Tungsten deposition

Information

  • Patent Grant
  • 12077858
  • Patent Number
    12,077,858
  • Date Filed
    Monday, August 10, 2020
    4 years ago
  • Date Issued
    Tuesday, September 3, 2024
    4 months ago
Abstract
Described herein are methods of filling features with tungsten and related apparatus. The methods described herein involve deposition of a tungsten nucleation layer prior to deposition of a bulk layer. The methods involve multiple atomic layer deposition (ALD) cycles. According to various embodiments, both a boron-containing reducing agent and silicon-reducing agent may be pulses during a single cycle to react with a tungsten-containing precursor and form a tungsten film.
Description
INCORPORATED BY REFERENCE

A PCT Request Form is filed concurrently with this specification as part of the present application. Each application that the present application claims benefit of or priority to as identified in the concurrently filed PCT Request Form is incorporated by reference herein in its entirety and for all purposes.


BACKGROUND

Tungsten (W) film deposition using chemical vapor deposition (CVD) techniques is an integral part of semiconductor fabrication processes. For example, tungsten films may be used as low resistivity electrical connections in the form of horizontal interconnects, vias between adjacent metal layers, and contacts between a first metal layer and the devices on a silicon substrate. Tungsten films may also be used in various memory applications, including in formation of buried wordline (bWL) architectures for dynamic random access memory (DRAM), word lines for 3D NAND, and logic applications. However, the continued decrease in feature size and film thickness brings various challenges including deposition of films having good step coverage.


The background description provided herein is for the purposes of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.


SUMMARY

One aspect of the disclosure relates to a method including providing a substrate including a feature in a chamber; depositing a tungsten nucleation layer in the feature by performing one or more cycles of an atomic layer deposition (ALD) process, where each cycle includes: flowing one or more boron-containing reducing agent doses in the chamber, flowing one or more silicon-containing reducing agent doses in the chamber, where the one or more boron-containing reducing agent doses and the one or more silicon-containing reducing agent doses are sequential reactant doses, and after flowing the one or more boron-containing reducing agent and one or more silicon-containing reducing agent doses in the chamber, flowing one or more tungsten-containing precursor pulses in the chamber.


In some embodiments, the feature is a wordline (WL) feature in a 3-D NAND structure, the 3-D NAND structure including vertically-oriented sidewalls, a plurality of openings in the sidewalls leading to a plurality of horizontally-oriented WL features. In some embodiments, the method further includes purging the chamber between sequential reactant doses. In some embodiments, the method further includes depositing a bulk tungsten layer on the tungsten nucleation layer. In some embodiments, the bulk tungsten layer is deposited by an atomic layer deposition process using hydrogen (H2) as a reducing agent. In some embodiments, each ALD cycle begins with a boron-containing reducing agent dose. In some embodiments, each ALD cycle begins with a silicon-containing reducing agent dose.


Another aspect of the disclosure relates to a method of filling a 3-D NAND structure. The method can include providing, in a chamber, a 3-D NAND structure including vertically-oriented sidewalls, a plurality of openings in the sidewalls leading to a plurality of horizontally-oriented wordline (WL) features; depositing a tungsten nucleation layer in the WL features by performing one or more cycles of an atomic layer deposition (ALD) process, where each cycle includes flowing one or more boron-containing reducing agent doses in the chamber, flowing one or more silane doses in the chamber; and after flowing the one or more boron-containing reducing agent and one or more silicon-containing reducing agent doses in the chamber, flowing one or more tungsten-containing precursor pulses in the chamber.


In some embodiments, the method further includes purging the chamber between sequential reactant doses. In some embodiments, the method further includes depositing a bulk tungsten layer on the tungsten nucleation layer. In some embodiments, the bulk tungsten layer is deposited by an atomic layer deposition process using hydrogen (H2) as a reducing agent. In some embodiments, each ALD cycle begins with a boron-containing reducing agent dose. In some embodiments, each ALD cycle begins with a silicon-containing reducing agent dose.


Another aspect relates to an apparatus including a process chamber comprising one or more process stations, each process station comprising a substrate support configured to hold a substrate; at least one outlet for coupling to a vacuum; one or more process gas inlets coupled to one or more process gas sources; and a controller for controlling operations in the apparatus, comprising machine-readable instructions for: flowing one or more boron-containing reducing agent doses in the chamber, flowing one or more silane doses in the chamber; and after flowing the one or more boron-containing reducing agent and one or more silicon-containing reducing agent doses in the chamber, flowing one or more tungsten-containing precursor pulses in the chamber.


According to various embodiments, the doses may be in the same or different stations.


These and other aspects are described below with reference to the Figures.





BRIEF DESCRIPTION OF DRAWINGS


FIGS. 1A-1H show schematic examples of features that may be filled with tungsten according to various embodiments.



FIGS. 2A and 2B show examples timing sequence diagram showing example cycles of a method for depositing a tungsten nucleation layer.



FIG. 3 shows a schematic example of an apparatus including charge volumes to introduce the gas doses to the chamber that may be used to implement methods described herein.



FIG. 4 shows a schematic example of a process system suitable for conducting deposition processes in accordance with embodiments.



FIG. 5 shows a schematic example of a process station suitable for conducting deposition processes in accordance with embodiments.





DETAILED DESCRIPTION

Described herein are methods of filling features with tungsten and related systems and apparatus. Examples of applications include logic and memory contact fill, DRAM buried wordline fill, vertically integrated memory gate/wordline fill, and 3-D integration with through-silicon vias (TSVs). The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) wordlines, and The methods may be used for conformal and bottom-up or inside-out fill.


According to various embodiments, the features can be characterized by one or more of narrow and/or re-entrant openings, constrictions within the feature, and high aspect ratios. Examples of features that can be filled are depicted in FIGS. 1A-1C. FIG. 1A shows an example of a cross-sectional depiction of a vertical feature 101 to be filled with tungsten. The feature can include a feature hole 105 in a substrate 103. The substrate may be a silicon wafer, e.g., 200-mm wafer, 300-mm wafer, 450-mm wafer, including wafers having one or more layers of material such as dielectric, conducting, or semi-conducting material deposited thereon. In some embodiments, the feature hole 105 may have an aspect ratio of at least about 2:1, at least about 4:1, at least about 6:1 or higher. The feature hole 105 may also have a dimension near the opening, e.g., an opening diameter or line width, of between about 10 nm to 500 nm, for example between about 25 nm to 300 nm. The feature hole 105 can be referred to as an unfilled feature or simply a feature. The feature, and any feature, may be characterized in part by an axis 118 that extends through the length of the feature, with vertically-oriented features having vertical axes and horizontally-oriented features having horizontal axes.



FIG. 1B shows an example of a feature 101 that has a re-entrant profile. A re-entrant profile is a profile that narrows from a bottom, closed end, or interior of the feature to the feature opening. According to various embodiments, the profile may narrow gradually and/or include an overhang at the feature opening. FIG. 1B shows an example of the latter, with an under-layer 113 lining the sidewall or interior surfaces of the feature hole 105. The under-layer 113 can be for example, a diffusion barrier layer, an adhesion layer, a nucleation layer, a combination of thereof, or any other applicable material. The under-layer 113 forms an overhang 115 such that the under-layer 113 is thicker near the opening of the feature 101 than inside the feature 101.


In some embodiments, features having one or more constrictions within the feature may be filled. FIG. 1C shows examples of views of various filled features having constrictions. Each of the examples (a), (b) and (c) in FIG. 1C includes a constriction 109 at a midpoint within the feature. The constriction 109 can be, for example, between about 15 nm-20 nm wide. Constrictions can cause pinch off during deposition of tungsten in the feature using conventional techniques, with deposited tungsten blocking further deposition past the constriction before that portion of the feature is filled, resulting in voids in the feature. Example (b) further includes a liner/barrier overhang 115 at the feature opening. Such an overhang could also be a potential pinch-off point. Example (c) includes a constriction 112 further away from the field region than the overhang 115 in example (b). As described further below, methods described herein allow void-free fill as depicted in FIG. 1C.


Horizontal features, such as in 3-D memory structures, can also be filled. FIG. 1D shows an example of a word line 150 in a VNAND structure 148 that includes a constriction 151. In some embodiments, the constrictions can be due to the presence of pillars in a VNAND or other structure. FIG. 1E, for example, shows a plan view of pillars 125 in a VNAND structure, with FIG. 1F showing a simplified schematic of a cross-sectional depiction of the pillars 125. Arrows in FIG. 1E represent deposition material; as pillars 125 are disposed between an area 127 and a gas inlet or other deposition source, adjacent pillars can result in constrictions that present challenges in void free fill of an area 127.



