This disclosure relates to identifying defects.
In this disclosure, where a document, an act, and/or an item of knowledge is referred to and/or discussed, then such reference and/or discussion is not an admission that the document, the act, and/or the item of knowledge and/or any combination thereof was at a priority date, publicly available, known to a public, part of common general knowledge, and/or otherwise constitutes any prior art under any applicable statutory provisions; and/or is known to be relevant to any attempt to solve any problem with which this disclosure is concerned with. Further, nothing is disclaimed.
Sometimes, a tube, such as a copper tube or a copper-alloy tube, is unintentionally manufactured with a defect, such as a hole, a weak spot, a dent, a notch, a flaw, a scratch, a depression, a projection, a deformity, or others. In certain cases, the defect renders the tube undesired for use, such as due to the tube being unsafe because of the defect or inoperative because of the defect. As such, the tube is tested, such as randomly, for a presence of the defect.
One way the tube is tested for the defect is via an American Society for Testing and Materials (ASTM) Standard E243, which describes a procedure for an electromagnetic (eddy current) examination of the tube. For example, as illustrated in
Although testing in accordance with the ASTM Standard E243 is useful, there are situations when the presence of the defect is still missed. As such, periodically, the tube is intentionally manufactured with the defect and then tested in accordance with the ASTM Standard E243, in order to ensure that testing in accordance with the ASTM Standard E243 is being correctly conducted. However, this methodology is time-consuming to perform and costly to manage. Additionally, if the tube is lubricated with a lubricant, then testing in accordance with the ASTM Standard E243 becomes more complicated due to an electromagnetic interference between the alternating magnetic field and the lubricant. The electromagnetic interference makes testing in accordance with the ASTM Standard E243 time-consuming to perform and costly to manage. Moreover, if the tube varies in shape, cross-section, size, material, or other tube characteristics, then testing in accordance with the ASTM Standard E243 becomes more complicated because, for each such tube variation, an appropriate coil is needed, which is time-consuming to perform and costly to manage. Accordingly, there is a desire to address at least one of such inefficiencies.
This disclosure at least partially addresses at least one of above inefficiencies. However, this disclosure can prove useful to other technical areas. Therefore, various claims recited below should not be construed as necessarily limited to addressing any of the above inefficiencies.
In an embodiment, a method comprises: directing a laser beam onto an outer side of a tube, wherein the outer side includes a defect; moving the tube with respect to the laser beam such that the laser beam beams onto the defect; sensing a reflection of the laser beam from the outer side based on the defect; computationally identifying a change between the laser beam and the reflection; computationally acting based on the change.
In an embodiment, a method comprises: directing a laser beam onto an inner side of a tube, wherein the inner side includes a defect; moving the tube with respect to the laser beam such that the laser beam beams onto the defect; sensing a reflection of the laser beam from the inner side based on the defect; computationally identifying a change between the laser beam and the reflection; computationally acting based on the change.
In an embodiment, a method comprises: directing a laser beam onto an outer side of a tube, wherein the outer side includes a defect; moving the laser beam with respect to the tube such that the laser beam beams onto the defect; sensing a reflection of the laser beam from the outer side based on the defect; computationally identifying a change between the laser beam and the reflection; computationally acting based on the change.
In an embodiment, a method comprises: directing a laser beam onto an inner side of a tube, wherein the inner side includes a defect; moving the laser beam with respect to the tube such that the laser beam beams onto the defect; sensing a reflection of the laser beam from the inner side based on the defect; computationally identifying a change between the laser beam and the reflection; computationally acting based on the change.
In an embodiment, a system comprises: a processor; a sensor coupled to the processor; a laser scanner coupled to the processor, wherein the laser scanner is configured to output a laser beam; and a tube straightener coupled to the processor, wherein the tube straightener is configured to move a tube with an outer side having a defect such that (1) the laser scanner is able to direct the laser beam onto the defect, (2) the sensor is able to sense a reflection of the laser beam from the outer side based on the defect, (3) the processor is able to identify a change between the laser beam and the reflection, and (4) the processor is able to take an action based on the change.
