This present patent application relates, in general, to the art of transparent electrodes, including their structures and method of making, and more particularly, to the art of fabricating transparent electrodes on large area substrates in a high throughput low cost manufacturing process for electro-optical applications.
Indium tin-oxide (ITO) is traditionally widely used as a transparent conductor in transparent electrodes in science and research community, but it also has well drawbacks in large scale manufacturing processes. First, in order to make electrodes, ITO is vacuum deposited onto substrates, and the vacuum deposition process is expensive and low throughput. Second, in most of applications, 150 nm or thicker of ITO is needed to ensure electrical performance, but at such thicknesses, ITO films become brittle making them not feasible for applications requiring large areas or flexible substrates. Third, to achieve good conductivity and clarity, ITO films need to be annealed at high temperatures, preferably over 200 C, thus limiting its application on high temperature resistant substrates such as glass. Due to the low softening point of polymers, most polymer based ITO films cannot withstand the annealing temperatures required for achieving the high conductivity and transparency at the same time. Therefore as electro-optical applications expand to more novel and exotic functionalities, such as 3-dimensional displays and solar cells, there is an increasing demand to invent alternative transparent electrodes with better than or comparable optical and electrical performance of ITO but suitable for large area flexible substrate and can be manufactured in an inexpensive high through manner.
Alternative transparent electrodes have been explored and demonstrated in the art as ITO replacements, including other transparent conductive oxides, thin metal films, carbon nanotubes (CNTs), metal nanowires, and graphene.
The present invention discloses a transparent conductive electrode that not only can be manufactured at low cost and on a large scale but with excellent performance including conductivity and transparency.
In one embodiment, a transparent conductive electrode is disclosed herein. The transparent electrode is a substantially single layer structure comprising a hierarchical architecture, comprised of nanowires of the same or different diameters, and has a thinner than usual thickness. The said electrode is substantially transparent in 400-1000 nm and has extremely low haze, and conductivity of the said electrode can tuned in the range of 0.1 Ohm/square to 1000 Ohm/square.
In another embodiment, a method of making a transparent electrode is disclosed herein, the method comprising preparing an ink solution containing a first group of nanowires and a second group of nanowires; functionalizing the substrate on the surface where the growth of the first group of nanowires occur; depositing the nanowire ink onto the surface of the substrate; and curing the resultant film to let the first group of nanowires interact specifically with the surface of the substrate to form the skeleton of a nanowire network and land the second group of nanowires in between the first group of nanowires.
In yet another embodiment, an alternative method of making a transparent electrode is disclosed herein, the method comprising: preparing a first ink solution having nanowire at a first diameter; preparing a second ink solution having nanowire at a second diameter; and depositing the first and second ink solutions onto the substrate sequentially to form a nanowire network.
In another aspect of the present invention, a transparent electrode with improved adhesion is disclosed. The transparent conductive electrode having improved adhesion in the present invention, comprises a substrate, and a single layer of conductive material deposited on top of the substrate. The single layer conductive material comprises one or more metal nanowires. In one embodiment of the present invention, The single layer conductive material comprises adhesion promoters allows the interface between the substrate and conductive material layer disappear after an annealing step.
In another embodiment of the present invention, the transparent electrode with improved adhesion in the present invention comprises a substantially a single layer structure, comprising a zone substantially of a substrate, and another zone having more metal nanowires than the zone of substrate. The transparent conductive electrodes with improved adhesion disclosed herein have an optical transmittance higher than 90%, a haze value less than 2%, while maintaining the sheet resistance lower than 100 Ohms/sq.
In still another embodiment of the present invention, a method of making of the electrode with improved adhesion is disclosed. The method comprises a deposition step, laying down a mixture comprising nanowires and a thermoplastic polymer on top of the substrate, and a drying step forming a conductive film adhering to the substrate, and an annealing step, applying a temperature or pressure or both to remove the stress in the film, wherein the thermoplastic polymer is a semi-crystalline polymer when the substrate is a film made of a semi-crystalline polymer, and the thermoplastic polymer is a amorphous polymer when the substrate is a film made of a amorphous polymer.
In still another embodiment of the present invention, a method of making of the electrode with improved adhesion is disclosed. The method comprises a deposition step, laying down a mixture comprising nanowires and a polymer on top of the substrate, and a drying step forming a conductive film adhering to the substrate, and a annealing step, applying a temperature or pressure or both to remove the stress in the film, wherein the polymer has substantially the same composition as the substrate but differs in molecular weight.