FIG. 1G provides another example of a view horizontal feature, for example, of a VNAND or other structure including pillar constrictions 151. The example in FIG. 1G is open-ended, with material to be deposited able to enter laterally from two sides as indicated by the arrows. (It should be noted that example in FIG. 1G can be seen as a 2-D rendering 3-D features of the structure, with the FIG. 1G being a cross-sectional depiction of an area to be filled and pillar constrictions shown in the figure representing constrictions that would be seen in a plan rather than cross-sectional view.) In some embodiments, 3-D structures can be characterized with the area to be filled extending along three dimensions (e.g., in the X, Y and Z-directions in the example of FIG. 1F), and can present more challenges for fill than filling holes or trenches that extend along one or two dimensions. For example, controlling fill of a 3-D structure can be challenging as deposition gasses may enter a feature from multiple dimensions. The methods may also be used to fill interconnects to tungsten wordlines as shown in FIG. 1H, where interconnect features 170 may be filled with tungsten to connect to the tungsten wordlines 172. Examples of feature fill for horizontally-oriented and vertically-oriented features are described below. It should be noted that in most cases, the examples applicable to both horizontally-oriented or vertically-oriented features.


Distribution of a material within a feature may be characterized by its step coverage. For the purposes of this description, “step coverage” is defined as a ratio of two thicknesses, e.g., the thickness of the material inside the feature divided by the thickness of the material near the opening. For purposes of this description, the term “inside the feature” represents a middle portion of the feature located about the middle point of the feature along the feature's axis, e.g., an area between about 25% and 75% of the distance or, in certain embodiments, between about 40% and 60% of the distance along the feature's depth measured from the feature's opening, or an end portion of the feature located between about 75% and 95% of the distance along the feature's axis as measured from the opening. The term “near the opening of the feature” or “near the feature's opening” represents a top portion of the feature located within 25% or, more specifically, within 10% of the opening's edge or other element representative of the opening's edge. Step coverage of over 100% can be achieved, for example, by filling a feature wider in the middle or near the bottom of the feature than at the feature opening or where a thicker film is deposited within the feature than on or near the opening.


The methods described herein involve deposition of a tungsten nucleation layer prior to deposition of a bulk layer. A nucleation layer is typically a thin conformal layer that facilitates subsequent deposition of bulk tungsten-containing material thereon. According to various embodiments, a nucleation layer may be deposited prior to any fill of the feature and/or at subsequent points during fill of the feature with tungsten or a tungsten-containing material.


In certain implementations, the nucleation layer is deposited sequentially injecting pulses of a reducing agent, optional purge gases, and tungsten-containing precursor from the reaction chamber. The process is repeated in a cyclical fashion until the desired thickness is achieved. Nucleation layer thickness can depend on the nucleation layer deposition method as well as the desired quality of bulk deposition. In general, nucleation layer thickness is sufficient to support high quality, uniform bulk deposition. Examples may range from 5 Å-100 Å, or 12 Å-50 Å.


Atomic layer deposition (ALD) techniques differ from chemical vapor deposition (CVD) techniques in which reactants are introduced together. In certain embodiments, the nucleation layer is deposited by an ALD process in which pulses of a reducing agent, optional purge gases, and tungsten-containing precursor are sequentially injected into and purged from the reaction chamber. The process is repeated in a cyclical fashion until the desired thickness is achieved.


Described herein are methods of depositing a tungsten nucleation layer that achieve good step coverage, low resistivity, and good fill. The methods involve using both a boron-containing reducing agent and a silicon-containing reducing agent to react with a tungsten-containing precursor in an ALD process.


ALD tungsten processes may use two half-reactions enabled by the sequential delivery of two or more co-reactants. One co-reactant acts to functionalize the surface and permit the adsorption of tungsten-containing species to the substrate. Subsequent cycles result in the deposition of a conformal thin film.


In some embodiments, a mixture of a boron-containing reducing agent and a silicon-containing reducing agent is pulsed alternately with a tungsten-containing precursor. One ALD cycle may be expressed as (B+S)/purge/W/purge, with B being a boron-containing reducing agent (e.g., diborane, B2H6), S being a silicon-containing reducing agent (e.g., silane, SiH4), and W being a tungsten-containing precursor (e.g., WF6). A purge between reactant pulses may be performed, with argon (Ar) other inert gas being used to purge.


In some embodiments, a pulses of a boron-containing reducing agent and a silicon-containing reducing agent delivered sequentially in a cycle such that one cycle may be represented as B/S/purge/W/purge or as S/B/purge/W/purge. According to various embodiments, there may or may not be a purge between B and S pulses. Thus, the cycle may be represented as B/purge/S/purge/W/purge or S/purge/B/purge/W/purge.


By using both boron-containing and silicon-containing reducing agents, the resulting tungsten has lower resistivity than silicon-containing reducing agent only processes and lower void percentage and stress than boron-containing reducing only processes. Large grains from a boron-only process result in low resistivity but cause voids when two tungsten surfaces come together. Using silicon-containing reducing agent mitigates the voids without sacrificing low resistivity. Better step coverage and lower void percentage reduce the line bending and stress.


Substrate temperatures are low enough to suppress decomposition of the boron-containing reducing agent and may be below about 350° C., for example between about 250° C. and 300° C. Even at these relatively low temperatures, diborane is susceptible to decomposition. B2H6 can decompose during the ALD cycle (e.g., B2H6→2/3B3+3H2) which degrades the step coverage of the process. By using B2H6 and SiH4, the decomposition of B2H6 is suppressed, improving step coverage. Deposition using silane typically uses higher temperatures; however, the temperature used for silane can be lowered with the use of the boron-containing reducing agent as well.


Examples of chamber pressure are between 10 torr and 60 torr, or 10 torr and 40 torr. In some embodiments, it is above 10 torr. It may also be below 10 torr to reduce fluorine incorporation, for example.



FIGS. 2A and 2B show examples timing sequence diagram showing example cycles of a method for depositing a tungsten nucleation layer, with FIG. 2A showing a co-flow of diborane and silane and FIG. 2B showing diborane and silane delivered in sequential consecutive reactant pulses.


Various modifications to the timing diagrams in FIGS. 2A and 2B may be made. In some embodiments, hydrogen may be flowed during the diborane and/or silane pulses. Flowing hydrogen during the diborane pulse can further suppress decomposition and help with step coverage.


In FIG. 2B, one or both of the diborane and silane pulses may be multi-pulses. For example, while FIG. 2B shows B/S/W (not including purges), a cycle could also be x(B)/y(S)/z(W), wherein x, y, and z are integers greater than zero. If x is 2, and y and z are 1, the sequence would be B/B/S/W, with optional purges between the pulses. In this manner, the ratio of boron to silicon may be tuned.


Similarly, silane may be first, e.g., x(S)/y(B)/z(W) wherein x, y, and z are integers greater than zero. In some embodiments, multiple boron-containing reducing agent or silicon-containing reducing agent pulses may be interspersed with the pulses of the other reducing agent (e.g., B/S/B/S/W).


Still further, in some embodiments, the one or more tungsten-containing precursor pulses may precede the reducing agent pulses in each cycle.


The tungsten-containing precursor may be a tungsten halide that can be reduced by a boron-containing reducing agent including tungsten fluorides (e.g., WF6) and tungsten chlorides (e.g., WCl5 and WCl6). While diborane is described above as the boron-containing reducing agent, the method may be implemented other boron-containing reducing agents. Examples include hexaborane and triborane. While silane is described above as the boron-containing reducing agent, the method may be implemented other silicon-containing reducing agents. Examples include disilane.


It should be noted that boron and/or silicon is generally not incorporated into the tungsten film at appreciable levels.


Bulk Deposition


After nucleation layer deposition, the feature may be filled with a bulk tungsten layer. In some implementations, tungsten bulk deposition can occur by a CVD process in which a reducing agent and a tungsten-containing precursor are flowed into a deposition chamber to deposit a bulk fill layer in the feature. In some implementations, tungsten bulk deposition can occur by an ALD process in which a reducing agent and a tungsten-containing precursor are sequentially introduced into a deposition chamber to deposit a bulk fill layer in the feature. If CVD is used, this operation can involve flowing the reactants continuously until the desired amount is deposited. In certain implementations, the CVD operation may take place in multiple stages, with multiple periods of continuous and simultaneous flow of reactants separated by periods of one or more reactant flows diverted. Still further, inhibition of tungsten growth and/or etching may be performed during feature fill.


Various tungsten containing gases including, but not limited to, WF6, WCl6, and W(CO)6 can be used as the tungsten-containing precursor. In certain implementations, the tungsten-containing precursor is a halogen-containing compound, such as WF6. In certain implementations, the reducing agent is hydrogen gas, though other reducing agents may be used including silane (SiH4), disilane (Si2H6) hydrazine (N2H4), diborane (B2H6) and germane (GeH4). In many implementations, hydrogen gas is used as the reducing agent in the CVD process. In some other implementations, a tungsten precursor that can decompose to form a bulk tungsten layer can be used. Bulk deposition may also occur using other types of processes including ALD processes.


