This invention relates generally to an electronics system, a method of constructing an electronics system and a method of operating an electronics device, and more specifically to calibration of movement detection devices.
Electronics devices such as semiconductor chips frequently include movement detection devices such as accelerometers and gyroscopes. An accelerometer can detect acceleration of the electronics device in a specified direction and a gyroscope can detect a change in angle of the electronics device. Such measurement devices are usually manufactured using microelectromechanical systems (MEMS) technology.
The invention provides an electronics system including a board. The board may include a structural material, a thermal conduit on the structural material, the thermal conduit having a thermal conductivity that is higher than a thermal conductivity of the structural material and having a first region, a second region, and a connecting portion connecting the first region to the second region, a thermal interface on the structural material, the thermal interface having a thermal heat transfer capacity that is higher than the thermal heat transfer capacity of the structural material and being attached to the first region of the thermal conduit and an electronics device mounted to the board at the second region of the thermal conduit, the thermal conduit forming a thermal path between the surface of the thermal interface and the electronics device.
The invention also provides a method of constructing an electronics system including constructing a board that may include forming a thermal conduit on the structural material, the thermal conduit having a thermal heat transfer capacity that is higher than a thermal heat transfer capacity of the structural material and having a first region, a second region, and a connecting portion connecting the first region to the second region, forming a thermal interface on the structural material, the thermal interface having a thermal heat transfer capacity conductivity that is higher than the thermal heat transfer capacity of the structural material and being attached to the first region of the thermal conduit and mounting an electronics device to the board at the second region of the thermal conduit, the thermal conduit forming a thermal path between the surface of the thermal interface and the electronics device.
The invention further provides a method of operating an electronics device including operating an electronics device mounted to a board, locating a thermal device adjacent a thermal interface of the board formed on a structural material of the board and transferring heat between the thermal device and the electronics device through a thermal conduit on the structural material, the thermal conduit having a thermal heat transfer capacity that is higher than a thermal heat transfer capacity of the structural material and having a first region attached to the thermal interface, a second region at the electronics device, and a connecting portion connecting the first region to the second region.
The invention is described by way of examples with reference to the accompanying drawings, wherein:
Output readings from movement detection devices, such as accelerometers and gyroscopes, can be affected by changes in temperature of the devices, thereby introducing temperature-dependent error in the output measurements. For example, an accelerometer at rest should provide an output measurement corresponding to gravitational acceleration; however when the accelerometer is subjected to different temperatures, the output measurement will be different due to error associated with the accelerometer being at a higher temperature. Because the output should not change while the accelerometer is at rest, that is, acceleration is still only gravity regardless of the temperature, it is possible to isolate the output measurement error associated with temperature by finding the difference (or “offset”) between the erroneous measurement and the known baseline measurement (gravity in the case of an accelerometer). By conducting this measurement comparison at multiple temperatures, many data points are collected and an offset profile over a range of temperatures can be obtained. The collection of data associating temperatures with specific offset readings can be compiled for each movement detection device during the calibration process. The data can be stored as calibration data in a table for look up or extrapolation, or can be used to define a best fit function. The calibration data can be accessed by a virtual reality, augmented reality, or mixed reality system to obtain an adjusted measurement from a movement detection device given the temperature of the movement detection device and its initial “raw” measurement.
A calibration system and process that improves calibration accuracy is described herein. Known methods of calibrating movement detection devices involve contacting the movement detection device with a thermal probe to introduce heat by conduction or require actively blowing air across the movement detection device to adjust its temperature by convection. Both of these methods can cause the device to move so that a measurement taken from the device during calibration will include an error associated with temperature and an error associated with movement introduced by the measurement method. Because it is not possible to know how much movement is introduced by the measurement method, it is not possible to isolate the error associated with temperature. As a result, the error cannot be accurately removed from the raw output measurement of the device. In virtual, augmented, and mixed reality systems, the accuracy of a measurement taken by a device is critical for determining where to display virtual content to a user with respect to movement between the user and the real or virtual environment. Thus, there exists a need for a highly accurate calibration system and method in a virtual, augmented, or mixed reality device.
The board 12 is constructed from structural material 22, such as FR4 dielectric, and a thermally and electrically conductive material, such as metal components 24. Metal components 24 may include a copper material. The metal of the metal components 24 is more thermally conductive, and therefore has a higher thermal heat transfer capacity, than the structural material 22. The metal of the metal components 24 is electrically conductive and the structural material 22 is electrically insulating.
Multiple layers of structural material 22 can be included in the board 12. As shown in the example of
The metal components 24 also include first and second sets of vias 40 and 42, respectively. The first set of vias 40 connects portions of the first metal layer 34 to portions of the second metal layer 36. The second set of vias 42 connects portions of the second metal layer 36 to portions of the third metal layer 38. The metal layers 34, 36 and 38 are thereby electrically and thermally connected to one another. The metal layers 34, 36 and 38 together with the first and second sets of vias 40 and 42 form a thermal conduit of thermally conductive material that connect a first region 46 of the thermal conduit to a second region 48 of the thermal conduit.
Portions of the third metal layer 38 are isolated as metal lines 76 to function as traces for electrical signals. These metal lines 76 can be isolated from each other and from other metal components 24 such that each line is surrounded by non-conductive material, such as dielectric structural material 22 and insulating solder resist material 25. One of skill in the art will appreciate that more or fewer than three metal lines 76 may be provided depending on the design of the electronic device 14 that is mounted to the board 12 at the second region 48. The metal lines 76 may be disposed in one or more of the metal layers in the board 12. Additionally, while the lines 76 are shown as exposed parts of the metal component 24, portions of the metal lines 76 can also be coated with the insulating solder resist material 25.
The metal components 24 further include a thermal interface 52. The thermal interface 52 is an area of the third metal layer 38 at the first region 46 that has been exposed by removing a portion of the top insulating layer 32. The thermal interface 52 is an upper surface 54 of third metal layer 38 that is exposed and is configured to contact part of an electronic device calibration station 80. The upper surface 54 forms only a portion of an upper surface of the board 12, with the remainder of the upper surface consisting of an upper surface of the structural layer 30 and insulating solder resist layer 32.
Referring to
Referring to
Referring to
Referring to
The electronics system 10 further includes a board interface 16 that is attached to the board 12 and connected to the measurement devices in the electronics device 14. The electronics device 14 includes a structural body 66 and a number measurement devices in the structural body 66. The measurement devices include a temperature sensor 68 and two movement detection device in the form of an accelerometer 70 and a gyroscope 72. Although two movement detection devices are used for purposes of this embodiment, it may be possible to implement aspects of the invention using only one measurement device. It may for example be possible to calibrate an electronics device having only a gyroscope or only an accelerometer. The structural body 66 may, for example, be a silicon or other semiconductor structural body that may be packaged using conventional packaging technologies. The temperature sensor 68, accelerometer 70 and gyroscope 72 are connected through connectors 74 on an upper surface of the board 12 and metal lines 76 in the board 12 to the board interface 16. Data traces from the temperature sensor 68, accelerometer 70, and gyroscope 72 are routed to a microprocessor 73 in the structural body 66 which serves as an input/output interface for the measurement devices. The system storage 18 serves to store calibration data received from the calibration station 80 that is associated with the accelerometer 70 and gyroscope 72. The system storage 18 may, for example, include a solid-state memory. The system storage 18 is shown near the electronics device 14, however, the system storage may be a remote storage, located on a cloud-based storage or on another area of the electronics device such that it is not in contact with the board 12. One of skill in the art will appreciate that the system storage 18 may be located anywhere that is in communication with electronics device 14 to allow for data transfer between electronics device 14 and system storage 18. The system storage 18 includes no calibration data immediately after the electronics system 10 has been assembled (that is, prior to undergoing calibration) but is uniquely associated with the electronics device 14 by enabling data to transfer between the electronics device 14 and the system storage 18.
In use, the electronics system 10 is brought into contact with portions of the calibration station 80. When the electronics system 10 and the calibration station 80 move relatively towards one another, the calibration computer interface 86 connects to the board interface 16 and can begin receiving data from the electronics device 14 at the same time that the thermoelectric device 88 comes into contact with the thermal interface 52. In the embodiment described, the calibration computer interface 86 and the board interface 16 are wired interfaces that come into contact with one another to create a communication link and are releasable from one another to break the communication link. Data is received through a wired communication between the electronics system 10 and the calibration station 80. In another embodiment, the calibration station 80 and the board may include wireless interfaces that create a wireless link for data transfer and the wireless link sis then broken.
Electric power is provided through the electric power connector 92 to the calibration computer 84, which powers the calibration computer 84. Electric power is also provided through the electric power connector 92 and the transformer 90 to the thermoelectric device 88.
The entire electronics system 10 can begin calibration initially at room temperature, e.g. approximately 21° C. The temperature sensor 68 (
The thermoelectric device 88 has an upper surface that is at a lower temperature than room temperature and a lower surface that is at a higher temperature than room temperature. Heat transfers from the high temperature, lower surface of the thermoelectric device 88 through the upper surface 54 of the thermal interface 52 into the thermal interface 52. The heat transfer is primarily by way of conduction. The heat then conducts through the third metal layer 38 and first and second sets of vias 40 and 42 to the first and second metal layers 34 and 36. The heat then conducts through the first, second and third metal layers 34, 36 and 38 from the first region 46 nearest the heat source outward toward the second region 48. The barriers 62 prevent or at least substantially retard transfer of heat from the inner portion 58 to the outer portion 60.
Heating of the second region 48 causes its temperature to increase. Conduction of heat through the metal layers 34, 36, 38 and the thermal vias 40, 42 happens rapidly while significantly slower conduction of heat occurs in the structural material layers 28, 30. Conduction through top metal layer 38 evenly distributes heat underneath electronics device 14 in the second region 48. The increased temperature of the second region 48 causes heat transfer through conduction by connection 74 and through passive convection of air surrounding the electronics device 14. This method of heating electronics device 14 closely mimics the field conditions that the electronic device 14 will experience. The temperature sensor 68 continues to detect the temperature of the electronics device 14. The calibration computer 84 samples the temperature of the temperature sensor 68 on a predetermined interval, e.g. every five seconds, or more frequently for improved accuracy. The calibration computer 84 also samples outputs from the accelerometer 70 and the gyroscope 72 at the same time that the calibration computer 84 samples a temperature from the temperature sensor 68. The calibration computer 84 then calculates and stores each temperature and each acceleration offset and each angle offset with the calibration data 96. As described herein previously, each temperature is associated with an acceleration offset and an angle offset component within the measurement readings of the accelerometer and gyroscope, respectively. An offset profile can be obtained by measuring outputs of each sensor across a range of temperatures, each time subtracting the known value that the sensor should measure from the actual measurement to calculate error. Each temperature thus has a different acceleration offset and angle offset associated therewith, even though the accelerometer 70 and gyroscope 72 remain stationary from one measurement to the next. In some embodiments, multiple measurements are obtained at each temperature and an average offset is calculated for improved accuracy.
When sufficient data is collected, the calibration station 80 is removed from contact with the board 12. The calibration computer interface 86 writes the collected calibration data to the system storage 18 and disconnects from the board interface 16. The thermoelectric device 88 disengages from the thermal interface 52. Heat convects and conducts from the electronics device 14 until the entire electronics device 14 returns to room temperature.
The calibration system and process described above do not require physical contact between the calibration station and the electronics device 14 and furthermore do not require forced convection across electronics device 14. Rather, the electronics device 14 is heated by way of conduction through a permanent connection (connectors 74 and metal lines 76) to the board 12 and by way of passive convection without the need for additional probe contact with or forced air blowing over the electronics device 14. The electronics device 14 can thus be calibrated against temperature without disturbing the accelerometer 70 or the gyroscope 72. This system and process allows for a more accurate offset calibration while mimicking real field conditions of the sensors on board electronics device 14.