In still another embodiment of the present invention, a method of making of the electrode with improved adhesion is disclosed. The method comprises a deposition step, laying down first a layer of polymer on top of the substrate, followed by a mixture comprising nanowires and with/without a polymer, and a drying step forming a conductive film adhering to the substrate, and an annealing step, applying a temperature or pressure or both to remove the stress in the film, wherein the polymer has substantially the same composition as the substrate but differs in molecular weight.
Exemplary embodiments of the disclosure will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings in which:
a-c is a detail anatomy illustration of one exemplary two-layer hybrid electrode in the prior art in
a-c is a detail anatomy illustration of another exemplary two-layer hybrid electrode in the prior art in
a-c is a detail anatomy illustration of still another exemplary two-layer hybrid electrode in the prior art in
a-c is a detail anatomy illustration of another exemplary single layer hybrid electrode in the present invention, in view of the thickness requirement in accordance with the aspects of the present invention, and
a-c is a detail anatomy illustration of another exemplary single layer hybrid electrode in the present invention, in view of the thickness requirement in accordance with the aspects of the present invention, and
a-c illustrate the method steps to form an exemplary electrode of
a-d illustrate the method steps to form an exemplary electrode of
Hereinafter, selected examples of a transparent conductive electrode will be discussed with reference to the accompanying drawings. It will be appreciated by those skilled in the art that the following discussion is for demonstration purposes, and should not be interpreted as a limitation. Other variances within the scope of this disclosure are also applicable.
“Optional” or “optionally” means that the subsequently described circumstance may or may not occur, so that the description includes instances where the circumstance occurs and instances where it does not.
In the scope of the present invention, in some instances, “top” means situated at the highest position in a figure or a stack. “Top view” means what an observer sees looking down at the top. In some instances, bottom electrode means a device is built from it whereas a top electrode means an electrode situated on top of the device stack.
In one embodiment of the present invention, the transparent conductive electrode (TCE) comprises a substrate and a single conductive layer, comprising nanowires and diffused conductive materials.
Referring to
The present invention discloses an improved layer design of the transparent conductive electrode (200).
Further,
FIG. 2F and paragraph 64 in U.S. patent application Ser. No. 12/610,247 teaches a TCE with greater surface contact between the nanowires and the conductive material layer by using high viscosity solutions and obtaining a binderless TCE.
a-c,
In view of the foregoing, the present invention discloses a TCE having a single layer conductive layer with at least one surface having nanowires. The surface of the conductive layer includes the surface in direct contact with the substrate, being sometimes called the bottom surface, and the surface contacting the rest of the device structure, positioned on the top in the FIGs, being sometimes called the top surface. Whereas U.S. patent application Ser. No. 12/610,247 teaches TCEs with (combined) two layers having at least one surface have conductive material but not nanowires. The surfaces herein are referred to include the surface next to the substrate and the surface situated on the top of the highest layer in the stack.
In another embodiment of the present invention, the transparent conductive electrode, comprising: a substrate; a transparent conductive layer, comprising a network of metal nanowires having a first group of nanowire veins and a second group of nanowire veins, wherein the first and second group of nanowire veins can be substantially the same or different in diameters, wherein the first group of nanowire veins form the skeleton of the network and the second group of nanowire veins branch out from the first group of nanowire veins, join another nanowire vein to form a closed loop or a continuous branching system; and a diffused conductive material formed in contact with the metal nanowire network which wraps around and fills between the nanowire veins.
In one aspect of the present invention, in one example, the metal nanowires in the network have substantially the same vein sizes. In a more preferred example of the present invention, the metal nanowires in the network have more than more distinctively different vein sizes. Some have different diameters and some have different lengths.
In another aspect of the present invention, in one example, the metal nanowire veins in the network have nanowires with both ends connected to neighboring nanowire in network (
In another aspect of the present invention, in one example, the bigger sizes nanowire veins (“primary veins”) form the basic skeleton of the nanowire network, and provide structural integrity to the conductive layer 202 and physical strength of the network, whereas the smaller sized nanowire veins (“secondary veins or capillary veins”) diverge from the bigger nanowire veins to form a continuous branching system. In another example, a few nanowire veins interconnected with each other form a close loop. Branched or freely ending nanowires may all extend into or embed in the conductive material layer being wrapped around them. Branched nanowires may bend and join with the adjacent secondary vein to form a closed loop.