Deposition may proceed according to various implementations until a certain feature profile is achieved and/or a certain amount of tungsten is deposited. In some implementations, the deposition time and other relevant parameters may be determined by modeling and/or trial and error. For example, for an initial deposition for an inside out fill process in which tungsten can be conformally deposited in a feature until pinch-off, it may be straightforward to determine based on the feature dimensions the tungsten thickness and corresponding deposition time that will achieve pinch-off. In some implementations, a process chamber may be equipped with various sensors to perform in-situ metrology measurements for end-point detection of a deposition operation. Examples of in-situ metrology include optical microscopy and X-Ray Fluorescence (XRF) for determining thickness of deposited films.


It should be understood that the tungsten films described herein may include some amount of other compounds, dopants and/or impurities such as nitrogen, carbon, oxygen, boron, phosphorous, sulfur, silicon, germanium and the like, depending on the particular precursors and processes used. The tungsten content in the film may range from 20% to 100% (atomic) tungsten. In many implementations, the films are tungsten-rich, having at least 50% (atomic) tungsten, or even at least about 60%, 75%, 90%, or 99% (atomic) tungsten. In some implementations, the films may be a mixture of metallic or elemental tungsten (W) and other tungsten-containing compounds such as tungsten carbide (WC), tungsten nitride (WN), etc.


CVD and ALD deposition of these materials can include using any appropriate precursors. For example, CVD and ALD deposition of tungsten nitride can include using halogen-containing and halogen-free tungsten-containing and nitrogen-containing compounds.


EXPERIMENTAL

ALD of tungsten nucleation layers was performed in a 3D-NAND structures of using Processes A and B. Void percentage was measured at various wordline (WL) heights. The ALD tungsten nucleation process was followed by a bulk tungsten deposition process that was the same for all processes.

    • Process A: multiple cycles of (B2H6—Ar purge—WF6—Ar purge)
    • Process B: multiple cycles of (B2H6 Ar purge—SiH4 Ar purge—WF6)
















Process A
Process B




















Top void %
1.2% +− 1.5%
6.9% +− 8.6%



Middle void %
10.5% +− 4.6% 
1.9% +− 1.8%



Bottom void %
17.1% +− 14.5%
7.9% +− 2.3%



Average void %
 9.7% +− 10.7%
5.6% +− 5.6%










As can be seen from the above table, using silane and diborane results in significantly reduced void percentage. Process C: multiple cycles of (B2H6+SiH4 mixture—Ar purge—WF6) was used and resulted in an average void percentage of 7.7%, as compared to 9.7% for boron only.


Process details are shown in the table below.


















Parameter
Process A
Process B
Process C




















Nucleation
Pulse Sequence
5 cycles
5 cycles
5 cycles


ALD

(B/B/B/W)
(B/S/W)
(B + S/W)




All Charge Volume
All Charge Volume
All Charge Volume



Temperature
300 C.
275 C.
275 C.



B2H6 and SiH4
0/9/5/30
0/9/5/9
0/9/5/9



timing divert/line



charge/dose/purge



WF6 timing
2/0.8/10/30
0/4.5/10/30
0/4.5/10/30



divert/line



charge/dose/purge



B2H6/SiH4/Ar/WF6
1350/0/0/1350
450/450/900/1350
1350/150/1200/1350



flows(sccm)


(*Ar flowing only during






SiH4 to fully charge the






SiH4 charge volume)









Bulk ALD
Pulse Sequence
H/WF6



Cycle time (sec)
.77



Temp
430 C.



# cycles
1200    









Film properties were measured for films deposited on planar substrate using Process D, E, or F to deposit the nucleation layer. Bulk deposition was the same for all processes.

    • Process D: multiple cycles of (B2H6 Ar purge—WF6 Ar purge); substrate temp during nucleation layer of 225° C.
    • Process E: multiple cycles of (B2H6 Ar purge—SiH4—Ar purge—WF6); substrate temp during nucleation layer of 300° C.
    • Process F: multiple cycles of (B2H6 Ar purge—SiH4—Ar purge—WF6); substrate temp during nucleation layer of 275° C.
    • Process details are shown in the table below


















Parameter
Process D
Process E
Process F




















Nucleation
Pulse Sequence
5 cycles
5 cycles
5 cycles


ALD

(B/B/B/W)
(B/S/W)
(B + S/W)




All Charge Volume
All Charge Volume
All Charge Volume



Temperature
225 C.
300 C.
275 C.



B2H6 flow (scccm)
1350
450
450



Ar with B2H6 (sccm)
0
900
900



SiH4 flow (sccm)
0
450
450



Ar with SiH4 (sccm)
0
900
900



WF6 flow (sccm)
1350
1350
1350









Bulk ALD
Pulse Sequence
H/WF6



Cycle time (sec)
.77



Temp
430 C.



# cycles
1200









Film (nuc+bulk) properties are shown in the table below


















Property
Process D
Process E
Process F





















Film Rs Cp
11.17
10.32
10.99



(Ohms/sq)



Film Rs Mean
11.39
9.68
10.41



(Ohms/sq)



Rs NU %
4.73
3.36
3.25



Resistivity
22.06
20.03
20.56



FSM Mean Stress
−627.51
64.7
−207.62



Thickness (A)
188.37
194.16
187.1










The results in the above table show that film resistivity is improved by using the boron-containing and silicon-containing reducing agent to form the nucleation layer. Stress can be lowered by reducing temperature without compromising fill.


Apparatus


Any suitable chamber may be used to implement the disclosed embodiments. Example deposition apparatuses include various systems, e.g., ALTUS® and ALTUS® Max, available from Lam Research Corp., of Fremont, California, or any of a variety of other commercially available processing systems. In some embodiments, atomic layer deposition (ALD) may be performed at a first station that is one of two, five, or even more deposition stations positioned within a single deposition chamber. Thus, for example, a diborane (B2H6)/silane (SiH4) co-flow and tungsten hexafluoride (WF6) may be introduced in alternating pulses to the surface of the semiconductor substrate, at the first station, using an individual gas supply system that creates a localized atmosphere at the substrate surface. Another station may be used for tungsten bulk layer deposition. Two or more stations may be used to deposit tungsten in parallel processing. Alternatively a wafer may be indexed to have operations performed over two or more stations sequentially. In another example, diborane, silane, and tungsten-precursor doses may be introduced sequentially, optionally separated by purges, at a first station to deposit a nucleation layer. Still further, one or more of these reactant pulses may be performed at one or more additional stations such that the tungsten nucleation layer deposition is performed at multiple stations.


In some embodiments, a charge volumes (also referred to as charge vessels) are used to introduce the gas doses to the chamber. FIG. 3 shows an example of such a system, in which separate charge volumes are used for silane and diborane. This allows the silane and diborane to be introduced separately to the chamber (either co-flowed or sequential doses) and prevents reactions from occurring prior to introduction.



FIG. 4 is a schematic of a process system suitable for conducting deposition processes in accordance with embodiments. The system 400 includes a transfer module 403. The transfer module 403 provides a clean, pressurized environment to minimize risk of contamination of substrates being processed as they are moved between various reactor modules. Mounted on the transfer module 403 is a multi-station reactor 409 capable of performing ALD and CVD according to various embodiments. Multi-station reactor 409 may include multiple stations 411, 413, 415, and 417 that may sequentially perform operations in accordance with disclosed embodiments. For example, multi-station reactor 409 may be configured such that station 411 performs a tungsten nucleation layer deposition using a chlorine-containing tungsten precursor or a fluorine-containing precursor, and station 413 performs an ALD tungsten deposition operation according to various embodiments. In some embodiments, station 415 may also form an ALD tungsten deposition operation, and station 417 may perform a CVD operation.


Stations may include a heated pedestal or substrate support, one or more gas inlets or showerhead or dispersion plate. An example of a deposition station 700 is depicted in FIG. 5, including substrate support 502 and showerhead 503. A heater may be provided in pedestal portion 501.


Returning to FIG. 4, also mounted on the transfer module 503 may be one or more single or multi-station modules 407 capable of performing plasma or chemical (non-plasma) pre-cleans, other deposition operations, or etch operations. The module may also be used for various treatments to, for example, prepare a substrate for a deposition process. The system 400 also includes one or more wafer source modules 401, where wafers are stored before and after processing. An atmospheric robot (not shown) in the atmospheric transfer chamber 419 may first remove wafers from the source modules 401 to loadlocks 421. A wafer transfer device (generally a robot arm unit) in the transfer module 403 moves the wafers from loadlocks 421 to and among the modules mounted on the transfer module 403.


In various embodiments, a system controller 429 is employed to control process conditions during deposition. The controller 429 will typically include one or more memory devices and one or more processors. A processor may include a CPU or computer, analog and/or digital input/output connections, stepper motor controller boards, etc.


The controller 429 may control all of the activities of the deposition apparatus. The system controller 429 executes system control software, including sets of instructions for controlling the timing, mixture of gases, chamber pressure, chamber temperature, wafer temperature, radio frequency (RF) power levels, wafer chuck or pedestal position, and other parameters of a particular process. Other computer programs stored on memory devices associated with the controller 429 may be employed in some embodiments.


Typically there will be a user interface associated with the controller 429. The user interface may include a display screen, graphical software displays of the apparatus and/or process conditions, and user input devices such as pointing devices, keyboards, touch screens, microphones, etc.


