Temperature dependent calibration of movement detection devices

Information

  • Patent Grant
  • 11598651
  • Patent Number
    11,598,651
  • Date Filed
    Tuesday, July 23, 2019
    5 years ago
  • Date Issued
    Tuesday, March 7, 2023
    a year ago
Abstract
An electronics system has a board with a thermal interface having an exposed surface. A thermoelectric device is placed against the thermal interface to heat the board. Heat transfers through the board from a first region where the thermal interface is located to a second region where an electronics device is mounted. The electronics device has a temperature sensor that detects the temperature of the electronics device. The temperature of the electronics device is used to calibrate an accelerometer and a gyroscope in the electronics device. Calibration data includes a temperature and a corresponding acceleration offset and a corresponding angle offset. A field computer simultaneously senses a temperature, an acceleration and an angle from the temperature sensor, accelerometer and gyroscope and adjusts the measured data with the offset data at the same temperature. The field computer provides corrected data to a controlled system.
Description
BACKGROUND OF THE INVENTION
1). Field of the Invention

This invention relates generally to an electronics system, a method of constructing an electronics system and a method of operating an electronics device, and more specifically to calibration of movement detection devices.


2). Discussion of Related Art

Electronics devices such as semiconductor chips frequently include movement detection devices such as accelerometers and gyroscopes. An accelerometer can detect acceleration of the electronics device in a specified direction and a gyroscope can detect a change in angle of the electronics device. Such measurement devices are usually manufactured using microelectromechanical systems (MEMS) technology.


SUMMARY OF THE INVENTION

The invention provides an electronics system including a board. The board may include a structural material, a thermal conduit on the structural material, the thermal conduit having a thermal conductivity that is higher than a thermal conductivity of the structural material and having a first region, a second region, and a connecting portion connecting the first region to the second region, a thermal interface on the structural material, the thermal interface having a thermal heat transfer capacity that is higher than the thermal heat transfer capacity of the structural material and being attached to the first region of the thermal conduit and an electronics device mounted to the board at the second region of the thermal conduit, the thermal conduit forming a thermal path between the surface of the thermal interface and the electronics device.


The invention also provides a method of constructing an electronics system including constructing a board that may include forming a thermal conduit on the structural material, the thermal conduit having a thermal heat transfer capacity that is higher than a thermal heat transfer capacity of the structural material and having a first region, a second region, and a connecting portion connecting the first region to the second region, forming a thermal interface on the structural material, the thermal interface having a thermal heat transfer capacity conductivity that is higher than the thermal heat transfer capacity of the structural material and being attached to the first region of the thermal conduit and mounting an electronics device to the board at the second region of the thermal conduit, the thermal conduit forming a thermal path between the surface of the thermal interface and the electronics device.


The invention further provides a method of operating an electronics device including operating an electronics device mounted to a board, locating a thermal device adjacent a thermal interface of the board formed on a structural material of the board and transferring heat between the thermal device and the electronics device through a thermal conduit on the structural material, the thermal conduit having a thermal heat transfer capacity that is higher than a thermal heat transfer capacity of the structural material and having a first region attached to the thermal interface, a second region at the electronics device, and a connecting portion connecting the first region to the second region.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is described by way of examples with reference to the accompanying drawings, wherein:



FIG. 1 is a top view in a first plane of an electronics system according to an embodiment of the invention;



FIG. 2 is a cross-sectional side view of the electronics system in a second plane on 2-2 in FIG. 1;



FIG. 3 is a cross-sectional side view of the electronics system in a third plane on 3-3 in FIG. 1;



FIG. 4 is a side view similar to FIG. 1 and further illustrates an electronics device forming part of the electronics system;



FIG. 5 is cross-sectional side view on 5-5 in FIG. 4 showing with to a close-up detailed view of the electronics device;



FIG. 6 is a cross-sectional side view of the electronics system further illustrating a calibration station;



FIG. 7 is a cross-sectional side view of the electronics system further illustrating the use of the calibration station to heat and calibrate the electronics device of the electronics system;



FIG. 8 is cross-sectional side view of the electronics system, further showing a field computer and a controlled system that uses calibration data; and



FIG. 9 is a cross-sectional side view of an electronics system according to another embodiment of the invention.





DETAILED DESCRIPTION OF THE INVENTION

Output readings from movement detection devices, such as accelerometers and gyroscopes, can be affected by changes in temperature of the devices, thereby introducing temperature-dependent error in the output measurements. For example, an accelerometer at rest should provide an output measurement corresponding to gravitational acceleration; however when the accelerometer is subjected to different temperatures, the output measurement will be different due to error associated with the accelerometer being at a higher temperature. Because the output should not change while the accelerometer is at rest, that is, acceleration is still only gravity regardless of the temperature, it is possible to isolate the output measurement error associated with temperature by finding the difference (or “offset”) between the erroneous measurement and the known baseline measurement (gravity in the case of an accelerometer). By conducting this measurement comparison at multiple temperatures, many data points are collected and an offset profile over a range of temperatures can be obtained. The collection of data associating temperatures with specific offset readings can be compiled for each movement detection device during the calibration process. The data can be stored as calibration data in a table for look up or extrapolation, or can be used to define a best fit function. The calibration data can be accessed by a virtual reality, augmented reality, or mixed reality system to obtain an adjusted measurement from a movement detection device given the temperature of the movement detection device and its initial “raw” measurement.


A calibration system and process that improves calibration accuracy is described herein. Known methods of calibrating movement detection devices involve contacting the movement detection device with a thermal probe to introduce heat by conduction or require actively blowing air across the movement detection device to adjust its temperature by convection. Both of these methods can cause the device to move so that a measurement taken from the device during calibration will include an error associated with temperature and an error associated with movement introduced by the measurement method. Because it is not possible to know how much movement is introduced by the measurement method, it is not possible to isolate the error associated with temperature. As a result, the error cannot be accurately removed from the raw output measurement of the device. In virtual, augmented, and mixed reality systems, the accuracy of a measurement taken by a device is critical for determining where to display virtual content to a user with respect to movement between the user and the real or virtual environment. Thus, there exists a need for a highly accurate calibration system and method in a virtual, augmented, or mixed reality device.



FIGS. 1, 2 and 3 illustrate an electronics system 10, according to an embodiment of the disclosure. FIG. 1 is a top view of an example configuration of a board 12 in the electronics system 10. FIG. 2 is a cross-sectional side view on 2-2 in FIG. 1. FIG. 3 is a cross-sectional side view on 3-3 in FIG. 1. The electronics system 10 includes a board 12 made up of multiple layers of different materials. The layers and various features disposed therein provide particular functions during calibration and use of an electronics device 14 (discussed with respect to FIGS. 4 and 5), such as a sensor or sensor suite, connected to the board 12.


The board 12 is constructed from structural material 22, such as FR4 dielectric, and a thermally and electrically conductive material, such as metal components 24. Metal components 24 may include a copper material. The metal of the metal components 24 is more thermally conductive, and therefore has a higher thermal heat transfer capacity, than the structural material 22. The metal of the metal components 24 is electrically conductive and the structural material 22 is electrically insulating.


Multiple layers of structural material 22 can be included in the board 12. As shown in the example of FIGS. 2 and 3, two structural layers 28 and 30 can be provided. The metal components 24 are disposed between the layers of structural material 22. For example, the metal components 24 can include first, second and third metal layers 34, 36 and 38 separated by the first and second structural layers 28 and 30. The board 12 further includes top and bottom insulating layers 32 and 26 that cover the first and third metal layers 34 and 38. The top and bottom insulating layers 32 and 26 can include an electrically insulating solder resist material 25.


The metal components 24 also include first and second sets of vias 40 and 42, respectively. The first set of vias 40 connects portions of the first metal layer 34 to portions of the second metal layer 36. The second set of vias 42 connects portions of the second metal layer 36 to portions of the third metal layer 38. The metal layers 34, 36 and 38 are thereby electrically and thermally connected to one another. The metal layers 34, 36 and 38 together with the first and second sets of vias 40 and 42 form a thermal conduit of thermally conductive material that connect a first region 46 of the thermal conduit to a second region 48 of the thermal conduit.


Portions of the third metal layer 38 are isolated as metal lines 76 to function as traces for electrical signals. These metal lines 76 can be isolated from each other and from other metal components 24 such that each line is surrounded by non-conductive material, such as dielectric structural material 22 and insulating solder resist material 25. One of skill in the art will appreciate that more or fewer than three metal lines 76 may be provided depending on the design of the electronic device 14 that is mounted to the board 12 at the second region 48. The metal lines 76 may be disposed in one or more of the metal layers in the board 12. Additionally, while the lines 76 are shown as exposed parts of the metal component 24, portions of the metal lines 76 can also be coated with the insulating solder resist material 25.


The metal components 24 further include a thermal interface 52. The thermal interface 52 is an area of the third metal layer 38 at the first region 46 that has been exposed by removing a portion of the top insulating layer 32. The thermal interface 52 is an upper surface 54 of third metal layer 38 that is exposed and is configured to contact part of an electronic device calibration station 80. The upper surface 54 forms only a portion of an upper surface of the board 12, with the remainder of the upper surface consisting of an upper surface of the structural layer 30 and insulating solder resist layer 32.


Referring to FIGS. 1 and 2 in combination, the first, second, and third metal layers 34, 36, 38 have an inner portion 58 and an outer portion 60. The structural material 22 forms a plurality of barriers 62 that distinguish the inner portion 58 from the outer portion 60. The barriers 62 act as thermal barriers to prevent heat from conducting from the inner portion 58 to the outer portion 60 of the second metal layer 36, or at least substantially slow the transfer of heat so that the outer portion 60 is kept cooler than the inner portion 58. Additional electronic components can be connected to the board 12. Such components can be connected to the board 12 at the outer portion 60 to keep the components from experiencing high heat during the calibration process.


Referring to FIGS. 1 and 3 in combination, it can be seen that the first, second, and third metal layers 34, 36, 38 also have connecting portions 64 that connect the inner portion 58 to the outer portion 60. The connecting portions 64 ensure that the metal layers are electrically grounded such that there is an equal reference voltage between the inner portion 58 and the outer portion 60.


