
Malinge, an 8Mbit DRAM Design Using a 1TBulk Cell, 2005 Symposium on VLSI Circuits Digest of Technical Papers, pp. 358-361.
Mandelman et al, “Floating-Body Concerns for SOI Dynamic Random Access Memory (DRAM)”, Proceedings 1996 IEEE International SOI Conference, Oct. 1996, pp. 136-137.
Matsuoka et al., FBC Potential of 6F2 Single Cell Operation in Multi Gbit Memories Confirmed by a Newly Developed Method for Measuring Signal Sense Margin, 2007, IEEE, pp. 39-42.
Minami, A Floating Body Cell (FBC) fully Compatible with 90nm CMOS Technology(CMOS IV) for 128Mb SOI DRAM, 2005, IEDM Tech. Digest, pp. 317-320 (4 pages).
Mohapatra et al., Effect of Source/Drain Asymmetry on the Performance of Z-RAM® Devices, Oct. 2009, SOI conference, 2 pages.
Morishita, A Capacitorless Twin-Transistor Random Access Memory (TTRAM) on SOI, 2005, CICC, 4 pages.
Morishita, F. et al., “A Configurable Enhanced TTRAM Macro for System-Level Power Management Unified Memory”, IEEE Journal of Solid-State Circuits, vol. 42, No. 4, pp. 853-861, Apr. 2007.
Morishita, F., et al., “A 312-MHz 16-Mb Random-Cycle Embedded DRAM Macro With a Power-Down Data Retention Mode for Mobile Applications”, J. Solid-State Circuits, vol. 40, No. 1, pp. 204-212, 2005.
Morishita, F., et al., “Dynamic Floating Body Control SOI CMOS Circuits for Power Managed Multimedia ULSIs”, Proc. CICC, pp. 263-266, 1997.
Morishita, F., et al., “Leakage Mechanism due to Floating Body and Countermeasure on Dynamic Retention Mode of SOI-DRAM”, Symposium on VLSI Technology Digest of Technical Papers, pp. 141-142, 1995.
Nagoga, Studying Of Hot Carrier Effect In Floating Body Soi Mosfets by the Transient Charge Pumping Technique, Switzerland 2003, 2 pages.
Nayfeh, A Leakage Current Model for SOI based Floating Body Memory that Includes the Poole-Frenkel Effect, 2008, SOI Conference, 2 pages.
Nemati, A Novel High Density, Low Voltage SRAM Cell with a Vertical NDR Device, 1998, VLSI Tech. Symp., 2 pages.
Nemati, A Novel Thyristor-based SRAM Cell (T-RAM) for High-Speed, Low-Voltage, Giga-scale Memories, 1999, IEDM Conference, 4 pages.
Nemati, Embedded Volatile Memories-Embedded Tutorial: The New Memory Revolution, New Drives Circuits and Systems, ICCAD 2008, Nov. 2008, San Jose, CA, 23 pages.
Nemati, Fully Planar 0.562μm2 T-RAM Cell in a 130nm SOI CMOS Logic Technology for High-Density High-Performance SRAMs, 2004, IEDM, 4 pages.
Nemati, Thyristor RAM (T-RAM): A High-Speed High-Density Embedded Memory Technology for Nano-scale CMOS, 2007, Hot Chips Conference, Milpitas, CA, 24 pages.
Nemati, Thyristor-RAM: A Novel Embedded Memory Technology that Outperforms Embedded S RAM/DRAM, 2008, Linley Tech Tour, San Jose, CA, 11 pages.
Nishiguchi et al., Long Retention of Gain-Cell Dynamic Random Access Memory with Undoped Memory Node, IEEE EDL, vol. 28, No. 1, pp. 48-50, Jan. 2007.
Oh, Floating Body DRAM Characteristics of Silicon-On-ONO (SOONO) Devices for System-on-Chip (SoC) Applications, 2007, Symposium on VLSI Technology Digest of Technical Papers, pp. 168-169.