System control logic may be configured in any suitable way. In general, the logic can be designed or configured in hardware and/or software. The instructions for controlling the drive circuitry may be hard coded or provided as software. The instructions may be provided by “programming.” Such programming is understood to include logic of any form, including hard coded logic in digital signal processors, application-specific integrated circuits, and other devices which have specific algorithms implemented as hardware. Programming is also understood to include software or firmware instructions that may be executed on a general purpose processor. System control software may be coded in any suitable computer readable programming language.


The computer program code for controlling the germanium-containing reducing agent pulses, hydrogen flow, and tungsten-containing precursor pulses, and other processes in a process sequence can be written in any conventional computer readable programming language: for example, assembly language, C, C++, Pascal, Fortran, or others. Compiled object code or script is executed by the processor to perform the tasks identified in the program. Also as indicated, the program code may be hard coded.


The controller parameters relate to process conditions, such as, for example, process gas composition and flow rates, temperature, pressure, cooling gas pressure, substrate temperature, and chamber wall temperature. These parameters are provided to the user in the form of a recipe, and may be entered utilizing the user interface.


Signals for monitoring the process may be provided by analog and/or digital input connections of the system controller 429. The signals for controlling the process are output on the analog and digital output connections of the deposition apparatus 400.


The system software may be designed or configured in many different ways. For example, various chamber component subroutines or control objects may be written to control operation of the chamber components necessary to carry out the deposition processes in accordance with the disclosed embodiments. Examples of programs or sections of programs for this purpose include substrate positioning code, process gas control code, pressure control code, and heater control code.


In some implementations, a controller 429 is part of a system, which may be part of the above-described examples. Such systems can include semiconductor processing equipment, including a processing tool or tools, chamber or chambers, a platform or platforms for processing, and/or specific processing components (a wafer pedestal, a gas flow system, etc.). These systems may be integrated with electronics for controlling their operation before, during, and after processing of a semiconductor wafer or substrate. The electronics may be referred to as the “controller,” which may control various components or subparts of the system or systems. The controller 429, depending on the processing requirements and/or the type of system, may be programmed to control any of the processes disclosed herein, including the delivery of processing gases, temperature settings (e.g., heating and/or cooling), pressure settings, vacuum settings, power settings, radio frequency (RF) generator settings in some systems, RF matching circuit settings, frequency settings, flow rate settings, fluid delivery settings, positional and operation settings, wafer transfers into and out of a tool and other transfer tools and/or load locks connected to or interfaced with a specific system.


Broadly speaking, the controller may be defined as electronics having various integrated circuits, logic, memory, and/or software that receive instructions, issue instructions, control operation, enable cleaning operations, enable endpoint measurements, and the like. The integrated circuits may include chips in the form of firmware that store program instructions, digital signal processors (DSPs), chips defined as application specific integrated circuits (ASICs), and/or one or more microprocessors, or microcontrollers that execute program instructions (e.g., software). Program instructions may be instructions communicated to the controller in the form of various individual settings (or program files), defining operational parameters for carrying out a particular process on or for a semiconductor wafer or to a system. The operational parameters may, in some embodiments, be part of a recipe defined by process engineers to accomplish one or more processing steps during the fabrication of one or more layers, materials, metals, oxides, silicon, silicon dioxide, surfaces, circuits, and/or dies of a wafer.


The controller 429, in some implementations, may be a part of or coupled to a computer that is integrated with, coupled to the system, otherwise networked to the system, or a combination thereof. For example, the controller 429 may be in the “cloud” or all or a part of a fab host computer system, which can allow for remote access of the wafer processing. The computer may enable remote access to the system to monitor current progress of fabrication operations, examine a history of past fabrication operations, examine trends or performance metrics from a plurality of fabrication operations, to change parameters of current processing, to set processing steps to follow a current processing, or to start a new process. In some examples, a remote computer (e.g. a server) can provide process recipes to a system over a network, which may include a local network or the Internet. The remote computer may include a user interface that enables entry or programming of parameters and/or settings, which are then communicated to the system from the remote computer. In some examples, the controller receives instructions in the form of data, which specify parameters for each of the processing steps to be performed during one or more operations. It should be understood that the parameters may be specific to the type of process to be performed and the type of tool that the controller is configured to interface with or control. Thus as described above, the controller may be distributed, such as by including one or more discrete controllers that are networked together and working towards a common purpose, such as the processes and controls described herein. An example of a distributed controller for such purposes would be one or more integrated circuits on a chamber in communication with one or more integrated circuits located remotely (such as at the platform level or as part of a remote computer) that combine to control a process on the chamber.


Without limitation, example systems may include a plasma etch chamber or module, a deposition chamber or module, a spin-rinse chamber or module, a metal plating chamber or module, a clean chamber or module, a bevel edge etch chamber or module, a physical vapor deposition (PVD) chamber or module, a CVD chamber or module, an ALD chamber or module, an atomic layer etch (ALE) chamber or module, an ion implantation chamber or module, a track chamber or module, and any other semiconductor processing systems that may be associated or used in the fabrication and/or manufacturing of semiconductor wafers.


As noted above, depending on the process step or steps to be performed by the tool, the controller might communicate with one or more of other tool circuits or modules, other tool components, cluster tools, other tool interfaces, adjacent tools, neighboring tools, tools located throughout a factory, a main computer, another controller, or tools used in material transport that bring containers of wafers to and from tool locations and/or load ports in a semiconductor manufacturing factory.


The controller 429 may include various programs. A substrate positioning program may include program code for controlling chamber components that are used to load the substrate onto a pedestal or chuck and to control the spacing between the substrate and other parts of the chamber such as a gas inlet and/or target. A process gas control program may include code for controlling gas composition, flow rates, pulse times, and optionally for flowing gas into the chamber prior to deposition in order to stabilize the pressure in the chamber. A pressure control program may include code for controlling the pressure in the chamber by regulating, e.g., a throttle valve in the exhaust system of the chamber. A heater control program may include code for controlling the current to a heating unit that is used to heat the substrate. Alternatively, the heater control program may control delivery of a heat transfer gas such as helium to the wafer chuck.


Examples of chamber sensors that may be monitored during deposition include mass flow controllers, pressure sensors such as manometers, and thermocouples located in the pedestal or chuck. Appropriately programmed feedback and control algorithms may be used with data from these sensors to maintain desired process conditions.


The apparatus may include a gas manifold system, which provides line charges to the various gas distribution lines as shown schematically in FIG. 4. Manifold 404 has an input 402 from a source of a tungsten-containing precursor gas (not shown), manifold 411 has an input 409 from a source of hydrogen or other reducing gas (not shown) and manifold 421 has an input 419 from a source of inert purge gas (not shown). The manifolds 404, 411 and 421 provide the tungsten-containing precursor gas, reducing gas and purge gas to the deposition chamber through valved distribution lines, 405, 413 and 425 respectively. The various valves are opened or closed to provide a line charge, i.e., to pressurize the distribution lines. For example, to pressurize distribution line 405, valve 406 is closed to vacuum and valve 408 is closed. After a suitable increment of time, valve 408 is opened and the tungsten-containing precursor gas is delivered to the chamber. Charging the tungsten precursor to a high pressure during ALD deposition of the bulk layer (e.g., to 400 Torr) can improve resistivity in some embodiments. After a suitable time for delivery of the gas, valve 408 is closed. The chamber can then be purged to a vacuum by opening of valve 406 to vacuum.


Similar processes are used to deliver the reducing gas and the purge gas. To introduce the reducing gas, for example, distribution line 413 is charged by closing valve 415 and closing valve 417 to vacuum. Opening of valve 415 allows for delivery of the reducing gas to the chamber. Similarly, to introduce the purge gas, distribution line 425 is charged by closing valve 427 and closing valve 423 to vacuum. Opening of valve 427 allows for delivery of the argon or other inert purge gas to the chamber. The amount of time allowed for line charges changes the amount and timing of the initial delivery of the gas.



FIG. 4 also shows vacuum pumps in which valves 406, 417 and 423, respectively, can be opened to purge the system. The supply of gas through the various distribution lines is controlled by a controller, such as a mass flow controller which is controlled by a microprocessor, a digital signal processor or the like, that is programmed with the flow rates, duration of the flow, and the sequencing of the processes.


Note that the processes described above may require precise timing of valves and mass flow controllers (MFCs) supplying pulses of reagent to the semiconductor substrate during deposition. In one way to make this possible, valve and MFC commands are delivered to embedded digital input-output controllers (IOC) in discrete packets of information containing instructions for all time-critical commands for all or a part of a deposition sequence. The ALTUS systems of Lam Research provide at least one IOC sequence. The IOCs can be physically located at various points in the apparatus; e.g., within the process module or on a stand-alone power rack standing some distance away from the process module. There may be multiple IOCs in each module (e.g., 3 per module). With respect to the actual instructions included in a sequence, all commands for controlling valves and setting flow for MFCs (for all carrier and reactant gases) may be included in a single IOC sequence. This assures that the timing of all the devices is tightly controlled from an absolute standpoint and also relative to each other. There are typically multiple IOC sequences running at any given time. This allows for, say, ALD to run at station 1-2 with all timing controlled for all the hardware components needed to deposit a ALD-W nucleation layer at those stations. A second sequence might be running concurrently to deposit a tungsten bulk using the timing sequence described above at other deposition stations in the same module. The relative timing of the devices controlling the delivery of reagents to stations 3-4 is important within that group of devices, but the relative timing of the ALD process at stations 1-2 can be offset from the relative timing of stations 3-4. An IOC translates the information in a packetized sequence and delivers digital or analog command signals directly to MFC or pneumatic solenoid banks controlling the valves.