In use, the electronics system 10 is moved, e.g. in linear directions or rotational directions. The accelerometer 70 and the gyroscope 72 detect such movement of the electronics system 10. The field computer 100 senses signals received from the temperature sensor 68, accelerometer 70 and gyroscope 72. The field computer 100 uses the temperature detected by the temperature sensor 68 to find a corresponding temperature in the calibration data 96. The calibration data 96 may include the table with data as hereinbefore described or may include a formula, such as a linear regression, representative of the calibration data. The field computer 100 retrieves the acceleration offset and the angle offset in the calibration data 96 corresponding to the temperature measured by the temperature sensor 68. The field computer 100 then adjusts the acceleration detected by the accelerometer 70 by the acceleration offset (acceleration=measured acceleration−acceleration offset). The field computer 100 also adjusts an angle measured by the gyroscope 72 by the angle offset corresponding to the temperature (adjusted angle=measured angle−angle offset). The field computer 100 then provides the adjusted acceleration and the adjusted angle to the controlled system 104. The controlled system 104 utilizes the adjusted acceleration and the adjusted angle in one or more formulas. By way of example, the controlled system 104 adjusts placement of a rendered image in an augmented reality or mixed reality viewing device according to a placement formula that uses the adjusted acceleration and the adjusted angle received from the field computer 100.
While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative and not restrictive of the current invention, and that this invention is not restricted to the specific constructions and arrangements shown and described since modifications may occur to those ordinarily skilled in the art.
This application is a division of U.S. patent application Ser. No. 17/262,991, filed on Jan. 25, 2021, which is a National Phase of International Application No: PCT/US2019/043099, filed on Jul. 23, 2019, which claims priority from U.S. Provisional Patent Application No. 62/702,870, filed on Jul. 24, 2018, all of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4344092 | Miller | Aug 1982 | A |
4652930 | Crawford | Mar 1987 | A |
4810080 | Grendol et al. | Mar 1989 | A |
4997268 | Dauvergne | Mar 1991 | A |
5007727 | Kahaney et al. | Apr 1991 | A |
5074295 | Willis | Dec 1991 | A |
5240220 | Elberbaum | Aug 1993 | A |
5251635 | Dumoulin et al. | Oct 1993 | A |
5410763 | Bolle | May 1995 | A |
5455625 | Englander | Oct 1995 | A |
5495286 | Adair | Feb 1996 | A |
5497463 | Stein et al. | Mar 1996 | A |
5659701 | Amit et al. | Aug 1997 | A |
5682255 | Friesem et al. | Oct 1997 | A |
5689669 | Lynch | Nov 1997 | A |
5826092 | Flannery | Oct 1998 | A |
5854872 | Tai | Dec 1998 | A |
5864365 | Sramek et al. | Jan 1999 | A |
5937202 | Crosetto | Aug 1999 | A |
6002853 | De Hond | Dec 1999 | A |
6012811 | Chao et al. | Jan 2000 | A |
6016160 | Coombs et al. | Jan 2000 | A |
6064749 | Hirota et al. | May 2000 | A |
6076927 | Owens | Jun 2000 | A |
6079982 | Meader | Jun 2000 | A |
6117923 | Amagai et al. | Sep 2000 | A |
6119147 | Toomey et al. | Sep 2000 | A |
6124977 | Takahashi | Sep 2000 | A |
6179619 | Tanaka | Jan 2001 | B1 |
6191809 | Hori et al. | Feb 2001 | B1 |
6219045 | Leahy et al. | Apr 2001 | B1 |
6243091 | Berstis | Jun 2001 | B1 |
6271843 | Lection et al. | Aug 2001 | B1 |
6362817 | Powers et al. | Mar 2002 | B1 |
6375369 | Schneider et al. | Apr 2002 | B1 |
6385735 | Wilson | May 2002 | B1 |
6396522 | Vu | May 2002 | B1 |
6414679 | Miodonski et al. | Jul 2002 | B1 |
6538655 | Kubota | Mar 2003 | B1 |
6541736 | Huang et al. | Apr 2003 | B1 |
6570563 | Honda | May 2003 | B1 |
6573903 | Gantt | Jun 2003 | B2 |
6590593 | Robertson et al. | Jul 2003 | B1 |
6621508 | Shiraishi et al. | Sep 2003 | B1 |
6690393 | Heron et al. | Feb 2004 | B2 |
6757068 | Foxlin | Jun 2004 | B2 |
6784901 | Harvey et al. | Aug 2004 | B1 |
6961055 | Doak | Nov 2005 | B2 |
7046515 | Wyatt | May 2006 | B1 |
7051219 | Hwang | May 2006 | B2 |
7076674 | Cervantes | Jul 2006 | B2 |
7111290 | Yates, Jr. | Sep 2006 | B1 |
7119819 | Robertson et al. | Oct 2006 | B1 |
7211986 | Flowerdew et al. | May 2007 | B1 |
7219245 | Raghuvanshi | May 2007 | B1 |
7382288 | Wilson | Jun 2008 | B1 |
7414629 | Santodomingo | Aug 2008 | B2 |
7431453 | Hogan | Oct 2008 | B2 |
7467356 | Gettman et al. | Dec 2008 | B2 |
7542040 | Templeman | Jun 2009 | B2 |
7573640 | Nivon et al. | Aug 2009 | B2 |
7653877 | Matsuda | Jan 2010 | B2 |
7663625 | Chartier et al. | Feb 2010 | B2 |
7724980 | Shenzhi | May 2010 | B1 |
7746343 | Charaniya et al. | Jun 2010 | B1 |
7751662 | Kleemann | Jul 2010 | B2 |
7758185 | Lewis | Jul 2010 | B2 |
7788323 | Greenstein et al. | Aug 2010 | B2 |
7804507 | Yang et al. | Sep 2010 | B2 |
7814429 | Buffet et al. | Oct 2010 | B2 |
7817150 | Reichard et al. | Oct 2010 | B2 |
7844724 | Van Wie et al. | Nov 2010 | B2 |
8060759 | Arnan et al. | Nov 2011 | B1 |
8120851 | Iwasa | Feb 2012 | B2 |
8214660 | Capps, Jr. | Jul 2012 | B2 |
8246408 | Elliot | Aug 2012 | B2 |
8353594 | Lewis | Jan 2013 | B2 |
8360578 | Nummela et al. | Jan 2013 | B2 |
8508676 | Silverstein et al. | Aug 2013 | B2 |
8547638 | Levola | Oct 2013 | B2 |
8605764 | Rothaar et al. | Oct 2013 | B1 |
8619365 | Harris et al. | Dec 2013 | B2 |
8696113 | Lewis | Apr 2014 | B2 |
8698701 | Margulis | Apr 2014 | B2 |
8733927 | Lewis | May 2014 | B1 |
8736636 | Kang | May 2014 | B2 |
8759929 | Shiozawa et al. | Jun 2014 | B2 |
8793770 | Lim | Jul 2014 | B2 |
8823855 | Hwang | Sep 2014 | B2 |
8847988 | Geisner et al. | Sep 2014 | B2 |
8874673 | Kim | Oct 2014 | B2 |
9010929 | Lewis | Apr 2015 | B2 |
9015501 | Gee | Apr 2015 | B2 |
9086537 | Iwasa et al. | Jul 2015 | B2 |
9095437 | Boyden et al. | Aug 2015 | B2 |
9239473 | Lewis | Jan 2016 | B2 |
9244293 | Lewis | Jan 2016 | B2 |
9244533 | Friend et al. | Jan 2016 | B2 |
9285872 | Raffle et al. | Mar 2016 | B1 |
9383823 | Geisner et al. | Jul 2016 | B2 |
9489027 | Ogletree | Nov 2016 | B1 |
9519305 | Wolfe | Dec 2016 | B2 |
9581820 | Robbins | Feb 2017 | B2 |
9582060 | Balatsos | Feb 2017 | B2 |
9658473 | Lewis | May 2017 | B2 |
9671566 | Abovitz et al. | Jun 2017 | B2 |
9671615 | Vallius et al. | Jun 2017 | B1 |
9696795 | Marcolina et al. | Jul 2017 | B2 |
9798144 | Sako et al. | Oct 2017 | B2 |
9874664 | Stevens et al. | Jan 2018 | B2 |
9880441 | Osterhout | Jan 2018 | B1 |
9918058 | Takahasi et al. | Mar 2018 | B2 |
9955862 | Freeman et al. | May 2018 | B2 |
9978118 | Ozgumer et al. | May 2018 | B1 |
9996797 | Holz et al. | Jun 2018 | B1 |
10018844 | Levola et al. | Jul 2018 | B2 |
10082865 | Raynal et al. | Sep 2018 | B1 |
10151937 | Lewis | Dec 2018 | B2 |
10185147 | Lewis | Jan 2019 | B2 |
10218679 | Jawahar | Feb 2019 | B1 |
10241545 | Richards et al. | Mar 2019 | B1 |
10317680 | Richards et al. | Jun 2019 | B1 |
10436594 | Belt et al. | Oct 2019 | B2 |
10516853 | Gibson et al. | Dec 2019 | B1 |
10551879 | Richards et al. | Feb 2020 | B1 |
10578870 | Kimmel | Mar 2020 | B2 |
10698202 | Kimmel et al. | Jun 2020 | B2 |
10856107 | Mycek et al. | Oct 2020 | B2 |
10825424 | Zhang | Nov 2020 | B2 |
10987176 | Poltaretskyi et al. | Apr 2021 | B2 |
11190681 | Brook et al. | Nov 2021 | B1 |
11209656 | Choi et al. | Dec 2021 | B1 |
11236993 | Hall et al. | Feb 2022 | B1 |
20010010598 | Aritake et al. | Aug 2001 | A1 |
20010018667 | Kim | Aug 2001 | A1 |
20020007463 | Fung | Jan 2002 | A1 |
20020108064 | Nunally | Feb 2002 | A1 |
20020063913 | Nakamura et al. | May 2002 | A1 |
20020071050 | Homberg | Jun 2002 | A1 |
20020095463 | Matsuda | Jul 2002 | A1 |
20020113820 | Robinson et al. | Aug 2002 | A1 |
20020122648 | Mule′ et al. | Sep 2002 | A1 |
20020140848 | Cooper et al. | Oct 2002 | A1 |
20030028816 | Bacon | Feb 2003 | A1 |
20030048456 | Hill | Mar 2003 | A1 |
20030067685 | Niv | Apr 2003 | A1 |
20030077458 | Korenaga et al. | Apr 2003 | A1 |
20030080976 | Satoh et al. | May 2003 | A1 |
20030115494 | Cervantes | Jun 2003 | A1 |
20030218614 | Lavelle et al. | Nov 2003 | A1 |
20030219992 | Schaper | Nov 2003 | A1 |
20030226047 | Park | Dec 2003 | A1 |
20040001533 | Tran et al. | Jan 2004 | A1 |
20040021600 | Wittenberg | Feb 2004 | A1 |
20040025069 | Gary et al. | Feb 2004 | A1 |
20040042377 | Nikoloai et al. | Mar 2004 | A1 |
20040073822 | Greco | Apr 2004 | A1 |
20040073825 | Itoh | Apr 2004 | A1 |
20040111248 | Granny et al. | Jun 2004 | A1 |
20040113887 | Pair et al. | Jun 2004 | A1 |
20040174496 | Ji et al. | Sep 2004 | A1 |
20040186902 | Stewart | Sep 2004 | A1 |
20040193441 | Altieri | Sep 2004 | A1 |
20040201857 | Foxlin | Oct 2004 | A1 |
20040238732 | State et al. | Dec 2004 | A1 |
20040240072 | Schindler et al. | Dec 2004 | A1 |
20040246391 | Travis | Dec 2004 | A1 |
20040268159 | Aasheim et al. | Dec 2004 | A1 |
20050001977 | Zelman | Jan 2005 | A1 |
20050034002 | Flautner | Feb 2005 | A1 |
20050093719 | Okamoto et al. | May 2005 | A1 |
20050128212 | Edecker et al. | Jun 2005 | A1 |
20050157159 | Komiya et al. | Jul 2005 | A1 |
20050177385 | Hull | Aug 2005 | A1 |
20050231599 | Yamasaki | Oct 2005 | A1 |
20050273792 | Inohara et al. | Dec 2005 | A1 |
20060013435 | Rhoads | Jan 2006 | A1 |
20060015821 | Jacques Parker et al. | Jan 2006 | A1 |
20060019723 | Vorenkamp | Jan 2006 | A1 |
20060038880 | Starkweather et al. | Feb 2006 | A1 |
20060050224 | Smith | Mar 2006 | A1 |
20060090092 | Verhulst | Apr 2006 | A1 |
20060126181 | Levola | Jun 2006 | A1 |
20060129852 | Bonola | Jun 2006 | A1 |
20060132914 | Weiss et al. | Jun 2006 | A1 |
20060179329 | Terechko | Aug 2006 | A1 |
20060221448 | Nivon et al. | Oct 2006 | A1 |