Referring to FIGS. 1 and 2 in combination, it can be seen that similar thermal barriers 62 are formed at one or more positions within the first, second and third metal layers 34, 36 and 38 (FIG. 1) and that each metal layer has respective portions 64 connecting inner and outer regions thereof. The barriers 62 prevent, or at least slow heat transfer from the inner portion 58 to the outer portion 60 to protect other components attached to the board 12 from experiencing high temperatures during the calibration of electronics device 14.


Referring to FIGS. 4 and 5, the electronics system 10 further includes an electronics device 14 and a system storage 18. The electronics device 14 is mounted to an upper surface of the board 12 through connections 74. The electronics device 14 and the thermal interface 52 are within the barriers 62 that define the inner portion 58. The electronics device 14 is mounted above the second region 48 of the thermal conduit described above.


The electronics system 10 further includes a board interface 16 that is attached to the board 12 and connected to the measurement devices in the electronics device 14. The electronics device 14 includes a structural body 66 and a number measurement devices in the structural body 66. The measurement devices include a temperature sensor 68 and two movement detection device in the form of an accelerometer 70 and a gyroscope 72. Although two movement detection devices are used for purposes of this embodiment, it may be possible to implement aspects of the invention using only one measurement device. It may for example be possible to calibrate an electronics device having only a gyroscope or only an accelerometer. The structural body 66 may, for example, be a silicon or other semiconductor structural body that may be packaged using conventional packaging technologies. The temperature sensor 68, accelerometer 70 and gyroscope 72 are connected through connectors 74 on an upper surface of the board 12 and metal lines 76 in the board 12 to the board interface 16. Data traces from the temperature sensor 68, accelerometer 70, and gyroscope 72 are routed to a microprocessor 73 in the structural body 66 which serves as an input/output interface for the measurement devices. The system storage 18 serves to store calibration data received from the calibration station 80 that is associated with the accelerometer 70 and gyroscope 72. The system storage 18 may, for example, include a solid-state memory. The system storage 18 is shown near the electronics device 14, however, the system storage may be a remote storage, located on a cloud-based storage or on another area of the electronics device such that it is not in contact with the board 12. One of skill in the art will appreciate that the system storage 18 may be located anywhere that is in communication with electronics device 14 to allow for data transfer between electronics device 14 and system storage 18. The system storage 18 includes no calibration data immediately after the electronics system 10 has been assembled (that is, prior to undergoing calibration) but is uniquely associated with the electronics device 14 by enabling data to transfer between the electronics device 14 and the system storage 18.



FIG. 6 further illustrates a calibration station 80 that is used to calibrate the accelerometer 70 and the gyroscope 72. The calibration station 80 includes a frame 82, a calibration computer 84, a calibration computer interface 86, a thermoelectric device 88, a transformer 90 and an electric power connector 92. The components of the calibration station 80 are mounted in a stationary position to one another via the frame 82. A spacing between the calibration computer interface 86 and the thermoelectric device 88 is the same as a spacing between the board interface 16 and the thermal interface 52. The calibration computer 84 is connected to the calibration computer interface 86 so that signals can transmit between the calibration computer 84 and the calibration computer interface 86. Information from the microprocessor 73 can be accessed by the calibration station 80. The calibration computer 84 is connected to the electric power connector 92 so that power can be provided through the electric power connector 92 to the calibration computer 84. The thermoelectric device 88 is connected through the transformer 90 to the electric power connector 92. The power can be provided by the electric power connector 92 through the transformer 90 to the thermoelectric device 88. The transformer 90 reduces the voltage provided by the electric power connector 92 before providing power to the thermoelectric device 88. The thermoelectric device 88 is preferably a reversible heat pump, such as a thermoelectric cooler, capable of providing heat into the board 12 or drawing heat out of the board 12. The flexibility to achieve a wide range of temperatures on the board 12, and thus at the electronics device 14, can improve calibration accuracy of the electronic device 14.


In use, the electronics system 10 is brought into contact with portions of the calibration station 80. When the electronics system 10 and the calibration station 80 move relatively towards one another, the calibration computer interface 86 connects to the board interface 16 and can begin receiving data from the electronics device 14 at the same time that the thermoelectric device 88 comes into contact with the thermal interface 52. In the embodiment described, the calibration computer interface 86 and the board interface 16 are wired interfaces that come into contact with one another to create a communication link and are releasable from one another to break the communication link. Data is received through a wired communication between the electronics system 10 and the calibration station 80. In another embodiment, the calibration station 80 and the board may include wireless interfaces that create a wireless link for data transfer and the wireless link sis then broken.


Electric power is provided through the electric power connector 92 to the calibration computer 84, which powers the calibration computer 84. Electric power is also provided through the electric power connector 92 and the transformer 90 to the thermoelectric device 88.


The entire electronics system 10 can begin calibration initially at room temperature, e.g. approximately 21° C. The temperature sensor 68 (FIG. 5) provides an output of the temperature to the calibration computer 84. The accelerometer 70 and the gyroscope 72 simultaneously provide outputs to the calibration computer 84 that are associated with the output temperature from the temperature sensor 68. Baseline outputs for the accelerometer and the gyroscope are either known because the device is at rest or are established at a reference temperature, such as at room temperature. These baseline outputs are used later in the calibration process to isolate errors in measurements (“offsets”) that are associated with temperature changes of the sensors.



FIG. 7 illustrates that the calibration computer 84 is connected to the system storage 18 and records calibration data 96 in the system storage 18 as the calibration offsets are calculated. A first entry in a table of the calibration data 96 includes the initial temperature (in this example, 21° C.), an acceleration offset (calculated by finding the difference between the acceleration measurement at temperature and the known acceleration), and an angle offset (calculated by finding the difference between the gyroscope measurement at temperature and the known positional information) that are calculated for a given temperature sensor measurement using inputs from accelerometer 70 and gyroscope 72, respectively.


The thermoelectric device 88 has an upper surface that is at a lower temperature than room temperature and a lower surface that is at a higher temperature than room temperature. Heat transfers from the high temperature, lower surface of the thermoelectric device 88 through the upper surface 54 of the thermal interface 52 into the thermal interface 52. The heat transfer is primarily by way of conduction. The heat then conducts through the third metal layer 38 and first and second sets of vias 40 and 42 to the first and second metal layers 34 and 36. The heat then conducts through the first, second and third metal layers 34, 36 and 38 from the first region 46 nearest the heat source outward toward the second region 48. The barriers 62 prevent or at least substantially retard transfer of heat from the inner portion 58 to the outer portion 60.


Heating of the second region 48 causes its temperature to increase. Conduction of heat through the metal layers 34, 36, 38 and the thermal vias 40, 42 happens rapidly while significantly slower conduction of heat occurs in the structural material layers 28, 30. Conduction through top metal layer 38 evenly distributes heat underneath electronics device 14 in the second region 48. The increased temperature of the second region 48 causes heat transfer through conduction by connection 74 and through passive convection of air surrounding the electronics device 14. This method of heating electronics device 14 closely mimics the field conditions that the electronic device 14 will experience. The temperature sensor 68 continues to detect the temperature of the electronics device 14. The calibration computer 84 samples the temperature of the temperature sensor 68 on a predetermined interval, e.g. every five seconds, or more frequently for improved accuracy. The calibration computer 84 also samples outputs from the accelerometer 70 and the gyroscope 72 at the same time that the calibration computer 84 samples a temperature from the temperature sensor 68. The calibration computer 84 then calculates and stores each temperature and each acceleration offset and each angle offset with the calibration data 96. As described herein previously, each temperature is associated with an acceleration offset and an angle offset component within the measurement readings of the accelerometer and gyroscope, respectively. An offset profile can be obtained by measuring outputs of each sensor across a range of temperatures, each time subtracting the known value that the sensor should measure from the actual measurement to calculate error. Each temperature thus has a different acceleration offset and angle offset associated therewith, even though the accelerometer 70 and gyroscope 72 remain stationary from one measurement to the next. In some embodiments, multiple measurements are obtained at each temperature and an average offset is calculated for improved accuracy.


When sufficient data is collected, the calibration station 80 is removed from contact with the board 12. The calibration computer interface 86 writes the collected calibration data to the system storage 18 and disconnects from the board interface 16. The thermoelectric device 88 disengages from the thermal interface 52. Heat convects and conducts from the electronics device 14 until the entire electronics device 14 returns to room temperature.


The calibration system and process described above do not require physical contact between the calibration station and the electronics device 14 and furthermore do not require forced convection across electronics device 14. Rather, the electronics device 14 is heated by way of conduction through a permanent connection (connectors 74 and metal lines 76) to the board 12 and by way of passive convection without the need for additional probe contact with or forced air blowing over the electronics device 14. The electronics device 14 can thus be calibrated against temperature without disturbing the accelerometer 70 or the gyroscope 72. This system and process allows for a more accurate offset calibration while mimicking real field conditions of the sensors on board electronics device 14.



FIG. 8 illustrates the electronics system in conjunction with a field computer 100, a field computer interface 102 and a controlled system 104. The controlled system 104 may be, for example, a virtual reality, augmented reality, or mixed reality device. The field computer 100 is connected to the field computer interface 102. The controlled system 104 is connected to the field computer 100. The field computer 100 may, for example, be a computer that processes movement data of an augmented reality viewing system and the controlled system 104 may be a vision processing system of the viewing device. The field computer 100 is connected to the system storage 18 and has access to the calibration data 96.


In use, the electronics system 10 is moved, e.g. in linear directions or rotational directions. The accelerometer 70 and the gyroscope 72 detect such movement of the electronics system 10. The field computer 100 senses signals received from the temperature sensor 68, accelerometer 70 and gyroscope 72. The field computer 100 uses the temperature detected by the temperature sensor 68 to find a corresponding temperature in the calibration data 96. The calibration data 96 may include the table with data as hereinbefore described or may include a formula, such as a linear regression, representative of the calibration data. The field computer 100 retrieves the acceleration offset and the angle offset in the calibration data 96 corresponding to the temperature measured by the temperature sensor 68. The field computer 100 then adjusts the acceleration detected by the accelerometer 70 by the acceleration offset (acceleration=measured acceleration−acceleration offset). The field computer 100 also adjusts an angle measured by the gyroscope 72 by the angle offset corresponding to the temperature (adjusted angle=measured angle−angle offset). The field computer 100 then provides the adjusted acceleration and the adjusted angle to the controlled system 104. The controlled system 104 utilizes the adjusted acceleration and the adjusted angle in one or more formulas. By way of example, the controlled system 104 adjusts placement of a rendered image in an augmented reality or mixed reality viewing device according to a placement formula that uses the adjusted acceleration and the adjusted angle received from the field computer 100.