A pulse of tungsten-containing gas may be generated as follows. Initially, the system diverts WF6 to a vacuum pump for a period of time while the MFC or other flow-controlling device stabilizes. This may be done for a period of between about 0.5 to 5 seconds in one example. Next, the system pressurizes the tungsten gas delivery manifold by closing both the divert outlet 406 and the outlet 408 to the deposition chamber. This may be done for a period of between about 0.1 and 5 seconds, for example, to create an initial burst of reagent when the outlet to the deposition chamber is opened. This is accomplished by opening outlet valve 408 for between about 0.1 and 10 seconds in one example. Thereafter, the tungsten-containing gas is purged from the deposition chamber using a suitable purge gas. The pulsed flow of other reagents may be done in a similar manner.


The foregoing describes implementation of disclosed embodiments in a single or multi-chamber semiconductor processing tool. The apparatus and process described herein may be used in conjunction with lithographic patterning tools or processes, for example, for the fabrication or manufacture of semiconductor devices, displays, LEDs, photovoltaic panels, and the like. Typically, though not necessarily, such tools/processes will be used or conducted together in a common fabrication facility. Lithographic patterning of a film typically includes some or all of the following steps, each step provided with a number of possible tools: (1) application of photoresist on a workpiece, i.e., substrate, using a spin-on or spray-on tool; (2) curing of photoresist using a hot plate or furnace or UV curing tool; (3) exposing the photoresist to visible or UV or x-ray light with a tool such as a wafer stepper; (4) developing the resist so as to selectively remove resist and thereby pattern it using a tool such as a wet bench; (5) transferring the resist pattern into an underlying film or workpiece by using a dry or plasma-assisted etching tool; and (6) removing the resist using a tool such as an RF or microwave plasma resist stripper


Although the foregoing embodiments have been described in some detail for purposes of clarity of understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the appended claims. It should be noted that there are many alternative ways of implementing the processes, systems, and apparatus of the present embodiments. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the embodiments are not to be limited to the details given herein.