20060228073 | Mukawa et al. | Oct 2006 | A1 |
20060250322 | Hall et al. | Nov 2006 | A1 |
20060259621 | Ranganathan | Nov 2006 | A1 |
20060268220 | Hogan | Nov 2006 | A1 |
20070058248 | Nguyen et al. | Mar 2007 | A1 |
20070103836 | Oh | May 2007 | A1 |
20070124730 | Pytel | May 2007 | A1 |
20070159673 | Freeman et al. | Jul 2007 | A1 |
20070185398 | Kimura et al. | Aug 2007 | A1 |
20070188837 | Shimizu et al. | Aug 2007 | A1 |
20070198886 | Saito | Aug 2007 | A1 |
20070204672 | Huang et al. | Sep 2007 | A1 |
20070213952 | Cirelli | Sep 2007 | A1 |
20070283247 | Brenneman et al. | Dec 2007 | A1 |
20080002259 | Ishizawa et al. | Jan 2008 | A1 |
20080002260 | Arrouy et al. | Jan 2008 | A1 |
20080030429 | Hailpern | Feb 2008 | A1 |
20080043334 | Itzkovitch et al. | Feb 2008 | A1 |
20080046773 | Ham | Feb 2008 | A1 |
20080063802 | Maula et al. | Mar 2008 | A1 |
20080068557 | Menduni et al. | Mar 2008 | A1 |
20080125218 | Collins | May 2008 | A1 |
20080146942 | Dala-Krishna | Jun 2008 | A1 |
20080173036 | Willaims | Jul 2008 | A1 |
20080177506 | Kim | Jul 2008 | A1 |
20080183190 | Adcox et al. | Jul 2008 | A1 |
20080205838 | Crippa et al. | Aug 2008 | A1 |
20080215907 | Wilson | Sep 2008 | A1 |
20080225393 | Rinko | Sep 2008 | A1 |
20080235570 | Sawada et al. | Sep 2008 | A1 |
20080246693 | Hailpern et al. | Oct 2008 | A1 |
20080316768 | Travis | Dec 2008 | A1 |
20090076791 | Rhoades et al. | Mar 2009 | A1 |
20090091583 | McCoy | Apr 2009 | A1 |
20090153797 | Allon et al. | Jun 2009 | A1 |
20090177445 | Capps, Jr. et al. | Jul 2009 | A1 |
20090224416 | Laakkonen et al. | Sep 2009 | A1 |
20090245730 | Kleemann | Oct 2009 | A1 |
20090287728 | Martine et al. | Nov 2009 | A1 |
20090300528 | Stambaugh | Dec 2009 | A1 |
20090310633 | Ikegami | Dec 2009 | A1 |
20100005326 | Archer | Jan 2010 | A1 |
20100019962 | Fujita | Jan 2010 | A1 |
20100056274 | Uusitalo et al. | Mar 2010 | A1 |
20100060970 | Harris et al. | Mar 2010 | A1 |
20100063854 | Purvis et al. | Mar 2010 | A1 |
20100070378 | Trotman et al. | Mar 2010 | A1 |
20100079841 | Levola | Apr 2010 | A1 |
20100115428 | Shuping et al. | May 2010 | A1 |
20100153934 | Lachner | Jun 2010 | A1 |
20100194632 | Raento et al. | Aug 2010 | A1 |
20100205541 | Rappaport et al. | Aug 2010 | A1 |
20100214284 | Rieffel et al. | Aug 2010 | A1 |
20100232016 | Landa et al. | Sep 2010 | A1 |
20100232031 | Batchko et al. | Sep 2010 | A1 |
20100244168 | Shiozawa et al. | Sep 2010 | A1 |
20100274567 | Carlson et al. | Oct 2010 | A1 |
20100274627 | Carlson | Oct 2010 | A1 |
20100277803 | Pockett et al. | Nov 2010 | A1 |
20100284085 | Laakkonen | Nov 2010 | A1 |
20100287485 | Bertolami et al. | Nov 2010 | A1 |
20100296163 | Sarikko | Nov 2010 | A1 |
20100306715 | Geisner et al. | Dec 2010 | A1 |
20100309687 | Sampsell et al. | Dec 2010 | A1 |
20110010636 | Hamilton, II et al. | Jan 2011 | A1 |
20110021263 | Anderson et al. | Jan 2011 | A1 |
20110022870 | Mcgrane | Jan 2011 | A1 |
20110041083 | Gabai et al. | Feb 2011 | A1 |
20110050640 | Lundback et al. | Mar 2011 | A1 |
20110050655 | Mukawa | Mar 2011 | A1 |
20110064268 | Cobb et al. | Mar 2011 | A1 |
20110122240 | Becker | May 2011 | A1 |
20110145617 | Thomson et al. | Jun 2011 | A1 |
20110170801 | Lu et al. | Jul 2011 | A1 |
20110218733 | Hamza et al. | Sep 2011 | A1 |
20110286735 | Temblay | Nov 2011 | A1 |
20110291969 | Rashid et al. | Dec 2011 | A1 |
20120011389 | Driesen | Jan 2012 | A1 |
20120050535 | Densham et al. | Mar 2012 | A1 |
20120075501 | Oyagi et al. | Mar 2012 | A1 |
20120079466 | Gonion | Mar 2012 | A1 |
20120081392 | Arthur | Apr 2012 | A1 |
20120089854 | Breakstone | Apr 2012 | A1 |
20120113235 | Shintani | May 2012 | A1 |
20120127062 | Bar-Zeev et al. | May 2012 | A1 |
20120154557 | Perez et al. | Jun 2012 | A1 |
20120215094 | Rahimian et al. | Aug 2012 | A1 |
20120218301 | Miller | Aug 2012 | A1 |
20120246506 | Knight | Sep 2012 | A1 |
20120249416 | Maciocci et al. | Oct 2012 | A1 |
20120249741 | Maciocci et al. | Oct 2012 | A1 |
20120260083 | Andrews | Oct 2012 | A1 |
20120307075 | Margalitq | Dec 2012 | A1 |
20120307362 | Silverstein et al. | Dec 2012 | A1 |
20120314959 | White et al. | Dec 2012 | A1 |
20120320460 | Levola | Dec 2012 | A1 |
20120326948 | Crocco et al. | Dec 2012 | A1 |
20130021486 | Richardon | Jan 2013 | A1 |
20130050258 | Liu et al. | Feb 2013 | A1 |
20130050642 | Lewis et al. | Feb 2013 | A1 |
20130050833 | Lewis et al. | Feb 2013 | A1 |
20130051730 | Travers et al. | Feb 2013 | A1 |
20130061240 | Yan et al. | Mar 2013 | A1 |
20130077049 | Bohn | Mar 2013 | A1 |
20130077170 | Ukuda | Mar 2013 | A1 |
20130094148 | Sloane | Apr 2013 | A1 |
20130129282 | Li | May 2013 | A1 |
20130162940 | Kurtin et al. | Jun 2013 | A1 |
20130169923 | Schnoll et al. | Jul 2013 | A1 |
20130205126 | Kruglick | Aug 2013 | A1 |
20130222386 | Tannhauser et al. | Aug 2013 | A1 |
20130268257 | Hu | Oct 2013 | A1 |
20130278633 | Ahn et al. | Oct 2013 | A1 |
20130314789 | Saarikko et al. | Nov 2013 | A1 |
20130318276 | Dalal | Nov 2013 | A1 |
20130336138 | Venkatraman et al. | Dec 2013 | A1 |
20130342564 | Kinnebrew et al. | Dec 2013 | A1 |
20130342570 | Kinnebrew et al. | Dec 2013 | A1 |
20130342571 | Kinnebrew et al. | Dec 2013 | A1 |
20130343408 | Cook | Dec 2013 | A1 |
20140002329 | Nishimaki et al. | Jan 2014 | A1 |
20140013098 | Yeung | Jan 2014 | A1 |
20140016821 | Arth et al. | Jan 2014 | A1 |
20140022819 | Oh et al. | Jan 2014 | A1 |
20140078023 | Ikeda et al. | Mar 2014 | A1 |
20140082526 | Park et al. | Mar 2014 | A1 |
20140119598 | Ramachandran et al. | May 2014 | A1 |
20140123015 | Sako et al. | May 2014 | A1 |
20140126769 | Reitmayr et al. | May 2014 | A1 |
20140140653 | Brown et al. | May 2014 | A1 |
20140149573 | Tofighbakhsh et al. | May 2014 | A1 |
20140168260 | O'Brien et al. | Jun 2014 | A1 |
20140204438 | Yamada et al. | Jul 2014 | A1 |
20140244983 | McDonald et al. | Aug 2014 | A1 |
20140266987 | Magyari | Sep 2014 | A1 |
20140267419 | Ballard et al. | Sep 2014 | A1 |
20140274391 | Stafford | Sep 2014 | A1 |
20140282105 | Nordstrom | Sep 2014 | A1 |
20140292645 | Tsurumi et al. | Oct 2014 | A1 |
20140313228 | Kasahara | Oct 2014 | A1 |
20140340498 | Plagemann et al. | Nov 2014 | A1 |
20140359589 | Kodsky et al. | Dec 2014 | A1 |
20140375680 | Ackerman et al. | Dec 2014 | A1 |
20150005785 | Olson | Jan 2015 | A1 |
20150009099 | Queen | Jan 2015 | A1 |
20150077312 | Wang | Mar 2015 | A1 |
20150097719 | Balachandreswaran et al. | Apr 2015 | A1 |
20150123966 | Newman | May 2015 | A1 |
20150130790 | Vazquez, II et al. | May 2015 | A1 |
20150134995 | Park et al. | May 2015 | A1 |
20150138248 | Schrader | May 2015 | A1 |
20150155939 | Oshima et al. | Jun 2015 | A1 |
20150168221 | Mao et al. | Jun 2015 | A1 |
20150205126 | Schowengerdt | Jul 2015 | A1 |
20150235427 | Nobori et al. | Aug 2015 | A1 |
20150235431 | Schowengerdt | Aug 2015 | A1 |
20150253651 | Russell et al. | Sep 2015 | A1 |
20150256484 | Cameron | Sep 2015 | A1 |
20150269784 | Miyawaki et al. | Sep 2015 | A1 |
20150294483 | Wells et al. | Oct 2015 | A1 |
20150301955 | Yakovenko et al. | Oct 2015 | A1 |
20150310657 | Eden | Oct 2015 | A1 |
20150338915 | Publicover et al. | Nov 2015 | A1 |
20150355481 | Hilkes et al. | Dec 2015 | A1 |
20160004102 | Nisper et al. | Jan 2016 | A1 |
20160015470 | Border | Jan 2016 | A1 |
20160027215 | Burns et al. | Jan 2016 | A1 |
20160033770 | Fujimaki et al. | Feb 2016 | A1 |
20160051217 | Douglas et al. | Feb 2016 | A1 |
20160077338 | Robbins et al. | Mar 2016 | A1 |
20160085285 | Mangione-Smith | Mar 2016 | A1 |
20160085300 | Robbins et al. | Mar 2016 | A1 |
20160091720 | Stafford et al. | Mar 2016 | A1 |
20160093099 | Bridges | Mar 2016 | A1 |
20160093269 | Buckley et al. | Mar 2016 | A1 |
20160103326 | Kimura et al. | Apr 2016 | A1 |
20160123745 | Cotier et al. | May 2016 | A1 |
20160139402 | Lapstun | May 2016 | A1 |
20160139411 | Kang et al. | May 2016 | A1 |
20160155273 | Lyren et al. | Jun 2016 | A1 |
20160163063 | Ashman | Jun 2016 | A1 |
20160180596 | Gonzalez del Rosario | Jun 2016 | A1 |
20160187654 | Border et al. | Jun 2016 | A1 |
20160191887 | Casas | Jun 2016 | A1 |
20160202496 | Billetz et al. | Jul 2016 | A1 |
20160217624 | Finn et al. | Jul 2016 | A1 |
20160266412 | Yoshida | Sep 2016 | A1 |
20160267708 | Nistico et al. | Sep 2016 | A1 |
20160274733 | Hasegawa et al. | Sep 2016 | A1 |
20160287337 | Aram et al. | Oct 2016 | A1 |
20160300388 | Stafford et al. | Oct 2016 | A1 |
20160321551 | Priness et al. | Nov 2016 | A1 |
20160327798 | Xiao et al. | Nov 2016 | A1 |
20160334279 | Mittleman et al. | Nov 2016 | A1 |
20160357255 | Lindh et al. | Dec 2016 | A1 |
20160370404 | Quadrat et al. | Dec 2016 | A1 |
20160370510 | Thomas | Dec 2016 | A1 |
20170038607 | Camara | Feb 2017 | A1 |
20170060225 | Zha et al. | Mar 2017 | A1 |
20170061696 | Li et al. | Mar 2017 | A1 |
20170064066 | Das et al. | Mar 2017 | A1 |
20170100664 | Osterhout et al. | Apr 2017 | A1 |
20170102544 | Vallius et al. | Apr 2017 | A1 |
20170115487 | Travis | Apr 2017 | A1 |
20170122725 | Yeoh et al. | May 2017 | A1 |
20170123526 | Trail et al. | May 2017 | A1 |
20170127295 | Black et al. | May 2017 | A1 |
20170131569 | Aschwanden et al. | May 2017 | A1 |
20170147066 | Katz et al. | May 2017 | A1 |
20170160518 | Lanman et al. | Jun 2017 | A1 |
20170161951 | Fix et al. | Jun 2017 | A1 |
20170172409 | Cavin et al. | Jun 2017 | A1 |
20170185261 | Perez et al. | Jun 2017 | A1 |
20170192239 | Nakamura et al. | Jul 2017 | A1 |
20170201709 | Igarashi et al. | Jul 2017 | A1 |
20170205903 | Miller et al. | Jul 2017 | A1 |
20170206668 | Poulos et al. | Jul 2017 | A1 |
20170213388 | Margolis et al. | Jul 2017 | A1 |
20170214907 | Lapstun | Jul 2017 | A1 |
20170219841 | Popovich et al. | Aug 2017 | A1 |
