1. Field of the Invention
This invention is directed to a thermal transfer device, such as a closed loop fluid cooling system having at least one evaporator, at least one condenser and one or more fluid conduits connecting the evaporator and condenser for use in indirectly cooling objects with a cooling fluid and, more particularly, to a thermal transfer device having a reduced vertical profile for conducting a cooling fluid into indirect thermal contact with an object to be cooled in a compact environment.
2. Description of the Related Art
Passive closed loop two-phase fluid cooling systems are well-known thermal transfer devices used for cooling objects that generate excessive heat, such as, without limitation, computer chips. The term passive is meant to denote a system which uses no mechanized pump to circulate the cooling fluid. The motivation for the fluid to circulate in a passive system comes from buoyancy changes and phase changes in the fluid as heat is added. The evaporator is generally placed in thermal contact with the object to be cooled, and a cooling fluid in liquid form is passed over a surface which separates the liquid from the actual object to be cooled. In this fashion, heat may be transferred between the fluid and the object, without the fluid ever coming into direct contact with the object. The addition of heat to the fluid causes at least a portion of the fluid to vaporize. The vapor is then conveyed to the condenser. Heat is released as the vapor re-condenses to a liquid state. The condensed liquid is returned to the evaporator and the vaporization-condensation cycle repeats.
This prior art configuration thus requires that all of the air cooling fins 104 are located above the collection point for the condensed fluid (condensate 114), specifically, above the liquid header tank 106. This is the single biggest limitation of the prior art condenser. This limitation of the prior art condenser can best be illustrated by comparing
To further illustrate the advantage of the invention over the prior art design refer again to
For the reasons recited above, the invention can transfer a higher heat load compared to condensers of the prior art design in applications demanding a relatively low available height (AH), i.e., “low profile” designs.
There are examples of prior art type condensers that have been re-oriented to achieve a low profile but these typically accomplish a low profile at the expense of another significant design consideration.
For example, U.S. Pat. No. 7,422,052 discloses a low profile cooling system with a substantially horizontally disposed condenser component. The condenser is generally similar to prior art vertical, or standing, condensers, except that it is angled closer to the horizontal while still at a shallow incline. This provides the benefit of a reduced vertical profile, at the expense of a substantially increased horizontal profile.
U.S. Pat. No. 7,231,961 also discloses a low profile cooling system. This reference specifies a condenser as “a long chamber having a narrow interior channel”. This chamber is oriented with its “long” dimension oriented substantially parallel to the horizontal plane where the horizontal plane is taken to mean the plane on which the device to be cooled is mounted, e.g., the plane of a circuit board bearing the chip/processor to be cooled. One side of this chamber (a substantially vertical exterior surface) is populated with air cooling fins. Based on the dimensional ranges recited, which define the length, width and height of this chamber, one could describe the chamber as simply a singular condenser tube, much like many of the condenser tubes described earlier with reference to prior art condensers. In this case, the singular condenser tube is disposed with its longitudinal axis horizontal instead of vertical. As such, the design achieves a low vertical profile simply by placing the condenser tube in a horizontal configuration. This is done clearly at the expense of gravitational height. This limitation is expressly recited in column 5, lines 12-19;
“Typically, the condensers of thermosyphons are placed over or higher than the evaporators to utilize gravity to force the liquid from the condenser to the evaporator. This placement is not possible in spaces where the available height is severely limited. Although part of the condenser may be higher than the evaporator, or vice versa, the condenser and evaporator are approximately horizontal to each other in the present invention.”
It should also be pointed out that this prior art design requires a significant portion of the internal volume of the condenser to be occupied by standing liquid.
This represents a well know limitation on the performance of a condenser in that no condensation can occur on condenser surfaces embedded in standing liquid, a situation often referred to as “flooding of the condenser”.
