1. Technical Field
The present invention relates generally to a thermal contact arrangement between a processor and a heat sink, and more particularly to a processor thermal contact having at least a first and a second surface finish of differing smoothness.
2. Background of the Invention
Processors (also referred to as “computer processors” or “processor chips”) are specialized electronic circuits providing computing functionality in a variety of modern electronics, such as computers or other computing devices, networking devices, and/or telecommunications devices. Processors (“chips”) may be responsible for the overall operation of a computing, telecommunications, or network device (such as a central processing unit, router or switch), operation or coordination of a device's subsystem (such as a graphics or sound processor), particular operations (such as a math coprocessor), and so forth. During operation, processors generate heat as a result of their operation. The processor may be attached to a carrier such as a circuit board, as shown in the prior art view of
Generally speaking, excessive temperature may disrupt a processor's operation or, in more severe cases, damage the processor. Accordingly and as shown in
The interface between the processor and heat sink may be referred to as a “thermal joint.” The rate of conductive heat transfer, Q, across the interface may be further refined to include the effects of contact resistance which then can be approximated by
where K is the thermal conductivity of an interface material (whether a dedicated thermal interface material discussed below, air, or another material), A is the heat transfer area, L is the interface thickness and Tc and Ts are the chip surface and heat sink temperatures. The thermal resistance of a thermal joint, Rc-s, is given by
and on rearrangement,
Thus, the thermal resistance of the thermal joint is directly proportional to the thermal joint thickness and inversely proportional to the thermal conductivity of the medium making up the thermal joint and to the size of the heat transfer area. Thermal resistance may be minimized by making the thermal joint as thin as possible, increasing thermal joint thermal conductivity by eliminating interstitial air and making certain that both surfaces are in intimate contact. The thermal resistance of the thermal contact arrangement (which, in one example, includes the thermal joint, processor or chip, and heat sink) may be generally expressed as the thermal resistance of the thermal joint plus the thermal interface resistances of the chip and heat sink:
where Rtotal is the total resistance of the thermal contact arrangement, Rc-i is the thermal resistance between the chip and interface material and Ri-s is the thermal resistance between the interface material and the heat sink.
TIMs, however, may suffer from migration over time. Put simply, some TIMs tend to move away from the thermal joint with time, flowing or otherwise migrating out from the heat transfer surface area of the processor and/or heat sink. As the TIM migrates, air pockets may form in the thermal joint, and rate of conductive heat transfer between processor and heat sink may drop. Thus, as time passes, the aforementioned problems may occur even though a TIM is initially used.
One embodiment of the present invention generally takes the form of a surface positioned on a heat sink adjacent to which a processor may be affixed. The processor may overlap or overlie a first segment of the surface, with a second portion of the surface surrounding the first portion. Accordingly, the second portion generally lies outside the footprint of the processor and further surrounds the processor's footprint. The combination of first and second portions (alternately called “first and second zones” or “first and second surfaces”) may act to prohibit or at least reduce the migration of a thermal interface material positioned adjacent the first portion, as described in more detail below.
The first area or portion may have a generally smooth surface, while the second area or portion may have a surface rougher than the first area. That is, the first area may be finished to a specific smoothness while the second area may be finished to second particular smoothness that is generally less than the first area. It should be noted that the variations in surface finish between the first and second areas may be relatively small, on the order of microinches. It should also be noted that the variation in surface finish may not be readily detectable by human senses, such as sight or touch.
Another exemplary embodiment may take the form of a thermal contact arrangement, including a thermal conductor, a first zone having a first surface finish disposed on the thermal conductor, and a second zone having a second surface finish disposed on the thermal conductor, wherein the first surface finish and second surface finish are different. In certain embodiments, the first surface finish is smoother than the second surface finish. In yet further embodiments, the thermal conductor may be a heat sink. In still more embodiments, the thermal contact arrangement may include a processor operatively connected to the heat sink, wherein the first zone approximately corresponds to a footprint of the processor. A thermal interface material may be disposed within or adjacent to the first zone.
