The present application is related to U.S. patent application Ser. No. 12/707,788, filed on Feb. 18, 2010, titled MEMORY POWER GATING CIRCUIT AND METHODS; Ser. No. 12/758,426, filed on Apr. 12, 2010, titled FINFETS AND METHODS FOR FORMING THE SAME; Ser. No. 12/731,325, filed on Mar. 25, 2010, titled ELECTRICAL FUSE AND RELATED APPLICATIONS; Ser. No. 12/724,556, filed on Mar. 16, 2010, titled ELECTRICAL ANTI-FUSE AND RELATED APPLICATIONS; Ser. No. 12/757,203, filed on Apr. 9, 2010, titled STI STRUCTURE AND METHOD OF FORMING BOTTOM VOID IN SAME; Ser. No. 12/797,839, filed on Jun. 10, 2010, titled FIN STRUCTURE FOR HIGH MOBILITY MULTIPLE-GATE TRANSISTOR; Ser. No. 12/831,842, filed on Jul. 7, 2010, titled METHOD FOR FORMING HIGH GERMANIUM CONCENTRATION SiGe STRESSOR; Ser. No. 12/761,686, filed on Apr. 16, 2010, titled FINFETS AND METHODS FOR FORMING THE SAME; Ser. No. 12/766,233, filed on Apr. 23, 2010, titled FIN FIELD EFFECT TRANSISTOR; Ser. No. 12/757,271, filed on Apr. 9, 2010, titled ACCUMULATION TYPE FINFET, CIRCUITS AND FABRICATION METHOD THEREOF; Ser. No. 12/694,846, filed on Jan. 27, 2010, titled INTEGRATED CIRCUITS AND METHODS FOR FORMING THE SAME; Ser. No. 12/638,958, filed on Dec. 14, 2009, titled METHOD OF CONTROLLING GATE THICKNESS IN FORMING FINFET DEVICES; Ser. No. 12/768,884, filed on Apr. 28, 2010, titled METHODS FOR DOPING FIN FIELD-EFFECT TRANSISTORS; Ser. No. 12/731,411, filed on Mar. 25, 2010, titled INTEGRATED CIRCUIT INCLUDING FINFETS AND METHODS FOR FORMING THE SAME; Ser. No. 12/775,006, filed on May 6, 2010, titled METHOD FOR FABRICATING A STRAINED STRUCTURE; Ser. No. 12/886,713, filed Sep. 21, 2010, titled METHOD OF FORMING INTEGRATED CIRCUITS; Ser. No. 12/941,509, filed Nov. 8, 2010, titled MECHANISMS FOR FORMING ULTRA SHALLOW JUNCTION; Ser. No. 12/900,626, filed Oct. 8, 2010, titled TRANSISTOR HAVING NOTCHED FIN STRUCTURE AND METHOD OF MAKING THE SAME; Ser. No. 12/903,712, filed Oct. 13, 2010, titled FINFET AND METHOD OF FABRICATING THE SAME; 61/412,846, filed Nov. 12, 2010, 61/394,418, filed Oct. 19, 2010, titled METHODS OF FORMING GATE DIELECTRIC MATERIAL and 61/405,858, filed Oct. 22, 2010, titled METHODS OF FORMING SEMICONDUCTOR DEVICES.
The disclosure relates generally to integrated circuit devices, and more particularly to structure and methods for forming fin field-effect transistors (FinFETs).
In the rapidly advancing semiconductor manufacturing industry, complementary metal oxide semiconductor (CMOS) FinFET devices may be used in many logic and other applications and are integrated into various different types of semiconductor devices. FinFET devices typically include semiconductor fins with high aspect ratios in which the channel and source/drain regions for the transistor are formed. A gate is formed over and along the sides of a portion of the semiconductor fins. The increased surface area of the channel and source/drain regions in a FinFET results in faster, more reliable and better-controlled semiconductor transistor devices.