20170232345 | Rofougaran et al. | Aug 2017 | A1 |
20170235126 | DiDomenico | Aug 2017 | A1 |
20170235129 | Kamakura | Aug 2017 | A1 |
20170235142 | Wall et al. | Aug 2017 | A1 |
20170235144 | Piskunov et al. | Aug 2017 | A1 |
20170235147 | Kamakura | Aug 2017 | A1 |
20170243403 | Daniels et al. | Aug 2017 | A1 |
20170246070 | Osterhout et al. | Aug 2017 | A1 |
20170254832 | Ho et al. | Sep 2017 | A1 |
20170256096 | Faaborg et al. | Sep 2017 | A1 |
20170258526 | Lang | Sep 2017 | A1 |
20170266529 | Reikmoto | Sep 2017 | A1 |
20170270712 | Tyson et al. | Sep 2017 | A1 |
20170281054 | Stever et al. | Oct 2017 | A1 |
20170287376 | Bakar et al. | Oct 2017 | A1 |
20170293141 | Schowengerdt et al. | Oct 2017 | A1 |
20170307886 | Stenberg et al. | Oct 2017 | A1 |
20170307891 | Bucknor et al. | Oct 2017 | A1 |
20170312032 | Amanatullah et al. | Nov 2017 | A1 |
20170322418 | Liu et al. | Nov 2017 | A1 |
20170322426 | Tervo | Nov 2017 | A1 |
20170329137 | Tervo | Nov 2017 | A1 |
20170332098 | Rusanovskyy et al. | Nov 2017 | A1 |
20170336636 | Amitai et al. | Nov 2017 | A1 |
20170336867 | Wilairat et al. | Nov 2017 | A1 |
20170357332 | Balan et al. | Dec 2017 | A1 |
20170363871 | Vallius | Dec 2017 | A1 |
20170371394 | Chan | Dec 2017 | A1 |
20170371661 | Sparling | Dec 2017 | A1 |
20180014266 | Chen | Jan 2018 | A1 |
20180024289 | Fattal | Jan 2018 | A1 |
20180039673 | Chen et al. | Feb 2018 | A1 |
20180044173 | Netzer | Feb 2018 | A1 |
20180052007 | Teskey et al. | Feb 2018 | A1 |
20180052501 | Jones, Jr. et al. | Feb 2018 | A1 |
20180056305 | Sankey et al. | Mar 2018 | A1 |
20180059305 | Popovich et al. | Mar 2018 | A1 |
20180067779 | Pillalamarri et al. | Mar 2018 | A1 |
20180070855 | Eichler | Mar 2018 | A1 |
20180082480 | White et al. | Mar 2018 | A1 |
20180084245 | Lapstun | Mar 2018 | A1 |
20180088185 | Woods et al. | Mar 2018 | A1 |
20180101214 | Mahindru et al. | Apr 2018 | A1 |
20180102981 | Kurtzman et al. | Apr 2018 | A1 |
20180108179 | Tomlin et al. | Apr 2018 | A1 |
20180114298 | Malaika et al. | Apr 2018 | A1 |
20180129112 | Osterhout | May 2018 | A1 |
20180131907 | Schmirler et al. | May 2018 | A1 |
20180136466 | Ko | May 2018 | A1 |
20180144691 | Choi et al. | May 2018 | A1 |
20180150971 | Adachi et al. | May 2018 | A1 |
20180151796 | Akahane | May 2018 | A1 |
20180172995 | Lee et al. | Jun 2018 | A1 |
20180188115 | Hsu et al. | Jul 2018 | A1 |
20180189568 | Powderly et al. | Jul 2018 | A1 |
20180190017 | Mendez et al. | Jul 2018 | A1 |
20180191990 | Motoyama et al. | Jul 2018 | A1 |
20180196084 | Tustaniwskyj | Jul 2018 | A1 |
20180217395 | Lin et al. | Aug 2018 | A1 |
20180218545 | Garcia et al. | Aug 2018 | A1 |
20180250589 | Cossairt et al. | Sep 2018 | A1 |
20180260218 | Gopal | Sep 2018 | A1 |
20180284877 | Klein | Oct 2018 | A1 |
20180292654 | Wall et al. | Oct 2018 | A1 |
20180299678 | Singer et al. | Oct 2018 | A1 |
20180357472 | Dreessen | Dec 2018 | A1 |
20190005069 | Filgueiras de Araujo et al. | Jan 2019 | A1 |
20190011691 | Peyman | Jan 2019 | A1 |
20190056591 | Tervo et al. | Feb 2019 | A1 |
20190087015 | Lam et al. | Mar 2019 | A1 |
20190101758 | Zhu et al. | Apr 2019 | A1 |
20190107723 | Lee et al. | Apr 2019 | A1 |
20190137788 | Suen | May 2019 | A1 |
20190155034 | Singer et al. | May 2019 | A1 |
20190155439 | Mukherjee et al. | May 2019 | A1 |
20190158926 | Kang et al. | May 2019 | A1 |
20190162950 | Lapstun | May 2019 | A1 |
20190167095 | Krueger | Jun 2019 | A1 |
20190172216 | Ninan et al. | Jun 2019 | A1 |
20190178654 | Hare | Jun 2019 | A1 |
20190179654 | Hare | Jun 2019 | A1 |
20190182415 | Sivan | Jun 2019 | A1 |
20190196690 | Chong et al. | Jun 2019 | A1 |
20190206116 | Xu et al. | Jul 2019 | A1 |
20190219815 | Price et al. | Jul 2019 | A1 |
20190243123 | Bohn | Aug 2019 | A1 |
20190287270 | Nakamura et al. | Sep 2019 | A1 |
20190318502 | He et al. | Oct 2019 | A1 |
20190318540 | Piemonte et al. | Oct 2019 | A1 |
20190321728 | Imai et al. | Oct 2019 | A1 |
20190347853 | Chen et al. | Nov 2019 | A1 |
20190380792 | Poltaretskyi et al. | Dec 2019 | A1 |
20190388182 | Kumar et al. | Dec 2019 | A1 |
20200066045 | Stahl et al. | Feb 2020 | A1 |
20200098188 | Bar-Zeev et al. | Mar 2020 | A1 |
20200100057 | Galon et al. | Mar 2020 | A1 |
20200110928 | Al Jazaery et al. | Apr 2020 | A1 |
20200117267 | Gibson et al. | Apr 2020 | A1 |
20200117270 | Gibson et al. | Apr 2020 | A1 |
20200184217 | Faulkner | Jun 2020 | A1 |
20200184653 | Faulker | Jun 2020 | A1 |
20200202759 | Ukai et al. | Jun 2020 | A1 |
20200242848 | Ambler et al. | Jul 2020 | A1 |
20200309944 | Thoresen et al. | Oct 2020 | A1 |
20200356161 | Wagner | Nov 2020 | A1 |
20200368616 | Delamont | Nov 2020 | A1 |
20200391115 | Leeper et al. | Dec 2020 | A1 |
20200409528 | Lee | Dec 2020 | A1 |
20210008413 | Asikainen et al. | Jan 2021 | A1 |
20210033871 | Jacoby et al. | Feb 2021 | A1 |
20210041951 | Gibson et al. | Feb 2021 | A1 |
20210053820 | Gurin et al. | Feb 2021 | A1 |
20210093391 | Poltaretskyi et al. | Apr 2021 | A1 |
20210093410 | Gaborit et al. | Apr 2021 | A1 |
20210093414 | Moore et al. | Apr 2021 | A1 |
20210097886 | Kuester et al. | Apr 2021 | A1 |
20210124901 | Liu et al. | Apr 2021 | A1 |
20210132380 | Wieczorek | May 2021 | A1 |
20210141225 | Meynen et al. | May 2021 | A1 |
20210142582 | Jones et al. | May 2021 | A1 |
20210158023 | Fu et al. | May 2021 | A1 |
20210158627 | Cossairt et al. | May 2021 | A1 |
20210173480 | Osterhout et al. | Jun 2021 | A1 |
20220366598 | Azimi et al. | Nov 2022 | A1 |
Number | Date | Country |
---|---|---|
100416340 | Sep 2008 | CN |
101449270 | Jun 2009 | CN |
102448566 | May 2012 | CN |
103460255 | Dec 2013 | CN |
104040410 | Sep 2014 | CN |
104603675 | May 2015 | CN |
105938426 | Sep 2016 | CN |
106662754 | May 2017 | CN |
107004303 | Aug 2017 | CN |
107683497 | Feb 2018 | CN |
109223121 | Jan 2019 | CN |
105190427 | Nov 2019 | CN |
0504930 | Mar 1992 | EP |
0535402 | Apr 1993 | EP |
0632360 | Jan 1995 | EP |
1215522 | Jun 2002 | EP |
1494110 | Jan 2005 | EP |
1938141 | Jul 2008 | EP |
1943556 | Jul 2008 | EP |
2290428 | Mar 2011 | EP |
2350774 | Aug 2011 | EP |
1237067 | Jan 2016 | EP |
3139245 | Mar 2017 | EP |
3164776 | May 2017 | EP |
3236211 | Oct 2017 | EP |
2723240 | Aug 2018 | EP |
2896986 | Feb 2021 | EP |
2499635 | Aug 2013 | GB |
2542853 | Apr 2017 | GB |
938DEL2004 | Jun 2006 | IN |
H03-036974 | Apr 1991 | JP |
H10-333094 | Dec 1998 | JP |
2002-015222 | Jan 2002 | JP |
2002-529806 | Sep 2002 | JP |
2003-029198 | Jan 2003 | JP |
2003-141574 | May 2003 | JP |
2003-228027 | Aug 2003 | JP |
2003-329873 | Nov 2003 | JP |
2005-151224 | Jun 2005 | JP |
2005-303843 | Oct 2005 | JP |
2007-012530 | Jan 2007 | JP |
2007-86696 | Apr 2007 | JP |
2007-273733 | Oct 2007 | JP |
2008-257127 | Oct 2008 | JP |
2009-090689 | Apr 2009 | JP |
2009-244869 | Oct 2009 | JP |
2010-014443 | Jan 2010 | JP |
2010-139575 | Jun 2010 | JP |
2010-146030 | Jul 2010 | JP |
2011-033993 | Feb 2011 | JP |
2011-257203 | Dec 2011 | JP |
2011-530131 | Dec 2011 | JP |
2012-015774 | Jan 2012 | JP |
2012-088777 | May 2012 | JP |
2012-235036 | Nov 2012 | JP |
2013-525872 | Jun 2013 | JP |
2013-206322 | Oct 2013 | JP |
2014-500522 | Jan 2014 | JP |
2014-90386 | May 2014 | JP |
2014-174366 | Sep 2014 | JP |
2014-192550 | Oct 2014 | JP |
2015-191032 | Nov 2015 | JP |
2016-502120 | Jan 2016 | JP |
2016-85463 | May 2016 | JP |
2016-516227 | Jun 2016 | JP |
2016-126134 | Jul 2016 | JP |
2017-015697 | Jan 2017 | JP |
2017-108444 | Jun 2017 | JP |
2017-153498 | Sep 2017 | JP |
2017-531840 | Oct 2017 | JP |
2017-535825 | Nov 2017 | JP |
6232763 | Nov 2017 | JP |
2018-503165 | Feb 2018 | JP |
6333965 | May 2018 | JP |
2018-173739 | Nov 2018 | JP |
2005-0010775 | Jan 2005 | KR |
10-2006-0059992 | Jun 2006 | KR |
10-2011-0006408 | Jan 2011 | KR |
10-1372623 | Mar 2014 | KR |
10-2017-0017243 | Feb 2017 | KR |
201219829 | May 2012 | TW |
201803289 | Jan 2018 | TW |
1991000565 | Jan 1991 | WO |
2000030368 | Jun 2000 | WO |
2002071315 | Sep 2002 | WO |
2004095248 | Nov 2004 | WO |
2006132614 | Dec 2006 | WO |
2007037089 | Apr 2007 | WO |
2007041678 | Apr 2007 | WO |
2007085682 | Aug 2007 | WO |
2007102144 | Sep 2007 | WO |
2008148927 | Dec 2008 | WO |
2009101238 | Aug 2009 | WO |
2010015807 | Feb 2010 | WO |
2014203440 | Dec 2010 | WO |
2012030787 | Mar 2012 | WO |
2013049012 | Apr 2013 | WO |
2013062701 | May 2013 | WO |
2013145536 | Oct 2013 | WO |
2014033306 | Mar 2014 | WO |
2015079610 | Jun 2015 | WO |
2015143641 | Oct 2015 | WO |
2015194597 | Dec 2015 | WO |
2016054092 | Apr 2016 | WO |
2017004695 | Jan 2017 | WO |
2017044761 | Mar 2017 | WO |
2017049163 | Mar 2017 | WO |
2017051595 | Mar 2017 | WO |
2017120475 | Jul 2017 | WO |
2017176861 | Oct 2017 | WO |
2017203201 | Nov 2017 | WO |
2018008232 | Jan 2018 | WO |
2018031261 | Feb 2018 | WO |
2018022523 | Feb 2018 | WO |
2018044537 | Mar 2018 | WO |
2018039273 | Mar 2018 | WO |
2018057564 | Mar 2018 | WO |
2018085287 | May 2018 | WO |
2018087408 | May 2018 | WO |
2018097831 | May 2018 | WO |
2018166921 | Sep 2018 | WO |
2018166921 | Sep 2018 | WO |
2018236587 | Dec 2018 | WO |
2019040493 | Feb 2019 | WO |
2019148154 | Aug 2019 | WO |
2020010226 | Jan 2020 | WO |
Entry |
---|
“Decision of Rejection mailed on Jan. 5, 2023 with English translation”, Chinese Patent Application No. 201880079474.6, (10 pages). |
“Final Office Action mailed on Mar. 10, 2023”, U.S. Appl. No. 17/357,795, (15 pages). |
“First Office Action mailed on Dec. 22, 2022 with English translation”, Chinese Patent Application No. 201980061450.2, (11 pages). |
“First Office Action mailed on Jan. 24, 2023 with English translation”, Japanese Patent Application No. 2020-549034, (7 pages). |
“First Office Action mailed on Jan. 30, 2023 with English translation”, Chinese Patent Application No. 201980082951.9, (5 pages). |