Yet another exemplary embodiment may take the form of a thermal contact arrangement including a carrier, a processor disposed on the carrier, a thermal interface material adjacent the processor, a heat sink thermally coupled to the processor by the thermal interface material. The heat sink may include a first surface finish defining a first zone, and a second surface finish defining a second zone, the second surface finish rougher than the first surface finish. In further embodiments, the thermal interface material may be a thermal grease, a thermal elastomer, an oxide-doped thermal grease, a metal-doped thermal grease, or a thermal adhesive. Alternative embodiments may use any of a number of similar materials as a TIM. In still other exemplary embodiments, a first side of the heat sink and a first side of the processor cooperate to form a thermal joint, the thermal interface material occupies at least a portion of the thermal joint, and the first zone and second zone are disposed on the first side of the heat sink. In some embodiments, the second zone at least partially surrounds the first zone.
Still another embodiment of the present invention may take the form of A method for manufacturing a thermal contact arrangement, including the operations of providing a thermal conductor, forming a first zone having a first roughness on a first exterior surface of the thermal conductor, and forming a second zone having a second roughness on the first exterior surface of the thermal conductor, wherein the second roughness is rougher than the first roughness.
One embodiment of the present invention generally takes the form of a surface positioned on a heat sink adjacent to which a processor may be attached. The processor may overlap or overlie a first segment of the surface of the heat sink, with a second portion of the surface surrounding the first portion. Accordingly, the second portion generally lies outside the footprint of the processor and further surrounds the processor's footprint. A processor or chip's “footprint” refers to that portion of the heat sink (or other element) having generally the same shape and area as the adjacent surface of the processor.
The first area or portion may have a generally smooth surface, while the second area or portion may have a surface rougher than the first area. That is, the first area may be finished to a specific smoothness while the second area may be finished to second particular smoothness that is generally less than the first area. It should be noted that the variations in surface finish between the first and second areas may be relatively small, on the order of microinches. It should also be noted that the variation in surface finish may not be readily detectable by human senses, such as sight or touch.
Returning to
As shown in the cross-sectional view of
As also shown in
Typically, both the processor 100 and heat sink 110 have at least some surface irregularities, as shown to better effect in the expanded cross-sectional view of
One or more of a variety of TIMs 115 may be placed between the processor 100 and heat sink 110 to facilitate heat transfer therebetween. For example, the TIM 115 may be a thermal grease (which may be silicone based), thermally conductive compound, thermally conductive elastomer (such as a pad), thermal grease with an oxide or metal filler, adhesive tape, and so forth. As a general rule, the TIMs mentioned herein may be ranked by thermal conductivity K from lowest conductivity to highest conductivity, as follows: thermal grease; elastomer or pad; thermal grease with an oxide filler; and thermal grease with a metal filler or metallic materials (such as solders). It should be noted this ranking is a general overview; the exact composition of a given TIM 115 may make it more or less conductive than the neighboring TIM on the scale given. Further, thermal greases and/or compounds typically have a lower interface resistance (that is, they spread more easily), but may be less convenient to apply than a thermal adhesive pad, for example.
A TIM 115 may migrate with time. When a TIM 115 migrates, it spreads or moves away from the interface or thermal joint 140 at which it was originally applied. TIM migration may lead to the formation of air pockets within the thermal joint 140, and thus lowered thermal conductivity between the processor 100 and heat sink 110. This, in turn, may lead to higher processor operating temperatures and cause errors during operation of the processor and possibly eventual damage to the processor.
To minimize, resist, or delay such migration, the surface of the heat sink 110 facing the processor 100 may define two distinct zones or areas, each with a separate surface finish.
In yet other embodiments, the second zone 150 may extend into the footprint of the processor 100 on the heat sink 110, in some cases by a substantial amount.
As mentioned above, the first and second zones 145, 150 typically have different surface finishes, as shown in
As one example of acceptable surface finishes relative to one another, the first zone 145 may have a relatively smooth surface finish and the second zone 150 may have a rougher finish. The relatively smooth surface finish of the first zone 145 may minimize or reduce hills 120 and/or valleys 125 formed on the heat sink 110. This, in turn, enhances heat transfer from the processor 100 through the TIM 115, since it maximizes the contiguous surfaces of the thermal joint 140.