Claims
  • 1. A method comprising: providing a substrate including a feature in a chamber;depositing a tungsten nucleation layer in the feature by performing one or more cycles of an atomic layer deposition (ALD) process, where each cycle comprises: flowing one or more boron-containing reducing agent doses in the chamber,flowing one or more silicon-containing reducing agent doses in the chamber, wherein the one or more boron-containing reducing agent doses and the one or more silicon-containing reducing agent doses are sequential reactant doses, andafter flowing the one or more boron-containing reducing agent doses and one or more silicon-containing reducing agent doses in the chamber, flowing one or more tungsten-containing precursor pulses in the chamber,wherein during the deposition of the tungsten nucleation layer, the substrate temperature is low enough to suppress decomposition of the boron-containing reducing agent.
  • 2. The method of claim 1, wherein the feature is a wordline (WL) feature in a 3-D NAND structure, the 3-D NAND structure comprising vertically-oriented sidewalls, a plurality of openings in the sidewalls leading to a plurality of horizontally-oriented WL features.
  • 3. The method of claim 1, further comprising purging the chamber between sequential reactant doses.
  • 4. The method of claim 1, further comprising, depositing a bulk tungsten layer on the tungsten nucleation layer.
  • 5. The method of claim 4, wherein the bulk tungsten layer is deposited by an (Original) atomic layer deposition process using hydrogen (H2) as a reducing agent.
  • 6. The method of claim 1, wherein each cycle begins with a boron-containing reducing agent dose.
  • 7. The method of claim 1, wherein each cycle begins with a silicon-containing reducing agent dose.
  • 8. The method of claim 1, wherein the substrate temperature of the substrate is below 300° C.
  • 9. The method of claim 1, wherein the tungsten nucleation layer comprises at least 99% tungsten.
  • 10. The method of claim 1, wherein the tungsten nucleation layer is 100% tungsten.
  • 11. A method comprising: providing a 3-D NAND structure comprising vertically-oriented sidewalls, a plurality of openings in the sidewalls leading to a plurality of horizontally-oriented wordline (WL) features in a chamber;depositing a tungsten nucleation layer in the WL features by performing one or more cycles of an atomic layer deposition (ALD) process, where each cycle comprises flowing one or more boron-containing reducing agent doses in the chamber,flowing one or more silane doses in the chamber; andafter flowing the one or more boron-containing reducing agent doses and one or more silicon-containing reducing agent doses in the chamber, flowing one or more tungsten-containing precursor pulses in the chamber,wherein during the deposition of the tungsten nucleation layer, the substrate temperature is low enough to suppress decomposition of the boron-containing reducing agent.
  • 12. The method of claim 11, wherein the one or more boron-containing reducing agent doses and the one or more silicon-containing reducing agent doses are sequential reactant doses.
  • 13. The method of claim 12, wherein each cycle begins with a boron-containing reducing agent dose.
  • 14. The method of claim 12, wherein each cycle begins with a silicon-containing reducing agent dose.
  • 15. The method of claim 11, wherein a boron-containing reducing agent dose is co-flowed with a silicon-containing reducing agent dose.
  • 16. The method of claim 11, further comprising purging the chamber between sequential reactant doses.
  • 17. The method of claim 11, further comprising, depositing a bulk tungsten layer on the tungsten nucleation layer.
  • 18. The method of claim 17, wherein the bulk tungsten layer is deposited by an atomic layer deposition process using hydrogen (H2) as a reducing agent.
  • 19. The method of claim 11, wherein the temperature of the 3-D NAND structure is below 300° C.
  • 20. The method of claim 11, wherein the tungsten nucleation layer comprises at least 99% tungsten.
  • 21. The method of claim 11, wherein the tungsten nucleation layer is 100% tungsten.
PCT Information
Filing Document Filing Date Country Kind
PCT/US2020/070394 8/10/2020 WO
Publishing Document Publishing Date Country Kind
WO2021/030836 2/18/2021 WO A
US Referenced Citations (323)
Number Name Date Kind
4746375 Iacovangelo May 1988 A
4804560 Shioya et al. Feb 1989 A
4874719 Kurosawa Oct 1989 A
4962063 Maydan et al. Oct 1990 A
5028565 Chang et al. Jul 1991 A
5227329 Kobayashi et al. Jul 1993 A
5250329 Miracky et al. Oct 1993 A
5250467 Somekh et al. Oct 1993 A
5308655 Eichman et al. May 1994 A
5326723 Petro et al. Jul 1994 A
5370739 Foster et al. Dec 1994 A
5391394 Hansen Feb 1995 A
5567583 Wang et al. Oct 1996 A
5633200 Hu May 1997 A
5661080 Hwang et al. Aug 1997 A
5726096 Jung Mar 1998 A
5795824 Hancock Aug 1998 A
5804249 Sukharev et al. Sep 1998 A
5817576 Tseng et al. Oct 1998 A
5833817 Tsai et al. Nov 1998 A
5913145 Lu et al. Jun 1999 A
5916634 Fleming et al. Jun 1999 A
5926720 Zhao et al. Jul 1999 A
5956609 Lee et al. Sep 1999 A
5963833 Thakur Oct 1999 A
5994749 Oda Nov 1999 A
6001729 Shinriki et al. Dec 1999 A
6017818 Lu Jan 2000 A
6034419 Nicholls et al. Mar 2000 A
6037263 Chang Mar 2000 A
6066366 Berenbaum et al. May 2000 A
6099904 Mak et al. Aug 2000 A
6107200 Takagi et al. Aug 2000 A
6143082 McInerney et al. Nov 2000 A
6174812 Hsiung et al. Jan 2001 B1
6206967 Mak et al. Mar 2001 B1
6245654 Shih et al. Jun 2001 B1
6260266 Tamaki Jul 2001 B1
6265312 Sidhwa et al. Jul 2001 B1
6277744 Yuan et al. Aug 2001 B1
6284316 Sandhu et al. Sep 2001 B1
6287965 Kang et al. Sep 2001 B1
6294468 Gould-Choquette et al. Sep 2001 B1
6297152 Itoh et al. Oct 2001 B1
6306211 Takahashi et al. Oct 2001 B1
6309964 Tsai et al. Oct 2001 B1
6309966 Govindarajan et al. Oct 2001 B1
6310300 Cooney, III et al. Oct 2001 B1
6340629 Yeo et al. Jan 2002 B1
6355558 Dixit et al. Mar 2002 B1
6404054 Oh et al. Jun 2002 B1
6429126 Herner et al. Aug 2002 B1
6465347 Ishizuka et al. Oct 2002 B2
6491978 Kalyanam Dec 2002 B1
6551929 Kori et al. Apr 2003 B1
6566250 Tu et al. May 2003 B1
6566262 Rissman et al. May 2003 B1
6581258 Yoneda et al. Jun 2003 B2
6593233 Miyazaki et al. Jul 2003 B1
6607976 Chen et al. Aug 2003 B2
6635965 Lee et al. Oct 2003 B1
6706625 Sudijono et al. Mar 2004 B1
6720261 Anderson et al. Apr 2004 B1
6740585 Yoon et al. May 2004 B2
6777331 Nguyen Aug 2004 B2
6790773 Drewery et al. Sep 2004 B1
6794287 Saanila et al. Sep 2004 B2
6797340 Fang et al. Sep 2004 B2
6844258 Fair et al. Jan 2005 B1
6861356 Matsuse et al. Mar 2005 B2
6902763 Elers et al. Jun 2005 B1
6903016 Cohen Jun 2005 B2
6905543 Fair et al. Jun 2005 B1
6908848 Koo Jun 2005 B2
6936538 Byun Aug 2005 B2
6939804 Lai et al. Sep 2005 B2
6962873 Park Nov 2005 B1
7005372 Levy et al. Feb 2006 B2
7141494 Lee et al. Nov 2006 B2
7157798 Fair et al. Jan 2007 B1
7211144 Lu et al. May 2007 B2
7220671 Simka et al. May 2007 B2
7235486 Kori et al. Jun 2007 B2
7262125 Wongsenakhum et al. Aug 2007 B2
7338900 Mizuno et al. Mar 2008 B2
7355254 Datta et al. Apr 2008 B2
7405158 Lai et al. Jul 2008 B2
7416979 Yoon et al. Aug 2008 B2
7419904 Kato Sep 2008 B2
7429402 Gandikota et al. Sep 2008 B2
7465665 Xi et al. Dec 2008 B2
7465666 Kori et al. Dec 2008 B2
7485340 Elers et al. Feb 2009 B2
7501343 Byun et al. Mar 2009 B2
7501344 Byun et al. Mar 2009 B2
7563718 Kim Jul 2009 B2
7589017 Chan et al. Sep 2009 B2
7595263 Chung et al. Sep 2009 B2
7605083 Lai et al. Oct 2009 B2
7611990 Yoon et al. Nov 2009 B2
7655567 Gao et al. Feb 2010 B1
7674715 Kori et al. Mar 2010 B2
7675119 Taguwa Mar 2010 B2
7691749 Levy et al. Apr 2010 B2
7695563 Lu et al. Apr 2010 B2
7709385 Xi et al. May 2010 B2
7732327 Lee et al. Jun 2010 B2
7745329 Wang et al. Jun 2010 B2
7745333 Lai et al. Jun 2010 B2
7749815 Byun Jul 2010 B2
7754604 Wongsenakhum et al. Jul 2010 B2
7772114 Chan et al. Aug 2010 B2
7955972 Chan et al. Jun 2011 B2
7964505 Khandelwal et al. Jun 2011 B2
7977243 Sakamoto et al. Jul 2011 B2
8048805 Chan et al. Nov 2011 B2
8053365 Humayun et al. Nov 2011 B2
8058170 Chandrashekar et al. Nov 2011 B2
8062977 Ashtiani et al. Nov 2011 B1
8071478 Wu et al. Dec 2011 B2
8087966 Hebbinghaus et al. Jan 2012 B2
8101521 Gao et al. Jan 2012 B1
8110877 Mukherjee et al. Feb 2012 B2
8119527 Chadrashekar et al. Feb 2012 B1
8129270 Chandrashekar et al. Mar 2012 B1
8207062 Gao et al. Jun 2012 B2
