The invention relates to a test device for electrical testing of a unit under test, in particular for the testing of wafers. The test device has a contact head which can be associated with the unit under test and is provided with contact elements which are in the form of pins and form a contact pin arrangement, and has an electrical connecting apparatus, which has contact surfaces which make a touching contact with those ends of the contact elements which face away from the test plane accommodating the unit under test.
The electrical test devices of the type mentioned initially are used to make electrical contact with a unit under test in order to test its functionality and serviceability.
The electrical test device produces electrical connections to the unit under test, that it makes contact on the one hand with electrical connections on the unit under test and on the other hand provides electrical contacts which are connected to a test system which supplies electrical signals to the unit under test via the test device in order to carry out, for example, resistance measurements, current and voltage measurements and so on for functional testing. Since the electrical units under test are often very small electronic components, for example electronic circuits on a wafer from which electronic components are manufactured. The contact elements, which are in the form of pins, on the test head have extremely small dimensions. In order now to provide a connection capability to the test system that has been mentioned, the contact elements of the test head make a touching contact with a connecting apparatus which provides conversion to a greater contact separation and to this extent allows the connection of electrical connecting cables which lead to the test system. During testing, the unit under test is located on the test plane, and the test device is lowered axially, preferably in the vertical direction, onto the unit under test. The first ends of the contact elements, which are in the form of pins, make contact with the unit under test. The other ends of the contact elements, which are in the form of pins, meet the contact surfaces of the connecting apparatus. Manufacturing tolerances and external conditions mean that this does not always ensure that the contact pins in the contact pin arrangement make contact with the unit under test with the same contact pressure, because even a minor discrepancy from the planar condition of a component can lead to a specific proportion of the contact pins or only one individual contact pin making contact at an early stage during the lowering of the unit under test, or else making contact only when all or many of the other contact pins have already made contact, in which case certain contact pins may have a greater or lesser contact pressure during testing, as well. In the worst case, it is possible in the case of the known test device for certain contact pins to make no contact with the unit under test, even though other contact pins are resting against the unit under test with the desired contact pressure. The contact pins preferably themselves compensate for minor discrepancies since they are resilient in the longitudinal direction, and are preferably in the form of bent wires. Bent wires have force applied to them in the longitudinal direction when making contact, and in this case bend elastically slightly in the form of an arc. However, this compensation is not always sufficient. The invention is therefore based on the object of providing a test device of the type mentioned initially in which reliable contact with the unit under test is always ensured.
According to the invention, this object is achieved in that the contact surfaces are axial contact elements which extend in the axial direction and are in the form of mechanically processed contact surfaces. The mechanical processing is based, in particular, on grinding, milling and/or planing. All other known mechanical processing procedures which remove material may, of course, also be used. The contact surfaces are accordingly located on axial contact elements, that is intrinsically on components which extend in the axial direction. By way of example, these components may be in the form of axial contact pillars or axial contact raised areas. These axial contact elements may, for example, be milled or ground in order to produce the contact surfaces, in order to produce a defined axial position for the contact surface. This allows the axial position of the contact surface to be produced with high precision so that, in conjunction with the contact elements, reliable contact is always made with the unit under test, since the axial position of the contact surface can be produced on the basis of the procedure according to the invention in such a way that excessive contact pressure, weak contact pressure or even no contact pressure do not occur.
In particular, it is possible to provide for the contact surfaces each to be produced in their own right by mechanical processing, or to be in the form of contact surfaces produced by means of a single mechanical processing procedure. In consequence, according to the second alternative, all the contact surfaces of the connecting apparatus are produced jointly by means of a single mechanical processing procedure. This makes it possible, for example, to achieve an exact common plane or else arrangements with a deliberate discrepancy from the plane (an intrinsically planar inclined surface).
It is advantageous if the contact surfaces are each in the form of contact surfaces which are mechanically processed to be planar in their own right and also with respect to one another. This means that a perfect planar condition of the overall arrangement is achieved, offering the precondition for reliable contact. If the contact elements of the contact pin arrangement are likewise preferably produced jointly by means of a (different) mechanical processing procedure, for example a grinding procedure, with the same length and have thus been ground to be planar as an overall arrangement, an appropriately planar-ground connecting apparatus interacts perfectly with these contact elements, so that no major tolerance discrepancies occur in the axial direction which could endanger reliable contact.