Current FinFET technology, however, has challenges. For example, the channel is usually formed from the bulk substrate and is susceptible to a channel punch-through effect at the bottom of the transistor. Channel punch-through is a condition in which the depletion layers of the source and the drain connect to each other through the substrate even at equilibrium. At low gate voltages, the punch-through current is injected through the saddle point of the intrinsic potential into the drain region by the electric field from the drain. The effect is premature breakdown of the FinFET.
As such, an improved fabrication method and structure for a FinFET device continue to be sought.
Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
The making and using of illustrative embodiments are discussed in detail below. It should be appreciated, however, that the disclosure provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, such that the first and second features may not be in direct contact. Of course, the description may specifically state whether the features are directly in contact with each other. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed. The specific embodiments discussed are merely illustrative and do not limit the scope of the invention.
Conventional FinFETs use a substantially rectangular fin structure formed generally in one of two ways. In a first method, bulk silicon on a substrate is etched into rectangular fin shape by first patterning and depositing a hardmask layer on the bulk silicon. The hardmask forms a pattern covering the top of the fins. The bulk silicon is then etched to form trenches between the regions covered by the hardmask layer. The trenches are formed into shallow trench isolation (STI) features by depositing a dielectric material, usually silicon oxide. The dielectric material is usually deposited in excess to completely cover the fins and optionally the hardmask layer if not yet removed. The dielectric material is planarized down to the top surface of the fin/hardmask, and then etched to a level below the top of the fin so that a portion of the fin protrudes above the STI.
In a second method, the STI features are formed first on bulk silicon material. The bottoms of the trenches between the STI features are exposed bulk silicon. Silicon is then grown in the trenches to form the fins by using, for example, an epitaxial process. Once a desired fin height is reached, then the STI is etched to a level below the top of the fin to expose a portion of the fin. The bulk silicon material may be a silicon substrate or a deposited silicon such as silicon-on-insulator (SOI) with a bather oxide (BOX) layer between the SOI and the underlying silicon substrate.
The FinFETs made from the first and the second method both are affected by the channel punch-through effect described above and can prematurely breakdown.
Referring to
Note that both the narrowed portion 107 and the buried portion 109 are entirely below a top surface of the STI 103 in the FinFET. In the embodiment shown, the narrowing occurs on both sides of the fin as lengthwise notches, or notches that extend along the length of the fin.
Other embodiments include having a notch on one side only or having two sets of notches, or having notches that result in varying fin width along the length of the fin. For example, referring to
In the notch embodiments, the method used to remove the fin material is anisotropic wet etching that removes silicon at orientation plane dependent rates.
Narrowing of other shapes such as a semi-ellipsoid shape or a rectangular shape can be achieved using other etching methods. For example, these shapes may be etched using isotropic silicon etching using a combination of hydrofluoric acid (HF) with a number of additives such as nitric acid (HNO3), citric acid (CH3COOH), sodium chlorite (NaClO2), perchloric acid (HClO4), fresh potassium permanganate (KMnO4), or combinations of these additives. These chemical mixtures tend to uniformly remove material, and are limited by the mass transport (diffusion limited) of chemical species to the crystal surface.
Referring to
In operation 15, the STI layer around the fin is etched to expose a first portion of the fin using a dry etch process or a wet etch process. As discussed above, the fin may be formed with an STI layer around the fin or the STI layer may be deposited after the fin is formed.
In operation 17 of
In operation 19 of
The second portion of the fin has a height 313. The height 313 of the second portion is selected to form a desired notch or narrowing size. Depending on the final narrowest width desired, smaller or larger second portion height may be used. Generally, when the second portion height is larger, the notch formed would be bigger and therefore the narrowest width would be smaller when using an anisotropic selective orientation process. In some embodiments when some isotropic wet etch is used to narrow the second portion fin, the narrowest width does not depend on the second portion height, but rather the etch process conditions determine how much material is removed.