“First Office Action mailed on Mar. 6, 2023 with English translation”, Korean Patent Application No. 10-2020-7019685, (7 pages). |
“Non Final Office Action mailed on Feb. 3, 2023”, U.S. Appl. No. 17/429,100, (16 pages). |
“Non Final Office Action mailed on Feb. 3, 2023”, U.S. Appl. No. 17/497,965, (32 pages). |
“Non Final Office Action mailed on Mar. 1, 2023”, U.S. Appl. No. 18/046,739, (34 pages). |
“Extended European Search Report issued on Apr. 5, 2023”, European Patent Application No. 20888716.6, (11 pages). |
“First Office Action mailed Apr. 21, 2023 with English translation”, Japanese Patent Application No. 2021-509779, (26 pages). |
“First Office Action mailed on Apr. 13, 2023 with English Translation”, Japanese Patent Application No. 2020-567766, (7 pages). |
“First Office Action mailed on Mar. 27, 2023 with English translation”, Japanese Patent Application No. 2020-566617, (6 pages). |
“Non Final Office Action mailed on Apr. 13, 2023”, U.S. Appl. No. 17/098,043, (7 pages). |
“Non Final Office Action mailed on May 11, 2023”, U.S. Appl. No. 17/822,279, (24 pages). |
“Office Action mailed on Apr. 13, 2023 with English translation”, Japanese Patent Application No. 2020-533730, (13 pages). |
“Office Action mailed on Mar. 30, 2023 with English translation”, Japanese Patent Application No. 2020-566620, (10 pages). |
“Second Office Action mailed on May 2, 2023 with English Translation”, Japanese Patent Application No. 2020-549034, (6 pages). |
Li, Yujia , et al., “Graph Matching Networks for Learning the Similarity of Graph Structured Objects”, arxiv.org, Cornell University Library, 201 Olin Library Cornell University Ithaca, NY 14853, XP081268608, Apr. 29, 2019. |
Luo, Zixin , et al., “ContextDesc: Local Descriptor Augmentation With Cross-Modality Context”, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, XP033686823, DOI: 10.1109/CVPR.2019.00263 [retrieved on Jan. 8, 2020], Jun. 15, 2019, pp. 2522-2531. |
Zhang, Zen , et al., “Deep Graphical Feature Learning for the Feature Matching Problem”, 2019 IEEE/CVF International Conference On Computer Vision (ICCV), IEEE, XP033723985, DOI: 10.1109/ICCV.2019.00519 [retrieved on Feb. 24, 2020], Oct. 27, 2019, pp. 5086-5095. |
“Non Final Office Action mailed on Jan. 24, 2023”, U.S. Appl. No. 17/497,940, (10 pages). |
“ARToolKit: Hardware”, https://web.archive.org/web/20051013062315/http://www.hitl.washington.edu:80/artoolkit/documentation/hardware.htm (downloaded Oct. 26, 2020), Oct. 13, 2015, (3 pages). |
“Communication according to Rule 164(1) EPC mailed on Feb. 23, 2022”, European Patent Application No. 20753144.3, (11 pages). |
“Communication Pursuant to Article 94(3) EPC mailed on Sep. 4, 2019”, European Patent Application No. 10793707.0, (4 pages). |
“Communication Pursuant to Article 94(3) EPC mailed on Apr. 25, 2022”, European Patent Application No. 18885707.2, (5 pages). |
“Communication Pursuant to Article 94(3) EPC mailed on Jan. 4, 2022”, European Patent Application No. 20154070.5, (8 pages). |
“Communication Pursuant to Article 94(3) EPC mailed on May 30, 2022”, European Patent Application No. 19768418.6, (6 pages). |
“Communication Pursuant to Article 94(3) EPC mailed on Oct. 21, 2021”, European Patent Application No. 16207441.3, (4 pages). |
“Communication Pursuant to Rule 164(1) EPC mailed on Feb. 23, 2022”, European Patent Application No. 20753144.3, (11 pages). |
“Communication Pursuant to Rule 164(1) EPC mailed on Jul. 27, 2021”, European Patent Application No. 19833664.6, (11 pages). |
“European Search Report mailed on Oct. 15, 2020”, European Patent Application No. 20180623.9, (10 pages). |
“Extended European Search Report issued on Dec. 14, 2022”, European Patent Application No. 20886547.7, (8 pages). |
“Extended European Search Report issued on Jul. 20, 2022”, European Patent Application No. 19885958.9, (9 pages). |
“Extended European Search Report issued on May 20, 2020”, European Patent Application No. 20154070.5, (7 pages). |
“Extended European Search Report issued on Jan. 22, 2021”, European Patent Application No. 18890390.0, (11 pages). |
“Extended European Search Report issued on Nov. 3, 2020”, European Patent Application No. 18885707.2, (7 pages). |
“Extended European Search Report issued on Jun. 30, 2021”, European Patent Application No. 19811971.1, (9 pages). |
“Extended European Search Report issued on Mar. 4, 2021”, European Patent Application No. 19768418.6, (9 pages). |
“Extended European Search Report issued on Nov. 4, 2020”, European Patent Application No. 20190980.1, (14 pages). |
“Extended European Search Report issued on Aug. 24, 2022”, European Patent Application No. 20846338.0, (13 pages). |
“Extended European Search Report issued on Aug. 8, 2022”, European Patent Application No. 19898874.3, (8 pages). |
“Extended European Search Report issued on Sep. 8, 2022”, European Patent Application No. 20798769.4, (13 pages). |
“Extended European Search Report mailed on Nov. 3, 2022”, European Patent Application No. 20770244.0, (23 pages). |
“Extended European Search Report mailed on Jun. 12, 2017”, European Patent Application No. 16207441.3, (8 pages). |
“Extended European Search Report mailed on Jan. 28, 2022”, European Patent Application No. 19815876.8, (9 pages). |
“Extended European Search Report mailed on Jan. 4, 2022”, European Patent Application No. 19815085.6, (9 pages). |
“Extended European Search Report mailed on Jul. 16, 2021”, European Patent Application No. 19810142.0, (14 pages). |
“Extended European Search Report mailed on Jul. 30, 2021”, European Patent Application No. 19839970.1, (7 pages). |
“Extended European Search Report mailed on Jun. 19, 2020”, European Patent Application No. 20154750.2, (10 pages). |
“Extended European Search Report mailed on Mar. 22, 2022”, European Patent Application No. 19843487.0, (14 pages). |
“Extended European Search Report mailed on May 16, 2022”, European Patent Application No. 19871001.4, (9 pages). |
“Extended European Search Report mailed on May 30, 2022”, European Patent Application No. 20753144.3, (10 pages). |
“Extended European Search Report mailed on Oct. 27, 2021”, European Patent Application No. 19833664.6, (10 pages). |
“Extended European Search Report mailed on Sep. 20, 2021”, European Patent Application No. 19851373.1, (8 pages). |
“Extended European Search Report mailed on Sep. 28, 2021”, European Patent Application No. 19845418.3, (13 pages). |
“Final Office Action mailed on Aug. 10, 2020”, U.S. Appl. No. 16/225,961, (13 pages). |
“Final Office Action mailed on Dec. 29, 2022”, U.S. Appl. No. 17/098,059, (32 pages). |
“Final Office Action mailed on Dec. 4, 2019”, U.S. Appl. No. 15/564,517, (15 pages). |
“Final Office Action mailed on Feb. 19, 2020”, U.S. Appl. No. 15/552,897, (17 pages). |
“Final Office Action mailed on Feb. 23, 2022”, U.S. Appl. No. 16/748,193, (23 pages). |
“Final Office Action mailed on Feb. 3, 2022”, U.S. Appl. No. 16/864,721, (36 pages). |
“Final Office Action mailed on Jul. 13, 2022”, U.S. Appl. No. 17/262,991, (18 pages). |
“Final Office Action mailed on Jun. 15, 2021”, U.S. Appl. No. 16/928,313, (42 pages). |
“Final Office Action mailed on Mar. 1, 2021”, U.S. Appl. No. 16/214,575, (29 pages). |
“Final Office Action mailed on Mar. 19, 2021”, U.S. Appl. No. 16/530,776, (25 pages). |
“Final Office Action mailed on Nov. 24, 2020”, U.S. Appl. No. 16/435,933, (44 pages). |
“Final Office Action mailed on Sep. 17, 2021”, U.S. Appl. No. 16/938,782, (44 pages). |
“First Examination Report Mailed on Dec. 8, 2022”, Australian Patent Application No. 2018392482, (3 pages). |
“First Examination Report Mailed on Jul. 27, 2022”, Chinese Patent Application No. 201980036675.2, (5 pages). |
“First Examination Report Mailed on Jul. 28, 2022”, Indian Patent Application No. 202047024232, (6 pages). |
“First Examination Report Mailed on May 13, 2022”, Indian Patent Application No. 202047026359, (8 pages). |
“First Office Action mailed on Feb. 11, 2022 with English translation”, Chinese Patent Application No. 201880089255.6, (17 pages). |
“First Office Action mailed on Mar. 14, 2022 with English translation”, Chinese Patent Application No. 201880079474.6, (11 pages). |
“First Office Action mailed on Sep. 16, 2022 with English translation”, Chinese Patent Application No. 201980063642.7, (7 pages). |
“FS_XR5G: Permanent document, v0.4.0”, QUALCOMM Incorporated, 3GPP TSG-SA 4 Meeting 103 retrieved from the Internet: URL:http://www.3gpp.org/ftp/Meetings%5F3GPP%5FSYNC/SA4/Docs/S4%2DI90526%2Ezip [retrieved on Apr. 12, 2019], Apr. 12, 2019, (98 pages). |
“International Search Report and Written Opinion mailed on Feb. 12, 2021”, International Application No. PCT/US20/60555, (25 pages). |
“International Search Report and Written Opinion mailed on Mar. 12, 2020”, International PCT Patent Application No. PCT/US19/67919, (14 pages). |
“International Search Report and Written Opinion mailed on Aug. 15, 2019”, International PCT Patent Application No. PCT/US19/33987, (20 pages). |
“International Search Report and Written Opinion mailed on Jun. 15, 2020”, International PCT Patent Application No. PCT/US2020/017023, (13 pages). |
“International Search Report and Written Opinion mailed on Oct. 16, 2019”, International PCT Patent Application No. PCT/US19/43097, (10 pages). |
“International Search Report and Written Opinion mailed on Oct. 16, 2019”, International PCT Patent Application No. PCT/US19/36275, (10 pages). |
“International Search Report and Written Opinion mailed on Oct. 16, 2019”, International PCT Patent Application No. PCT/US19/43099, (9 pages). |
“International Search Report and Written Opinion mailed on Jun. 17, 2016”, International PCT Patent Application No. PCT/FI2016/050172, (9 pages). |