The network of nanowire veins brings in charge circulation, transportation, and distribution within the more conductive network and between the network and less conductive isotropic conductive materials. The distinctive size orders of the various metal nanowire veins optimize the utilization of the conductive network, with “primary veins” carrying major currents and secondary and/or capillary veins distributing or collecting smaller local currents, thus forming a highly effective electron transport system. Comparing to a conventional conductive networks made of carbon nanotubes, the present invention uses less nanowires but can achieve same conductivity. Reduce amount of the nanowires in the network afford less shadow loss and higher transmittance of the TCE.
With preferred thicknesses of layer 202 and amounts of metal nanowire required in the present invention, the TCE 200 provides excellent optical transparency. In one example, the TCE has at least >80% optical transmittance in the wavelength of 400-1000 nm. In a preferred example, the TCE has at least >90% optical transmittance in the wavelength range of 400-1000 nm. In a more preferred example, the TCE has at least >95% optical transmittance from wavelengths of 400-1000 nm.
The haze value of the TCE in the present invention are tunable from >10% to <0.6%, depending on the application. In one example of the present invention, the haze of the TCE is >10%. In another example of the present invention, the haze of the TCE is <0.6%. The super low haze comes from the single layer design having transparent metal oxide wrapping around the nanowires which in turn reduce the light scattering from the nanowires.
The transparent conductive electrode in the present invention is invented for electrical-optical devices. The single conductive layer design and detailed architecture with nanowire veins at difference sizes and networks that are both diverging or branching with free end nanowire veins are devised to improve the three-dimensional surface contact between the metal nanowire veins, cylindrical structures, and a continuous isotropic conductive material such as a film of conductive or semi-conductive metal oxide(s), conductive polymers, carbon nanotubes and the like.
In one example of one embodiment, referring to
In another embodiment of the present invention, the metal nanowire network has a sheet resistance tunable from 0.1 Ohm/sq to 1000 Ohm/sq.
In another embodiment of the present invention, the transparent conductive electrode, comprising: a transparent conductive layer, comprising a network of metal nanowires and a diffused conductive material formed in contact with the metal nanowire network and the conductive material wraps around and fills between the nanowire veins. Said diffused conductive material forms an isotropic layer for gathering charge from the junctions of the nanowires and/or delivering charge to the junctions of the nanowires. The isotropic diffuse conductive film in the interstices of nanowires has sheet resistance from 10 Ohm/sq to 1000 Ohm/sq.
In the present invention, nanowires may be comprised of one or more materials selected from a variety of electrically conductive materials, any noble elements etc. Elements in the period table that can be used as the chemical composition for metal nanowires (108 or 208) include, but not limited to, copper (Cu), silver (Ag), gold (Au), aluminum (Al), nickel (Ni), lead (Pd), platinum (Pt) or combinations thereof. The metals that can be used in the nanowire network can further include a silver plated copper, a gold plated silver, or a gold plated copper. The nanowires may also be comprised of one or more materials, such as but not limited to, Zn, Mo, Cr, W, Ta, metallic alloys, or the like. In the present invention, some less preferred examples include nanowires comprising metal oxides.
In one example of the present invention, the metal nanowire network consists of only one chemical composition throughout. In another example of the present invention, the metal nanowire network consists of a mixture of chemical compositions. In one instance, said mixture of chemical compositions includes metals or metal oxides. In another instance, said mixture of chemical compositions includes chemical compounds with different electrical properties, such as electrical conductivity. In another instance, said mixture of chemical compositions includes chemical compounds with different optical properties, such as optical transparency or refractive index.
In one preferred example of the present invention, one composition of the nanowire is present in a gradient concentration in the conductive layer 202.
In one example of the present invention, the nanowire may further comprise an anticorrosion coating or anti-reflective coating.
In the aforementioned instances, examples or embodiments of the present invention disclosed herein, the nanowires are described as having at least an end (108) or a length (208). This description is used primarily for the ease of discussion; it should be understood that any geometric shapes such as rods of different aspect ratios, dog-bone shapes, round particles, oblong particles, single or multiple combinations of different geometric shapes, or other particle configurations capable of forming a metal network may be used herein.
In some embodiments of the present invention, diameters of nanowires in the network range from 10 nm to 1 um. In some examples of the present invention, wherein the diameters of nanowires have more than one size ranges, wherein one group of nanowires have diameters from 100 nm to 500 nm. Optionally another group of nanowires have diameters from 30-100 nm. Optionally still another group of nanowires have diameters from 10-30 nm.