In operation 21 of
In some embodiments, the notch size may vary along the length of the fin by varying the height of the second portion. The height of the second portion may be larger toward the middle of the fin, causing the notch to be larger in the middle than at the distal ends of the fin. For example, the cross section in the middle of the fin can have a different narrowest width than the cross section at the ends of the fin. The differing second portion height may be achieved by having different sized gaps between the fins along the length of the fin. If the fins have a bow shape so that the distance between fins is larger in the middle, than the STI etch of operation 19 would remove more material and expose more of the fin. In other embodiments, the STI layer may be patterned before etching in operation 19 such that only one side of the second portion is etched. For example, the dummy spacer layer may cover a portion of the STI surface adjacent to one side of the fin. In those cases only one notch would be formed.
In some embodiments, a portion of the fin length may have notches on both sides while other portions of the fin length may have notch on only one side. For example, the notches may be on both sides in a middle region of the fin under the gates, causing the middle region to have smaller narrowest width as compared to the distal ends of the fin. In the middle region, in some embodiments, the fin is etched through and the notches from both sides of the fin connect with each other. Such structure would eliminate the channel punch-through effect. At the distal ends of the fin, the notches would be only one side of the fin and not go through so that the fin remains structurally supported by the bulk silicon layer. By controlling the height of the second portion and whether only one side of the second portion is etched, the narrowest width of the fin can be made to vary along the length of the fin according to the likelihood of channel punch-through effect for the FinFET design.
Referring back to
In certain embodiments, an additional narrowed region is formed on the fin. Optional operations 27 to 35 describe the process to form the additional narrowed region. The additional narrowed region is formed above the first narrowed region formed in operation 21. In operation 27, a second dummy spacer is formed to cover a third portion of the fin. The third portion is a fraction of the first portion described with respect to operation 15. Then the dielectric material around the fin is etched to expose a fourth portion of the fin in operation 29. The fourth portion may be entirely above the first narrowed region. As in operation 21, the fourth portion is selectively wet etched in operation 31 to form a narrowing shape, which may be a notch, a portion of a semi ellipsoid, or a rectangle. The various applicable etching methods are described above and not repeated here. After the fourth portion is wet etched, the second dummy spacer is removed in operation 33. Then a dielectric material is deposited to at least a height of the fourth portion of the fin in operation 35. The result is a structure as shown in
In some embodiments, the fourth portion may include a part of the first narrowed region. In these embodiments the narrowed regions overlap and a variety of narrowing shapes may result as a previously wet etched portion is etched again.
After the fin is formed, the FinFET manufacture continues. The remaining FinFET forming process steps are described here to provide context for the present disclosure. A gate dielectric layer and gate electrode layer are deposited over the narrowed fins and the STI layer. Gate dielectric layer is formed of a high dielectric constant (high-k) dielectric material. The exemplary high-k materials may have k values greater than about 4.0, or even greater than about 7.0, and may include aluminum-containing dielectrics such as Al2O3, HfAlO, HfAlON, or AlZrO; Hf-containing materials such as HfO2, HfSiOX, HfAlOx, HfZrSiOx, or HfSiON; and/or other materials such as LaAlO3 or ZrO2. Gate electrode layer is formed on the gate dielectric layer, and may be formed of a conductive material such as doped polysilicon, metals, or metal nitrides.
The gate electrode layer and gate dielectric layer are then patterned to form gate stacks over a middle portion. The fin portions not under the gate stacks are then optionally doped to form lightly doped drain/source (LDD) regions. The dopant used depends on the conductivity type of the transistor. The LDD regions may be doped by ion-implanting or by plasma doping where dopants are deposited onto the fin and annealed. Source and drain regions are formed across the gate stack. Source and drain regions may be formed by ion-implanting a source/drain region or by removing a portion of the fin and epitaxially re-growing the removed portion under doping conditions to form a source/drain region. In many instances according to some embodiments, it may be beneficial to increase the area available for source/drain contacts by epitaxially growing source/drain material over the fins, with or without first removing a portion of the fins.