FIG. 9 illustrates an alternate embodiment wherein a thermal conduit is provided by any known heat spreader that can be built into a chip. In some embodiments, the heat spreader can be a heat pipe 110. The heat pipe 110 has an evaporator end 112 and a condenser end 114. The evaporator end 112 is located against or in close proximity to the thermal interface 52 and the condenser end 114 is located in close proximity to the electronics device 14. In use, the thermal interface 52 heats a liquid in the heat pipe 110 and evaporates the liquid. The resultant vapor flows from the evaporator end 112 to the condenser end 114 and condenses. The resulting condensed liquid then flows through a wicking system from the condenser end 114 back to the evaporator end 112.



FIGS. 1 to 8 illustrate one type of thermal conduit consisting of a thermally conductive metal. The design in FIGS. 1 to 8 is relatively inexpensive to manufacture. FIG. 9 illustrates a different type of thermal conduit in the form of a heat pipe. A heat pipe may transfer more heat, through flow, than thermally conductive metal but may be more expensive to manufacture. The thermal conduit provided by the thermally conductive metal in FIGS. 1 to 8 and the thermal conduit provided by the heat pipe in FIG. 9 both have a thermal heat transfer capacity that is higher than a thermal heat transfer capacity of the structural material 22 of the board 12 and both form a thermal path between the surface of the thermal interface 52 and the electronics device 14.


While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative and not restrictive of the current invention, and that this invention is not restricted to the specific constructions and arrangements shown and described since modifications may occur to those ordinarily skilled in the art.