In one embodiment of the present inventions, the nanowires are from 20-30 microns in length. In one preferred embodiment, a range of the size distribution of nanowires is used to create a hierarchical design with branching nanowire veins and free end nanowire veins.
Different sizes of nanowires can be prepared in one precursor solution or multiple precursor solutions. The precursor solutions can be applied to the substrate in one simultaneous step or separate steps.
In a preferred embodiment of the present invention, there is no binder in the nanowire precursor solution, and/or no binder ends up in the metal nanowire network (108 and 208), nor in the conductive layer 202.
Optionally, the transparent electrode without nanowires has an electrical resistance of at least about 500 ohms per square or more. Optionally, the transparent top electrode without nanowires has an electrical resistance of at least about 300 ohms per square or more. Optionally, the transparent electrode with the nanowire network in accordance with the aspects of the present invention has a sheet resistance of 0.1 Ohm/sq-499 Ohm/sq.
Optionally, the transparent electrode without nanowires has a transmittance of over 99% over the wavelength range of 400 nm-1000 nm. Optionally the transparent electrode with the nanowire network in accordance with the aspects of the present invention has an optical transmittance of >99%. Optionally the transparent electrode without the nanowires has a haze of <0.5% over the wavelength range of 400 nm-1000 nm. Optionally the transparent electrode with the nanowire network in accordance with the aspects of the present invention has a haze <1.0%.
Optionally, a maximum distance from any location in the transparent electrode to a nearest nanowire in the network is in the range between 1 to 20 microns. Optionally, a maximum distance from any location in the transparent electrode to a nearest nanowire in the network is in the range between 1 to 10 microns. Optionally, a maximum distance from any location in the transparent top electrode to a nearest nanowire in the network is in the range between 2 to 5 microns. In a preferred embodiment of the present invention, the nanowire network is formed by a wet-coating process or a solution process. Said wet-coating process leads to randomly oriented nanowires.
In accordance of the aspects of the present invention, the metal nanowire network can be randomly pitched or regularly pitched, with pitch spacing that can be tuned from 1 um to 100 um, and preferably below 50 um, and more preferably below 10 um.
The network of nanowires 108 and 208 may be formed by a variety of deposition techniques. A nanowire ink or dispersion may be formed for solution deposition of the nanowires (108 and 208) onto a substrate.
In one embodiment, the nanowire precursor dispersion or ink is prepared in a substantially aqueous solution of about 99% wt or higher percent of water with a loading of nanowires between about 0.2 to 1% wt. Optionally, the nanowires loading may be in the range of about 0.25 to 0.75% wt. Optionally, the nanowires loading may be in the range of about 0.25 to 0.50% wt. Further surfactants, additives or viscosity modifiers, may be added to the precursor solution to make solution deposition or coating or dispensing step more friendly in a continuous process.
It has been demonstrated that anybody skilled in the art can synthesize silver and copper nanowires that are 25 nm in diameter in gram quantities and up to 5 (for silver) or 10 (for copper) microns in length. Furthermore, one or more connection techniques may be used to couple the nanowires in the network together. Some embodiments may use heat such as annealing while others use pressure such as through rollers to force the nanowires into contact.
In a preferred embodiment, a solution, ink or dispersion of nanowire precursors is applied to the substrate using a wet-coating process.
Examples of the wet-coating process for an ink or dispersion of nanowire precursors may include at least one method from the group comprising: solution coating, dip coating, spray coating, spin coating, doctor blade coating, contact printing, top feed reverse printing, bottom feed reverse printing, nozzle feed reverse printing, gravure printing, microgravure printing, reverse microgravure printing, comma direct printing, roller coating, slot die coating, meyerbar coating, lip direct coating, dual lip direct coating, capillary coating, ink jet printing, jet deposition, spray deposition, aerosol spray deposition, dip coating, web coating, microgravure web coating, or combinations thereof. These applications of nanowires are compatible with roll to roll high throughput technology, producing lower costs, better durability, better thermal stability, and higher efficiency devices. Of course, other non-solution based techniques may also be used.
The transparent conductive layer 59 may be inorganic, e.g., a transparent conductive oxide (TCO) such as but not limited to indium tin oxide (ITO), fluorinated indium tin oxide, zinc oxide (ZnO), Mg—ZnO, Li2O—ZnO, Zr—Zno, aluminum doped zinc oxide (AZO), gallium doped zinc oxide (GZO), boron doped zinc oxide (BZO).