8258057 Kuhn et al. Sep 2012 B2
8329576 Chan et al. Dec 2012 B2
8367546 Humayun et al. Feb 2013 B2
8409985 Chan et al. Apr 2013 B2
8409987 Chandrashekar et al. Apr 2013 B2
8551885 Chen et al. Oct 2013 B2
8623733 Chen et al. Jan 2014 B2
8709948 Danek et al. Apr 2014 B2
8853080 Guan et al. Oct 2014 B2
8975184 Chen et al. Mar 2015 B2
8993055 Rahtu et al. Mar 2015 B2
9034760 Chen et al. May 2015 B2
9064684 Mui et al. Jun 2015 B1
9076843 Lee et al. Jul 2015 B2
9153486 Arghavani et al. Oct 2015 B2
9159571 Humayun et al. Oct 2015 B2
9236297 Chen et al. Jan 2016 B2
9240347 Chandrashekar et al. Jan 2016 B2
9583385 Lee et al. Feb 2017 B2
9589808 Bamnolker et al. Mar 2017 B2
9613818 Ba et al. Apr 2017 B2
9653353 Chandrashekar et al. May 2017 B2
9673146 Chen et al. Jun 2017 B2
9754824 Schloss et al. Sep 2017 B2
9969622 Lei et al. May 2018 B2
9978605 Bamnolker et al. May 2018 B2
10103058 Chandrashekar et al. Oct 2018 B2
10546751 Bamnolker et al. Jan 2020 B2
11348795 Schloss et al. May 2022 B2
11549175 Butail et al. Jan 2023 B2
20010007797 Jang et al. Jul 2001 A1
20010008808 Gonzalez Jul 2001 A1
20010014533 Sun Aug 2001 A1
20010015494 Ahn Aug 2001 A1
20010044041 Badding et al. Nov 2001 A1
20020037630 Agarwal et al. Mar 2002 A1
20020048938 Ishizuka et al. Apr 2002 A1
20020090796 Desai et al. Jul 2002 A1
20020117399 Chen et al. Aug 2002 A1
20020155722 Satta et al. Oct 2002 A1
20020168840 Hong et al. Nov 2002 A1
20020177316 Miller et al. Nov 2002 A1
20020190379 Jian et al. Dec 2002 A1
20020192953 Wang et al. Dec 2002 A1
20030013300 Byun Jan 2003 A1
20030059980 Chen et al. Mar 2003 A1
20030082296 Elers et al. May 2003 A1
20030082902 Fukui et al. May 2003 A1
20030091870 Bhowmik et al. May 2003 A1
20030104126 Fang et al. Jun 2003 A1
20030123216 Yoon et al. Jul 2003 A1
20030127043 Lu et al. Jul 2003 A1
20030129828 Cohen Jul 2003 A1
20030190802 Wang et al. Oct 2003 A1
20030209193 Van Wijck Nov 2003 A1
20030224217 Byun et al. Dec 2003 A1
20040014315 Lai et al. Jan 2004 A1
20040044127 Okubo et al. Mar 2004 A1
20040142557 Levy et al. Jul 2004 A1
20040151845 Nguyen et al. Aug 2004 A1
20040202786 Wongsenakhum et al. Oct 2004 A1
20040206267 Sambasivan et al. Oct 2004 A1
20040247788 Fang et al. Dec 2004 A1
20050009325 Chung et al. Jan 2005 A1
20050031786 Lee et al. Feb 2005 A1
20050059236 Nishida et al. Mar 2005 A1
20050059241 Kori et al. Mar 2005 A1
20050136594 Kim Jun 2005 A1
20050191803 Matsuse et al. Sep 2005 A1
20060003581 Johnston et al. Jan 2006 A1
20060009034 Lai et al. Jan 2006 A1
20060040052 Fang et al. Feb 2006 A1
20060094238 Levy et al. May 2006 A1
20060145190 Salzman et al. Jul 2006 A1
20060211244 Deshpande et al. Sep 2006 A1
20060265100 Li Nov 2006 A1
20060284317 Ito et al. Dec 2006 A1
20070009658 Yoo et al. Jan 2007 A1
20070087560 Kwak et al. Apr 2007 A1
20070099420 Dominguez et al. May 2007 A1
20070190780 Chung et al. Aug 2007 A1
20070199922 Shen et al. Aug 2007 A1
20070264105 Pharand et al. Nov 2007 A1
20080017891 Datta et al. Jan 2008 A1
20080045010 Wongsenakhum et al. Feb 2008 A1
20080081127 Thompson et al. Apr 2008 A1
20080081452 Kim et al. Apr 2008 A1
20080081453 Kim et al. Apr 2008 A1
20080081470 Clark Apr 2008 A1
20080124926 Chan et al. May 2008 A1
20080248649 Adetutu et al. Oct 2008 A1
20080254619 Lin et al. Oct 2008 A1
20080254623 Chan et al. Oct 2008 A1
20080268642 Yanagita et al. Oct 2008 A1
20080280438 Lai et al. Nov 2008 A1
20080283844 Hoshi et al. Nov 2008 A1
20080317954 Lu et al. Dec 2008 A1
20080317972 Hendriks et al. Dec 2008 A1
20090045517 Sugiura et al. Feb 2009 A1
20090050937 Murata et al. Feb 2009 A1
20090053893 Khandelwal et al. Feb 2009 A1
20090137117 Park et al. May 2009 A1
20090142509 Yamamoto Jun 2009 A1
20090149022 Chan et al. Jun 2009 A1
20090156004 Kori et al. Jun 2009 A1
20090160030 Tuttle Jun 2009 A1
20090163025 Humayun et al. Jun 2009 A1
20090315154 Kirby et al. Dec 2009 A1
20090321943 Meldrim et al. Dec 2009 A1
20100007797 Stojancic Jan 2010 A1
20100035427 Chan et al. Feb 2010 A1
20100055904 Chen et al. Mar 2010 A1
20100062149 Ma et al. Mar 2010 A1
20100072623 Prindle et al. Mar 2010 A1
20100120245 Tjandra et al. May 2010 A1
20100130002 Dao et al. May 2010 A1
20100130003 Lin et al. May 2010 A1
20100144140 Chandrashekar et al. Jun 2010 A1
20100155846 Mukherjee et al. Jun 2010 A1
20100159694 Chandrashekar et al. Jun 2010 A1
20100167527 Wu et al. Jul 2010 A1
20100171220 Huang Jul 2010 A1
20100244141 Beyer et al. Sep 2010 A1
20100244260 Hinomura Sep 2010 A1
20100267230 Chandrashekar et al. Oct 2010 A1
20100267235 Chen et al. Oct 2010 A1
20100273327 Chan et al. Oct 2010 A1
20100330800 Ivanov et al. Dec 2010 A1
20110020546 Hamalainen et al. Jan 2011 A1
20110059608 Gao et al. Mar 2011 A1
20110156154 Hoentschel et al. Jun 2011 A1
20110221044 Danek et al. Sep 2011 A1
20110223763 Chan et al. Sep 2011 A1
20110233778 Lee et al. Sep 2011 A1
20110236594 Haverkamp et al. Sep 2011 A1
20110281438 Lee et al. Nov 2011 A1
20120009785 Chandrashekar et al. Jan 2012 A1
20120015518 Chandrashekar et al. Jan 2012 A1
20120040530 Humayun et al. Feb 2012 A1
20120077342 Gao et al. Mar 2012 A1
20120164832 Chandrashekar et al. Jun 2012 A1
20120199887 Chan et al. Aug 2012 A1
20120225192 Yudovsky et al. Sep 2012 A1
20120231626 Lee et al. Sep 2012 A1
20120244699 Khandelwal et al. Sep 2012 A1
20120294874 Macary et al. Nov 2012 A1
20130043554 Piper Feb 2013 A1
20130062677 Li et al. Mar 2013 A1
20130109172 Collins et al. May 2013 A1
20130168864 Lee et al. Jul 2013 A1
20130285195 Piper Oct 2013 A1
20130302980 Chandrashekar et al. Nov 2013 A1
20140011358 Chen et al. Jan 2014 A1
20140027664 Lei et al. Jan 2014 A1
20140030889 Chen et al. Jan 2014 A1
20140061784 Kang Mar 2014 A1
20140061931 Kang Mar 2014 A1
20140073135 Guan et al. Mar 2014 A1
20140154883 Humayun et al. Jun 2014 A1
20140162451 Chen et al. Jun 2014 A1
20140209026 LaVoie et al. Jul 2014 A1
20140308812 Arghavani et al. Oct 2014 A1
20140319614 Paul et al. Oct 2014 A1
20150037972 Danek et al. Feb 2015 A1
20150056803 Chandrashekar et al. Feb 2015 A1
20150179461 Bamnolker et al. Jun 2015 A1
20150240359 Jdira et al. Aug 2015 A1
20150279732 Lee et al. Oct 2015 A1
20150325475 Bamnolker et al. Nov 2015 A1
20160118345 Chen et al. Apr 2016 A1
20160190008 Chandrashekar et al. Jun 2016 A1
20160233220 Danek Aug 2016 A1
20160293467 Caveney et al. Oct 2016 A1
20160336222 Knapp et al. Nov 2016 A1
20160351401 Ba et al. Dec 2016 A1
20160351402 Suzuki et al. Dec 2016 A1
20160351444 Schloss et al. Dec 2016 A1
20170040214 Lai et al. Feb 2017 A1
20170069527 Haukka et al. Mar 2017 A1
20170117155 Bamnolker et al. Apr 2017 A1
20170133231 Bamnolker et al. May 2017 A1
20170306479 Raisanen et al. Oct 2017 A1
20170306490 Chan et al. Oct 2017 A1
20170365513 Yang et al. Dec 2017 A1
20180053660 Jandl et al. Feb 2018 A1
20180076042 Cheng et al. Mar 2018 A1
20180240675 Bamnolker et al. Aug 2018 A1
20180247832 Fischer et al. Aug 2018 A1
20190019725 Chandrashekar et al. Jan 2019 A1
20210238736 Butail et al. Aug 2021 A1
20210335617 Deng et al. Oct 2021 A1
20210348271 Mishra et al. Nov 2021 A1
20220037163 Yang et al. Feb 2022 A1
20220181158 Bowes et al. Jun 2022 A1
20220254685 Ermez et al. Aug 2022 A1
20230130557 Birru et al. Apr 2023 A1
20230290639 Schloss et al. Sep 2023 A1
Foreign Referenced Citations (153)
Number Date Country
1455447 Nov 2003 CN
101154576 Apr 2008 CN
101213320 Jul 2008 CN
101308794 Nov 2008 CN
101447427 Jun 2009 CN
101540294 Sep 2009 CN
101572291 Nov 2009 CN
101770978 Jul 2010 CN
101789369 Jul 2010 CN
101952945 Jan 2011 CN
101970352 Feb 2011 CN
102084462 Jun 2011 CN
102867953 Jan 2013 CN
103125013 May 2013 CN
103132046 Jun 2013 CN
103579184 Feb 2014 CN
105097446 Nov 2015 CN
107768304 Mar 2018 CN
104752339 Jun 2019 CN
111357083 Jun 2020 CN
110004429 Aug 2021 CN
0437110 Jul 1991 EP
1156132 Nov 2001 EP
1179838 Feb 2002 EP
S5629648 Mar 1981 JP
S63274772 Nov 1988 JP
H0266399 Mar 1990 JP
H02187031 Jul 1990 JP
H04142061 May 1992 JP
H04216630 Aug 1992 JP
H05226280 Sep 1993 JP
H07147321 Jun 1995 JP
H07226393 Aug 1995 JP
H08115984 May 1996 JP
H08325735 Dec 1996 JP
H0922896 Jan 1997 JP
H0927596 Jan 1997 JP
H10144688 May 1998 JP
H10163132 Jun 1998 JP
2966406 Oct 1999 JP
H11330006 Nov 1999 JP
2000208516 Jul 2000 JP
2000235962 Aug 2000 JP
2001525889 Dec 2001 JP
2002016066 Jan 2002 JP
2002124488 Apr 2002 JP
2003193233 Jul 2003 JP
2004235456 Aug 2004 JP
2004273764 Sep 2004 JP
2004536960 Dec 2004 JP
2005029821 Feb 2005 JP
2005518088 Jun 2005 JP
2007009298 Jan 2007 JP
2007027627 Feb 2007 JP