Continuing the example and by contrast, the second zone 150 may have a surface finish relatively rougher than that of the first zone 145. This rougher surface finish may act to minimize or otherwise reduce spreading (i.e., migration) of the TIM 115 with time. More particularly, the rougher surface finish of the second zone 150 may create or enhance a surface tension with the material of the TIM 115, thus confining the TIM to the smoother surface of the first zone 145. The rougher the surface finish of the second zone, the greater the surface tension with the TIM material. Further, the greater the surface tension between the second zone and TIM, the more the TIM may resist migration. Certain TIMs may be more affected by this surface tension and thus resist migration more effectively. For example, a thermal grease may experience greater surface tension with the rough surface of the second zone 150 than would a pad or other elastomer.
In an exemplary embodiment of the present invention, the first zone 145 may have a surface finish on the order of four to 32 microinches root mean square (RMS), while the second zone 150 may have a surface finish on the order of 63 to 250 microinches root mean square. It should be understood that these ranges are exemplary, rather than limiting. Alternative embodiments may vary the actual surface finishes of either or both of the first and second zones 145, 150 from these ranges without departing from the spirit or scope of the invention.
Yet other embodiments of the present invention may define a third zone, fourth zone, or even more zones having varying surface finishes on the exterior of the heat sink. For example, in some embodiments a third zone may be formed about the second zone 150 and provided with a surface finish rougher than that of the second zone. This may provide still greater surface tension with the TIM 115 in the event the TIM migrates from adjacent the first zone 145 to a position adjacent the second zone 150.
In still another embodiment, a third zone may surround the second zone 150 as described above, but have a smoother surface finish than the second zone. A fourth zone may surround the second zone and have a surface finish rougher than that of the third zone (for example, approximately equal to the roughness of the second zone's surface finish). In this manner, the third zone may act as a trough to capture any TIM 115 that moves or migrates past the second zone 150. The combination of the fourth zone's and second zone's surface finish may establish a surface tension on either side of TIM migrating to (or abutting) the third zone.
The second zone 150 may be subdivided into a number of smaller “sub-zones” of varying surface finish. This may permit the second zone 150 to provide greater surface tension with the TIM 115 at certain areas of the heat sink (for example, those areas prone to migration of the TIM), and lesser surface tension with the TIM at other areas. Further, by providing varying surface finishes across the second zone 150, the TIM 115 may be encouraged to migrate along a particular path. For example, the TIM may be encouraged to migrate to a collection point, or to a point easily visible to a casual observer. In this manner, migration of the TIM 115 may be more easily seen and the TIM may be replaced or replenished accordingly.
The TIM may be similarly encouraged to migrate in a particular manner by forming the second zone 150 into a particular pattern, as shown in
In still further embodiments, the second zone 150 may be formed in one or more of a variety of unique patterns. The width of any portion of the second zone 150 may be varied, the second zone may be formed in a checkerboard pattern (as shown in
The various surface finishes and zones 145, 150 described herein may be created or enhanced according to a variety of manufacturing processes. For example, the first zone 145 may be formed by polishing, grinding, chemically smoothing or otherwise smoothing an exterior surface of the heat sink 110, while the second zone 150 may be formed from an unpolished or untreated exterior surface of the heat sink. Conversely, the first zone 145 may be formed on an untreated portion of the heat sink, while the second zone 150 may be formed by etching, eroding, scuffing or machining another portion of the sink 110. Further, both zones may be formed through chemical or mechanical treatments. For example, the first zone may be a polished segment of the heat sink 110 and the second zone may be a chemically roughened segment.
The foregoing embodiments have generally been described with respect to a single processor 100 and single heat sink 110. Alternative embodiments may employ multiple heat sinks with a single processor, or multiple processors with a single heat sink. For example, one heat sink 110 might cover two or more processors 100. A first zone 145 may be formed about both processors and a second zone 150 about the first zone, in a manner analogous to that described above. In yet another embodiment, a first zone 145 may be formed around each processor, and a second zone 150 around each first zone (or a single second zone around both first zones).