The transparent conductive material 106 may be inorganic, e.g., a transparent conductive oxide (TCO), such as but not limited to, indium tin oxide (ITO), fluorinated indium tin oxide (FTO), zinc oxide (ZnO) or aluminum doped zinc oxide, Mg—ZnO, Li2O—ZnO, Zr—Zno, aluminum doped zinc oxide (AZO), gallium doped zinc oxide (GZO), boron doped zinc oxide (BZO), or a related material, which can be deposited using any of a variety of means including but not limited to sputtering, evaporation, chemical bath deposition (CBD), electroplating, sol-gel based coating, spray coating, chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), and the like. Alternatively, the transparent conductive material 106 may include a transparent conductive polymeric layer, e.g. a transparent layer of doped PEDOT (Poly-3,4-Ethylenedioxythiophene), nanowires or related structures, or other transparent organic materials, either homopolymer, copolymer, polymer blends or in combination, which can be deposited using spin, dip, or spray coating, and the like or using any of various vapor deposition techniques. Optionally, it should be understood combinations of inorganic and organic materials can also be used to form a conductive material layer. Thus, 106 may optionally be an organic (polymeric or a mixed polymeric-molecular) or a hybrid (organic-inorganic) material. Alternatively, the conductive material can be conductive carbon nanotubes.
The conductive layer 202 of the present invention offers significant reduced light scattering and improved optical transparency. In one embodiment of the present invention, the thickness of 202 is about ¼ of wavelength of the light. In one example, the thickness of the conductive material is in the range of 100-200 nm. In another example, the thickness of the conductive material is in the range of 20-30 nm. In another embodiment of the present invention, the refractive index of the conductive material is between 1.3-1.8. In another embodiment of the present invention, the conductive material has a physical pattern capable of changing the light propagation pathway affording reduced light scattering and better optical transparency.
In one example of the present invention, the substrate is a rigid substrate. The rigid substrate is a glass. In some instances, the glass has refractive index of more than 1.5. In some instances, the glass has a refractive index of more than 1.7.
In another example of the present invention, the substrate is a flexible substrate comprising a polymer. Examples of such a polymer includes, but not limited to, a polyimides (PI), polyamides, polyetheretherketone (PEEK), Polyethersulfone (PES), polyetherimide (PEI), polyethylene naphtalate (PEN), Polyester (PET), polycarbonate (PC), cyclo olefin polymer (COP) or copolymer (COC), polymethylmethacrylate (PMMA), or related polymers, a metallized plastic, and/or combination of the above and/or similar materials.
In a more preferred example, the polymer substrate has barrier properties. In one instances, the substrate is a piece of barrier film having oxygen permeation rate less than 10−2 g/m2/day. In another instance, the substrate is a piece of barrier film having moisture permeation rate less than 10−2 g/m2/day. In still another instance, the substrate is a piece of barrier film having moisture permeation rate less than 10−6 g/m2/day.
In still another example, the substrate is a curved substrate.
In yet another example, the substrate has regular geometries. Such geometries include the geometries of cell phones, tablets, TVs, e-books, windows and solar cells. In yet another example, the substrate has irregular geometries, including stars, pyramids and spheres etc.
The transparent conductive electrode in the present invention is ultimately used in electrical optical device. Optical properties such as transparency and electrical properties like conductivity make the transparent conductive electrode in the present invention suitable for a wide range of the applications. In one example, the transparent electrode 200 is a top electrode in a device. In another example, the electrode is a bottom electrode of a device. In still another example, the electrode of claim 1 is an electrode is of a stacked device.
In order to achieve a nanowire network with more than one distinctive size ranges using a solution process, new methods are disclosed in the present invention.
In one embodiment, a single step process is used. A method of forming the conductive metal nanowire network comprising nanowires having more than one distinctive diameter, includes the steps of: a) preparing an ink solution containing a first group of nanowires at a first group of diameters and a second group of nanowires at a second group of diameters; b) functionalizing a substrate on the surface where the growth of the first group of nanowires occur; c) depositing the nanowire ink onto the surface of the substrate; and d) drying the resultant film to let the first group of nanowires interact specifically with the surface of the substrate to form the skeleton of a nanowire network and land the second group of nanowires in between the first group of nanowires.