Although the embodiments and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, and composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
Number | Name | Date | Kind |
---|---|---|---|
5581202 | Yano et al. | Dec 1996 | A |
5658417 | Watanabe et al. | Aug 1997 | A |
5767732 | Lee et al. | Jun 1998 | A |
5963789 | Tsuchiaki | Oct 1999 | A |
6065481 | Fayfield et al. | May 2000 | A |
6121786 | Yamagami et al. | Sep 2000 | A |
6299724 | Fayfield et al. | Oct 2001 | B1 |
6503794 | Watanabe et al. | Jan 2003 | B1 |
6613634 | Ootsuka et al. | Sep 2003 | B2 |
6622738 | Scovell | Sep 2003 | B2 |
6642090 | Fried et al. | Nov 2003 | B1 |
6706571 | Yu et al. | Mar 2004 | B1 |
6713365 | Lin et al. | Mar 2004 | B2 |
6727557 | Takao | Apr 2004 | B2 |
6734063 | Willer et al. | May 2004 | B2 |
6740247 | Han et al. | May 2004 | B1 |
6743673 | Watanabe et al. | Jun 2004 | B2 |
6762448 | Lin et al. | Jul 2004 | B1 |
6791155 | Lo et al. | Sep 2004 | B1 |
6828646 | Marty et al. | Dec 2004 | B2 |
6830994 | Mitsuki et al. | Dec 2004 | B2 |
6858478 | Chau et al. | Feb 2005 | B2 |
6872647 | Yu et al. | Mar 2005 | B1 |
6940747 | Sharma et al. | Sep 2005 | B1 |
6949768 | Anderson et al. | Sep 2005 | B1 |
6964832 | Moniwa et al. | Nov 2005 | B2 |
7009273 | Inoh et al. | Mar 2006 | B2 |
7018901 | Thean et al. | Mar 2006 | B1 |
7026232 | Koontz et al. | Apr 2006 | B1 |
7067400 | Bedell et al. | Jun 2006 | B2 |
7078312 | Sutanto et al. | Jul 2006 | B1 |
7084079 | Conti et al. | Aug 2006 | B2 |
7084506 | Takao | Aug 2006 | B2 |
7112495 | Ko et al. | Sep 2006 | B2 |
7153744 | Chen et al. | Dec 2006 | B2 |
7157351 | Cheng et al. | Jan 2007 | B2 |
7190050 | King et al. | Mar 2007 | B2 |
7193399 | Aikawa | Mar 2007 | B2 |
7247887 | King et al. | Jul 2007 | B2 |
7265008 | King et al. | Sep 2007 | B2 |
7265418 | Yun et al. | Sep 2007 | B2 |
7297600 | Oh et al. | Nov 2007 | B2 |
7300837 | Chen et al. | Nov 2007 | B2 |
7315994 | Aller et al. | Jan 2008 | B2 |
7323375 | Yoon et al. | Jan 2008 | B2 |
7338614 | Martin et al. | Mar 2008 | B2 |
7351622 | Buh et al. | Apr 2008 | B2 |
7358166 | Agnello et al. | Apr 2008 | B2 |
7361563 | Shin et al. | Apr 2008 | B2 |
7374986 | Kim et al. | May 2008 | B2 |
7394116 | Kim et al. | Jul 2008 | B2 |
7396710 | Okuno | Jul 2008 | B2 |
7407847 | Doyle et al. | Aug 2008 | B2 |
7410844 | Li et al. | Aug 2008 | B2 |
7425740 | Liu et al. | Sep 2008 | B2 |
7442967 | Ko et al. | Oct 2008 | B2 |
7456087 | Cheng | Nov 2008 | B2 |
7494862 | Doyle et al. | Feb 2009 | B2 |
7508031 | Liu et al. | Mar 2009 | B2 |
7528465 | King et al. | May 2009 | B2 |
7534689 | Pal et al. | May 2009 | B2 |
7538387 | Tsai | May 2009 | B2 |
7550332 | Yang | Jun 2009 | B2 |
7598145 | Damlencourt et al. | Oct 2009 | B2 |