Ohno et al., “Suppression of Parasitic Bipolar Action in Ultra-Thin-Film Fully-Depleted CMOS/SIMOX Devices by Ar-Ion Implantation into Source/Drain Regions”, IEEE Transactions on Electron Devices, vol. 45, No. 5, May 1998, pp. 1071-1076.
Ohsawa et al., “A Memory Using One-Transistor Gain Cell on SOI (FBC) with Performance Suitable for Embedded DRAM's”, 2003 Symposium on VLSI Circuits Digest of Technical Papers, Jun. 2003 (4 pages).
Ohsawa et al., “Memory Design Using a One-Transistor Gain Cell on SOI”, IEEE Journal of Solid-State Circuits, vol. 37, No. 11, Nov. 2002, pp. 1510-1522.
Ohsawa, A 128Mb Floating Body RAM (FBRAM) on SOI with a Multi-Averaging Scheme of Dummy Cell, 2006 Symposium of VLSI Circuits Digest of Tech Papers, (2006), 2 pages.
Ohsawa, Autonomous Refresh of Floating Body Cell (FBC), Dec. 2008, IEDM, pp. 801-804.
Ohsawa, Design of a 128-Mb SOI DRAM Using the Floating Body Cell (FBC), IEEE J. Solid-State Circuits, vol. 41, No. 1, Jan. 2006, pp. 135-145.
Ohsawa, et al., An 18.5ns 128Mb SOI DRAM with a Floating Body Cell, 2005, ISSCC, pp. 458-459 & 609 (3 pages).
Okhonin, A Capacitor-Less 1T-DRAM Cell, IEEE Electron Device Letters, vol. 23, No. 2, Feb. 2002, pp. 85-87.
Okhonin, A SOI Capacitor-less 1T-DRAM Concept, pp. 153-154, 2001, SOI Conference.
Okhonin, et al., Charge Pumping Effects in Partially Depleted SOI MOSFETs, 2003, SOI Conference, 2 pages.
Okhonin, et al., New characterization techniques for SOI and related devices, 2003, ECCTD, 1 page.
Okhonin, et al., New Generation of Z-RAM, 2007, IEDM, Lausanne, Switzerland, 3 pages.
Okhonin, et al., Transient Charge Pumping for Partially and Fully Depleted SOI MOSFETs, 2002, SOI Conference, 2 pages.
Okhonin, et al., Ultra-scaled Z-RAM cell, 2008, SOI Conference, 2 pages.
Okhonin, Principles of Transient Charge Pumping on Partially Depleted SOI MOSFETs, May 2002, IEEE Electron Device Letters, vol. 23, No. 5, pp. 279-281.
Okhonin, Transient effects in PD SOI MOSFETs and potential DRAM applications, 2002, Solid-State Electronics, vol. 46, pp. 1709-1713.
Okhonin, Z-RAM® (Limits of DRAM), 2009, ESSDERC, Lausanne, Switzerland, 64 pages.
Padilla, Alvaro, et al., “Feedback FET: A Novel Transistor Exhibiting Steep Switching Behavior at Low Bias Voltages,” Electron Devices Meeting, 2008. IEDM 2008. IEEE International, Dec. 5-17, 2008, pp. 171-174.
Park, Fully Depleted Double-Gate 1T-DRAM Cell with NVM Function for High Performance and High Density Embedded DRAM, 2009, IMW, pp. 32-33.
Pelella et al., “Low-Voltage Transient Bipolar Effect Induced by Dynamic Floating-Body Charging in PD/SOI MOSFETs”, Final Camera Ready Art, SOI Conference, Oct. 1995, 2 pages.
Portmann et al., “A SOI Current Memory for Analog Signal Processing at High Temperature”, 1999 IEEE International SOI Conference, Oct. 1999, pp. 18-19.
Puget et al., 1T Bulk eDRAM using Gate-Induced Drain-Leakage (GIDL) Current for High Speed and Low Power applications, 2008, pp. 224-225, SSDM.