Accordingly, although condensers are generally well known and widely used, there is a continuing need to make condensers more efficient, and, therefore, more competitive, cost-effective and useful. It is especially useful to provide a condenser that can be used for cooling an object in a very compact environment while providing adequate internal condenser surface area coupled with adequate gravitational height for transport of the condensate.
It is therefore an object of the invention to provide a thermal transfer device which provides efficient and effective cooling of objects which may tend to overheat, such as computer chips.
It is a further object of the invention to provide an improved thermal transfer device having a reduced vertical profile for use in applications where there is limited vertical clearance or headroom.
In accordance with these and other objects of the invention there is provided a thermal transfer device which includes a chamber having substantially vertical condenser fins for condensing a heated thermal transfer fluid from vapor to liquid. The chamber has an inlet for receiving the vapor and an outlet for conducting the condensed fluid in its liquid state back to a reservoir. The inlet and the outlet are both positioned at a level higher than the level of the liquid thermal transfer fluid in the reservoir. The vertical condenser fins which provide the condensing surfaces are positioned substantially in the vertical space between the inlet and the outlet. The benefit of this arrangement is that it leaves a larger portion of the available vertical height for gravitational return of the condensate to the evaporator. This arrangement likewise allows for a significant change in the height of the liquid in the liquid return line without the negative consequence of driving liquid into the condenser component (which, if it occurs, renders some portion of the condenser inoperative). This structure permits the device to achieve good condensation performance and have an overall reduced vertical profile. Additionally, this structure permits the device to have an overall reduced vertical profile in which the depth of the chamber is greater than the height of the interior of the chamber.
In preferred embodiments of the invention, the condenser fins within the chamber may include flutes on their surfaces to increase the effective cooling surface within the chamber. The flutes may be disposed in matched opposed pairs on opposed sides of the fins, or may be staggered in alternation on opposing sides as a matter of design choice. As typically applied to the cooling of electrical apparatus or electronic apparatus one or more of the external surfaces of the chamber will be fitted with a multitude of air cooling fins in thermal communication with the chamber. The surfaces employed are most typically the top or bottom surface. Although a multitude of fins (sometimes referred to as an array of fins) are most commonly employed, a singular fin can be used as well. Air is passed over the air cooling fin or fins either by natural convection means or by forced convection means. Designing, fabricating and employing air cooling fins for use in natural or forced convection cooling is well known in the art of cooling system design. As an alternative to the use of one or more air cooling fins, a liquid cold plate can be placed on either the top surface or bottom surface of the chamber, or both. Used in this manner, a cold plate will be fixed to the chamber in so as to be in thermal communication with the chamber. A cooling fluid is circulated through the cold plate. The cooling provided by the cooling fluid causes the vapor inside the chamber to condense. The term “Liquid Cold Plate” is interchangeable with “Liquid Cooled Heat Sink” and both terms are well known in the art. An example of a liquid cooled heat sink is disclosed in U.S. Pat. No. 5,829,516 and is herein incorporated by reference.
Other objects and features of the present invention will become apparent from the following detailed description considered in conjunction with the accompanying drawings. It is to be understood, however, that the drawings are designed solely for purposes of illustration and not as a definition of the limits of the invention, for which reference should be made to the appended claims. It should be further understood that the drawings are not necessarily drawn to scale and that, unless otherwise indicated, they are merely intended to conceptually illustrate the structures and procedures described herein.
For a further description of the invention, reference is made to the exemplary embodiments shown in the drawings, in which like numerals refer to like parts.