Still other embodiments of the present invention may be used with a so-called “lidded” chip 100, as shown in cross-section in
A first zone 145 and second zone 150 may be formed in the heat sink surface as described above. Here, however, the first and second zones may cooperate to reduce migration of the second TIM 175. Similarly, a first lid zone 145′ and second lid zone 150′ may be formed on an exterior surface of the lid adjacent the first TIM 170. The first and second lid zones 145′, 150′ may cooperate as described herein to reduce migration of the first TIM 170. Accordingly, each TIM 170, 175 may have a unique set of first and second zones.
The present invention has been generally described with the various surface finishes and/or zones (such as the first and second zones) being formed on or otherwise associated with a surface of the heat sink. It should be understood, however, that such surface finishes and/or zones may alternately be formed on a surface of a chip or processor facing or adjacent to a TIM. In still other embodiments, the various surfaces and/or zones described herein may be formed on both a chip surface and heat sink surface.
The present invention and its various embodiments have been described herein with respect to particular apparatuses and methods. However, those of ordinary skill in the art will realize that alternative embodiments of the present invention may be formed by rearranging, adding or subtracting certain elements, or by making other changes to the embodiments described herein. Accordingly, the various embodiments described herein are intended to be exemplary and not limiting. The proper scope of the invention is defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4104523 | Wolfert | Aug 1978 | A |
4115865 | Beauvais et al. | Sep 1978 | A |
4449193 | Tournois | May 1984 | A |
4484346 | Sternberg et al. | Nov 1984 | A |
4532606 | Phelps | Jul 1985 | A |
4559618 | Houseman et al. | Dec 1985 | A |
4564952 | Karabinis et al. | Jan 1986 | A |
4581760 | Schiller et al. | Apr 1986 | A |
4594673 | Holly | Jun 1986 | A |
4614528 | Lennen | Sep 1986 | A |
4620248 | Gitzendanner | Oct 1986 | A |
4622653 | McElroy | Nov 1986 | A |
4669054 | Schlunt et al. | May 1987 | A |
4670858 | Almy | Jun 1987 | A |
4694404 | Meagher | Sep 1987 | A |
4695973 | Yu | Sep 1987 | A |
4758982 | Price | Jul 1988 | A |
4783829 | Miyakawa et al. | Nov 1988 | A |
4794559 | Greenberger | Dec 1988 | A |
4825391 | Merz | Apr 1989 | A |
4841467 | Ho et al. | Jun 1989 | A |
4847789 | Kelly et al. | Jul 1989 | A |
4863499 | Osendorf | Sep 1989 | A |
4888583 | Ligocki et al. | Dec 1989 | A |
4888712 | Barkans et al. | Dec 1989 | A |
4890242 | Sinha et al. | Dec 1989 | A |
4945500 | Deering | Jul 1990 | A |
4961581 | Barnes et al. | Oct 1990 | A |
4970636 | Snodgrass et al. | Nov 1990 | A |
4982783 | Fickett et al. | Jan 1991 | A |
4996666 | Duluk, Jr. | Feb 1991 | A |