Puget et al., Quantum effects influence on thin silicon film capacitor-less DRAM performance, 2006, SOI Conference, 2 pages.
Puget, FDSOI Floating Body Cell eDRAM Using Gate-Induced Drain-Leakage (GIDL) Write Current for High Speed and Low Power Applications, 2009, IMW, pp. 28-29.
Ranica et al., 1T-Bulk DRAM cell with improved performances: the way to scaling, 2005, ICMTD, 4 pages.
Ranica, A One Transistor Cell on Bulk Substrate (1T-Bulk) for Low-Cost and High Density eDRAM, 2004, Symposium on VLSI Technology Digest of Technical Papers, pp. 128-129 (2 pages).
Ranica, et al., A capacitor-less DRAM cell on 75nm gate length, 16nm thin Fully Depleted SOI device for high density embedded memories, 2004, IEDM, 4 pages.
Rodder et al., “Silicon-On-Insulator Bipolar Transistors”, IEEE Electron Device Letters, vol. EDL-4, No. 6, Jun. 1983, pp. 193-195.
Rodriguez, Noel, et al., A-RAM: Novel Capacitor-less DRAM Memory, SOI Conference, 2009 IEEE International, Oct. 5-8, 2009 pp. 1-2.
Roy, et al., Thyristor-Based Volatile Memory in Nano-Scale CMOS, 2006, ISSCC, 10 pages.
Sailing et al., Reliability of Thyristor Based Memory Cells, 2009, IRPS, 7 pages.
Sasaki et al., Charge Pumping in SOS-MOS Transistors, IEEE Trans. Elec. Dev., vol. ED-28, No. 1, Jan. 1981, pp. 48-52.
Sasaki et al., Charge Pumping SOS-MOS Transistor Memory, 1978, IEDM, pp. 356-359 (4 pages and clear graph of Fig. 10).
Schloesser et al., “A 6F2 Buried Wordline DRAM Cell for 40nm and Beyond”, IEEE, Qimonda Dresden GmbH & Co., pp. 809-812 (2008).
Shino et al., Floating Body RAM Technology and its Scalability to 32nm Node and Beyond, 2006, IEDM, 4 pages.
Shino et al., Operation Voltage Dependence of Memory Cell Characteristics in Fully Depleted Floating Body Cell, IEEE Trans. Elec. Dev., vol. 25, No. 10, Oct. 2005, pp. 2220-2226.
Shino, et al. Highly Scalable FBC (Floating Body Cell) with 25nm BOX Structure for Embedded DRAM Applications, 2004, Symposium on VLSI Technology, pp. 132-133 (2 pages).
Shino, et al., Fully-Depleted BC (Floating Body Cell) with Enlarged Signal Window and Excellent Logic Process Compatibility, 2004, IEDM, 4 pages.
Sim et al., “Source-Bias Dependent Charge Accumulation in P+-Poly Gate SOI Dynamic Random Access Memory Cell Transistors”, Jpn. J. Appl. Phys. vol. 37 (1998) pp. 1260-1263, Part 1, No. 3B, Mar. 1998.
Singh, et al., A 2ns-Read-Latency 4Mb Embedded Floating-Body Memory Macro in 45nm SOI Technology, Feb. 2009, ISSCC, 3 pages.
Sinha et al., “In-Depth Analysis of Opposite Channel Based Charge Injection in SOI MOSFETs and Related Defect Creation and Annihilation”, Elsevier Science, Microelectronic Engineering 28, 1995, pp. 383-386.
Song, et al., 55 nm Capacitor-less 1T DRAM Cell Transistor with Non-Overlap Structure, Dec. 2008, IEDM, pp. 797-800.
Stanojevic et al., “Design of a SOI Memory Cell”, IEEE Proc. 21st International Conference on Microelectronics (MIEL '97), vol. 1, NIS, Yugoslavia, Sep. 14-17, 1997, pp. 297-300.