This disclosure is embodied in various forms illustrated in a set of accompanying illustrative drawings. Note that variations are contemplated as being a part of this disclosure, limited only by a scope of various claims recited below.
The set of accompanying illustrative drawings shows various example embodiments of this disclosure. Such drawings are not to be construed as necessarily limiting this disclosure. Like numbers and/or similar numbering scheme can refer to like and/or similar elements throughout.
This disclosure is now described more fully with reference to the set of accompanying illustrative drawings, in which example embodiments of this disclosure are shown. This disclosure can be embodied in many different forms and should not be construed as necessarily being limited to the example embodiments disclosed herein. Rather, the example embodiments are provided so that this disclosure is thorough and complete, and fully conveys various concepts of this disclosure to those skilled in a relevant art.
Features described with respect to certain example embodiments can be combined and sub-combined in and/or with various other example embodiments. Also, different aspects and/or elements of example embodiments, as disclosed herein, can be combined and sub-combined in a similar manner as well. Further, some example embodiments, whether individually and/or collectively, can be components of a larger system, wherein other procedures can take precedence over and/or otherwise modify their application. Additionally, a number of steps can be required before, after, and/or concurrently with example embodiments, as disclosed herein. Note that any and/or all methods and/or processes, at least as disclosed herein, can be at least partially performed via at least one entity in any manner.
Various terminology used herein can imply direct or indirect, full or partial, temporary or permanent, action or inaction. For example, when an element is referred to as being “on,” “connected” or “coupled” to another element, then the element can be directly on, connected or coupled to the other element and/or intervening elements can be present, including indirect and/or direct variants. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.
Although the terms first, second, etc. can be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not necessarily be limited by such terms. These terms are used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, a first element, component, region, layer, or section discussed below could be termed a second element, component, region, layer, or section without departing from various teachings of this disclosure.
Various terminology used herein is for describing particular example embodiments and is not intended to be necessarily limiting of this disclosure. As used herein, various singular forms “a,” “an” and “the” are intended to include various plural forms as well, unless a context clearly indicates otherwise. Various terms “comprises,” “includes” and/or “comprising,” “including” when used in this specification, specify a presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence and/or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
As used herein, a term “or” is intended to mean an inclusive “or” rather than an exclusive “or.” That is, unless specified otherwise, or clear from context, “X employs A or B” is intended to mean any of a set of natural inclusive permutations. That is, if X employs A; X employs B; or X employs both A and B, then “X employs A or B” is satisfied under any of the foregoing instances.
Example embodiments of this disclosure are described herein with reference to illustrations of idealized embodiments (and intermediate structures) of this disclosure. As such, variations from various illustrated shapes as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, various example embodiments of this disclosure should not be construed as necessarily limited to various particular shapes of regions illustrated herein, but are to include deviations in shapes that result, for example, from manufacturing.
Any and/or all elements, as disclosed herein, can be formed from a same, structurally continuous piece, such as being unitary, and/or be separately manufactured and/or connected, such as being an assembly and/or modules. Any and/or all elements, as disclosed herein, can be manufactured via any manufacturing processes, whether additive manufacturing, subtractive manufacturing, and/or other any other types of manufacturing. For example, some manufacturing processes include three dimensional (30) printing, laser cutting, computer numerical control routing, milling, pressing, stamping, vacuum forming, hydroforming, injection molding, lithography, and so forth.
Any and/or all elements, as disclosed herein, can be and/or include, whether partially and/or fully, a solid, including a metal, a mineral, an amorphous material, a ceramic, a glass ceramic, an organic solid, such as wood and/or a polymer, such as rubber, a composite material, a semiconductor, a nanomaterial, a biomaterial and/or any combinations thereof. Any and/or all elements, as disclosed herein, can be and/or include, whether partially and/or fully, a coating, including an informational coating, such as ink, an adhesive coating, a melt-adhesive coating, such as vacuum seal and/or heat seal, a release coating, such as tape liner, a low surface energy coating, an optical coating, such as for tint, color, hue, saturation, tone, shade, transparency, translucency, opaqueness, luminescence, reflection, phosphorescence, anti-reflection and/or holography, a photo-sensitive coating, an electronic and/or thermal property coating, such as for passivity, insulation, resistance or conduction, a magnetic coating, a water-resistant and/or waterproof coating, a scent coating and/or any combinations thereof. Any and/or all elements, as disclosed herein, can be rigid, flexible, and/or any other combinations thereof. Any and/or all elements, as disclosed herein, can be identical and/or different from each other in material, shape, size, color and/or any measurable dimension, such as length, width, height, depth, area, orientation, perimeter, volume, breadth, density, temperature, resistance, and so forth.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in an art to which this disclosure belongs. Various terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with a meaning in a context of a relevant art and should not be interpreted in an idealized and/or overly formal sense unless expressly so defined herein.