Claims
  • 1. An electronics system comprising: a board that includes: a structural material;a thermal conduit on the structural material, the thermal conduit having a thermal conductivity that is higher than a thermal conductivity of the structural material and having a first region, a second region, the first and second regions being horizontally spaced, and a connecting portion connecting the first region to the second region; anda thermal interface on the structural material above the first region of the thermal conduit, the thermal interface having an exposed upper surface and a thermal heat transfer capacity that is higher than the thermal heat transfer capacity of the structural material and being attached to the first region of the thermal conduit;an electronics device mounted to the board above the second region of the thermal conduit, the thermal conduit forming a thermal path between the surface of the thermal interface and the electronics device; anda board interface attached to the board and electrically connected to the electronics device, the board interface being adapted to interchangeably connect to a calibration computer interface of a calibration station having thermoelectric device for releasably contacting the exposed upper surface, and to connect to a field computer interface that is connected to a field computer.
  • 2. The electronics system of claim 1, wherein the thermal conduit includes a metal conductor.
  • 3. The electronics system of claim 2, wherein the thermal conduit includes at least two metal layers that are separated by a layer of the structural material.
  • 4. The electronics system of claim 3, wherein the thermal conduit includes at least one metal via connecting the layers to one another.
  • 5. The electronics system of claim 4, wherein the thermal conduit includes a plurality of metal vias connecting the layers to one another.
  • 6. The electronics system of claim 2, wherein the metal conductor is made of a metal that is more thermally conductive than the structural material.
  • 7. The electronics system of claim 2, wherein the board has at least one metal layer having an inner portion and an outer portion and the structural material forms a barrier between the inner portion and the outer portion, the inner portion forming the thermal conduit, and the thermal interface and the electronics device being located over the inner portion.
  • 8. The electronics system of claim 7, wherein the metal layer is more electrically conductive than the structural material.
  • 9. The electronics system of claim 7, wherein the structural material forms a plurality of barriers between the inner portion and the outer portion, wherein the barriers are alternated with portions of the metal layer that connect the inner portion to one another.
  • 10. The electronics system of claim 1, further comprising: a movement detection device in the electronics device;a system storage; andcalibration data on the system storage, the calibration data including a first temperature of the movement detection device;a first output from the movement detection device recorded against the first temperature; anda second temperature of the movement detection device that is different than the first temperature; anda second output from the movement detection device recorded against the second temperature.
  • 11. The electronics system of claim 10, wherein the movement detection device is an accelerometer.
  • 12. The electronics system of claim 10, wherein the movement detection device is a gyroscope.
  • 13. The electronics system of claim 10, further comprising: a temperature detector in the electronics device.
  • 14. The electronics system of claim 13, further comprising: a field computer;an interface connecting the field computer to the movement detection device and the temperature detector; anda controlled system connected to the field computer.
  • 15. A method of constructing an electronics system comprising: constructing a board including: forming a thermal conduit on the structural material, the thermal conduit having a thermal heat transfer capacity that is higher than a thermal heat transfer capacity of the structural material and having a first region, a second region, the first and second regions being horizontally spaced, and a connecting portion connecting the first region to the second region;forming a thermal interface on the structural material above the first region of the thermal conduit, the thermal interface having an exposed upper surface and a thermal heat transfer capacity conductivity that is higher than the thermal heat transfer capacity of the structural material and being attached to the first region of the thermal conduit;mounting an electronics device to the board above the second region of the thermal conduit, the thermal conduit forming a thermal path between the surface of the thermal interface and the electronics device; andattaching a board interface to the board and electrically connected to the electronics device, the board interface being adapted to interchangeably connect to a calibration computer interface of a calibration station having thermoelectric device for releasably contacting the exposed upper surface, and to connect to a field computer interface that is connected to a field computer.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a National Phase of International Application No. PCT/US2019/043099, filed on Jul. 23, 2019, which claims priority from U.S. Provisional Patent Application No. 62/702,870, filed on Jul. 24, 2018, all of which are incorporated herein by reference in their entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2019/043099 7/23/2019 WO
Publishing Document Publishing Date Country Kind
WO2020/023545 1/30/2020 WO A
US Referenced Citations (406)
Number Name Date Kind
4344092 Miller Aug 1982 A
4652930 Crawford Mar 1987 A
4810080 Grendol et al. Mar 1989 A
4997268 Dauvergne Mar 1991 A
5007727 Kahaney et al. Apr 1991 A
5074295 Willis Dec 1991 A
5240220 Elberbaum Aug 1993 A
5251635 Dumoulin et al. Oct 1993 A
5410763 Bolle May 1995 A
5455625 Englander Oct 1995 A
5495286 Adair Feb 1996 A
5497463 Stein et al. Mar 1996 A
5682255 Friesem et al. Oct 1997 A
5826092 Flannery Oct 1998 A
5854872 Tai Dec 1998 A
5864365 Sramek et al. Jan 1999 A
5937202 Crosetto Aug 1999 A
6012811 Chao et al. Jan 2000 A
6016160 Coombs et al. Jan 2000 A
6064749 Hirota et al. May 2000 A
6076927 Owens Jun 2000 A
6117923 Amagai et al. Sep 2000 A
6124977 Takahashi Sep 2000 A
6191809 Hori et al. Feb 2001 B1
6375369 Schneider et al. Apr 2002 B1
6385735 Wilson May 2002 B1
6538655 Kubota Mar 2003 B1
6541736 Huang et al. Apr 2003 B1
6757068 Foxlin Jun 2004 B2
7046515 Wyatt May 2006 B1
7051219 Hwang May 2006 B2
7076674 Cervantes Jul 2006 B2
7111290 Yates, Jr. Sep 2006 B1
7119819 Robertson et al. Oct 2006 B1
7219245 Raghuvanshi May 2007 B1
7431453 Hogan Oct 2008 B2
7542040 Templeman Jun 2009 B2
7573640 Nivon et al. Aug 2009 B2
7724980 Shenzhi May 2010 B1
7751662 Kleemann Jul 2010 B2
7758185 Lewis Jul 2010 B2
8060759 Arnan et al. Nov 2011 B1
8120851 Iwasa Feb 2012 B2
8214660 Capps, Jr. Jul 2012 B2
8246408 Elliot Aug 2012 B2
8353594 Lewis Jan 2013 B2
8508676 Silverstein et al. Aug 2013 B2
8547638 Levola Oct 2013 B2
8605764 Rothaar et al. Oct 2013 B1
8619365 Harris et al. Dec 2013 B2
8696113 Lewis Apr 2014 B2
8698701 Margulis Apr 2014 B2
8733927 Lewis May 2014 B1
8736636 Kang May 2014 B2
8759929 Shiozawa et al. Jun 2014 B2
8793770 Lim Jul 2014 B2
8823855 Hwang Sep 2014 B2
8847988 Geisner et al. Sep 2014 B2
8874673 Kim Oct 2014 B2
9010929 Lewis Apr 2015 B2
9015501 Gee Apr 2015 B2
9086537 Iwasa et al. Jul 2015 B2
9095437 Boyden et al. Aug 2015 B2
9239473 Lewis Jan 2016 B2
9244293 Lewis Jan 2016 B2
9244533 Friend et al. Jan 2016 B2
9383823 Geisner et al. Jul 2016 B2
9489027 Ogletree Nov 2016 B1
9519305 Wolfe Dec 2016 B2
9581820 Robbins Feb 2017 B2
9582060 Balatsos Feb 2017 B2
9658473 Lewis May 2017 B2
9671566 Abovitz et al. Jun 2017 B2
9671615 Vallius et al. Jun 2017 B1
9696795 Marcolina et al. Jul 2017 B2
9798144 Sako et al. Oct 2017 B2
9874664 Stevens et al. Jan 2018 B2
9880441 Osterhout Jan 2018 B1
9918058 Takahashi et al. Mar 2018 B2
9955862 Freeman et al. May 2018 B2
9978118 Ozgumer et al. May 2018 B1
9996797 Holz et al. Jun 2018 B1
10018844 Levola et al. Jul 2018 B2
10082865 Raynal et al. Sep 2018 B1
10151937 Lewis Dec 2018 B2
10185147 Lewis Jan 2019 B2
10218679 Jawahar Feb 2019 B1
10241545 Richards et al. Mar 2019 B1
10317680 Richards et al. Jun 2019 B1
10436594 Belt et al. Oct 2019 B2
10516853 Gibson et al. Dec 2019 B1
10551879 Richards et al. Feb 2020 B1
10578870 Kimmel Mar 2020 B2
10698202 Kimmel et al. Jun 2020 B2
10856107 Mycek et al. Oct 2020 B2
10825424 Zhang Nov 2020 B2
10987176 Poltaretskyi et al. Apr 2021 B2
11190681 Brook et al. Nov 2021 B1
11209656 Choi et al. Dec 2021 B1
11236993 Hall et al. Feb 2022 B1
20010010598 Aritake et al. Aug 2001 A1
20020007463 Fung Jan 2002 A1
20020108064 Nunally Feb 2002 A1
20020063913 Nakamura et al. May 2002 A1
20020071050 Homberg Jun 2002 A1
20020122648 Mule′ et al. Sep 2002 A1
20020140848 Cooper et al. Oct 2002 A1
20030028816 Bacon Feb 2003 A1
20030048456 Hill Mar 2003 A1
20030067685 Niv Apr 2003 A1
20030077458 Korenaga et al. Apr 2003 A1
20030115494 Cervantes Jun 2003 A1
20030218614 Lavelle et al. Nov 2003 A1
20030219992 Schaper Nov 2003 A1
20030226047 Park Dec 2003 A1
20040001533 Tran et al. Jan 2004 A1
20040021600 Wittenberg Feb 2004 A1
20040025069 Gary et al. Feb 2004 A1
20040042377 Nikoloai et al. Mar 2004 A1
20040073822 Greco Apr 2004 A1
20040073825 Itoh Apr 2004 A1
20040111248 Granny et al. Jun 2004 A1
20040174496 Ji et al. Sep 2004 A1
20040186902 Stewart Sep 2004 A1
20040201857 Foxlin Oct 2004 A1
20040238732 State et al. Dec 2004 A1
20040240072 Schindler et al. Dec 2004 A1
20040246391 Travis Dec 2004 A1
20040268159 Aasheim et al. Dec 2004 A1
