Three dimensional etching process

Information

  • Patent Grant
  • 6682657
  • Patent Number
    6,682,657
  • Date Filed
    Tuesday, July 7, 1998
    26 years ago
  • Date Issued
    Tuesday, January 27, 2004
    20 years ago
Abstract
A method of forming three-dimensional structures on a substrate by a single reactive ion each run whereby a mask is formed on said substrate before a series of iterations are carried out, each iteration including a mask etch and a substrate etch, so that successive iterations give life to reduction in the mask area and exposure of further areas of substrate.
Description




The current invention relates to the production of three dimensional structures on a substrate by Reactive-Ion Etching. It can be applied to materials such as semiconductor, glass, polyimide or any other which can be etched using a reactive ion plasma.




Three dimensional semiconductor structures are required for optical confinement (for example in visible/infrared lenses, emitters or detectors) and electromagnetic confinement (eg microwave inductors, detectors or sources).




A number of techniques are known for the fabrication of optical confining structures such as microlenses. For example, Hutley et. al. teach the formation of small discs of photoresist which, on heating to melt, are drawn into the shape of small lenses by surface tension. (Physics World, July 1991 pp27-32).




Liau et. al. teach the formation of a stepped structure by repeated applications of photolithography and bromine-methanol etching. Mass transport within this structure to form a lens shape is then effected, again by heating to melt (see Appl. Phys. Lett. 55 (2) 10 July 1989; The Lincoln Laboratory Journal, Volume 3, Number 3, 1990). Other methods of forming microlens arrays are detailed in “Micro-optics has macro potential” Laser Focus World June, 1991. Methods which involve reactive ion etching typically involve repeated applications of photoresist and etch runs. This makes the fabrication process cumbersome.




According to this invention, a method of producing or modifying a three dimensional surface profile on a substrate comprises the steps of




(i) forming a mask of resist on the substrate such that some area of the substrate is protected by the mask and some area is exposed and




(ii) subjecting the substrate to a plurality of iterations




wherein each iteration comprises at least one resist etch and at least one substrate etch, the resist etch being carried out using a suitable resist etchant, which modifies the shape of the mask and hence the area of substrate exposed, and the substrate etch being carried out using a suitable substrate etchant from which the mask affords protection of the substrate, and which removes material from the areas of substrate which are exposed.




In a preferred embodiment, an optical concentrator is formed on the substrate.




In a preferred embodiment the substrate comprises a semiconductor material.




In a preferred embodiment the substrate comprises InSb.




In a further preferred embodiment the substrate etchant comprises a CH


4


/H


2


plasma.




In a further preferred embodiment the resist etchant comprises an oxygen plasma.




In a further preferred embodiment, a Winston cone is formed in InSb heterostructure material.











The invention will now be described with reference to the following figures in which

FIGS. 1



a


-


1




e


show representations of the substrate and mask at various stages of a process using the method of the current invention and





FIGS. 2



a


and


2




b


show scanning electron microscope images of an array of microlenses during two stages of their formation by the method of the current invention.











Referring to

FIG. 1



a


, a dome or button of photolithographic masking resist


1


is applied to a semiconductor substrate


2


. This may be formed by, for example, greyscale lithography (see UK patent application 9310013.9) or resist-reflow methods.




The substrate is then etched using a substrate etchant from which the resist


1


affords protection so that material is removed from areas


3


on the substrate


2


. This gives rise to the structure shown in

FIG. 1



b.






Referring to

FIG. 1



c


, the area covered by resist


1


is then reduced, using a suitable resist etchant, so that further areas


4


of substrate


2


are exposed.




Further etching of the substrate using the substrate etchant then removes material from areas


3


and


4


to produce a stepped structure as shown in

FIG. 1



d.






Repeated etching of the resist


1


and substrate


2


, in a single reactive ion etch run, gives rise to the multi-stepped structure shown in

FIG. 1



e.






Detailed three-dimensional structures can be formed by controlling the rate and time for each of the etching steps. The final resolution of the profile is dependent on the number of alternate substrate and resist etch steps over a given structure height.




This technique can also be used to modify structures formed by other techniques.




Referring to

FIGS. 2



a


and


2




b


, the microlenses shown therein were fabricated using a Surface Technology Systems (STS) Reactive Ion Etching Machine, Model 340PC, and the following etch conditions:


















Resist Etch conditions:




Gas: O


2


, flow rate 80 standard cubic







centimeters per minute(sccm);







Chamber Pressure: 60 mTorr;







RF Power: 60 W.






Substrate Etch Conditions:




Gas: CH


4


, 90 sccm and H


2


, flow rate







10 sccm;







Chamber Pressure: 90 mTorr;







RF Power: 50 W.