Furthermore, relative terms such as “below,” “lower,” “above,” and “upper” can be used herein to describe one element's relationship to another element as illustrated in the set of accompanying illustrative drawings. Such relative terms are intended to encompass different orientations of illustrated technologies in addition to an orientation depicted in the set of accompanying illustrative drawings. For example, if a device in the set of accompanying illustrative drawings were turned over, then various elements described as being on a “lower” side of other elements would then be oriented on “upper” sides of other elements. Similarly, if a device in one of illustrative figures were turned over, then various elements described as “below” or “beneath” other elements would then be oriented “above” other elements. Therefore, various example terms “below” and “lower” can encompass both an orientation of above and below.
As used herein, a term “about” and/or “substantially” refers to a +/−10% variation from a nominal value/term. Such variation is always included in any given value/term provided herein, whether or not such variation is specifically referred thereto.
If any disclosures are incorporated herein by reference and such disclosures conflict in part and/or in whole with this disclosure, then to an extent of a conflict, if any, and/or a broader disclosure, and/or broader definition of terms, this disclosure controls. If such disclosures conflict in part and/or in whole with one another, then to an extent of a conflict, if any, a later-dated disclosure controls.
The semiconductor laser 2 is then diffusely reflected from the outer side. This reflected light is formed on the HSE3-CMOS sensor 5. As such, by computationally detecting changes in a position and/or shape of this reflected light, a computer, which is in signal communication with the laser scanner 100, whether in a wired or wireless manner, can measure a position of a point along the outer side, where the point is indicative of a defect of the outer side. For example, since this reflected light reflects/comes back at different speeds, then such data is used to computationally interpret as high and low spots in the outer side of the tube. Note that this includes many points, including defects, if any, along the outer side, whether along a single plane of the outer side or a plurality of planes of the outer side. As such, a map of the outer side can be created, with maps the defect on the outer side. However, as noted herein, when the tube is hollow and includes an inner side, then similar methodology can be employed. Further, note that such example of the laser scanner 100 is not limiting and other laser scanners or differently configured laser scanners can be used, whether alternatively or additionally, in any technical environment, including tube manufacturing or testing for any purpose, such as fluid conduction, whether the fluid is a liquid, a gas, or any other fluid. Some of such purposes include plumbing (e.g. cold/hot water, steam, oil, beverages, crude, etc.), heating, ventilation, and air conditioning (HVAC), wire/cable conduits, machine parts/industrial systems (e.g. factory machines, vehicles etc.), medical tubing/devices/implantables, food grade tubing (e.g. straws etc.), weapons (barrels, missiles, vehicles, etc.), shipbuilding, sports, or others, although note that such tubing does not need to be hollow and can be internally solid.
With respect to the tube, as shown in
The tube may longitudinally extend in an open shape or a closed shape, whether symmetrical or asymmetrical. For example, the open shape can include an I-shape, an L-shape, a U-shape, a C-shape, a V-shape, or others. For example, the closed shape can include an O-shape, a O-shape, a D-shape, a square shape, a triangular shape, a rectangular shape, a parallelogram shape, a pentagon shape, or others. The tube can be a single piece or an assembly of pieces, such as via fastening, mating, magnetizing, adhering, or others. For example, the tube can be a pair of U-shaped pieces pivoted together, such as a clamshell. For example, the tube can be three C-shaped pieces interlocked together. In some embodiments, the tube may include plastic, rubber, wood, glass, or other non-metal materials. Note that the tube can include a metal and a non-metal.