Su et al., “Studying the Impact of Gate Tunneling on Dynamic Behaviors of Partially-Depleted SOI CMOS Using BSIMPD”, IEEE Proceedings of the International Symposium on Quality Electronic Design (ISQED '02), Apr. 2002 (5 pages).
Suma et al., “An SOI-DRAM with Wide Operating Voltage Range by CMOS/SIMOX Technology”, 1994 IEEE International Solid-State Circuits Conference, pp. 138-139.
Tack et al., “The Multi-Stable Behaviour of SOI-NMOS Transistors at Low Temperatures”, Proc. 1988 SOS/SOI Technology Workshop (Sea Palms Resort, St. Simons Island, GA, Oct. 1988), p. 78.
Tack et al., “The Multistable Charge Controlled Memory Effect in SOI Transistors at Low Temperatures”, IEEE Workshop on Low Temperature Electronics, Aug. 7-8, 1989, University of Vermont, Burlington, pp. 137-141.
Tack et al., “The Multistable Charge-Controlled Memory Effect in SOI MOS Transistors at Low Temperatures”, IEEE Transactions on Electron Devices, vol. 37, No. 5, May 1990, pp. 1373- 1382.
Tack, et al., “An Analytical Model for the Misis Structure in SOI MOS Devices”, Solid-State Electronics vol. 33, No. 3, 1990, pp. 357-364.
Tanabe et al., A 30-ns. 64-MB DRAM with Built-in-Self-Test and Self-Repair Function, IEEE Journal of Solid State Circuits, vol. 27, No. 11, Nov. 1992, pp. 1525-1533.
Tanaka et al., “Scalability Study on a Capacitorless 1T-DRAM: From Single-gate PD-SOI to Double-gate FINDRAM”, 2004 IEEE, 4 pages.
Tang, et al., Highly Scalable Capacitorless DRAM Cell on Thin-Body with Band-gap Engineered Source and Drain, Extended Abstracts of the 2009 ICSSDM, Sendai, 2009, pp. 144-145.
Terauchi et al., “Analysis of Floating-Body-Induced Leakage Current in 0.15μ m SOI DRAM”, Proceedings 1996 IEEE International SOI Conference, Oct. 1996, pp. 138-139.
Thomas et al., “An SOI 4 Transistors Self-Refresh Ultra-Low-Voltage Memory Cell”, IEEE, Mar. 2003, pp. 401-404.
Tomishima, et al., “A Long Data Retention SOI DRAM with the Body Refresh Function”, IEICE Trans. Electron., vol. E80-C, No. 7, Jul. 1997, pp. 899-904.
Tsaur et al., “Fully Isolated Lateral Bipolar-MOS Transistors Fabricated in Zone-Melting-Recrystallized Si Films on SiO2”, IEEE Electron Device Letters, vol. EDL-4, No. 8, Aug. 1983, pp. 269-271.
Tu, et al., “Simulation of Floating Body Effect in SOI Circuits Using BSIM3SOI”, Proceedings of Technical Papers (IEEE Cat No. 97TH8303), Jun. 1997, pp. 339-342.
Villaret et al., “Mechanisms of Charge Modulation in the Floating Body of Triple-Well nMOSFET Capacitor-less DRAMs”, Proceedings of the INFOS 2003, Insulating Films on Semiconductors, 13th Bi-annual Conference, Jun. 18-20, 2003, Barcelona (Spain), (2 pages).
Villaret et al., “Triple-Well nMOSFET Evaluated as a Capacitor-Less DRAM Cell for Nanoscale Low-Cost & High Density Applications”, Handout at Proceedings of 2003 Silicon Nanoelectronics Workshop, Jun. 8-9, 2003, Kyoto, Japan (2 pages).
Villaret et al., Further Insight into the Physics and Modeling of Floating Body Capacitorless DRAMs, IEEE Trans. Elec. Dev., vol. 52, No. 11, Nov. 2005, pp. 2447-2454.
Wang et al., A Novel 4.5F2 Capacitorless Semiconductor Memory Device, 2008, IEEE EDL, pp. 1-2.