7605449 | Liu et al. | Oct 2009 | B2 |
7682911 | Jang et al. | Mar 2010 | B2 |
7709341 | Fucsko et al. | May 2010 | B2 |
7759228 | Sugiyama et al. | Jul 2010 | B2 |
7795097 | Pas | Sep 2010 | B2 |
7798332 | Brunet | Sep 2010 | B1 |
7820513 | Hareland et al. | Oct 2010 | B2 |
7851865 | Anderson et al. | Dec 2010 | B2 |
7868317 | Yu et al. | Jan 2011 | B2 |
7898041 | Radosavljevic et al. | Mar 2011 | B2 |
7915693 | Okano | Mar 2011 | B2 |
7923314 | Tezuka et al. | Apr 2011 | B2 |
7923321 | Lai et al. | Apr 2011 | B2 |
7923339 | Meunier-Beillard et al. | Apr 2011 | B2 |
7960791 | Anderson et al. | Jun 2011 | B2 |
7985633 | Cai et al. | Jul 2011 | B2 |
7989846 | Furuta | Aug 2011 | B2 |
7989855 | Narihiro | Aug 2011 | B2 |
8003466 | Shi et al. | Aug 2011 | B2 |
8039843 | Inaba | Oct 2011 | B2 |
8043920 | Chan et al. | Oct 2011 | B2 |
8076189 | Grant | Dec 2011 | B2 |
8101475 | Oh et al. | Jan 2012 | B2 |
8241970 | Cohen et al. | Aug 2012 | B2 |
20030080361 | Murthy et al. | May 2003 | A1 |
20030109086 | Arao | Jun 2003 | A1 |
20030234422 | Wang et al. | Dec 2003 | A1 |
20040075121 | Yu et al. | Apr 2004 | A1 |
20040129998 | Inoh et al. | Jul 2004 | A1 |
20040192067 | Ghyselen et al. | Sep 2004 | A1 |
20040219722 | Pham et al. | Nov 2004 | A1 |
20040259315 | Sakaguchi et al. | Dec 2004 | A1 |
20050020020 | Collaert et al. | Jan 2005 | A1 |
20050051865 | Lee et al. | Mar 2005 | A1 |
20050082616 | Chen et al. | Apr 2005 | A1 |
20050153490 | Yoon et al. | Jul 2005 | A1 |
20050170593 | Kang et al. | Aug 2005 | A1 |
20050212080 | Wu et al. | Sep 2005 | A1 |
20050221591 | Bedell et al. | Oct 2005 | A1 |
20050224800 | Lindert et al. | Oct 2005 | A1 |
20050233598 | Jung et al. | Oct 2005 | A1 |
20050266698 | Cooney et al. | Dec 2005 | A1 |
20050280102 | Oh et al. | Dec 2005 | A1 |
20060038230 | Ueno et al. | Feb 2006 | A1 |
20060068553 | Thean et al. | Mar 2006 | A1 |
20060091481 | Li et al. | May 2006 | A1 |
20060091482 | Kim et al. | May 2006 | A1 |
20060091937 | Do | May 2006 | A1 |
20060105557 | Klee et al. | May 2006 | A1 |
20060128071 | Rankin et al. | Jun 2006 | A1 |
20060138572 | Arikado et al. | Jun 2006 | A1 |
20060151808 | Chen et al. | Jul 2006 | A1 |
20060153995 | Narwankar et al. | Jul 2006 | A1 |
20060166475 | Mantl | Jul 2006 | A1 |
20060214212 | Horita et al. | Sep 2006 | A1 |
20060258156 | Kittl | Nov 2006 | A1 |
20070001173 | Brask et al. | Jan 2007 | A1 |
20070004218 | Lee et al. | Jan 2007 | A1 |
20070015334 | Kittl et al. | Jan 2007 | A1 |
20070020827 | Buh et al. | Jan 2007 | A1 |
20070024349 | Tsukude | Feb 2007 | A1 |
20070029576 | Nowak et al. | Feb 2007 | A1 |
20070048907 | Lee et al. | Mar 2007 | A1 |
20070076477 | Hwang et al. | Apr 2007 | A1 |
20070093010 | Mathew et al. | Apr 2007 | A1 |