For example, a method, such as for a laser surface analysis, can include directing a laser beam, such as from the laser scanner 100, onto the outer side of the tube, with the outer side including the defect, such as shown in
For example, a method, such as for a laser surface analysis, can include directing a laser beam, such as from the laser scanner 100, onto the outer side of the tube, with the outer side including the defect, such as shown in
For example, a method, such as for a laser surface analysis, can include directing a laser beam onto the outer side of the tube such that the laser beam perimetrically beams onto the outer side, such as in a closed shape generated via a plurality of the laser scanners 100, with the outer side including the defect beamed thereon via the laser beam. Such perimetrical beaming, which may be circumferential, such as in an O-shape, is to capture the outside side in full along a single point along the length of the outer side, although multiple points along the length of the outer side can be captured, such as via the lasers 100 moving with respect to the outer side or the outer side moving with respect to the laser scanners 100. For example, such directing may be during a tube straightening process. The method can include receiving, such as via the HSE3-CMOS sensor, a reflection of the laser beam from the outer side based on the defect. The method can include identifying, via the computer, a change between the laser beam and the reflection. The method can include generating, via the computer, a message based on the change, with the message can be output via an output device, such as a display, a printer, a speaker, a vibrator, an smell generator, or others. For example, the message may inform if the defect is over/under a predefined length/width/depth/shape. For example, the message can be stored in memory, such as in a log file, or a machine-based action can be taken based on the message, such as writing/marking/flagging (visible/invisible) on the outer side at the or in a close proximity of the defect, segregating or moving the tube with the defect. Note that if the tube is hollow and includes the inner side then this method can be reversed, where the laser beam is radially directed, such as in a sunray manner, onto the inner side such that a perimeter of the inner side is beamed at once along a point along a length of the inner side, as disclosed herein.
In some embodiments, various functions or acts can take place at a given location and/or in connection with the operation of one or more apparatuses or systems. In some embodiments, a portion of a given function or act can be performed at a first device or location, and a remainder of the function or act can be performed at one or more additional devices or locations.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The embodiments were chosen and described in order to best explain the principles of the disclosure and the practical application, and to enable others of ordinary skill in the art to understand the disclosure for various embodiments with various modifications as are suited to the particular use contemplated.
The diagrams depicted herein are illustrative. There can be many variations to the diagram or the steps (or operations) described therein without departing from the spirit of the disclosure. For instance, the steps can be performed in a differing order or steps can be added, deleted or modified. All of these variations are considered a part of the disclosure. It will be understood that those skilled in the art, both now and in the future, can make various improvements and enhancements which fall within the scope of the claims which follow.
The description of this disclosure has been presented for purposes of illustration and description, but is not intended to be fully exhaustive and/or limited to the disclosure in the form disclosed. Many modifications and variations in techniques and structures will be apparent to those of ordinary skill in an art without departing from a scope and spirit of this disclosure as set forth in the claims that follow. Accordingly, such modifications and variations are contemplated as being a part of this disclosure. A scope of this disclosure is defined by various claims, which include known equivalents and unforeseeable equivalents at a time of filing of this disclosure.