“International Search Report and Written Opinion mailed on Feb. 2, 2021”, International PCT Patent Application No. PCT/US20/60550, (9 pages). |
“International Search Report and Written Opinion mailed on Oct. 22, 2019”, International PCT Patent Application No. PCT/US19/43751, (9 pages). |
“International Search Report and Written Opinion mailed on Dec. 23, 2019”, International PCT Patent Application No. PCT/US19/44953, (11 pages). |
“International Search Report and Written Opinion mailed on May 23, 2019”, International PCT Patent Application No. PCT/US18/66514, (17 pages). |
“International Search Report and Written Opinion mailed on Sep. 26, 2019”, International PCT Patent Application No. PCT/US19/40544, (12 pages). |
“International Search Report and Written Opinion mailed on Aug. 27, 2019”, International PCT Application No. PCT/US2019/035245, (8 pages). |
“International Search Report and Written Opinion mailed on Dec. 27, 2019”, International Application No. PCT/US19/47746, (16 pages). |
“International Search Report and Written Opinion mailed on Dec. 3, 2020”, International Patent Application No. PCT/US20/43596, (25 pages). |
“International Search Report and Written Opinion mailed on Sep. 30, 2019”, International Patent Application No. PCT/US19/40324, (7 pages). |
“International Search Report and Written Opinion mailed on Sep. 4, 2020”, International Patent Application No. PCT/US20/31036, (13 pages). |
“International Search Report and Written Opinion mailed on Jun. 5, 2020”, International Patent Application No. PCT/US20/19871, (9 pages). |
“International Search Report and Written Opinion mailed on Aug. 8, 2019”, International PCT Patent Application No. PCT/US2019/034763, (8 pages). |
“International Search Report and Written Opinion mailed on Oct. 8, 2019”, International PCT Patent Application No. PCT/US19/41151, (7 pages). |
“International Search Report and Written Opinion mailed on Jan. 9, 2020”, International Application No. PCT/US19/55185, (10 pages). |
“International Search Report and Written Opinion mailed on Feb. 28, 2019”, International Patent Application No. PCT/US18/64686, (8 pages). |
“International Search Report and Written Opinion mailed on Feb. 7, 2020”, International PCT Patent Application No. PCT/US2019/061265, (11 pages). |
“International Search Report and Written Opinion mailed on Jun. 11, 2019”, International PCT Application No. PCT/US19/22620, (7 pages). |
“Invitation to Pay Additional Fees mailed Aug. 15, 2019”, International PCT Patent Application No. PCT/US19/36275, (2 pages). |
“Invitation to Pay Additional Fees mailed Sep. 24, 2020”, International Patent Application No. PCT/US2020/043596, (3 pages). |
“Invitation to Pay Additional Fees mailed on Oct. 22, 2019”, International PCT Patent Application No. PCT/US19/47746, (2 pages). |
“Invitation to Pay Additional Fees mailed on Apr. 3, 2020”, International Patent Application No. PCT/US20/17023, (2 pages). |
“Invitation to Pay Additional Fees mailed on Oct. 17, 2019”, International PCT Patent Application No. PCT/US19/44953, (2 pages). |
“Multi-core processor”, TechTarget, 2013, (1 page). |
“Non Final Office Action mailed on Apr. 1, 2022”, U.S. Appl. No. 17/256,961, (65 pages). |
“Non Final Office Action mailed on Apr. 11, 2022”, U.S. Appl. No. 16/938,782, (52 pages). |
“Non Final Office Action mailed on Apr. 12, 2022”, U.S. Appl. No. 17/262,991, (60 pages). |
“Non Final Office Action mailed on Aug. 21, 2019”, U.S. Appl. No. 15/564,517, (14 pages). |
“Non Final Office Action mailed on Aug. 4, 2021”, U.S. Appl. No. 16/864,721, (21 pages). |
“Non Final Office Action mailed on Dec. 7, 2022”, U.S. Appl. No. 17/357,795, (63 pages). |
“Non Final Office Action mailed on Feb. 2, 2022”, U.S. Appl. No. 16/783,866, (8 pages). |
“Non Final Office Action mailed on Jan. 26, 2021”, U.S. Appl. No. 16/928,313, (33 pages). |
“Non Final Office Action mailed on Jan. 27, 2021”, U.S. Appl. No. 16/225,961, (15 pages). |
“Non Final Office Action mailed on Jul. 26, 2022”, U.S. Appl. No. 17/098,059, (28 pages). |
“Non Final Office Action mailed on Jul. 27, 2020”, U.S. Appl. No. 16/435,933, (16 pages). |
“Non Final Office Action mailed on Jul. 9, 2021”, U.S. Appl. No. 17/002,663, (43 pages). |
“Non Final Office Action mailed on Jul. 9, 2021”, U.S. Appl. No. 16/833,093, (47 pages). |
“Non Final Office Action mailed on Jun. 10, 2021”, U.S. Appl. No. 16/938,782, (40 Pages). |
“Non Final Office Action mailed on Jun. 17, 2020”, U.S. Appl. No. 16/682,911, (22 pages). |
“Non Final Office Action mailed on Jun. 19, 2020”, U.S. Appl. No. 16/225,961, (35 pages). |
“Non Final Office Action mailed on Jun. 29, 2021”, U.S. Appl. No. 16/698,588, (58 pages). |
“Non Final Office Action mailed on Mar. 3, 2021”, U.S. Appl. No. 16/427,337, (41 pages). |
“Non Final Office Action mailed on Mar. 31, 2022”, U.S. Appl. No. 17/257,814, (60 pages). |
“Non Final Office Action mailed on Mar. 9, 2022”, U.S. Appl. No. 16/870,676, (57 pages). |
“Non Final Office Action mailed on May 10, 2022”, U.S. Appl. No. 17/140,921, (25 pages). |
“Non Final Office Action mailed on May 17, 2022”, U.S. Appl. No. 16/748,193, (11 pages). |
“Non Final Office Action mailed on May 26, 2021”, U.S. Appl. No. 16/214,575, (19 pages). |
“Non Final Office Action mailed on Nov. 19, 2019”, U.S. Appl. No. 16/355,611, (31 pages). |
“Non Final Office Action mailed on Nov. 5, 2020”, U.S. Appl. No. 16/530,776, (45 pages). |
“Non Final Office Action mailed on Oct. 22, 2019”, U.S. Appl. No. 15/859,277, (15 pages). |
“Non Final Office Action mailed on Sep. 1, 2020”, U.S. Appl. No. 16/214,575, (40 pages). |
“Non Final Office Action mailed on Sep. 19, 2022”, U.S. Appl. No. 17/263,001, (14 pages). |
“Non Final Office Action mailed on Sep. 20, 2021”, U.S. Appl. No. 17/105,848, (56 pages). |
“Non Final Office Action mailed on Sep. 29, 2021”, U.S. Appl. No. 16/748,193, (62 pages). |
“Notice of Allowance mailed on Mar. 25, 2020”, U.S. Appl. No. 15/564,517, (11 pages). |
“Notice of Allowance mailed on Oct. 5, 2020”, U.S. Appl. No. 16/682,911, (27 pages). |
“Notice of Reason for Rejection mailed on Oct. 28, 2022 with English translation”, Japanese Patent Application No. 2020-531452, (3 pages). |
“Notice of Reason of Refusal mailed on Sep. 11, 2020 with English translation”, Japanese Patent Application No. 2019-140435, (6 pages). |
“Office Action mailed on Nov. 24, 2022 with English Translation”, Japanese Patent Application No. 2020-533730, (11 pages). |
“Phototourism Challenge”, CVPR 2019 Image Matching Workshop. https://image matching-workshop. github.io., (16 pages). |
“Second Office Action mailed on Jul. 13, 2022 with English Translation”, Chinese Patent Application No. 201880079474.6, (10 pages). |
“Second Office Action mailed on Jun. 20, 2022 with English Translation”, Chinese Patent Application No. 201880089255.6, (14 pages). |
“Summons to attend oral proceedings pursuant to Rule 115(1) EPC mailed on Jul. 15, 2019”, European Patent Application No. 15162521.7, (7 pages). |
Aarik, J., et al., “Effect of crystal structure on optical properties of TiO2 films grown by atomic layer deposition”, Thin Solid Films; Publication [online). May 19, 1998 [retrieved Feb. 19, 2020]. Retrieved from the Internet: <URL: https://www.sciencedirect.com/science/article/pii/S0040609097001351 ?via%3Dihub>; DOI: 10.1016/S0040-6090(97)00135-1; see entire document, (2 pages). |
Altwaijry, et al., “Learning to Detect and Match Keypoints with Deep Architectures”, Proceedings of the British Machine Vision Conference (BMVC), BMVA Press, Sep. 2016, [retrieved on Jan. 8, 2021 (Jan. 8, 2021 )] < URL: http://www.bmva.org/bmvc/2016/papers/paper049/index.html >, en lire document, especially Abstract. |
Anonymous, “Koi Pond: Top iPhone App Store Paid App”, https://web.archive.org/web/20080904061233/https://www.iphoneincanada.ca/reviews /koi-pond-top-iphone-app-store-paid-app/—[retrieved on Aug. 9, 2022]. |
Arandjelović, Relja, et al., “Three things everyone should know to improve object retrieval”, CVPR, 2012, (8 pages). |
Azom, “Silica—Silicon Dioxide (SiO2)”, AZO Materials; Publication [Online]. Dec. 13, 2001 [retrieved Feb. 19, 2020]. Retrieved from the Internet: <URL: https://www.azom.com/article.aspx?Article1D=1114>. |
Azuma, Ronald T., “A Survey of Augmented Reality”, Presence: Teleoperators and Virtual Environments 6, 4 (Aug. 1997), 355-385; https://web.archive.org/web/20010604100006/http://www.cs.unc.edu/˜azuma/ARpresence.pdf (downloaded Oct. 26, 2020). |
Azuma, Ronald T., “Predictive Tracking for Augmented Reality”, Department of Computer Science, Chapel Hill NC; TR95-007, Feb. 1995, 262 pages. |
Battaglia, Peter W, et al., “Relational inductive biases, deep learning, and graph networks”, arXiv:1806.01261, Oct. 17, 2018, pp. 1-40. |
Berg, Alexander C, et al., “Shape matching and object recognition using low distortion correspondences”, In CVPR, 2005, (8 pages). |
Bian, Jiawang, et al., “GMS: Grid-based motion statistics for fast, ultra-robust feature correspondence.”, In CVPR (Conference on Computer Vision and Pattern Recognition), 2017, (10 pages). |
Bimber, Oliver, et al., “Spatial Augmented Reality: Merging Real and Virtual Worlds”, https://web.media.mit.edu/˜raskar/book/BimberRaskarAugmentedRealityBook.pdf; published by A K Peters/CRC Press (Jul. 31, 2005); eBook (3rd Edition, 2007), (393 pages). |
Brachmann, Eric, et al., “Neural-Guided RANSAC: Learning Where to Sample Model Hypotheses”, In ICCV (International Conference on Computer Vision ), arXiv:1905.04132v2 [cs.CV] Jul. 31, 2019, (17 pages). |
Butail, et al., “Putting the fish in the fish tank: Immersive VR for animal behavior experiments”, In: 2012 IEEE International Conference on Robotics and Automation. May 18, 2012 (May 18, 2012) Retrieved on Nov. 14, 2020 (Nov. 14, 2020) from <http:/lcdcl.umd.edu/papers/icra2012.pdf> entire document. |