20070093036 | Cheng et al. | Apr 2007 | A1 |
20070096148 | Hoentschel et al. | May 2007 | A1 |
20070120156 | Liu et al. | May 2007 | A1 |
20070122953 | Liu et al. | May 2007 | A1 |
20070122954 | Liu et al. | May 2007 | A1 |
20070128782 | Liu et al. | Jun 2007 | A1 |
20070132053 | King et al. | Jun 2007 | A1 |
20070145487 | Kavalieros et al. | Jun 2007 | A1 |
20070152276 | Arnold et al. | Jul 2007 | A1 |
20070166929 | Matsumoto et al. | Jul 2007 | A1 |
20070178637 | Jung et al. | Aug 2007 | A1 |
20070221956 | Inaba | Sep 2007 | A1 |
20070231997 | Doyle et al. | Oct 2007 | A1 |
20070236278 | Hur et al. | Oct 2007 | A1 |
20070241414 | Narihiro | Oct 2007 | A1 |
20070247906 | Watanabe et al. | Oct 2007 | A1 |
20070254440 | Daval | Nov 2007 | A1 |
20070281488 | Wells et al. | Dec 2007 | A1 |
20080001171 | Tezuka et al. | Jan 2008 | A1 |
20080036001 | Yun et al. | Feb 2008 | A1 |
20080042209 | Tan et al. | Feb 2008 | A1 |
20080050882 | Bevan et al. | Feb 2008 | A1 |
20080085580 | Doyle et al. | Apr 2008 | A1 |
20080085590 | Yao et al. | Apr 2008 | A1 |
20080095954 | Gabelnick et al. | Apr 2008 | A1 |
20080102586 | Park | May 2008 | A1 |
20080124878 | Cook et al. | May 2008 | A1 |
20080227241 | Nakabayashi et al. | Sep 2008 | A1 |
20080265344 | Mehrad et al. | Oct 2008 | A1 |
20080290470 | King et al. | Nov 2008 | A1 |
20080296632 | Moroz et al. | Dec 2008 | A1 |
20080318392 | Hung et al. | Dec 2008 | A1 |
20090026540 | Sasaki et al. | Jan 2009 | A1 |
20090039388 | Teo et al. | Feb 2009 | A1 |
20090066763 | Fujii et al. | Mar 2009 | A1 |
20090155969 | Chakravarti et al. | Jun 2009 | A1 |
20090166625 | Ting et al. | Jul 2009 | A1 |
20090181477 | King et al. | Jul 2009 | A1 |
20090200612 | Koldiaev | Aug 2009 | A1 |
20090239347 | Ting et al. | Sep 2009 | A1 |
20090321836 | Wei et al. | Dec 2009 | A1 |
20100155790 | Lin et al. | Jun 2010 | A1 |
20100163926 | Hudait et al. | Jul 2010 | A1 |
20100187613 | Colombo et al. | Jul 2010 | A1 |
20100207211 | Sasaki et al. | Aug 2010 | A1 |
20100308379 | Kuan et al. | Dec 2010 | A1 |
20110018065 | Curatola et al. | Jan 2011 | A1 |
20110108920 | Basker et al. | May 2011 | A1 |
20110129990 | Mandrekar et al. | Jun 2011 | A1 |
20110195555 | Tsai et al. | Aug 2011 | A1 |
20110195570 | Lin et al. | Aug 2011 | A1 |
20110256682 | Yu et al. | Oct 2011 | A1 |
20120086053 | Tseng et al. | Apr 2012 | A1 |
Number | Date | Country |
---|---|---|
1945829 | Apr 2004 | CN |
101179046 | May 2005 | CN |
101005035 | Jul 2007 | CN |
1011459116 | Jun 2009 | CN |
2007-194336 | Aug 2007 | JP |
10-2005-0119424 | Dec 2005 | KR |
1020070064231 | Jun 2007 | KR |
497253 | Aug 2002 | TW |
WO2007115585 | Oct 2007 | WO |
Entry |
---|