Wann et al., “A Capacitorless DRAM Cell on SOI Substrate”, IEEE IEDM, 1993, pp. 635-638.
Wann et al., “High-Endurance Ultra-Thin Tunnel Oxide in MONOS Device Structure for Dynamic Memory Application”, IEEE Electron Device Letters, vol. 16, No. 11, Nov. 1995, pp. 491-493.
Wei, A., “Measurement of Transient Effects in SOI DRAM/SRAM Access Transistors”, IEEE Electron Device Letters, vol. 17, No. 5, May 1996, pp. 193-195.
Wouters, et al., “Characterization of Front and Back Si-SiO2 Interfaces in Thick- and Thin-Film Silicon-on-Insulator MOS Structures by the Charge-Pumping Technique”, IEEE Transactions on Electron Devices, vol. 36, No. 9, Sep. 1989, pp. 1746-1750.
Wu, Dake, “Performance Improvement of the Capacitorless DRAM Cell with Quasi-SOI Structure Based on Bulk Substrate,” Extended Abstracts of the 2009 ICSSDM, Sendai, 2009, pp. 146-147.
Yamanaka et al., “Advanced TFT SRAM Cell Technology Using a Phase-Shift Lithography”, IEEE Transactions on Electron Devices, vol. 42, No. 7, Jul. 1995, pp. 1305-1313.
Yamauchi et al., “High-Performance Embedded SOI DRAM Architecture for the Low-Power Supply”, IEEE Journal of Solid-State Circuits, vol. 35, No. 8, Aug. 2000, pp. 1169-1178.
Yamawaki, M., “Embedded DRAM Process Technology”, Proceedings of the Symposium on Semiconductors and Integrated Circuits Technology, 1998, vol. 55, pp. 38-43.
Yang, et al., Optimization of Nanoscale Thyristors on SOI for High-Performance High-Density Memories, 2006, SOI Conference, 2 pages.
Yoshida et al., “A Design of a Capacitorless 1-T-DRAM Cell Using Gate-induced Drain Leakage (GIDL) Current for Low-Power and High-speed Embedded Memory”, 2003 IEEE, 4 pages.
Yoshida et al., “A Study of High Scalable DG-FinDRAM”, IEEE Electron Device Letters, vol. 26, No. 9, Sep. 2005, pp. 655-657.
Yoshida et al., A Capacitorless 1T-DRAM Technology Using Gate-Induced Drain-Leakage (GIDL) Current for Low Power and High Speed Embedded Memory, IEEE Trans. Elec. Dev., vol. 53, No. 4, Apr. 2006, pp. 692-697.
Yu et al., Hot-Carrier Effect in Ultra-Thin-Film (UTF) Fully-Depleted SOI MOSFET's, 54th Annual Device Research Conference Digest (Cat. No. 96TH8193), Jun. 1996, pp. 22-23.
Yu et al., “Hot-Carrier-Induced Degradation in Ultra-Thin-Film Fully-Depleted SOI MOSFETs”, Solid-State Electronics, vol. 39, No. 12, 1996, pp. 1791-1794.
Yu et al., “Interface Characterization of Fully-Depleted SOI MOSFET by a Subthreshold I-V Method”, Proceedings 1994 IEEE International SOI Conference, Oct. 1994, pp. 63-64.
Yun et al., Analysis of Sensing Margin in Silicon-On-ONO (SOONO) Device for the Capacitor-less RAM Applications, 2007, SOI Conference, 2 pages.
Zhou, Physical Insights on BJT-Based 1T DRAM Cells, IEEE Electron Device Letters, vol. 30, No. 5, May 2009, pp. 565-567.
Related Publications (1)
Number Date Country
20140225171 A1 Aug 2014 US
Provisional Applications (1)
Number Date Country
61157504 Mar 2009 US
Continuations (1)
Number Date Country
Parent 12717776 Mar 2010 US
Child 14263780 US