The method comprises a step of: reacting the first group of nanowires specifically with the surface of the substrate and forming a chemical bond.
Optionally, the method further comprises a step of: formulating the ink solution in order to allow the second group nanowires to land in between the first of group nanowires.
In another embodiment of the present invention, the method of making a transparent electrode comprising nanowires having different diameters, comprises the steps of a) preparing a first ink solution having nanowire at a first diameter; b) preparing a second ink solution having nanowire at a second diameter; and c) depositing the first and second ink solutions onto a substrate sequentially to form a nanowire network.
It will be appreciated by those skilled in the art that the above discussion is for demonstration purpose; and the examples discussed above are some of many possible examples. Other variations are also applicable.
In a further aspect of the present invention, it is directed to a transparent conductive electrode having improved adhesion.
Comparing to the three-layer structure in the prior art, the transparent electrode with improved adhesion 120 is substantially a single layer structure. The electrode in the present invention 120 as in
In one example of the present invention, the substrate 102 is a PET (Polyethylene terephthalates) and the zone of substrate 122 comprises substantially PET (Polyethylene terephthalates). The zone of nanowires 124 comprises a metal nanowire selected from the group of the metal nanowires made of copper, silver, gold, aluminum, nickel, lead, platinum or alloy of them.
The substantial single layer electrode 120 is made from a pseudo transitional structure 130. Referring to
In one example of the present invention, the electrode is shown as in
In another example of the present invention, the electrode can also be a graded layer structure as shown as in
The graded electrode structure is made according to the flow diagram in
In still another embodiment of the present invention, a method of making of the electrode with improved adhesion is disclosed. The method comprises a surface functionalization step, functionalizing the substrate with desired functionalities to adhere to groups in the transparent conductive zone.
In still another embodiment of the present invention, a method of making of the electrode with improved adhesion is disclosed. The method comprises a deposition step laying down a mixture comprising nanowires and a thermo-sensitive polymer on top of the substrate, and a drying step forming a conductive film adhering to the substrate, and an annealing step, which heat the layer above glass transition temperature of polymer, followed by applying a temperature or pressure or both to remove the stress in the film and to embed the wire into the substrate surface.
In still another embodiment of the present invention, a method of making of the electrode with improved adhesion is disclosed. The method comprises a deposition step laying down a mixture comprising nanowires and a polymer on top of the substrate, and a drying step forming a conductive film adhering to the substrate, and a dry etching step (plasma etching) which etches away the surface polymer, followed by an annealing step, by applying a temperature or pressure or both to remove the stress in the film and to embed the wire into the substrate surface.
Any reference in this specification to “one embodiment,” “an embodiment,” “example embodiment,” etc., means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The appearances of such phrases in various places in the specification are not necessarily all referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with any embodiment, it is submitted that it is within the purview of one skilled in the art to affect such feature, structure, or characteristic in connection with other ones of the embodiments. Furthermore, for ease of understanding, certain method procedures may have been delineated as separate procedures; however, these separately delineated procedures should not be construed as necessarily order dependent in their performance. That is, some procedures may be able to be performed in an alternative ordering, simultaneously, etc. In addition, exemplary diagrams illustrate various methods in accordance with embodiments of the present disclosure. Such exemplary method embodiments are described herein using and can be applied to corresponding apparatus embodiments, however, the method embodiments are not intended to be limited thereby.
Although few embodiments of the present invention have been illustrated and described, it would be appreciated by those skilled in the art that changes may be made in these embodiments without departing from the principles and spirit of the invention. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting on the invention described herein. Scope of the invention is thus indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are intended to be embraced therein. As used in this disclosure, the term “preferably” is non-exclusive and means “preferably, but not limited to.” Terms in the claims should be given their broadest interpretation consistent with the general inventive concept as set forth in this description. For example, the terms “coupled” and “connect” (and derivations thereof) are used to connote both direct and indirect connections/couplings. As another example, “having” and “including”, derivatives thereof and similar transitional terms or phrases are used synonymously with “comprising” (i.e., all are considered “open ended” terms)—only the phrases “consisting of” and “consisting essentially of” should be considered as “close ended”. Claims are not intended to be interpreted under 112 sixth paragraph unless the phrase “means for” and an associated function appear in a claim and the claim fails to recite sufficient structure to perform such function.
Number | Date | Country | |
---|---|---|---|
61802497 | Mar 2013 | US | |
61803206 | Mar 2013 | US |