Lenoble, Damien, STMicroelectronics, Crolles Cedex, France, “Plasma Doping as an Alternative Route for Ultra-Shallow Junction Integration to Standard CMOS Technologies”, Semiconductor Fabtech—16th Edition, pp. 1-5. |
Chui, King-Jien, et al., “Source/Drain Germanium Condensation for P-Channel Strained Ultra-Thin Body Transistors”, Silicon Nano Device Lab, Dept. of Electrical and Computer Engineering, National University of Singapore; IEEE 2005. |
Shikida, Mitsuhiro et al., “Comparison of Anisotropic Etching Properties between KOH and TMAH Solutions”, Dept. of Micro System Engineering, Nagoya University, Chikusa, Nagoya, Japan, IEEE Xplore, Jun. 30, 2010, pp. 315-320. |
Anathan, Hari, et al., “FinFet SRAM—Device and Circuit Design Considerations”, Quality Electronic Design, 2004, Proceedings 5th International Symposium (2004); pp. 511-516. |
Jha, Niraj, Low-Power FinFET Circuit Design, Dept. of Electrical Engineering, Princeton University n. d. |
Kedzierski, J., et al., “Extension and Source/Drain Design for High-Performance FinFET Devices”, IEEE Transactions on Electron Devices, vol. 50, No. 4, Apr. 2003, pp. 952-958. |
Liow, Tsung-Yang et al., “Strained N-Channel FinFETs with 25 nm Gate Length and Silicon-Carbon Source/Drain Regions for Performance Enhancement”, VLSI Technology, 2006, Digest of Technical Papers, 2006 Symposium on VLSI Technology 2006; pp. 56-57. |
Quirk et al., Semiconductor Manufacturing Technology, Oct. 2001, Prentice Hall, Chapter 16. |
McVittie, James P., et al., “SPEEDIE: A Profile Simulator for Etching and Deposition”, Proc. SPIE 1392, 126 (1991). |
90 nm Technology. retrieved from the internet <URL:http://tsmc.com/english/dedicatedFoundry/technology/90nm.htm. |
Merriam Webster definition of substantially retrieved from the internet <URL:http://www.merriam-webster.com/dictionary/substantial>. |
Smith, Casey Eben, Advanced Technology for Source Drain Resistance, Diss. University of North Texas, 2008. |
Liow, Tsung-Yang et al., “Strained N-Channel FinFETs Featuring in Situ Doped Silicon-Carbon Si1-YCy Source Drain Stressors with High Carbon Content”, IEEE Transactions on Electron Devices 55.9 (2008): 2475-483. |
Office Action dated Mar. 28, 2012 from corresponding application No. CN 201010228334.6. |
Notice of Decision on Patent dated Mar. 12, 2012 from corresponding application No. 10-2010-0072103. |
OA dated Mar. 27, 2012 from corresponding application No. KR10-2010-0094454. |
OA dated Mar. 29, 2012 from corresponding application No. KR10-2010-0090264. |
Office Action dated May 2, 2012 from corresponding application No. CN 201010196345.0. |
Office Action dated May 4, 2012 from corresponding application No. CN 201010243667.6. |
Number | Date | Country | |
---|---|---|---|
20120086053 A1 | Apr 2012 | US |