20050001977 Zelman Jan 2005 A1
20050034002 Flautner Feb 2005 A1
20050157159 Komiya et al. Jul 2005 A1
20050177385 Hull Aug 2005 A1
20050273792 Inohara et al. Dec 2005 A1
20060013435 Rhoads Jan 2006 A1
20060015821 Jacques Parker et al. Jan 2006 A1
20060019723 Vorenkamp Jan 2006 A1
20060038880 Starkweather et al. Feb 2006 A1
20060050224 Smith Mar 2006 A1
20060090092 Verhulst Apr 2006 A1
20060126181 Levola Jun 2006 A1
20060129852 Bonola Jun 2006 A1
20060132914 Weiss et al. Jun 2006 A1
20060179329 Terechko Aug 2006 A1
20060221448 Nivon et al. Oct 2006 A1
20060228073 Mukawa et al. Oct 2006 A1
20060250322 Hall et al. Nov 2006 A1
20060259621 Ranganathan Nov 2006 A1
20060268220 Hogan Nov 2006 A1
20070058248 Nguyen et al. Mar 2007 A1
20070103836 Oh May 2007 A1
20070124730 Pytel May 2007 A1
20070159673 Freeman et al. Jul 2007 A1
20070188837 Shimizu et al. Aug 2007 A1
20070198886 Saito Aug 2007 A1
20070204672 Huang et al. Sep 2007 A1
20070213952 Cirelli Sep 2007 A1
20070283247 Brenneman et al. Dec 2007 A1
20080002259 Ishizawa et al. Jan 2008 A1
20080002260 Arrouy et al. Jan 2008 A1
20080043334 Itzkovitch et al. Feb 2008 A1
20080046773 Ham Feb 2008 A1
20080063802 Maula et al. Mar 2008 A1
20080068557 Menduni et al. Mar 2008 A1
20080146942 Dala-Krishna Jun 2008 A1
20080173036 Willaims Jul 2008 A1
20080177506 Kim Jul 2008 A1
20080205838 Crippa et al. Aug 2008 A1
20080215907 Wilson Sep 2008 A1
20080225393 Rinko Sep 2008 A1
20080316768 Travis Dec 2008 A1
20090153797 Allon et al. Jun 2009 A1
20090224416 Laakkonen et al. Sep 2009 A1
20090245730 Kleemann Oct 2009 A1
20090310633 Ikegami Dec 2009 A1
20100005326 Archer Jan 2010 A1
20100019962 Fujita Jan 2010 A1
20100056274 Uusitalo et al. Mar 2010 A1
20100063854 Purvis et al. Mar 2010 A1
20100079841 Levola Apr 2010 A1
20100153934 Lachner Jun 2010 A1
20100194632 Raento et al. Aug 2010 A1
20100232016 Landa et al. Sep 2010 A1
20100232031 Batchko et al. Sep 2010 A1
20100244168 Shiozawa et al. Sep 2010 A1
20100296163 Sarikko Nov 2010 A1
20110021263 Anderson et al. Jan 2011 A1
20110022870 Mcgrane Jan 2011 A1
20110050655 Mukawa Mar 2011 A1
20110122240 Becker May 2011 A1
20110145617 Thomson et al. Jun 2011 A1
20110170801 Lu et al. Jul 2011 A1
20110218733 Hamza et al. Sep 2011 A1
20110286735 Temblay Nov 2011 A1
20110291969 Rashid et al. Dec 2011 A1
20120011389 Driesen Jan 2012 A1
20120050535 Densham et al. Mar 2012 A1
20120075501 Oyagi et al. Mar 2012 A1
20120081392 Arthur Apr 2012 A1
20120089854 Breakstone Apr 2012 A1
20120113235 Shintani May 2012 A1
20120127062 Bar-Zeev et al. May 2012 A1
20120154557 Perez et al. Jun 2012 A1
20120218301 Miller Aug 2012 A1
20120246506 Knight Sep 2012 A1
20120249416 Maciocci et al. Oct 2012 A1
20120249741 Maciocci et al. Oct 2012 A1
20120260083 Andrews Oct 2012 A1
20120307075 Margalitq Dec 2012 A1
20120307362 Silverstein et al. Dec 2012 A1
20120314959 White et al. Dec 2012 A1
20120320460 Levola Dec 2012 A1
20120326948 Crocco et al. Dec 2012 A1
20130021486 Richardon Jan 2013 A1
20130050642 Lewis et al. Feb 2013 A1
20130050833 Lewis et al. Feb 2013 A1
20130051730 Travers et al. Feb 2013 A1
20130502058 Liu et al. Feb 2013
20130077049 Bohn Mar 2013 A1
20130077170 Ukuda Mar 2013 A1
20130094148 Sloane Apr 2013 A1
20130129282 Li May 2013 A1
20130169923 Schnoll et al. Jul 2013 A1
20130205126 Kruglick Aug 2013 A1
20130222386 Tannhauser et al. Aug 2013 A1
20130268257 Hu Oct 2013 A1
20130278633 Ahn et al. Oct 2013 A1
20130314789 Saarikko et al. Nov 2013 A1
20130318276 Dalal Nov 2013 A1
20130336138 Venkatraman et al. Dec 2013 A1
20130342564 Kinnebrew et al. Dec 2013 A1
20130342570 Kinnebrew et al. Dec 2013 A1
20130342571 Kinnebrew et al. Dec 2013 A1
20130343408 Cook Dec 2013 A1
20140013098 Yeung Jan 2014 A1
20140016821 Arth et al. Jan 2014 A1
20140022819 Oh et al. Jan 2014 A1
20140078023 Ikeda et al. Mar 2014 A1
20140082526 Park et al. Mar 2014 A1
20140119598 Ramachandran et al. May 2014 A1
20140126769 Reitmayr et al. May 2014 A1
20140140653 Brown et al. May 2014 A1
20140149573 Tofighbakhsh et al. May 2014 A1
20140168260 O'Brien et al. Jun 2014 A1
20140266987 Magyari Sep 2014 A1
20140267419 Ballard et al. Sep 2014 A1
20140274391 Stafford Sep 2014 A1
20140282105 Nordstrom Sep 2014 A1
20140313228 Kasahara Oct 2014 A1
20140340449 Plagemann et al. Nov 2014 A1
20140359589 Kodsky et al. Dec 2014 A1
20140375680 Ackerman et al. Dec 2014 A1
20150005785 Olson Jan 2015 A1
20150009099 Queen Jan 2015 A1
20150077312 Wang Mar 2015 A1
20150097719 Balachandreswaran et al. Apr 2015 A1
20150123966 Newman May 2015 A1
20150130790 Vazquez, II et al. May 2015 A1
20150134995 Park et al. May 2015 A1
20150138248 Schrader May 2015 A1
20150155939 Oshima et al. Jun 2015 A1
20150168221 Mao Jun 2015 A1
20150205126 Schowengerdt Jul 2015 A1
20150235431 Schowengerdt Aug 2015 A1
20150253651 Russell et al. Sep 2015 A1
20150256484 Cameron Sep 2015 A1
20150269784 Miyawaki et al. Sep 2015 A1
20150294483 Wells et al. Oct 2015 A1
20150301955 Yakovenko et al. Oct 2015 A1
20150338915 Publicover et al. Nov 2015 A1
20150355481 Hilkes et al. Dec 2015 A1
20160004102 Nisper et al. Jan 2016 A1
20160027215 Burns et al. Jan 2016 A1
20160033770 Fujimaki et al. Feb 2016 A1
20160077338 Robbins et al. Mar 2016 A1
20160085285 Mangione-Smith Mar 2016 A1
20160085300 Robbins et al. Mar 2016 A1
20160091720 Stafford et al. Mar 2016 A1
20160093099 Bridges Mar 2016 A1
20160093269 Buckley et al. Mar 2016 A1
20160123745 Cotier et al. May 2016 A1
20160155273 Lyren et al. Jun 2016 A1
20160180596 Gonzalez del Rosario Jun 2016 A1
20160187654 Border et al. Jun 2016 A1
20160191887 Casas Jun 2016 A1
20160202496 Billetz et al. Jul 2016 A1
20160217624 Finn et al. Jul 2016 A1
20160266412 Yoshida Sep 2016 A1
20160267708 Nistico et al. Sep 2016 A1
20160274733 Hasegawa et al. Sep 2016 A1
20160287337 Aram et al. Oct 2016 A1
20160300388 Stafford et al. Oct 2016 A1
20160321551 Priness et al. Nov 2016 A1
20160327798 Xiao et al. Nov 2016 A1
20160334279 Mittleman et al. Nov 2016 A1
20160357255 Lindh et al. Dec 2016 A1
20160370404 Quadrat et al. Dec 2016 A1
20160370510 Thomas Dec 2016 A1
20170038607 Camara Feb 2017 A1
20170060225 Zha et al. Mar 2017 A1
20170061696 Li et al. Mar 2017 A1
20170064066 Das et al. Mar 2017 A1
20170100664 Osterhout et al. Apr 2017 A1
20170115487 Travis Apr 2017 A1
20170122725 Yeoh et al. May 2017 A1
20170123526 Trail et al. May 2017 A1
20170127295 Black et al. May 2017 A1
20170131569 Aschwanden et al. May 2017 A1
20170147066 Katz et al. May 2017 A1
20170160518 Lanman et al. Jun 2017 A1
20170161951 Fix et al. Jun 2017 A1
20170185261 Perez et al. Jun 2017 A1
20170192239 Nakamura et al. Jul 2017 A1
20170205903 Miller et al. Jul 2017 A1
20170206668 Poulos et al. Jul 2017 A1
20170213388 Margolis et al. Jul 2017 A1
20170219841 Popovich et al. Aug 2017 A1
20170232345 Rofougaran et al. Aug 2017 A1
20170235126 DiDomenico Aug 2017 A1
20170235129 Kamakura Aug 2017 A1
20170235142 Wall et al. Aug 2017 A1
20170235144 Piskunov et al. Aug 2017 A1
20170235147 Kamakura Aug 2017 A1
20170243403 Daniels et al. Aug 2017 A1
20170254832 Ho et al. Sep 2017 A1
20170256096 Faaborg et al. Sep 2017 A1
20170258526 Lang Sep 2017 A1
20170270712 Tyson et al. Sep 2017 A1
20170281054 Stever et al. Oct 2017 A1
20170287376 Bakar et al. Oct 2017 A1
20170293141 Schowengerdt et al. Oct 2017 A1
20170307886 Stenberg et al. Oct 2017 A1
20170307891 Bucknor et al. Oct 2017 A1
20170312032 Amanatullah et al. Nov 2017 A1
20170322426 Tervo Nov 2017 A1
20170329137 Tervo Nov 2017 A1
20170332098 Rusanovskyy et al. Nov 2017 A1
20170336636 Amitai et al. Nov 2017 A1
20170357332 Balan et al. Dec 2017 A1
20170371394 Chan Dec 2017 A1
20170371661 Sparling Dec 2017 A1
20180014266 Chen Jan 2018 A1
20180024289 Fattal Jan 2018 A1
20180044173 Netzer Feb 2018 A1
20180052007 Teskey Feb 2018 A1
20180052501 Jones, Jr. et al. Feb 2018 A1
20180059305 Popovich et al. Mar 2018 A1
20180067779 Pillalamarri et al. Mar 2018 A1
20180070855 Eichler Mar 2018 A1
20180082480 White et al. Mar 2018 A1
20180088185 Woods et al. Mar 2018 A1
20180102981 Kurtzman et al. Apr 2018 A1
20180108179 Tomlin et al. Apr 2018 A1
20180114298 Malaika et al. Apr 2018 A1
20180129112 Osterhout May 2018 A1
20180131907 Schmirier et al. May 2018 A1
20180136466 Ko May 2018 A1
20180144691 Choi et al. May 2018 A1
20180151796 Akahane May 2018 A1
20180188115 Hsu Jul 2018 A1
20180189568 Powderly et al. Jul 2018 A1
20180190017 Mendez et al. Jul 2018 A1
20180191990 Motoyama et al. Jul 2018 A1
20180218545 Garcia et al. Aug 2018 A1
20180250589 Cossairt et al. Sep 2018 A1
20180284877 Klein Oct 2018 A1
20180357472 Dreessen Dec 2018 A1
20190005069 Filgueiras de Arajuo et al. Jan 2019 A1
20190011691 Peyman Jan 2019 A1
20190056591 Tervo et al. Feb 2019 A1
20190087015 Lam et al. Mar 2019 A1
20190101758 Zhu et al. Apr 2019 A1
20190155439 Mukherjee et al. May 2019 A1
20190158926 Kang et al. May 2019 A1
20190167095 Krueger Jun 2019 A1
20190172216 Ninan et al. Jun 2019 A1
20190178654 Hare Jun 2019 A1
20190196690 Chong et al. Jun 2019 A1
20190219815 Price et al. Jul 2019 A1
20190243123 Bohn Aug 2019 A1
20190318540 Piemonte et al. Oct 2019 A1
20190321728 Imai et al. Oct 2019 A1
20190347853 Chen et al. Nov 2019 A1
20190380792 Poltaretskyi et al. Dec 2019 A1
20200098188 Bar-Zeev et al. Mar 2020 A1
20200110928 Al Jazaery et al. Apr 2020 A1
20200117267 Gibson et al. Apr 2020 A1
20200117270 Gibson et al. Apr 2020 A1
20200184217 Faulkner Jun 2020 A1
20200184653 Faulker Jun 2020 A1
20200202759 Ukai et al. Jun 2020 A1
20200309944 Thoresen et al. Oct 2020 A1
20200356161 Wagner Nov 2020 A1
20200368616 Delamont Nov 2020 A1
20200409528 Lee Dec 2020 A1
20210008413 Asikainen et al. Jan 2021 A1
20210033871 Jacoby et al. Feb 2021 A1
20210041951 Gibson et al. Feb 2021 A1
20210053820 Gurin Feb 2021 A1
20210093391 Poltaretskyi et al. Apr 2021 A1
20210093410 Gaborit et al. Apr 2021 A1
20210093414 Moore et al. Apr 2021 A1
20210097886 Kuester et al. Apr 2021 A1
20210142582 Jones et al. May 2021 A1