a and 1b are a schematic illustration of a prior art thermal transfer device;
a and 2b are a schematic illustration of the inventive thermal transfer device;
a and 3b are a schematic illustration of a prior art thermal transfer device configured with the condenser elevated above the surface on which the evaporator sits;
a and 4b are a schematic illustration of the preferred embodiment of the inventive thermal transfer device configured for operation in low vertical profile applications;
a is a schematic illustration of a secondary embodiment of the chamber used in the inventive thermal transfer device;
b is a schematic illustration of a tertiary embodiment of the chamber used in the inventive thermal transfer device;
a and 9b are cross-sections of differing embodiments of fins and flutes used in the inventive thermal transfer device;
a, 12b and 12c are schematic illustrations of the preferred embodiment of the invention mounted on a circuit board and further comprising a bulkhead to separate the region of the circuit board from the region of the condenser component;
a is a schematic illustration of the condenser component of the inventive thermal transfer device where the condenser chamber is shown in cross-section and the condenser chamber is located in vertical region B, entirely above vertical region A where one array of air cooling fins is located; and
b is a schematic illustration of the condenser component of the inventive thermal transfer device where the condenser chamber is shown in cross-section and the condenser chamber is located in vertical region B, substantially above vertical region A where one array of air cooling fins is located.
In accordance with a preferred embodiment of the invention there is shown, generally at 10 in
In the preferred embodiment, thermal transfer fluid 14 is water or deionized water. Where a design places specific requirements on the cooling fluid, e.g., freeze tolerance, corrosion resistance or that the cooling fluid be electrically non-conductive, organic cooling fluids such as alcohols, refrigerants such as R134A or engineered fluids such as 3M Fluorinert or Novec Liquids may be used.
Thermal transfer device 10 also includes a chamber 20, acting as a condenser, having an inlet 22 (
To facilitate the return flow of thermal transfer fluid 14 to reservoir 12, a second open header space 34 is provided. Second open header space extends substantially the entire width of chamber 20 and opens into outlet 24. Although in the proffered embodiment of the invention two open header spaces are provided, a singular contiguous header space (illustrated as 33 in
Inlet 22 may either be positioned in the top of chamber 20, as shown in
The structural arrangement of the present invention allows for all of the condensing surfaces to be located gravitationally above the liquid level in both the reservoir and the liquid return conduit. This structure provides the further benefit that the condensing surfaces, together with the chamber housing them, occupy a relatively small portion of the vertical height available for the entire thermal transfer device.
A further possibility for improving the performance of thermal transfer device 10 is to provide fins 26 with flutes 40, as shown in
It is also possible to realize the benefits provided by the invention by use of a single port 36 as both an input and an output, as shown in
In another embodiment of the invention shown in
The advantage of this embodiment is that a fluid cooled electronic component such a chip or micro processor together with the circuit board on which it is mounted can be removed for repair or replacement without disturbing the plumbing providing cooling fluid to, or removing cooling fluid from, the liquid cold plate component. This in turn lowers the risk of using water to indirectly cool an electronic component in that in normal operation, including service and maintenance, there is less risk of cooling water escaping and damaging the electronic components. This benefit can be further enhanced by providing a physical barrier, for example a bulkhead or wall 50 separating the circuit board region from the liquid cold plate region. Taken to extreme, the physical barrier could be in the form of an enclosure (such as suggested by dotted line 52) housing the circuit board where the condenser component and electrical connector protrude through one wall of enclosure. As shown in
In
Although in
In any embodiment or configuration, the inventive thermal transfer device has a reduced vertical profile when compared to known prior art devices, and provides improved and efficient thermal transfer, particularly for applications providing a limited vertical space by virtue of the invention's configuration.
Thus, while there have shown and described and pointed out fundamental novel features of the invention as applied to a preferred embodiment thereof, it will be understood that various omissions and substitutions and changes in the form and details of the devices illustrated, and in their operation, may be made by those skilled in the art without departing from the spirit of the invention. For example, it is expressly intended that all combinations of those elements which perform substantially the same function in substantially the same way to achieve the same results are within the scope of the invention. Moreover, it should be recognized that structures and/or elements shown and/or described in connection with any disclosed form or embodiment of the invention may be incorporated in any other disclosed or described or suggested form or embodiment as a general matter of design choice. It is the intention, therefore, to be limited only as indicated by the scope of the claims appended hereto.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US11/38299 | 5/27/2011 | WO | 00 | 2/10/2014 |