4998286 | Tsujiuchi et al. | Mar 1991 | A |
5025336 | Morehouse et al. | Jun 1991 | A |
5031038 | Guillemot et al. | Jul 1991 | A |
5040223 | Kamiya et al. | Aug 1991 | A |
5050220 | Marsh et al. | Sep 1991 | A |
5054090 | Knight et al. | Oct 1991 | A |
5067162 | Driscoll, Jr. et al. | Nov 1991 | A |
5083287 | Obata et al. | Jan 1992 | A |
5123084 | Prevost et al. | Jun 1992 | A |
5123085 | Wells et al. | Jun 1992 | A |
5128888 | Tamura et al. | Jul 1992 | A |
5129051 | Cain | Jul 1992 | A |
5129060 | Pfeiffer et al. | Jul 1992 | A |
5133052 | Bier et al. | Jul 1992 | A |
5146592 | Pfeiffer et al. | Sep 1992 | A |
5148337 | Cullen et al. | Sep 1992 | A |
5189712 | Kajiwara et al. | Feb 1993 | A |
5245700 | Fossum | Sep 1993 | A |
5247586 | Gobert et al. | Sep 1993 | A |
5265222 | Nishiya et al. | Nov 1993 | A |
5278948 | Luken, Jr. | Jan 1994 | A |
5289567 | Roth | Feb 1994 | A |
5293467 | Buchner et al. | Mar 1994 | A |
5295235 | Newman | Mar 1994 | A |
5299139 | Baisuck et al. | Mar 1994 | A |
5315537 | Blacker | May 1994 | A |
5319743 | Dutta et al. | Jun 1994 | A |
5338200 | Olive | Aug 1994 | A |
5347619 | Erb | Sep 1994 | A |
5363475 | Baker et al. | Nov 1994 | A |
5369734 | Suzuki et al. | Nov 1994 | A |
5392177 | Chainer et al. | Feb 1995 | A |
5394516 | Winser | Feb 1995 | A |
5402532 | Epstein et al. | Mar 1995 | A |
5440172 | Sutrina | Aug 1995 | A |
5448690 | Shiraishi et al. | Sep 1995 | A |
5455900 | Shiraishi et al. | Oct 1995 | A |
5481669 | Poulton et al. | Jan 1996 | A |
5493644 | Thayer et al. | Feb 1996 | A |
5509110 | Latham | Apr 1996 | A |
5535288 | Chen et al. | Jul 1996 | A |
5544306 | Deering et al. | Aug 1996 | A |
5546194 | Broemmelsiek | Aug 1996 | A |
5572634 | Duluk, Jr. | Nov 1996 | A |
5574835 | Duluk, Jr. et al. | Nov 1996 | A |
5574836 | Broemmelsiek | Nov 1996 | A |
5579455 | Greene et al. | Nov 1996 | A |
5596686 | Duluk, Jr. | Jan 1997 | A |
5613050 | Hochmuth et al. | Mar 1997 | A |
5621866 | Murata et al. | Apr 1997 | A |
5623628 | Brayton et al. | Apr 1997 | A |
5664071 | Nagashima | Sep 1997 | A |
5669010 | Duluk, Jr. | Sep 1997 | A |
5684939 | Foran et al. | Nov 1997 | A |
5699497 | Erdahl et al. | Dec 1997 | A |
5710876 | Peercy et al. | Jan 1998 | A |
5734806 | Narayanaswami | Mar 1998 | A |
5751291 | Olsen et al. | May 1998 | A |
5767589 | Lake et al. | Jun 1998 | A |
5767859 | Rossin et al. | Jun 1998 | A |
5778245 | Papworth et al. | Jul 1998 | A |
5798770 | Baldwin | Aug 1998 | A |
5828378 | Shiraishi | Oct 1998 | A |
5841447 | Drews | Nov 1998 | A |
5850225 | Cosman | Dec 1998 | A |
5852451 | Cox et al. | Dec 1998 | A |
5854631 | Akeley et al. | Dec 1998 | A |
5860158 | Pai et al. | Jan 1999 | A |
5864342 | Kajiya et al. | Jan 1999 | A |
5870095 | Albaugh et al. | Feb 1999 | A |
RE36145 | DeAguiar et al. | Mar 1999 | E |
5880736 | Peercy et al. | Mar 1999 | A |
5889997 | Strunk | Mar 1999 | A |
5905636 | Baska et al. | May 1999 | A |