20210158627 Cossairt et al. May 2021 A1
20210173480 Osterhout et al. Jun 2021 A1
Foreign Referenced Citations (71)
Number Date Country
104603675 May 2015 CN
107683497 Feb 2018 CN
105190427 Nov 2019 CN
0504930 Mar 1992 EP
0535402 Apr 1993 EP
0632360 Jan 1995 EP
1215522 Jun 2002 EP
1494110 Jan 2005 EP
1938141 Jul 2008 EP
1943556 Jul 2008 EP
2290428 Mar 2011 EP
2350774 Aug 2011 EP
1237067 Jan 2016 EP
3139245 Mar 2017 EP
3164776 May 2017 EP
3236211 Oct 2017 EP
2723240 Aug 2018 EP
2896986 Feb 2021 EP
2499635 Aug 2013 GB
2542853 Apr 2017 GB
938DEL2004 Jun 2006 IN
2002-529806 Sep 2002 JP
2003-029198 Jan 2003 JP
2003-141574 May 2003 JP
2003-228027 Aug 2003 JP
2003-329873 Nov 2003 JP
2007-012530 Jan 2007 JP
2007-86696 Apr 2007 JP
2007-273733 Oct 2007 JP
2008-257127 Oct 2008 JP
2009-090689 Apr 2009 JP
2009-244869 Oct 2009 JP
2011-033993 Feb 2011 JP
2012-015774 Jan 2012 JP
2013-525872 Jun 2013 JP
2015-191032 Nov 2015 JP
2016-85463 May 2016 JP
2016-516227 Jun 2016 JP
2017-531840 Oct 2017 JP
6232763 Nov 2017 JP
6333965 May 2018 JP
2005-0010775 Jan 2005 KR
10-1372623 Mar 2014 KR
201219829 May 2012 TW
201803289 Jan 2018 TW
1991000565 Jan 1991 WO
2000030368 Jun 2000 WO
2002071315 Sep 2002 WO
2004095248 Nov 2004 WO
2006132614 Dec 2006 WO
2007037089 May 2007 WO
2007085682 Aug 2007 WO
2007102144 Sep 2007 WO
2008148927 Dec 2008 WO
2009101238 Aug 2009 WO
2012030787 Mar 2012 WO
2013049012 Apr 2013 WO
2013062701 May 2013 WO
2015143641 Oct 2015 WO
2016054092 Apr 2016 WO
2017004695 Jan 2017 WO
2017044761 Mar 2017 WO
2017120475 Jul 2017 WO
2017176861 Oct 2017 WO
2017203201 Nov 2017 WO
2018044537 Mar 2018 WO
2018087408 May 2018 WO
2018097831 May 2018 WO
2018166921 Sep 2018 WO
2019148154 Aug 2019 WO
2020010226 Jan 2020 WO
Non-Patent Literature Citations (200)
Entry
“ARToolKit: Hardware”, https://web.archive.org/web/20051013062315/http://www.hitl.washington.edu:80/artoolkit/documentation/hardware.htm (downloaded Oct. 26, 2020), Oct. 13, 2015, (3 pages).
Communication Pursuant to Article 94(3) EPC dated Sep. 4, 2019, European Patent Application No. 10793707.0, (4 pages).
European Search Report dated Oct. 15, 2020, European Patent Application No. 20180623.9, (10 pages).
Examination Report dated Jun. 19, 2020, European Patent Application No. 20154750.2, (10 pages).
Extended European Search Report dated May 20, 2020, European Patent Application No. 20154070.5, (7 pages).
Extended European Search Report dated Jan. 22, 2021, European Patent Application No. 18890390.0, (11 pages).
Extended European Search Report dated Nov. 3, 2020, European Patent Application No. 18885707.2, (7 pages).
Extended European Search Report dated Nov. 4, 2020, European Patent Application No. 20190980.1, (14 pages).
Extended European Search Report dated Jun. 12, 2017, European Patent Application No. 16207441.3, (8 pages).
Final Office Action dated Aug. 10, 2020, U.S. Appl. No. 16/225,961, (13 pages).
Final Office Action dated Dec. 4, 2019, U.S. Appl. No. 15/564,517, (15 pages).
Final Office Action dated Feb. 19, 2020, U.S. Appl. No. 15/552,897, (17 pages).
Final Office Action dated Nov. 24, 2020, U.S. Appl. No. 16/435,933, (44 pages).
International Search Report and Written Opinion dated Feb. 12, 2021, International Application No. PCT/US20/60555, (25 pages).
International Search Report and Written Opinion dated Mar. 12, 2020, International PCT Patent Application No. PCT/US19/67919, (14 pages).
International Search Report and Written Opinion dated Aug. 15, 2019, International PCT Patent Application No. PCT/US19/33987, (20 pages).
International Search Report and Written Opinion dated Jun. 15, 2020, International PCT Patent Application No. PCT/US2020/017023, (13 pages).
International Search Report and Written Opinion dated Oct. 16, 2019, International PCT Patent Application No. PCT/US19/43097, (10 pages).
International Search Report and Written Opinion dated Oct. 16, 2019, International PCT Patent Application No. PCT/US19/36275, (10 pages).
International Search Report and Written Opinion dated Oct. 16, 2019, International PCT Patent Application No. PCT/US19/43099, (9 pages).
International Search Report and Written Opinion dated Jun. 17, 2016, International PCT Patent Application No. PCT/FI2016/050172, (9 pages).
International Search Report and Written Opinion dated Feb. 2, 2021, International PCT Patent Application No. PCT/US20/60550, (9 pages).
International Search Report and Written Opinion dated Oct. 22, 2019, International PCT Patent Application No. PCT/US19/43751, (9 pages).
International Search Report and Written Opinion dated Dec. 23, 2019, International PCT Patent Application No. PCT/US19/44953, (11 pages).
International Search Report and Written Opinion dated May 23, 2019, International PCT Patent Application No. PCT/US18/66514, (17 pages).
International Search Report and Written Opinion dated Sep. 26, 2019, International PCT Patent Application No. PCT/US19/40544, (12 pages).
International Search Report and Written Opinion dated Aug. 27, 2019, International PCT Application No. PCT/US2019/035245, (8 pages).
International Search Report and Written Opinion dated Dec. 27, 2019, International Application No. PCT/US19/47746, (16 pages).
International Search Report and Written Opinion dated Dec. 3, 2020, International Patent Application No. PCT/US20/43596, (25 pages).
International Search Report and Written Opinion dated Sep. 30, 2019, International Patent Application No. PCT/US19/40324, (7 pages).
International Search Report and Written Opinion dated Sep. 4, 2020, International Patent Application No. PCT/US20/31036, (13 pages).
International Search Report and Written Opinion dated Jun. 5, 2020, International Patent Application No. PCT/US20/19871, (9 pages).
International Search Report and Written Opinion dated Aug. 8, 2019, International PCT Patent Application No. PCT/US2019/034763, (8 pages).
International Search Report and Written Opinion dated Oct. 8, 2019, International PCT Patent Application No. PCT/US19/41151, (7 pages).
International Search Report and Written Opinion dated Jan. 9, 2020, International Application No. PCT/US19/55185, (10 pages).
International Search Report and Written Opinion dated Feb. 28, 2019, International Patent Application No. PCT/US18/64686, (8 pages).
International Search Report and Written Opinion dated Feb. 7, 2020, International PCT Patent Application No. PCT/US2019/061265, (11 pages).
International Search Report and Written Opinion dated Jun. 11, 2019, International PCT Application No. PCT/US19/22620, (7 pages).
Invitation to Pay Additional Fees mailed Aug. 15, 2019, International PCT Patent Application No. PCT/US19/36275, (2 pages).
Invitation to Pay Additional Fees mailed Sep. 24, 2020, International Patent Application No. PCT/US2020/043596, (3 pages).
Invitation to Pay Additional Fees mailed on Oct. 22, 2019, International PCT Patent Application No. PCT/US19/47746, (2 pages).
Invitation to Pay Additional Fees mailed on Apr. 3, 2020, International Patent Application No. PCT/US20/17023, (2 pages).
Invitation to Pay Additional Fees mailed on Oct. 17, 2019, International PCT Patent Application No. PCT/US19/44953, (2 pages).
Non Final Office Action dated Nov. 19, 2019, U.S. Appl. No. 16/355,611, (31 pages).
Non Final Office Action dated Aug. 21, 2019, U.S. Appl. No. 15/564,517, (14 pages).
Non Final Office Action dated Jan. 26, 2021, U.S. Appl. No. 16/928,313, (33 pages).
Non Final Office Action dated Jan. 27, 2021, U.S. Appl. No. 16/225,961, (15 pages).
Non Final Office Action dated Jul. 27, 2020, U.S. Appl. No. 16/435,933, (16 pages).
Non Final Office Action dated Jun. 17, 2020, U.S. Appl. No. 16/682,911, (22 pages).
Non Final Office Action dated Jun. 19, 2020, U.S. Appl. No. 16/225,961, (35 pages).
Non Final Office Action dated Nov. 5, 2020, U.S. Appl. No. 16/530,776, (45 pages).
Non Final Office Action dated Oct. 22, 2019, U.S. Appl. No. 15/859,277, (15 pages).
Non Final Office Action dated Sep. 1, 2020, U.S. Appl. No. 16/214,575, (40 pages).
Non Final Office Action dated Mar. 3, 2021, U.S. Appl. No. 16/427,337, (41 pages).
Notice of Allowance dated Mar. 25, 2020, U.S. Appl. No. 15/564,517, (11 pages).
Notice of Allowance dated Oct. 5, 2020, U.S. Appl. No. 16/682,911, (27 pages).
Notice of Reason of Refusal dated Sep. 11, 2020 with English translation, Japanese Patent Application No. 2019-140435, (6 pages).
“Phototourism Challenge”, CVPR 2019 Image Matching Workshop. https://image matching-workshop. github.io., (16 pages).
“Summons to attend oral proceedings pursuant to Rule 115(1) EPC mailed on Jul. 15, 2019”, European Patent Application No. 15162521.7, (7 pages).
Aarik, J. et al., “Effect of crystal structure on optical properties of TiO2 films grown by atomic layer deposition”, Thin Solid Films; Publication [online). May 19, 1998 [retrieved Feb. 19, 2020]. Retrieved from the Internet: <URL: https://www.sciencedirect.com/science/article/pii/S0040609097001351?via%3Dihub>; DOI: 10.1016/S0040-6090(97)00135-1; see entire document, (2 pages).
Altwaijry, et al., “Learning to Detect and Match Keypoints with Deep Architectures”, Proceedings of the British Machine Vision Conference (BMVC), BMVA Press, Sep. 2016, [retrieved on Jan. 8, 2021 (Jan. 8, 2021 )] < URL: http://www.bmva.org/bmvc/2016/papers/paper049/index.html >, en lire document, especially Abstract, pp. 1-6 and 9.
Arandjelović, Relja et al., “Three things everyone should know to improve object retrieval”, CVPR, 2012, (8 pages).
Azom, , “Silica-Silicon Dioxide (SiO2)”, AZO Materials; Publication [Online]. Dec. 13, 2001 [retrieved Feb. 19, 2020]. Retrieved from the Internet: <URL: https://www.azom.com/article.aspx?Article1D=1114>, (6 pages).
Azuma, Ronald T. , “A Survey of Augmented Reality”, Presence: Teleoperators and Virtual Environments 6, 4 (Aug. 1997), 355-385; https://web.archive.org/web/20010604100006/http://www.cs.unc.edu/˜azuma/ARpresence.pdf (downloaded Oct. 26, 2020).
