Lannfelt et al (1993) Behav. Brain Res. 207-213.* |
Felsenstein et al (1995) Alz. Parkinson's Diseases, ed. I. Hannin et al, Plenum Press, New York, Ny 401-409.* |
Higgins et al (1993) Annals NY Acad. Sci. 695, 224-227.* |
Quon et al (1991) Nature 352, 239-241.* |
Mullen et al (1992) Nature Genetics 1, 345-347.* |
Scott et al (1989) Cell 59, 847-857.* |
Ali et al., Abstract 616.8, Soc. Neurosci. Abstracts, 18(2). |
Andra et al., “Expression of APP in Transgenic Mice: A Comparison of Neuron-Specific Promoters,” Neurobiology of Aging, 1996, 17(2):183-190. |
Borchelt et al., “Familial Alzheimer's Disease-Linked Presenilin 1 Variants Elevate Aβ1-42/1-40 Ratio In Vitro and In Vivo,” Neuron, 1996, 17: 1005-1013. |
Borchelt et al., “Transgenic Mouse Models of Alzheimer's Disease and Amyotrophic Lateral Sclerosis,” Brain Pathology, 1998, 8:735-757. |
Buxbaum, et al., “Expression of APP in Brains of Transgenic Mice Containing the Entire Human APP Gene,” Biochemical and Biophysical Research Communications, 1993, 197(1): 639-645. |
Czech et al., “Alzheimer's Disease and Transgenic Mice,” J. Neural Transm., 1994, 44:219-230. |
Fisher, “Athena Neurosciences Makes Itself Heard in Battle Against Alzheimer's,” The New York Times, Feb. 5, 1995: C1. |
Games et al., “Alzheimer-Type Neuropathology in Transgenic Mice Overexpressing V717F β-Amyloid Precursor Protein,” Nature, 1995, 373(6514): 523-527. |
Gandy et al., “Amyloidogensis in Alzheimer's Disease: Some Possible Therapeutic Opportunities,” Trends in Pharmacological Sciences, 1992, 13:108-113. |
Greenberg et al., Abstract 616.7, Soc. Neurosci. Abstracts, 1992, 18(2). |
Greenberg et al., “APP Transgenesis: Approaches Toward the Development of Animal Models for Alzheimer Disease Neuropathology,” Neurobiology of Aging, 1996, 17(2):153-171. |
Higgins et al., “Transgenic Mouse Brain Histopathology Resembles Early Alzheimer's Disease,” Annals of Neurology, 1994, 35(5):598-607. |
Higgins et al., “Early Alzheimer disease-like histopathology increases in frequency with age in mice transgenic for β-APP751,” Proc. Natl. Acad. Sci. USA, 1995, 92(10):4402-4406. |
Howland et al., “Mutant and Native Human β-Amyloid Precursor Proteins in Transgenic Mouse Brain,” Neurobiology of Aging, 1995, 16(4):685-699. |
Hsiao, “Understanding the Biology of β-Amyloid Precursor Proteins in Transgenic Mice,” Neurobiology of Aging, 1995, 16(4):705-706. |
Hsiao et al., “Age-Related CNS Disorder and Early Death in Transgenic FVB/N Mice Overexpressing Alzheimer Amyloid Precursor Proteins,” Neuron, 1995, 15:1203-1218. |
Hsiao, “From prion diseases to Alzheimer's disease,” J. Neural. Transm., 1997, 49:135-144. |
Hsiao, et al., “Correlative Memory Deficits, Aβ Elevation, and Amyloid Plaques in Transgenic Mice,” Science, 1996, 274:99-102. |
Irizarry et al., “Aβ Deposition Is Associated with Neuropil Changes, but not with Overt Neuronal Loss in the Human Amyloid Precursor Protein V717F (PDAPP) Transgenic Mouse,” J. Neuroscience, 1997, 17(18):7053-7059. |
Johnson-Wood et al., “Amyloid precursor protein processing and Aβ42 deposition in a transgenic mouse model of Alzheimer disease,” Proc. Natl. Acad. Sci. USA, 1997, 94:1550-1555. |
Jucker et al., “Age-Associated Inclusions in Normal and Transgenic Mouse Brain,” Science, 1992, 255:1443-1445. |
Kawabata et al., “Retraction,” Nature, 1992, 356:265. |
Koliatsos et al., “Neurotrophic Strategies for Treating Alzheimer's Disease: Lessons from Basic Neurobiology and Animal Models,” Alzheimer's Disease: Amyloid Precursor Proteins, Signal Transduction, and Neuronal Transplantationa, 1993, vol. 695, pp. 292-299. |
LaFerla et al., “The Alzheimer's Aβ peptide induces neurodegeneration and apoptotic cell death in transgenic mice,” Nature Genetics, 1995, 9:21-29. |
Lamb, “Making models for Alzheimer's disease,” Nature Genetics, 1995, 9:4-6. |
Marx, “Alzheimer's Research Moves to Mice,” Science, 1991, 253:266-267. |