Caetano, Tibério S, et al., “Learning graph matching”, IEEE TPAMI, 31(6):1048-1058, 2009. |
Cech, Jan, et al., “Efficient sequential correspondence selection by cosegmentation”, IEEE TPAMI, 32(9):1568-1581, Sep. 2010. |
Chittineni, C., et al., “Single filters for combined image geometric manipulation and enhancement”, Proceedings of SPIE vol. 1903, Image and Video Processing, Apr. 8, 1993, San Jose, CA. (Year: 1993), pp. 111-121. |
Cuturi, Marco, “Sinkhorn distances: Lightspeed computation of optimal transport”, NIPS, 2013, (9 pages). |
Dai, Angela, et al., “ScanNet: Richly-annotated 3d reconstructions of indoor scenes”, In CVPR, arXiv:1702.04405v2 [cs.CV] Apr. 11, 2017, (22 pages). |
Deng, Haowen, et al., “PPFnet: Global context aware local features for robust 3d point matching”, In CVPR, arXiv:1802.02669v2 [cs.CV] Mar. 1, 2018, (12 pages). |
Detone, Daniel, et al., “Deep image homography estimation”, In RSS Work- shop: Limits and Potentials of Deep Learning in Robotics, arXiv:1606.03798v1 [cs.CV] Jun. 13, 2016, (6 pages). |
Detone, Daniel, et al., “Self-improving visual odometry”, arXiv:1812.03245, Dec. 8, 2018, (9 pages). |
Detone, Daniel, et al., “SuperPoint: Self-supervised interest point detection and description”, In CVPR Workshop on Deep Learning for Visual SLAM, arXiv:1712.07629v4 [cs.CV] Apr. 19, 2018, (13 pages). |
Dusmanu, Mihai, et al., “D2-net: A trainable CNN for joint detection and description of local features”, CVPR, arXiv:1905.03561v1 [cs.CV] May 9, 2019, (16 pages). |
Ebel, Patrick, et al., “Beyond cartesian representations for local descriptors”, ICCV, arXiv:1908.05547v1 [cs.CV] Aug. 15, 2019, (11 pages). |
Fischler, Martin A, et al., “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography”, Communications of the ACM, 24(6): 1981, pp. 381-395. |
Gilmer, Justin, et al., “Neural message passing for quantum chemistry”, In ICML, arXiv:1704.01212v2 [cs.LG] Jun. 12, 2017, (14 pages). |
Giuseppe, Donato, et al., “Stereoscopic helmet mounted system for real time 3D environment reconstruction and indoor ego—motion estimation”, Proc. SPIE 6955, Head- and Helmet-Mounted Displays XIII: Design and Applications, SPIE Defense and Security Symposium, 2008, Orlando, Florida, United States, 69550P. |
Goodfellow, “Titanium Dioxide—Titania (TiO2)”, AZO Materials; Publication [online]. Jan. 11, 2002 [retrieved Feb. 19, 2020]. Retrieved from the Internet: <URL: https://www.azom.com/article.aspx?Article1D=1179>. |
Hartley, Richard, et al., “Multiple View Geometry in Computer Vision”, Cambridge University Press, 2003, pp. 1-673. |
Jacob, Robert J.K., “Eye Tracking in Advanced Interface Design”, Human-Computer Interaction Lab, Naval Research Laboratory, Washington, D.C., date unknown. 2003, pp. 1-50. |
Lee, et al., “Self-Attention Graph Pooling”, Cornell University Library/Computer Science/Machine Learning, Apr. 17, 2019 [retrieved on Jan. 8, 2021 from the Internet< URL: https://arxiv.org/abs/1904.08082 >, entire document. |
Lee, Juho, et al., “Set transformer: A frame-work for attention-based permutation-invariant neural networks”, ICML, arXiv:1810.00825v3 [cs.LG] May 26, 2019, (17 pages). |
Leordeanu, Marius, et al., “A spectral technique for correspondence problems using pairwise constraints”, Proceedings of (ICCV) International Conference on Computer Vision, vol. 2, pp. 1482-1489, Oct. 2005, (8 pages). |
Levola, T., “Diffractive Optics for Virtual Reality Displays”, Journal of the SID Eurodisplay May 14, 2005, XP008093627, chapters 2-3, Figures 2 and 10, pp. 467-475. |
Levola, Tapani, “Invited Paper: Novel Diffractive Optical Components for Near to Eye Displays—Nokia Research Center”, SID 2006 DIGEST, 2006 SID International Symposium, Society for Information Display, vol. XXXVII, May 24, 2005, chapters 1-3, figures 1 and 3, pp. 64-67. |
Li, Yujia, et al., “Graph matching networks for learning the similarity of graph structured objects”, ICML, arXiv:1904.12787v2 [cs.LG] May 12, 2019, (18 pages). |
Li, Zhengqi, et al., “Megadepth: Learning single—view depth prediction from internet photos”, In CVPR, fromarXiv: 1804.00607v4 [cs.CV] Nov. 28, 2018, (10 pages). |
Libovicky, et al., “Input Combination Strategies for Multi-Source Transformer Decoder”, Proceedings of the Third Conference on Machine Translation (WMT). vol.1: Research Papers, Belgium, Brussels, Oct. 31-Nov. 1, 2018; retrieved on Jan. 8, 2021 (Jan. 8, 2021 ) from < URL: https://doi.org/10.18653/v1/V18-64026 >, entire document. |
Loiola, Eliane Maria, et al., “A survey for the quadratic assignment problem”, European journal of operational research, 176(2): 2007, pp. 657-690. |
Lowe, David G, “Distinctive image features from scale—invariant keypoints”, International Journal of Computer Vision, 60(2): 91-110, 2004, (28 pages). |
Luo, Zixin, et al., “ContextDesc: Local descriptor augmentation with cross-modality context”, CVPR, arXiv:1904.04084v1 [cs.CV] Apr. 8, 2019, (14 pages). |
Memon, F., et al., “Synthesis, Characterization and Optical Constants of Silicon Oxycarbide”, EPJ Web of Conferences; Publication [online). Mar. 23, 2017 [retrieved Feb. 19, 2020) .<URL: https://www.epj-conferences.org/articles/epjconf/pdf/2017/08/epjconf_nanop2017 _00002.pdf>; DOI: 10.1051/epjconf/201713900002, (8 pages). |
Molchanov, Pavlo, et al., “Short-range FMCW monopulse radar for hand-gesture sensing”, 2015 IEEE Radar Conference (RadarCon) (2015), pp. 1491-1496. |
Mrad, et al., “A framework for System Level Low Power Design Space Exploration”, 1991. |
Munkres, James, “Algorithms for the assignment and transportation problems”, Journal of the Society for Industrial and Applied Mathematics, 5(1): 1957, pp. 32-38. |
Ono, Yuki, et al., “LF-Net: Learning local features from images”, 32nd Conference on Neural Information Processing Systems (NIPS 2018), arXiv:1805.09662v2 [cs.CV] Nov. 22, 2018, (13 pages). |
Paszke, Adam, et al., “Automatic differentiation in Pytorch”, 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, (4 pages). |
Peyré, Gabriel, et al., “Computational Optimal Transport”, Foundations and Trends in Machine Learning, 11(5-6):355-607, 2019; arXiv:1803.00567v4 [stat.ML] Mar. 18, 2020, (209 pages). |
Qi, Charles Ruizhongtai, et al., “Pointnet++: Deep hierarchical feature learning on point sets in a metric space.”, 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA., Jun. 7, 2017, (10 pages). |
Qi, Charles R, et al., “Pointnet: Deep Learning on Point Sets for 3D Classification and Segmentation”, CVPR, arXiv:1612.00593v2 [cs.CV] Apr. 10, 2017, (19 pages). |
Radenović, Filip, et al., “Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking”, CVPR, arXiv:1803.11285v1 [cs.CV] Mar. 29, 2018, (10 pages). |
Raguram, Rahul, et al., “A comparative analysis of ransac techniques leading to adaptive real-time random sample consensus”, Computer Vision—ECCV 2008, 10th European Conference on Computer Vision, Marseille, France, Oct. 12-18, 2008, Proceedings, Part I, (15 pages). |
Ranftl, René, et al., “Deep fundamental matrix estimation”, European Conference on Computer Vision (ECCV), 2018, (17 pages). |
Revaud, Jerome, et al., “R2D2: Repeatable and Reliable Detector and Descriptor”, In NeurIPS, arXiv:1906.06195v2 [cs.CV] Jun. 17, 2019, (12 pages). |
Rocco, Ignacio, et al., “Neighbourhood Consensus Networks”, 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montreal, Canada, arXiv:1810.10510v2 [cs.CV] Nov. 29, 2018, (20 pages). |
Rublee, Ethan, et al., “ORB: An efficient alternative to SIFT or SURF”, Proceedings of the IEEE International Conference on Computer Vision. 2564-2571. 2011; 10.1109/ICCV.2011.612654, (9 pages). |
Sarlin, et al., “SuperGlue: Learning Feature Matching with Graph Neural Networks”, Cornell University Library/Computer Science/ Computer Vision and Pattern Recognition, Nov. 26, 2019 [retrieved on Jan. 8, 2021 from the Internet< URL: https://arxiv.org/abs/1911.11763 >, entire document. |
Sattler, Torsten, et al., “SCRAMSAC: Improving RANSAC's efficiency with a spatial consistency filter”, ICCV, 2009: 2090-2097., (8 pages). |
Schonberger, Johannes Lutz, et al., “Pixelwise view selection for un-structured multi-view stereo”, Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, Oct. 11-14, 2016, Proceedings, Part III, pp. 501-518, 2016. |
Schonberger, Johannes Lutz, et al., “Structure-from-motion revisited”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 4104-4113, (11 pages). |
Sheng, Liu, et al., “Time-multiplexed dual-focal plane head-mounted display with a liquid lens”, Optics Letters, Optical Society of Amer I CA, US, vol. 34, No. 11, Jun. 1, 2009 (Jun. 1, 2009), XP001524475, ISSN: 0146-9592, pp. 1642-1644. |
Sinkhorn, Richard, et al., “Concerning nonnegative matrices and doubly stochastic matrices.”, Pacific Journal of Mathematics, 1967, pp. 343-348. |
Spencer, T., et al., “Decomposition of poly(propylene carbonate) with UV sensitive iodonium 11 salts”, Polymer Degradation and Stability; (online]. Dec. 24, 2010 (retrieved Feb. 19, 2020]., (17 pages). |
Tanriverdi, Vildan, et al., “Interacting With Eye Movements in Virtual Environments”, Department of Electrical Engineering and Computer Science, Tufts University; Proceedings of the SIGCHI conference on Human Factors in Computing Systems, Apr. 2000, pp. 1-8. |
Thomee, Bart, et al., “YFCC100m: The new data in multimedia research”, Communications of the ACM, 59(2):64-73, 2016; arXiv:1503.01817v2 [cs.MM] Apr. 25, 2016, (8 pages). |
Torresani, Lorenzo, et al., “Feature correspondence via graph matching: Models and global optimization”, Computer Vision—ECCV 2008, 10th European Conference on Computer Vision, Marseille, France, Oct. 12-18, 2008, Proceedings, Part II, (15 pages). |