5920326 | Rentschler et al. | Jul 1999 | A |
5936629 | Brown et al. | Aug 1999 | A |
5949424 | Cabral et al. | Sep 1999 | A |
5949428 | Toelle et al. | Sep 1999 | A |
5977977 | Kajiya et al. | Nov 1999 | A |
5977987 | Duluk, Jr. | Nov 1999 | A |
5990904 | Griffin | Nov 1999 | A |
6002410 | Battle | Dec 1999 | A |
6002412 | Schinnerer | Dec 1999 | A |
6046746 | Deering | Apr 2000 | A |
6084591 | Aleksic | Jul 2000 | A |
6111582 | Jenkins | Aug 2000 | A |
6118452 | Gannett | Sep 2000 | A |
6128000 | Jouppi et al. | Oct 2000 | A |
6143058 | Dahlgren et al. | Nov 2000 | A |
6167143 | Badique | Dec 2000 | A |
6167486 | Lee et al. | Dec 2000 | A |
6201540 | Gallup et al. | Mar 2001 | B1 |
6204859 | Jouppi et al. | Mar 2001 | B1 |
6216004 | Tiedemann et al. | Apr 2001 | B1 |
6228730 | Chen et al. | May 2001 | B1 |
6229553 | Duluk, Jr. et al. | May 2001 | B1 |
6243488 | Penna | Jun 2001 | B1 |
6243744 | Snaman, Jr. et al. | Jun 2001 | B1 |
6246415 | Grossman et al. | Jun 2001 | B1 |
6259452 | Coorg et al. | Jul 2001 | B1 |
6259460 | Gossett et al. | Jul 2001 | B1 |
6263493 | Ehrman | Jul 2001 | B1 |
6268875 | Duluk, Jr. et al. | Jul 2001 | B1 |
6275235 | Morgan, III | Aug 2001 | B1 |
6285378 | Duluk, Jr. | Sep 2001 | B1 |
6286212 | Eaton | Sep 2001 | B1 |
6288730 | Duluk, Jr. et al. | Sep 2001 | B1 |
6331856 | Van Hook et al. | Dec 2001 | B1 |
6462410 | Novotny et al. | Oct 2002 | B1 |
6476807 | Duluk, Jr. et al. | Nov 2002 | B1 |
6504243 | Andric et al. | Jan 2003 | B1 |
6525737 | Duluk, Jr. et al. | Feb 2003 | B1 |
RE38078 | Duluk, Jr. | Apr 2003 | E |
6552723 | Duluk, Jr. et al. | Apr 2003 | B1 |
6577305 | Duluk, Jr. et al. | Jun 2003 | B1 |
6577317 | Duluk, Jr. et al. | Jun 2003 | B1 |
6597363 | Duluk, Jr. et al. | Jul 2003 | B1 |
6614444 | Duluk, Jr. et al. | Sep 2003 | B1 |
6650327 | Airey et al. | Nov 2003 | B1 |
6671747 | Benkual et al. | Dec 2003 | B1 |
6693639 | Duluk, Jr. et al. | Feb 2004 | B2 |
6697063 | Zhu | Feb 2004 | B1 |
6717576 | Duluk, Jr. et al. | Apr 2004 | B1 |
6771264 | Duluk et al. | Aug 2004 | B1 |
6778387 | Fairchild | Aug 2004 | B2 |
6803328 | McCullough | Oct 2004 | B2 |
6832410 | Hegde | Dec 2004 | B2 |
6886625 | Sagal et al. | May 2005 | B1 |
6891724 | De Lorenzo et al. | May 2005 | B2 |
6896045 | Panek | May 2005 | B2 |
6987671 | Houle | Jan 2006 | B2 |
7006353 | Matteson | Feb 2006 | B2 |
7045885 | Chen et al. | May 2006 | B1 |
7085135 | Chu et al. | Aug 2006 | B2 |
7125433 | Garikipati et al. | Oct 2006 | B2 |
7190585 | Houle | Mar 2007 | B2 |
7269015 | Hornung et al. | Sep 2007 | B2 |
20040130552 | Duluk, Jr. et al. | Jul 2004 | A1 |
20040238827 | Takayama et al. | Dec 2004 | A1 |
20060120051 | Macris et al. | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
0166577 | Jan 1986 | EP |
0870282 | May 2003 | EP |
200422928 | Jan 2004 | JP |
WO 9004849 | May 1990 | WO |
WO 9527263 | Oct 1995 | WO |
Number | Date | Country | |
---|---|---|---|
20070076378 A1 | Apr 2007 | US |