Marx, “Major Setback for Alzheimer's Models,” Science, 1992, 1200-1202. |
Miller and Anderton, “Alzheimer's disease: transgenic models to test new chemicals and pharmaceuticals,” Current Opinion in Biotechnology, 1992, 3:683-686. |
Mucke et al., “Synaptotrophic effects of human amyloid β protein precursors in the cortex of transgenic mice,” Brain Research, 1994, 666(2):151-167. |
Neve et al., “Transgenic Mice Expressing APP-C100 in the Brain,” Neurobiology of Aging, 1996, 17(2):191-203. |
Price et al., “Alzheimer's Disease-Type Brain Abnormalities in Animal Models,” Down Syndrome and Alzheimer Disease, 1992, Wiley-Liss, Inc., pp. 271-287. |
Price and Sisodia et al., “Cellular and Molecular Biology of Alzheimer's Disease and Animal Models,” Annu. Rev. Med., 1994, 45:435-446. |
Rockenstein et al., “Levels and Alternative Splicing of Amyloid βProtein Precursor (APP) Transcripts in Brains of APP Transgenic Mice and Humans with Alzheimer's Disease,” J. Biol. Chem., 1995, 270(47):28257-28267. |
Sandhu et al., “NMDA and AMPA Receptors in Transgenic Mice Expressing Human β-Amyloid Protein,” J. Neurochemistry, 1993, 61(6):2286-2289. |
Schenk et al., “The Protential Utility of Transgenic Mice Harboring β-Amyloid Precursor Protein,” Neurobiology of Aging, 1995, 16(4):711-713. |
Sisodia and Price, “Amyloidogenesis in Alzheimer's disease: basic biology and animal models,” Current Opinion in Neurobiology, 1992, 2:648-652. |
Sisodia et al., “Cellular and Molecular Biology of Alzheimer's Disease and Animal Models,” Neuroimaging Clinics of North America, Drayer (ed.), W. B. Saunders Company, 1995, 5:59-68. |
Sturchler-Pierrat et al., “Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology,” Proc. Natl. Acad. Sci. USA, 1997, 94:13287-13292. |
Tanzi, “Clinical Implications of Basic Research—A Promising Animal Model of Alzheimer's Disease,” New England Journal of Medicine, 1995, 332(22):1512-1513. |
Yamaguchi et al., “Transgenic mice for the amyloid precursor protein 695 isoform have impaired spatial memory,” NeuroReport, 1991, 2(12):781-784. |
Zhao et al., “β-Secretase Processing of the β-Amyloid Precursor Protein in Transgenic Mice is Efficient in Neurons but Inefficient in Astrocytes,” J. Biol. Chem., 1996, 271(49):31407-31411. |
Mullan et al., Nature Genetics, 1:345-347, 1992. |
Scott et al., Cell, 59:847-857, 1989. |
Moran et al., Proced. Natl. Acad. Sci., 92:5341-5345, 1995. |
Felsenstein et al., Alz. and Parkin. Disiases, ed. Itkenen, Plenum Press, NY, 401-409, 1995. |
Lannfelt et al., Behav. Brain Res., 57:207-213, 1993. |
Higgins et al., Annals NY Acad. Sci., 695:224-227, 1993. |
Quon et al., Nature, 352:239-241, 1991. |
Chartier-Harlin et al., Nature, 353:844-846, 1991. |
Fukuchi et al., Soc. Neurosci. Abstracts, 19:1035, 1993. |
Goate et al., Nature, 349:704-706, 1991. |
Goldgaber et al., Science, 235:877-880, 1987. |
Greenberg, Soc. Neurosci. Abstracts, 19:1035. |
Hendriks et al., Nature Genetics, 1:218-221, 1992. |
Hsiao et al., Science, 250:1587-1590, 1990. |
Kammescheidt et al., Proc. Natl. Acad. Sci. USA, 89:10857-10861, 1992. |
Kang et al., Nature, 325:733-736, 1987. |
Kawabata et al., Nature, 354:476-478, 1991. |
Kitaguchi et al., Nature, 331:530-532, 1988. |
Kozak, J. Cell Biol., 109:229-241, 1989. |
Lamb et al., Nature Genetics, 5:22-30, 1993. |
Levy et al., Science, 248:1124-1126, 1990. |
Lieberburg, Abstract 421.15, Soc. Neurosci. Abstracts, 19:1035, 1993. |
Murrell et al., Science, 254:97-99, 1991. |
Ponte et al., Nature, 331:525-527, 1988. |
Robakis et al., Proc. Natl. Acad. Sci. USA, 84:4190-4194, 1987. |
Savage et al., Soc. Neurosci. Abstracts, 19:1035, 1993. |
Howland et al., Soc. Neurosci. Abstracts, 19:1035, 1993. |
Tanzi et al., Science, 235:880-884, 1987. |
Tanzi et al., Nature, 331:528-530, 1988. |
Wirak et al., Science, 253:323-325, 1991. |
Hyman et al., Current Opinion Neurol. Neurosurg., 5:88-93, 1992. |
Sandu et al., J. Biol. Chem., 266:21331-21334, 1991. |