This application is a divisional of U.S. Utility patent application Ser. No. 15/854,497 filed Dec. 26, 2017, which claims a benefit of U.S. Provisional Patent Application 62/444,566 filed on Jan. 10, 2017, each of which are herein incorporated by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2975293 | Kruse, Jr. | Mar 1961 | A |
3746575 | Arnaudin et al. | Jul 1973 | A |
3749496 | Hietanen | Jul 1973 | A |
3804534 | Clarke | Apr 1974 | A |
3822945 | Robinson et al. | Jul 1974 | A |
3834822 | Stapleton | Sep 1974 | A |
3843890 | Anthony, Jr. | Oct 1974 | A |
3900265 | Merlen | Aug 1975 | A |
3984189 | Seki | Oct 1976 | A |
4203673 | Buckson | May 1980 | A |
4219277 | Yaroshuk | Aug 1980 | A |
4315688 | Pryor | Feb 1982 | A |
4352430 | Maier | Oct 1982 | A |
4377238 | Wilks | Mar 1983 | A |
4410278 | Makihira | Oct 1983 | A |
4532723 | Kellie et al. | Aug 1985 | A |
4644394 | Reeves | Feb 1987 | A |
4734766 | Shiozumi | Mar 1988 | A |
5007291 | Walters et al. | Apr 1991 | A |
5012117 | Karafa | Apr 1991 | A |
5273474 | Oshima et al. | Dec 1993 | A |
5479252 | Worster et al. | Dec 1995 | A |
5646724 | Hershline | Jul 1997 | A |
5667329 | Yoder, Jr. | Sep 1997 | A |
5936725 | Pike | Aug 1999 | A |
5946029 | Yoshimura | Aug 1999 | A |
6052911 | Davis | Apr 2000 | A |
6091834 | Bradburn | Jul 2000 | A |
6124926 | Ogawa et al. | Sep 2000 | A |
6169600 | Ludlow | Jan 2001 | B1 |
6610953 | Tao et al. | Aug 2003 | B1 |
6683695 | Simpson et al. | Jan 2004 | B1 |
6800859 | Shishido et al. | Oct 2004 | B1 |
7385688 | Kadkly | Jun 2008 | B1 |
8128718 | Lobmeyer | Mar 2012 | B2 |
8363101 | Gschwendtner | Jan 2013 | B2 |
8860952 | Bondurant et al. | Oct 2014 | B2 |
8890023 | Dorsch et al. | Nov 2014 | B2 |
9134232 | Segall | Sep 2015 | B1 |
9372079 | Wu | Jun 2016 | B1 |
9523648 | Urano et al. | Dec 2016 | B2 |
9588056 | Fontaine et al. | Mar 2017 | B2 |
20030210391 | Uto et al. | Nov 2003 | A1 |
20030227617 | Yoshida et al. | Dec 2003 | A1 |
20040011773 | Fritz et al. | Jan 2004 | A1 |
20040262529 | Yoshida et al. | Dec 2004 | A1 |
20050264797 | Nakano et al. | Dec 2005 | A1 |
20060062343 | Perng et al. | Mar 2006 | A1 |
20060256326 | Bills et al. | Nov 2006 | A1 |
20070121106 | Shibata | May 2007 | A1 |
20070157730 | Ochiai | Jul 2007 | A1 |
20080186481 | Chen | Aug 2008 | A1 |
20090002695 | Saito et al. | Jan 2009 | A1 |
20090122303 | Nakano et al. | May 2009 | A1 |
20090262354 | Horiuchi | Oct 2009 | A1 |
20100085561 | Kamiyama et al. | Apr 2010 | A1 |
20100086003 | Pfitzner et al. | Apr 2010 | A1 |
20100091812 | Louban et al. | Apr 2010 | A1 |
20100123080 | Andres et al. | May 2010 | A1 |
20110296923 | Cataldo et al. | Dec 2011 | A1 |
20120008143 | Ihlefeld et al. | Jan 2012 | A1 |
20120127462 | Wakatake et al. | May 2012 | A1 |
20120182023 | Zhang et al. | Jul 2012 | A1 |
20130044208 | Cherbis | Feb 2013 | A1 |
20130050712 | Samukawa | Feb 2013 | A1 |
20140139233 | Jeong | May 2014 | A1 |
20140175071 | Pfitzner et al. | Jun 2014 | A1 |
20140231680 | Klinec | Aug 2014 | A1 |
20160069820 | Bueno | Mar 2016 | A1 |
20160144452 | Liou et al. | May 2016 | A1 |
Number | Date | Country |
---|---|---|
3088874 | Nov 2006 | EP |
S61148745 | Jul 1986 | JP |
2010192111 | Sep 2010 | JP |
101193695 | Oct 2012 | KR |
WO2005065246 | Jul 2005 | WO |
WO2010006197 | Jan 2010 | WO |
WO2015179237 | Nov 2015 | WO |
Entry |
---|
International Search Report and Written Opinion dated May 14, 2018 in related Application No. PCT/US2017/068434 filed Dec. 26, 2017 (13 pages). |
Number | Date | Country | |
---|---|---|---|
20180313768 A1 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
62444566 | Jan 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15854497 | Dec 2017 | US |
Child | 15978338 | US |