The substrate (InSb) was coated with 12×10


4


m of AZ4562 resist and was processed into straight sided cones using greyscale technology and Ion beam milling. (Other methods of effecting this part of the process will be apparent to those skilled in the art). The sample was then resist etched using the above resist etch conditions for 5 minutes. This was followed by a 5 minute InSb etch using the above substrate-etch conditions and then another 5 minute resist etch. Four iterations of 5 minute InSb etching and 2 minute resist etching were then performed to obtain the structure shown in

FIG. 2



a.






A further seven steps resulted in the structure shown in

FIG. 2



b.






Under some conditions, the exothermic nature of the reactive ion etching process causes the resist to reflow. This gives additional flexibility to the process and may obviate the need for greyscale lithography or ex-situ resist reflow using, for example, a hot plate or oven.



Claims
  • 1. A method of forming an optical confining structure, said method comprising producing or modifying a three dimensional surface profile on a substrate comprising the steps of:(i) forming a mask of resist on the substrate such that some area of the substrate is protected by the mask and some area is exposed; (ii) forming the resist into a dome; (iii) subjecting the substrate and the mask to a plurality of iterations; wherein each iteration comprises at least one resist etch and at least one substrate etch, the resist etch being carried out using a suitable resist etchant, which modifies the shape of the mask and hence the area of substrate exposed, and the substrate etch being carried out using a suitable substrate etchant from which the mask affords protection of the substrate, and which removes material from the areas of substrate which are exposed, the resist etch and the substrate etch being substantially asynchronous, so that substantially perpendicular straight edges are formed in the substrate.
  • 2. The method of claim 1 an optical concentrator is formed in the substrate.
  • 3. The method of claim 1 or 2 wherein the substrate comprises a semiconductor material.
  • 4. The method of claim 3 where the substrate comprises InSb.
  • 5. The method of claim 4 wherein the substrate etchant comprises a CH4/H2 plasma.
  • 6. The method of claim 5 where the resist etchant comprises an oxygen plasma.
  • 7. The method of claim 6 where a Winston cone emitter is formed in InSb heterostructure material.
Priority Claims (1)
Number Date Country Kind
9600469 Jan 1996 GB
PCT Information
Filing Document Filing Date Country Kind
PCT/GB97/00043 WO 00
Publishing Document Publishing Date Country Kind
WO97/25653 7/17/1997 WO A
US Referenced Citations (14)
Number Name Date Kind
4357704 Koechner Nov 1982 A
4514252 Roland Apr 1985 A
4698128 Berglund et al. Oct 1987 A
4715930 Diem Dec 1987 A
4832788 Nemiroff May 1989 A
4902377 Berglund et al. Feb 1990 A
4958201 Mimura Sep 1990 A
5073007 Kedmi et al. Dec 1991 A
5218471 Swanson et al. Jun 1993 A
5227915 Grossinger et al. Jul 1993 A
5286338 Feldblum et al. Feb 1994 A
5316640 Wakabayashi et al. May 1994 A
5456798 Koumura et al. Oct 1995 A
5853960 Tran et al. Dec 1998 A
Foreign Referenced Citations (1)
Number Date Country
2 206 447 Jan 1989 GB
Non-Patent Literature Citations (9)
Entry
Van Nostrand's Scientific Encyclopedia, 6th Ed., p. 2097 (OPTICS), Dec. 1983.*
“Micro-optics has macro potential”, Carts, Laser Focus World, Jun. 1991, pp. 93-99.
“Microlens integration with diode lasers and coherent locking of laser arrays”, Liau et al, The Lincoln Laboratory Journal, vol. 3, No. 3, pp. 385-393, Dec. 1990.
“Gallium phosphide microlenses by mass transport”, Liau et al, Appl. Phys. Lett., 55(2), 1989, pp. 97-99.
“Microlens arrays”, Hutley et al, Physics World, Jul. 1991, pp. 27-32.
IBM Technical Disclosure Bulletin, vol. 28, No. 7, pp 3136-3137, Dec. 1, 1985.*
IBM Technical Disclosure Bulletin, vol. 27, No. 6, pp 3259-3260, Bergendahl et al., Nov. 1, 1984.*
Journal of Vacuum Science and Technology: Part B,vol. 9, No. 3, May 1991, pp. 1421-1432, XP000367925 Pearton S J: “Comparison of CH4/H2/AR Reactive Ion Etching and Electron Cyclotron Resonance Plasma Etching of In-Based III-V Alloys” see whole document.
Patent Abstracts of Japan, vol. 010, No. 204 (M-499), Jul. 17, 1986 & JP 61 044627 A (Pioneer Electronic Corp), Mar. 4, 1986, see abstract.