Azuma, Ronald T. , “Predictive Tracking for Augmented Reality”, Department of Computer Science, Chapel Hill NC; TR95-007, Feb. 1995, 262 pages.
Battaglia, Peter W. et al., “Relational inductive biases, deep learning, and graph networks”, arXiv:1806.01261, Oct. 17, 2018, pp. 1-40.
Berg, Alexander C et al., “Shape matching and object recognition using low distortion correspondences”, In CVPR, 2005, (8 pages).
Bian, Jiawang et al., “GMS: Grid-based motion statistics for fast, ultra-robust feature correspondence.”, In CVPR (Conference on Computer Vision and Pattern Recognition), 2017, (10 pages).
Bimber, Oliver et al., “Spatial Augmented Reality: Merging Real and Virtual Worlds”, https://web.media.mit.edu/˜raskar/book/BimberRaskarAugmentedRealityBook.pdf; published by A K Peters/CRC Press (Jul. 31, 2005); eBook (3rd Edition, 2007), (393 pages).
Brachmann, Eric et al., “Neural-Guided RANSAC: Learning Where to Sample Model Hypotheses”, In ICCV (International Conference on Computer Vision ), arXiv:1905.04132v2 [cs.CV] Jul. 31, 2019, (17 pages).
Butail, et al., “Putting the fish in the fish tank: Immersive VR for animal behavior experiments”, In: 2012 IEEE International Conference on Robotics and Automation. May 18, 2012 (May 18, 2012) Retrieved on Nov. 14, 2020 (Nov. 14, 2020) from <http:/lcdcl.umd.edu/papers/icra2012.pdf> entire document, (8 pages).
Caetano, Tibério S et al., “Learning graph matching”, IEEE TPAMI, 31(6):1048-1058, 2009.
Cech, Jan et al., “Efficient sequential correspondence selection by cosegmentation”, IEEE TPAMI, 32(9):1568-1581, Sep. 2010.
Cuturi, Marco , “Sinkhorn distances: Lightspeed computation of optimal transport”, NIPS, 2013, (9 pages).
Dai, Angela et al., “ScanNet: Richly-annotated 3d reconstructions of indoor scenes”, In CVPR, arXiv:1702.04405v2 [cs.CV] Apr. 11, 2017, (22 pages).
Deng, Haowen et al., “PPFnet: Global context aware local features for robust 3d point matching”, In CVPR, arXiv:1802.02669v2 [cs.CV] Mar. 1, 2018, (12 pages).
Detone, Daniel et al., “Deep image homography estimation”, In RSS Work-shop: Limits and Potentials of Deep Learning in Robotics, arXiv:1606.03798v1 [cs.CV] Jun. 13, 2016, (6 pages).
Detone, Daniel et al., “Self-improving visual odometry”, arXiv:1812.03245, Dec. 8, 2018, (9 pages).
Detone, Daniel et al., “SuperPoint: Self-supervised interest point detection and description”, In CVPR Workshop on Deep Learning for Visual SLAM, arXiv:1712.07629v4 [cs.CV] Apr. 19, 2018, (13 pages).
Dusmanu, Mihai et al., “D2-net: A trainable CNN for joint detection and description of local features”, CVPR, arXiv:1905.03561v1 [cs.CV] May 9, 2019, (16 pages).
Ebel, Patrick et al., “Beyond cartesian representations for local descriptors”, ICCV, arXiv:1908.05547v1 [cs.CV] Aug. 15, 2019, (11 pages).
Fischler, Martin A et al., “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography”, Communications of the ACM, 24(6): 1981, pp. 381-395.
Gilmer, Justin et al., “Neural message passing for quantum chemistry”, In ICML, arXiv:1704.01212v2 [cs.LG] Jun. 12, 2017, (14 pages).
Goodfellow, , “Titanium Dioxide-Titania (TiO2)”, AZO Materials; Publication [online]. Jan. 11, 2002 [retrieved Feb. 19, 2020]. Retrieved from the Internet: <URL: https://www.azom.com/article.aspx?Article1D=1179>, (9 pages).
Hartley, Richard et al., “Multiple View Geometry in Computer Vision”, Cambridge University Press, 2003, pp. 1-673.
Jacob, Robert J. , “Eye Tracking in Advanced Interface Design”, Human-Computer Interaction Lab, Naval Research Laboratory, Washington, D.C., date unknown. 2003, pp. 1-50.
Lee, et al., “Self-Attention Graph Pooling”, Cornell University Library/Computer Science/ Machine Learning, Apr. 17, 2019 [retrieved on Jan. 8, 2021 from the Internet< URL: https://arxiv.org/abs/1904.08082 >, entire document.
Lee, Juho et al., “Set transformer: A frame-work for attention-based permutation-invariant neural networks”, ICML, arXiv:1810.00825v3 [cs.LG] May 26, 2019, (17 pages).
Leordeanu, Marius et al., “A spectral technique for correspondence problems using pairwise constraints”, Proceedings of (ICCV) International Conference on Computer Vision, vol. 2, pp. 1482-1489, Oct. 2005, (8 pages).
Levola, T. , “Diffractive Optics for Virtual Reality Displays”, Journal of the SID Eurodisplay 14/05, 2005, XP008093627, chapters 2-3, Figures 2 and 10, pp. 467-475.
Levola, Tapani , “Invited Paper: Novel Diffractive Optical Components for Near to Eye Displays—Nokia Research Center”, SID 2006 Digest, 2006 SID International Symposium, Society for Information Display, vol. XXXVII, May 24, 2005, chapters 1-3, figures 1 and 3, pp. 64-67.
Li, Yujia et al., “Graph matching networks for learning the similarity of graph structured objects”, ICML, arXiv:1904.12787v2 [cs.LG] May 12, 2019, (18 pages).
Li, Zhengqi et al., “Megadepth: Learning single-view depth prediction from internet photos”, In CVPR, fromarXiv: 1804.00607v4 [cs.CV] Nov. 28, 2018, (10 pages).
Libovicky, et al., “Input Combination Strategies for Multi-Source Transformer Decoder”, Proceedings of the Third Conference on Machine Translation (WMT). vol. 1: Research Papers, Belgium, Brussels, Oct. 31-Nov. 1, 2018; retrieved on Jan. 8, 2021 (Jan. 8, 2021) from < URL: https://doi.org/10.18653/v1/W18-64026 >, entire document, pp. 253-260.
Loiola, Eliane M. et al., “A survey for the quadratic assignment problem”, European journal of operational research, 176(2): 2007, pp. 657-690.
Lowe, David G. , “Distinctive image features from scale-invariant keypoints”, International Journal of Computer Vision, 60(2): 91-110, 2004, (28 pages).
Luo, Zixin et al., “ContextDesc: Local descriptor augmentation with cross-modality context”, CVPR, arXiv:1904.04084v1 [cs.CV] Apr. 8, 2019, (14 pages).
Memon, F. et al., “Synthesis, Characterization and Optical Constants of Silicon Oxycarbide”, EPJ Web of Conferences; Publication [online). Mar. 23, 2017 [retrieved Feb. 19, 2020).<URL: https://www.epj-conferences.org/articles/epjconf/pdf/2017/08/epjconf_nanop2017_00002.pdf>; DOI: 10.1051/epjconf/201713900002, (8 pages).
Munkres, James , “Algorithms for the assignment and transportation problems”, Journal of the Society for Industrial and Applied Mathematics, 5(1): 1957, pp. 32-38.
Ono, Yuki et al., “LF-Net: Learning local features from images”, 32nd Conference on Neural Information Processing Systems (NIPS 2018), arXiv:1805.09662v2 [cs.CV] Nov. 22, 2018, (13 pages).
Paszke, Adam et al., “Automatic differentiation in Pytorch”, 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, (4 pages).
Peyré, Gabriel et al., “Computational Optimal Transport”, Foundations and Trends in Machine Learning, 11(5-6):355-607, 2019; arXiv:1803.00567v4 [stat.ML] Mar. 18, 2020, (209 pages).
Qi, Charles R. et al., “Pointnet++: Deep hierarchical feature learning on point sets in a metric space.”, 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA., (10 pages).
Qi, Charles R et al., “Pointnet: Deep Learning on Point Sets for 3D Classification and Segmentation”, CVPR, arXiv:1612.00593v2 [cs.CV] Apr. 10, 201, (19 pages).
Radenović, Filip et al., “Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking”, CVPR, arXiv:1803.11285v1 [cs.CV] Mar. 29, 2018, (10 pages).
Raguram, Rahul et al., “A comparative analysis of ransac techniques leading to adaptive real-time random sample consensus”, Computer Vision—ECCV 2008, 10th European Conference on Computer Vision, Marseille, France, Oct. 12-18, 2008, Proceedings, Part I, (15 pages).
Ranftl, René et al., “Deep fundamental matrix estimation”, European Conference on Computer Vision (ECCV), 2018, (17 pages).
Revaud, Jerome et al., “R2D2: Repeatable and Reliable Detector and Descriptor”, In NeurIPS, arXiv:1906.06195v2 [cs.CV] Jun. 17, 2019, (12 pages).
Rocco, Ignacio et al., “Neighbourhood Consensus Networks”, 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada, arXiv:1810.10510v2 [cs.CV] Nov. 29, 2018, (20 pages).
Rublee, Ethan et al., “ORB: An efficient alternative to SIFT or SURF”, Proceedings of the IEEE International Conference on Computer Vision. 2564-2571. 2011; 10.1109/ICCV.2011.612654, (9 pages).
Sarlin, et al., “SuperGlue: Learning Feature Matching with Graph Neural Networks”, Cornell University Library/Computer Science/Computer Vision and Pattern Recognition, Nov. 26, 2019 [retrieved on Jan. 8, 2021 from the Internet< URL: https://arxiv.org/abs/1911.11763 >, entire document, especially.
Sattler, Torsten et al., “SCRAMSAC: Improving RANSAC's efficiency with a spatial consistency filter”, ICCV, 2009: 2090-2097., (8 pages).
Schonberger, Johannes L. et al., “Pixelwise view selection for unstructured multi-view stereo”, Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, Oct. 11-14, 2016, Proceedings, Part III, pp. 501-518, 2016.
Schonberger, Johannes L. et al., “Structure-from-motion revisited”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 4104-4113, (11 pages).
Sinkhorn, Richard et al., “Concerning nonnegative matrices and doubly stochastic matrices.”, Pacific Journal of Mathematics, 1967, pp. 343-348.
Spencer, T. et al., “Decomposition of poly(propylene carbonate) with UV sensitive iodonium 11 salts”, Polymer Degradation and Stability; (online]. Dec. 24, 2010 (retrieved Feb. 19, 2020]., <URL: http:/fkohl.chbe.gatech.edu/sites/default/files/linked_files/publications/2011Decomposition%20of%20poly(propylene%20carbonate)%20with%20UV%20sensitive%20iodonium%20salts,pdf>; DOI: 10, 1016/j.polymdegradstab.2010, 12.003, (17 pages).
Tanriverdi, Vildan et al., “Interacting With Eye Movements in Virtual Environments”, Department of Electrical Engineering and Computer Science, Tufts University; Proceedings of the SIGCHI conference on Human Factors in Computing Systems, Apr. 2000, pp. 1-8.
Thomee, Bart et al., “YFCC100m: The new data in multimedia research”, Communications of the ACM, 59(2):64-73, 2016; arXiv:1503.01817v2 [cs.MM] Apr. 25, 2016, (8 pages).