The axial contact elements can be produced by applying material to basic contacts of the connecting apparatus. This may be done, for example, by applying solder to the basic contacts and by soldering to them, thus resulting in corresponding raised solder areas. These raised solder areas are then ground in order to produce the contact surfaces in the desired axial position. Alternatively, by way of example, it is possible to produce axial contact elements by, for example, soldering, welding or adhesively bonding (by means of electrically conductive adhesive) conductive bodies to the basic contacts, and then carrying out mechanical processing, for example, grinding, on the conductive bodies. For example, tiny conductive bodies in the form of pillars may be used, and are electrically conductively attached to the basic contacts.
In particular, it is possible to provide for the connecting apparatus to have a printed circuit board, in particular a multilayer printed circuit board. The printed circuit board has the basic contacts that have been mentioned on one face, which lead via conductor tracks to radially external connecting contacts, to which the electrical connecting cables which lead to the test system are connected. When using a printed circuit board as the connecting apparatus, plated-through holes are preferably used as the raised contact areas, that is the axial contact elements are formed by plated-through holes in the printed circuit board. The multilayer printed circuit board preferably has an outer layer which is associated with the contact head and has the plated-through holes. If the entire outer layer, that is the surface of this outer layer, of the printed circuit board is mechanically processed, then not only is the insulating material of the printed circuit board appropriately processed, but the plated-through holes located there as well, which to this extent can be positioned at the desired axial plane by the processing. The plated-through holes may have metallized walls and thus form annular contact surfaces facing the contact pins of the contact pin arrangement. If the contact pins are designed to have larger diameters than the free internal diameter of an annular contact arrangement such as this, there is no need to be concerned about ingress of a contact pin. However, provided that large-volume plated-through holes are used, this results in intrinsically closed contact surfaces, which improve the contact reliability.
The invention furthermore relates to a method for production of a test device, in particular according to one or more of the preceding explanations, in which the contact surfaces of the connecting apparatus are produced by mechanical processing, in particular by mechanical planar processing. In particular, the contact surfaces are produced by first of all applying a covering of conductive material, which is then mechanically processed.
Other features and advantages of the present invention will become apparent from the following description of the invention which refers to the accompanying drawings.
The drawings illustrate the invention with reference to exemplary embodiments, in which:
A vertical test card 5 which forms the test device 1 is provided in order to make contact with corresponding connecting points on the wafer 3.
The test device 1 has a contact head 6 and a connecting apparatus 7. The connecting apparatus 7 is supported on a supporting apparatus 8. The contact head 6 is provided with a large number of contact elements 9 which are mounted such that they can move longitudinally, with one of their end areas being associated with the unit under test 2, and their other end areas being associated with the connecting apparatus 7. The connecting apparatus 7 is in the form of a multilayer printed circuit board 10 with conductor tracks 11, with the conductor tracks 11 having basic contacts 12a of contacts 12 at their ends associated with the contact head 6. The basic contacts 12a are associated with the respective contact elements 9. The conductor tracks 11 have, at their radially outer ends, electrical connecting surfaces 13, which can be connected to the test system (which is likewise not illustrated) via cable connections (not illustrated). The arrangement is designed such that the connecting apparatus 7 forms a conversion apparatus, that is the very short distance between the tiny small basic contact surfaces 12b of the basic contacts 12a (with a diameter, for example, of 50 to 300 μm) is converted via the conductor tracks 11 to greater distances between the connecting surfaces 13. Furthermore, the connecting surfaces 13 are each of a size to allow the cable connections to the test system to be produced.
During the testing of the unit under test 2, the test device 1 is moved in the axial direction (arrow 14) towards the unit under test 2, with the printed circuit board 10 being supported by the supporting apparatus 8. The ends of the contact elements 9 meet the wafer 3 on the one hand and the contacts 12 on the other hand. Since the contact elements 9 are in the form of bent wires 15, that is they are designed to be slightly resilient by bending in the axial direction, this allows correct contact to be made provided that, assuming that the wafer 3 is planar and that all the bent wires 15 have the same length, the contact surfaces 12c of the contacts 12 are likewise located at the same height as one another, that is to say a planar condition likewise exists. The way in which this planar condition of the contacts 12 can be achieved is explained in more detail in the following text.