Tuytelaars, Tinne, et al., “Wide baseline stereo matching based on local, affinely invariant regions”, BMVC, 2000, pp. 1-14. |
Ulyanov, Dmitry, et al., “Instance normalization: The missing ingredient for fast stylization”, arXiv:1607.08022v3 [cs.CV] Nov. 6, 2017, (6 pages). |
Vaswani, Ashish, et al., “Attention is all you need”, 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA; arXiv:1706.03762v5 [cs.CL] Dec. 6, 2017, (15 pages). |
Veličkovič, Petar, et al., “Graph attention networks”, ICLR, arXiv:1710.10903v3 [stat.ML] Feb. 4, 2018, (12 pages). |
Villani, Cédric, “Optimal transport: old and new”, vol. 338. Springer Science & Business Media, Jun. 2008, pp. 1-998. |
Wang, Xiaolong, et al., “Non-local neural networks”, CVPR, arXiv:1711.07971v3 [cs.CV] Apr. 13, 2018, (10 pages). |
Wang, Yue, et al., “Deep Closest Point: Learning representations for point cloud registration”, ICCV, arXiv:1905.03304v1 [cs.CV] May 8, 2019, (10 pages). |
Wang, Yue, et al., “Dynamic Graph CNN for learning on point clouds”, ACM Transactions on Graphics, arXiv:1801.07829v2 [cs.CV] Jun. 11, 2019, (13 pages). |
Weissel, et al., “Process cruise control: event-driven clock scaling for dynamic power management”, Proceedings of the 2002 international conference on Compilers, architecture, and synthesis for embedded systems. Oct. 11, 2002 (Oct. 11, 2002) Retrieved on May 16, 2020 (May 16, 2020) from <URL: https://dl.acm.org/doi/pdf/10.1145/581630.581668>. |
Yi, Kwang Moo, et al., “Learning to find good correspondences”, CVPR, arXiv:1711.05971v2 [cs.CV] May 21, 2018, (13 pages). |
Yi, Kwang Moo, et al., “Lift: Learned invariant feature transform”, ECCV, arXiv:1603.09114v2 [cs.CV] Jul. 29, 2016, (16 pages). |
Zaheer, Manzil, et al., “Deep Sets”, 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA; arXiv:1703.06114v3 [cs.LG] Apr. 14, 2018, (29 pages). |
Zhang, Jiahui, et al., “Learning two-view correspondences and geometry using order-aware network”, ICCV; aarXiv:1908.04964v1 [cs.CV] Aug. 14, 2019, (11 pages). |
Zhang, Li, et al., “Dual graph convolutional net- work for semantic segmentation”, BMVC, 2019; arXiv:1909.06121v3 [cs.CV] Aug. 26, 2020, (18 pages). |
“Communication Pursuant to Article 94(3) EPC mailed on Feb. 21, 2024”, European Patent Application No. 20770244.0, (8 pages). |
“Communication Pursuant to Article 94(3) EPC mailed on Feb. 28, 2023”, European Patent Application No. 19845418.3, (6 Pages). |
“Communication Pursuant to Article 94(3) EPC mailed on Jul. 28, 2023”, European Patent Application No. 19843487.0, (15 pages). |
“Communication Pursuant to Article 94(3) EPC mailed on Mar. 11, 2024”, European Patent Application No. 20798769.4, (12 pages). |
“Communication Pursuant to Article 94(3) EPC mailed on May 23, 2023”, European Patent Application No. 18890390.0, (5 pages). |
“Communication Pursuant to Article 94(3) EPC mailed on Oct. 6, 2023”, European Patent Application No. 19851373.1, (6 pages). |
“Extended European Search Report issued on Jan. 8, 2024”, European Patent Application No. 23195266.4, (8 pages). |
“Extended European Search Report issued on Apr. 25, 2024”, European Patent Application No. 23208907.8, (9 pages). |
“Extended European Search Report issued on Jul. 9, 2024”, European Patent Application No. 24166847.4, (8 pages). |
“Final Office Action mailed Oct. 16, 2023”, U.S. Appl. No. 17/098,043, (7 pages). |
“Final Office Action mailed on Dec. 1, 2023”, U.S. Appl. No. 17/357,795, (18 pages). |
“Final Office Action mailed on May 24, 2024”, U.S. Appl. No. 18/046,739, (52 pages). |
“Final Office Action mailed on Sep. 8, 2023 with English translation”, Japanese Patent Application No. 2020-566620, (18 pages). |
“First Examination Report Mailed on Aug. 8, 2023”, Australian Patent Application No. 2018379105, (3 pages). |
“First Office Action mailed Dec. 12, 2023 with English translation”, Japanese Patent Application No. 2021-545712, (8 pages). |
“First Office Action mailed Dec. 20, 2023 with English translation”, Chinese Patent Application No. 201980050600.X, (21 pages). |
“First Office Action mailed Dec. 27, 2023 with English translation”, Chinese Patent Application No. 201980075942.7, (7 pages). |
“First Office Action mailed Jul. 4, 2023 with English translation”, Japanese Patent Application No. 2021-505669, (6 pages). |
“First Office Action mailed Jun. 20, 2024 with English translation”, Japanese Patent Application No. 2021-564496, (14 pages). |
“First Office Action mailed Jun. 24, 2024 with English translation”, Japanese Patent Application No. 2022-504602, (7 pages). |
“First Office Action mailed Mar. 1, 2024 with English translation”, Japanese Patent Application No. 2021-553297, (5 pages). |
“First Office Action mailed Mar. 20, 2024 with English translation”, Chinese Patent Application No. 202080048293.4, (22 pages). |
“First Office Action mailed Nov. 2, 2023 with English translation”, Chinese Patent Application No. 201980090867.1, (16 pages). |
“First Office Action mailed on Dec. 11, 2023 with translation”, Chinese Patent Application No. 201980032005.3, (17 pages). |
“First Office Action mailed on Dec. 25, 2023 with English translation”, Chinese Patent Application No. 2019800046303.8, (13 pages). |
“First Office Action mailed on Feb. 1, 2024 with English translation”, Chinese Patent Application No. 202080018865.4, (9 pages). |
“First Office Action mailed on Jun. 13, 2023 with English translation”, Japanese Patent Application No. 2020-567853, (7 pages). |
“First Office Action mailed on Mar. 25, 2024 with English translation”, Chinese Patent Application No. 202080018919.7, (21 pages). |
“First Office Action mailed on May 26, 2023 with English translation”, Japanese Patent Application No. 2021-500607, (6 pages). |
“First Office Action mailed on May 30, 2023 with English translation”, Japanese Patent Application No. 2021-519873, (8 pages). |
“First Office Action mailed Sep. 29, 2023 with English translation”, Japanese Patent Application No. 2023-10887, (5 pages). |
“Non Final Office Action mailed Nov. 19. 2019”, U.S. Appl. No. 16/355,611, (31 pages). |
“Non Final Office Action mailed on Aug. 2, 2023”, U.S. Appl. No. 17/807,600, (25 pages). |
“Non Final Office Action mailed on Feb. 26, 2024”, U.S. Appl. No. 18/046,739, (48 pages). |
“Non Final Office Action mailed on Jul. 20, 2023”, U.S. Appl. No. 17/650,188, (11 pages). |
“Non Final Office Action mailed on Jun. 14, 2023”, U.S. Appl. No. 17/516,483, (10 pages). |
“Non Final Office Action mailed on Jun. 17, 2024”, U.S. Appl. No. 18/348,732, (19 pages). |
“Non Final Office Action mailed on May 16, 2024”, U.S. Appl. No. 18/361,546, (11 pages). |
“Non Final Office Action mailed on Nov. 22, 2023”, U.S. Appl. No. 17/268,376, (8 pages). |
“Non Final Office Action mailed on Nov. 3, 2023”, U.S. Appl. No. 17/416,248, (17 pages). |
“Non Final Office Action mailed on Oct. 11, 2023”, U.S. Appl. No. 17/357,795, (14 pages). |
“Non Final Office Action mailed on Oct. 24, 2023”, U.S. Appl. No. 17/259,020, (21 pages). |
“Notice of Allowance mailed on Jul. 27, 2023 with English translation”, Korean Patent Application No. 10-2020-7019685, (4 pages). |
“Office Action mailed Nov. 21, 2023 with English Translation”, Japanese Patent Application No. 2021-535716, (15 pages). |
“Office Action mailed on Dec. 14, 2023 with English translation”, Japanese Patent Application No. 2021-526564, (13 pages). |
“Office Action mailed on Feb. 19, 2024 with English translation”, Korean Patent Application No. 10-2020-7020552, (18 pages). |
“Office Action mailed on Feb. 26, 2024 with English translation”, Chinese Patent Application No. 201980069194.1, (11 pages). |
“Office Action mailed on Jul. 20, 2023 with English translation”, Japanese Patent Application No. 2021-505884, (6 pages). |
“Office Action mailed on Jun. 8, 2023 with English translation”, Japanese Patent Application No. 2021-503762, (6 pages). |
“Office Action mailed on Mar. 6, 2024 with English translation”, Chinese Patent Application No. 201980053016.X, (7 pages). |
“Extended European Search Report issued on Aug. 6, 2024”, European Patent Application No. 24184599.9, (14 pages). |
“First Office Action with English translation dated Aug. 8, 2024”, Chinese Patent Application No. 202080053774.4, (23 pages). |
“Non Final Office Action mailed on Sep. 24, 2024”, U.S. Appl. No. 18/597,716, (9 pages). |
“Penultimate Office Action mailed on Sep. 17, 2024 with English translation”, Japanese Patent Application No. 2023-115047, (7 pages). |
“Second Office Action with English translation mailed on Jul. 2, 2024”, Chinese Patent Application No. 201980032005.3, (15 pages). |
“Communication Pursuant to Article 94(3) EPC mailed Nov. 28, 2024”, European Patent Application No. 19885958.9, (5 pages). |
“Communication Pursuant to Article 94(3) EPC mailed on Nov. 21, 2024”, European Patent Application No. 20846338.0, (11 pages). |
“Extended European Search Report issued on Dec. 2, 2024”, European Patent Application No. 24167829.1, (7 pages). |
“Final Office Action mailed on Dec. 13, 2024”, Japanese Patent Application No. 2021-564496, (13 pages). |
“First Office Action mailed Oct. 17, 2024 with English translation”, Japanese Patent Application No. 2022-527990, (24 pages). |
“Non Final Office Action mailed on Jan. 3, 2025”, U.S. Appl. No. 18/746,709, (31 pages). |
“Notice of Reasons for Rejection mailed on Dec. 4, 2024 with English tranlsation”, Japanese Patent Application No. 2023-118968, (9 pages). |
“Office Action mailed on Nov. 7, 2024 with English translation”, Korean Patent Application No. 10-2024-7032937, (7 pages). |
Number | Date | Country | |
---|---|---|---|
20230175866 A1 | Jun 2023 | US |
Number | Date | Country | |
---|---|---|---|
62702870 | Jul 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17262991 | US | |
Child | 18161616 | US |