Torresani, Lorenzo et al., “Feature correspondence via graph matching: Models and global optimization”, Computer Vision—ECCV 2008, 10th European Conference on Computer Vision, Marseille, France, Oct. 12-18, 2008, Proceedings, Part II, (15 pages).
Tuytelaars, Tinne et al., “Wide baseline stereo matching based on local, affinely invariant regions”, BMVC, 2000, pp. 1-14.
Ulyanov, Dmitry et al., “Instance normalization: The missing ingredient for fast stylization”, arXiv:1607.08022v3 [cs.CV] Nov. 6, 2017, (6 pages).
Vaswani, Ashish et al., “Attention is all you need”, 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA; arXiv:1706.03762v5 [cs.CL] Dec. 6, 2017, (15 pages).
Veli{hacek over (c)}kovi{hacek over (c)}, Petar et al., “Graph attention networks”, ICLR, arXiv:1710.10903v3 [stat.ML] Feb. 4, 2018, (12 pages).
Villani, Cédric , “Optimal transport: old and new”, vol. 338. Springer Science & Business Media, Jun. 2008, pp. 1-998.
Wang, Xiaolong et al., “Non-local neural networks”, CVPR, arXiv:1711.07971v3 [cs.CV] Apr. 13, 2018, (10 pages).
Wang, Yue et al., “Deep Closest Point: Learning representations for point cloud registration”, ICCV, arXiv:1905.03304v1 [cs.CV] May 8, 2019, (10 pages).
Wang, Yue et al., “Dynamic Graph CNN for learning on point clouds”, ACM Transactions on Graphics, arXiv:1801.07829v2 [cs.CV] Jun. 11, 2019, (13 pages).
Weissel, et al., “Process cruise control: event-driven clock scaling for dynamic power management”, Proceedings of the 2002 international conference on Compilers, architecture, and synthesis for embedded systems. Oct. 11, 2002 (Oct. 11, 2002) Retrieved on May 16, 2020 (May 16, 2020) from <URL: https://dl.acm.org/doi/pdf/10.1145/581630.581668>, p. 238-246.
Yi, Kwang M. et al., “Learning to find good correspondences”, CVPR, arXiv:1711.05971v2 [cs.CV] May 21, 2018, (13 pages).
Yi, Kwang Moo et al., “Lift: Learned invariant feature transform”, ECCV, arXiv:1603.09114v2 [cs.CV] Jul. 29, 2016, (16 pages).
Zaheer, Manzil et al., “Deep Sets”, 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA; arXiv:1703.06114v3 [cs.LG] Apr. 14, 2018, (29 pages).
Zhang, Jiahui et al., “Learning two-view correspondences and geometry using order-aware network”, ICCV; aarXiv:1908.04964v1 [cs.CV] Aug. 14, 2019, (11 pages).
Zhang, Li et al., “Dual graph convolutional net-work for semantic segmentation”, BMVC, 2019; arXiv:1909.06121v3 [cs.CV] Aug. 26, 2020, (18 pages).
Communication Pursuant to Article 94(3) EPC dated Jan. 4, 2022, European Patent Application No. 20154070.5 , (8 pages).
Communication Pursuant to Article 94(3) EPC dated Oct. 21, 2021, European Patent Application No. 16207441.3 , (4 pages).
Communication Pursuant to Rule 164(1) EPC dated Jul. 27, 2021, European Patent Application No. 19833664.6 , (11 pages).
Extended European Search Report dated Jun. 30, 2021, European Patent Application No. 19811971.1 , (9 pages).
Extended European Search Report dated Mar. 4, 2021, European Patent Application No. 19768418.6 , (9 pages).
Extended European Search Report dated Jan. 4, 2022, European Patent Application No. 19815085.6 , (9 pages).
Extended European Search Report dated Jul. 16, 2021, European Patent Application No. 19810142.0 , (14 pages).
Extended European Search Report dated Jul. 30, 2021, European Patent Application No. 19839970.1 , (7 pages).
Extended European Search Report dated Oct. 27, 2021, European Patent Application No. 19833664.6 , (10 pages).
Extended European Search Report dated Sep. 20, 2021, European Patent Application No. 19851373.1 , (8 pages).
Extended European Search Report dated Sep. 28, 2021, European Patent Application No. 19845418.3 , (13 pages).
Final Office Action dated Jun. 15, 2021, U.S. Appl. No. 16/928,313 , (42 pages).
Final Office Action dated Mar. 1, 2021, U.S. Appl. No. 16/214,575 , (29 pages).
Final Office Action dated Mar. 19, 2021, U.S. Appl. No. 16/530,776 , (25 pages).
Final Office Action dated Sep. 17, 2021, U.S. Appl. No. 16/938,782 , (44 pages).
“Multi-core processor”, TechTarget, 2013 , (1 page).
Non Final Office Action dated Aug. 4, 2021, U.S. Appl. No. 16/864,721 , (51 pages).
Non Final Office Action dated Jul. 9, 2021, U.S. Appl. No. 17/002,663 , (43 pages).
Non Final Office Action dated Jul. 9, 2021, U.S. Appl. No. 16/833,093 , (47 pages).
Non Final Office Action dated Jun. 10, 2021, U.S. Appl. No. 16/938,782 , (40 Pages).
Non Final Office Action dated Jun. 29, 2021, U.S. Appl. No. 16/698,588 , (58 pages).
Non Final Office Action dated May 26, 2021, U.S. Appl. No. 16/214,575 , (19 pages).
Non Final Office Action dated Sep. 20, 2021, U.S. Appl. No. 17/105,848 , (56 pages).
Non Final Office Action dated Sep. 29, 2021, U.S. Appl. No. 16/748,193 , (62 pages).
Giuseppe, Donato , et al. , “Stereoscopic helmet mounted system for real time 3D environment reconstruction and indoor ego--motion estimation”, Proc. SPIE 6955, Head- and Helmet-Mounted Displays XIII: Design and Applications , 69550P.
Molchanov, Pavlo , et al. , “Short-range FMCW monopulse radar for hand-gesture sensing”, 2015 IEEE Radar Conference (RadarCon) (2015) , pp. 1491-1496.
Mrad , et al. , “A framework for System Level Low Power Design Space Exploration”, 1991.
Sheng, Liu , et al. , “Time-multiplexed dual-focal plane head-mounted display with a liquid lens”, Optics Letters, Optical Society of AMER I CA, US, vol. 34, No. 11, Jun. 1, 2009 (Jun. 1, 2009), XP001524475, ISSN: 0146-9592 , pp. 1642-1644.
“Communication according to Rule 164(1) EPC dated Feb. 23, 2022”, European Patent Application No. 20753144.3, (11 pages).
“Communication Pursuant to Article 94(3) EPC dated Apr. 25, 2022”, European Patent Application No. 18885707.2, (5 pages).
“Extended European Search Report dated Jan. 28, 2022”, European Patent Application No. 19815876.8, (9 pages).
“Extended European Search Report dated Jun. 19, 2020”, European Patent Application No. 20154750.2, (10 pages).
“Extended European Search Report dated Mar. 22, 2022”, European Patent Application No. 19843487.0, (14 pages).
“Final Office Action dated Feb. 23, 2022”, U.S. Appl. No. 16/748,193, (23 pages).
“Final Office Action dated Feb. 3, 2022”, U.S. Appl. No. 16/864,721, (36 pages).
“First Examination Report dated May 13, 2022”, Indian Patent Application No. 202047026359, (8 pages).
“First Office Action dated Mar. 14, 2022 with English translation”, Chinese Patent Application No. 201880079474.6, (11 pages).
“Non Final Office Action dated Apr. 1, 2022”, U.S. Appl. No. 17/256,961, (65 pages).
“Non Final Office Action dated Apr. 11, 2022”, U.S. Appl. No. 16/938,782, (52 pages).
“Non Final Office Action dated Feb. 2, 2022”, U.S. Appl. No. 16/783,866, (8 pages).
“Non Final Office Action dated Mar. 31, 2022”, U.S. Appl. No. 17/257,814, (60 pages).
“Non Final Office Action dated Mar. 9, 2022”, U.S. Appl. No. 16/870,676, (57 pages).
“Non Final Office Action dated May 10, 2022”, U.S. Appl. No. 17/140,921, (25 pages).
“Non Final Office Action dated May 17, 2022”, U.S. Appl. No. 16/748,193, (11 pages).
“Communication Pursuant to Article 94(3) EPC dated May 30, 2022”, European Patent Application No. 19768418.6, (6 pages).
“Communication Pursuant to Rule 164(1) EPC dated Feb. 23, 2022”, European Patent Application No. 20753144.3, (11 pages).
“Extended European Search Report dated Aug. 24, 2022”, European Patent Application No. 20846338.0, (13 pages).
“Extended European Search Report dated Aug. 8, 2022”, European Patent Application No. 19898874.3, (8 pages).
“Extended European Search Report dated Sep. 8, 2022”, European Patent Application No. 20798769.4, (13 pages).
“Extended European Search Report dated May 16, 2022”, European Patent Application No. 19871001.4, (9 pages).
“Extended European Search Report dated May 30, 2022”, European Patent Application No. 20753144.3, (10 pages).
“First Examination Report dated Jul. 27, 2022”, Chinese Patent Application No. 201980036675.2, (5 pages).
“First Examination Report dated Jul. 28, 2022”, Indian Patent Application No. 202047024232, (6 pages).
“FS_XR5G: Permanent document, v0.4.0”, Qualcomm Incorporated, 3GPP TSG-SA 4 Meeting 103 retrieved from the Internet: URL:http://www.3gpp.org/ftp/Meetings%5F3GP P%5FSYNC/SA4/Docs/S4%2DI90526%2Ezip [retrieved on Apr. 12, 2019], Apr. 12, 2019, (98 pages).
“Non Final Office Action dated Jul. 26, 2022”, U.S. Appl. No. 17/098,059, (28 pages).
“Non Final Office Action dated Sep. 19, 2022”, U.S. Appl. No. 17/263,001, (14 pages).
“Second Office Action dated Jul. 13, 2022 with English Translation”, Chinese Patent Application No. 201880079474.6, (10 pages).
“Second Office Action dated Jun. 20, 2022 with English Translation”, Chinese Patent Application No. 201880089255.6, (14 pages).
Anonymous , “Koi Pond: Top iPhone App Store Paid App”, https://web.archive.org/web/20080904061233/https://www.iphoneincanada.ca/reviews /koi-pond-top-iphone-app-store-paid-app/—[retrieved on Aug. 9, 2022], (2 pages).
Chittineni, C. , et al., “Single filters for combined image geometric manipulation and enhancement”, Proceedings of SPIE vol. 1903, Image and Video Processing, Apr. 8, 1993, San Jose, CA. (Year: 1993), pp. 111-121.
“Extended European Search Report dated Dec. 14, 2022”, European Patent Application No. 20886547.7, (8 pages).
“Extended European Search Report dated Nov. 3, 2022”, European Patent Application No. 20770244.0, (23 pages).
“Final Office Action dated Dec. 29, 2022”, U.S. Appl. No. 17/098,059, (32 pages).
“First Examination Report dated Dec. 8, 2022”, Australian Patent Application No. 2018392482, (3 pages).
“Non Final Office Action dated Dec. 7, 2022”, U.S. Appl. No. 17/357,795, (63 pages).
“Notice of Reason for Rejection dated Oct. 28, 2022 with English translation”, Japanese Patent Application No. 2020-531452, (3 pages).
“Office Action dated Nov. 24, 2022 with English Translation”, Japanese Patent Application No. 2020-533730, (11 pages).
Related Publications (1)
Number Date Country
20210164804 A1 Jun 2021 US
Provisional Applications (1)
Number Date Country
62702870 Jul 2018 US