The contact head 6 has two parallel ceramic plates 16 and 17 which are separated from one another and are provided with respective bearing holes 18 for holding the bent wires 15. The parallel spacing between the two ceramic plates 16 and 17 is achieved by means of a spacer 19.
Since the individual axial contact elements 22 result in corresponding tolerance dimensions in the axial direction owing to the solder tin balls melted onto each of them, all of the axial contact elements 22 are processed to be planar at their lower ends 24 during the production process by means of a common mechanical processing procedure, in particular a precision milling procedure and/or precision grinding procedure, in particular by being milled and/or ground. In each case, this forms a contact surface 12c, in particular a milled and/or ground contact surface 12c, on each axial contact element 22. All of the contact surfaces 12c are intrinsically planar as a result of the milling procedure and/or grinding procedure, are also planar with respect to one another, and are additionally planar with respect to the upper face of the mount 4, and are thus planar with respect to the unit under test 2 which, for example, is in the form of a wafer 3. During their production, the bent wires 15 are likewise all changed to the same length by means of a mechanical processing procedure, in particular likewise by means of a milling procedure and/or a grinding procedure. This produces overall an exactly planar test device 1, which ensures, when contact is made for a unit under test 2, that there are no “leading” or “lagging” contacts when the test device 1 is lowered onto the unit under test 2, and that all of the contact elements 9 make contact with the corresponding test points on the unit under test with at least essentially the same contact pressure.
In the exemplary embodiment shown in
The procedure according to the invention, specifically the mechanical processing, in particular milling and/or grinding of raised contact areas which are preferably in the form of pillars, results in the production of processed contact surfaces 12c on the connecting apparatus 7, which are each intrinsically planar and are also in a planar position with respect to one another. The diameters of these mechanically processed contact surfaces 12c range between about 50 and 300 μm. The individual contact surfaces 12c, which are electrically isolated from one another, have, for example, distances between their centers of 100 to 300 μm. This distance between centers is, of course, dependent on the contact position of the respective unit under test 2 to be tested.
In particular, it is possible to provide for the raised contact areas mentioned above, for example raised solder areas or raised contact areas created by axial contact elements, to be embedded in an embedding compound, which is electrically non-conductive, before the mechanical processing, in particular before they are milled over or ground over. For example, this may be a plastic compound. The advantage is that the very sensitive raised contact areas are mechanically supported and thus protected to the best extent during the mechanical processing procedure, so that the raised areas are subject to only a very small amount of mechanical stress during the mechanical processing. It is thus possible, for example, to embed the raised areas in epoxy resin and then to carry out the mechanical processing process, after curing, with the supporting material that has been applied either being completely removed again during the mechanical processing, or else remaining in places on the product, depending on the extent to which the mechanical processing is carried out. Fundamentally, it should be noted that a large number of different embedding materials are suitable for the stated support function, with the embedding material in some cases being left on the workpiece, or else being removed again.
The invention is additionally distinguished in that, after the mechanical processing (independently of the respective exemplary embodiment), the surface of the contact surfaces is still covered with noble material, in order to create a robust surface with good electrical contact characteristics. For example, chemical or electrochemical gold plating may be carried out. Other metals may, of course, also be applied in order to achieve the desired effect. An embodiment such as this provides in particular for a raised area which is comprised of solder material, in particular solder tin, to be provided after mechanical processing with a layer structure composed of gold, nickel and gold again. The different materials are applied successively by electrochemical techniques.
It is also feasible for a surface layer of the type mentioned above which has been applied to the respective contact surface after the mechanical processing to be processed mechanically once again. This processing is carried out only to a minor extent in order not to completely remove the surface layer again.
Although the present invention has been described in relation to particular embodiments thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. It is preferred, therefore, that the present invention be limited not by the specific disclosure herein, but only by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2004027886.5 | May 2004 | DE | national |