2007027680 Feb 2007 JP
2007507892 Mar 2007 JP
2007520052 Jul 2007 JP
2007250907 Sep 2007 JP
2007251164 Sep 2007 JP
2008016803 Jan 2008 JP
2008060603 Mar 2008 JP
2008091844 Apr 2008 JP
2008283220 Nov 2008 JP
2008303466 Dec 2008 JP
2009024252 Feb 2009 JP
2009144242 Jul 2009 JP
2009533877 Sep 2009 JP
2009253008 Oct 2009 JP
2009540123 Nov 2009 JP
2010251760 Nov 2010 JP
2011035366 Feb 2011 JP
2011192680 Sep 2011 JP
2013080891 May 2013 JP
2014049747 Mar 2014 JP
2015067869 Apr 2015 JP
2015514160 May 2015 JP
2015221940 Dec 2015 JP
2017008412 Jan 2017 JP
2017014615 Jan 2017 JP
2017053024 Mar 2017 JP
100196018 Jun 1999 KR
100272523 Dec 2000 KR
20010093766 Oct 2001 KR
20020040877 May 2002 KR
20020049730 Jun 2002 KR
20030050652 Jun 2003 KR
20040085153 Oct 2004 KR
20050022261 Mar 2005 KR
20050054122 Jun 2005 KR
20050068555 Jul 2005 KR
20050087428 Aug 2005 KR
20060087844 Aug 2006 KR
100705936 Apr 2007 KR
20080001460 Jan 2008 KR
20080015129 Feb 2008 KR
20080036679 Apr 2008 KR
20080060012 Jul 2008 KR
20080061978 Jul 2008 KR
20080101745 Nov 2008 KR
20080110897 Dec 2008 KR
20090068187 Jun 2009 KR
20090074560 Jul 2009 KR
20090095546 Sep 2009 KR
20090103815 Oct 2009 KR
20100014714 Feb 2010 KR
20100029952 Mar 2010 KR
20100114856 Oct 2010 KR
20110027607 Mar 2011 KR
20110056494 May 2011 KR
20110084166 Jul 2011 KR
20110105645 Sep 2011 KR
20110108382 Oct 2011 KR
20120005992 Jan 2012 KR
20130119519 Oct 2013 KR
20140028992 Mar 2014 KR
101495372 Feb 2015 KR
20150128615 Nov 2015 KR
20160039139 Apr 2016 KR
20160140458 Dec 2016 KR
20180101745 Sep 2018 KR
102255768 May 2021 KR
310461 Jul 1997 TW
434708 May 2001 TW
452607 Sep 2001 TW
567544 Dec 2003 TW
589684 Jun 2004 TW
200421465 Oct 2004 TW
200626748 Aug 2006 TW
200710968 Mar 2007 TW
201405781 Feb 2014 TW
201409697 Mar 2014 TW
201519317 May 2015 TW
201715067 May 2017 TW
WO-9851838 Nov 1998 WO
WO-0127347 Apr 2001 WO
WO-0129893 Apr 2001 WO
WO-0241379 May 2002 WO
WO-02101114 Dec 2002 WO
WO-03029515 Apr 2003 WO
WO-2005027211 Mar 2005 WO
WO-2005034223 Apr 2005 WO
WO-2007121249 Oct 2007 WO
WO-2007146537 Dec 2007 WO
WO-2010025357 Mar 2010 WO
WO-2011119293 Sep 2011 WO
WO-2013148444 Oct 2013 WO
WO-2013148880 Oct 2013 WO
WO-2014058536 Apr 2014 WO
WO-2017123967 Jul 2017 WO
WO-2019036292 Feb 2019 WO
WO-2019055317 Mar 2019 WO
WO-2020185618 Sep 2020 WO
WO-2021178399 Sep 2021 WO
Non-Patent Literature Citations (343)
Entry
Aldjapan.com “Principle-ALD Japan, Inc.” [webpage] pp. 1-10. [retrieved from URL: https://aldjapan.com/%E5%8E%9F%E7%90%86/].
Becker, Jill (Apr. 7, 2003) “Diffusion barrier properties of tungsten nitride films grown by atomic layer deposition from bis(tert-butylimido)bis(dimethylamido)tungsten and ammonia,” Applied Physics Letters, 82(14):2239-2241, [Retrieved online Dec. 13, 2013 at http://dx.doi.org/10.1063/1.1565699].
Bell et al. (Jan. 1996) “Batch Reactor Kinetic Studies of Tungsten LPCVD from Silane and Tungsten Hexafluoride”, J. Electrochem. Soc., 143(1):296-302.
Chinese Fifth Office Action dated Aug. 24, 2018 issued in Application No. CN 201380022693.8.
Chinese Fifth Office Action dated May 5, 2015 issued in Application No. CN 200980133560.1.
Chinese First Office Action dated Jun. 2, 2017 issued in Application No. CN 201410856793.7.
Chinese First Office Action dated Mar. 18, 2016 issued in Application No. CN 201380022693.8.
Chinese First Office Action dated Oct. 27, 2020 issued in Application No. CN 201811491805.5.
Chinese First Office Action dated Sep. 18, 2012 issued in Application No. CN 200980133560.1.
Chinese First Office Action dated Sep. 6, 2015 issued in Application No. CN 201310320848.8.
Chinese Fourth Office Action dated Jan. 5, 2015 issued in Application No. CN 200980133560.1.
Chinese Fourth Office Action dated Mar. 15, 2018 issued in Application No. CN 201380022693.8.
Chinese Second Office Action dated Aug. 7, 2013 issued in Application No. CN 200980133560.1.
Chinese Second Office Action dated Feb. 5, 2018 issued in Application No. CN 201410856793.7.
Chinese Second Office Action dated Jan. 23, 2017 issued in Application No. CN 201380022693.8.
Chinese Second Office Action dated May 16, 2016 issued in Application No. CN 201310320848.8.
Chinese Third Office Action dated Apr. 22, 2014 issued in Application No. CN 200980133560.1.
Chinese Third Office Action dated Oct. 8, 2018 issued in Application No. CN 201410856793.7.
Chinese Third Office Action dated Sep. 25, 2017 issued in Application No. CN 201380022693.8.
Collins et al. (Jan. 21, 2003) “Pulsed Deposition of Ultra Thin Tungsten for Plugfill of High Aspect Ratio Contacts,” Presentation made at Semicon Korea, 9 pages.
Diawara, Y et al. (1993) “Rapid thermal annealing for reducing stress in tungsten x-ray mask absorber,” http://dx.doi.org/10.1116/1.586673, Journal of Vacuum Science & Technology B 11:296-300 (per table of contents of journal).
Elam et al. (2001) “Nucleation and Growth During Tungsten Atomic Layer Deposition on SiO2 Surfaces,” Thin Solid Films, 13pp.
Fair, James A. (1983) Presentation by Inventor “Chemical Vapor Deposition of Refractory Metal Silicides,” GENUS Incorporated, 27 pp.
George et al. (1996) “Surface Chemistry for atomic Layer Growth”, J. Phys. Chem, 100(31):13121-13131.
Gonohe, Narishi (2002) “Tungsten Nitride Deposition by Thermal Chemical Vapor Deposition as Barrier Metal for Cu Interconnection,” [http://www.jim.co.jp/journal/e/pdf3/43/07/1585.pdf.], Materials Transactions, 43(7):1585-1592.
Habuka, Hitoshi (2010) “Advance of Atomic Layer Deposition in Semiconductor Materials Manufacturing Process: Cleaning Technology for Thin Film Formation Reactor” Department of Chemical and Energy Engineering, Yokohama National University, 79, 5 Tokiwadai Hodogaya-ku Kanagawa 240, 8501, Japan.
Hoover, Cynthia (Jul. 2007) “Enabling Materials for Contact Metallization,” Praxair Electronic Materials R&D, pp. 1-16.
International Preliminary Report on Patentability dated Jun. 24, 2021 issued in Application No. PCT/US2019/066301.
International Preliminary Report on Patentability dated Nov. 12, 2020 in Application No. PCT/US2019/030712.
International Preliminary Report on Patentability dated Oct. 21, 2021, in application No. PCT/US2020/027107.
International Search Report and Written Opinion dated Apr. 13, 2020 issued in Application No. PCT/US2019/066301.
International Search Report and Written Opinion dated Aug. 19, 2019 in Application No. PCT/US2019/030712.
International Search Report and Written Opinion dated Jul. 24, 2020 issued in Application No. PCT/US2020/027107.
Jamie, W. et al., “In Situ Atomic Layer Deposition and Electron Tunneling Characterization of Monolayer Al2O3 on Fe for Magnetic Tunnel Junctions”, AIP Advances, 2018, vol. 8, No. 125218, pp. 1-9.
Japanese First Office Action dated Jun. 24, 2020 issued in Application No. JP 2016-105216.
Japanese First Office Action dated Jun. 3, 2020 issued in Application No. JP 2016-104837.
Japanese Notification of Reasons for Rejection dated Dec. 20, 2016 issued in Application No. JP 2015-503547.
Japanese Office Action dated Dec. 3, 2013 issued in Application No. JP 2011-525228.
Japanese Office Action dated Jul. 29, 2014 issued in Application No. JP 2010-093544.
Japanese Office Action dated Jun. 17, 2014 issued in Application No. JP 2010-055163.
Japanese Office Action dated Mar. 4, 2014 issued in Application No. JP 2010-093522.
Japanese Office Action dated May 7, 2013, issued in Application No. JP 2008-310322.
Japanese Office Action dated Sep. 3, 2013, issued in Application No. JP 2008-325333.
Japanese Second Office Action dated Apr. 5, 2021 issued in Application No. JP 2016-104837.
Japanese Second Office Action dated Mar. 3, 2021 issued in Application No. JP 2016-105216.
Johnson, R.W., Hultqvist, A., Bent, S.F., “A brief review of atomic layer deposition: from fundamentals to applications”, Materials today, (Jun. 1, 2014), 17(5):236-46.
JP Office Action dated Nov. 24, 2021, in Application No. JP20160104837 with English translation.
Kim, S. et al., “Effects of B2H6 Pretreatment on ALD of W Film Using a Sequential Supply of WF6 and SiH4”, Electrochemical and Solid-State Letters, The Electrochemical Society, 2005, vol. 8, No. 10, pp. C155-C159.
Klaus et al. (2000) “Atomic layer deposition of tungsten using sequential surface chemistry with a sacrificial stripping reaction,” Thin Solid Films 360:145-153.
Klaus et al. (2000) “Atomically Controlled Growth of Tungsten and Tungsten Nitride Using Sequential Surface Reactions,” Applied Surface Science, pp. 162-163, 479-491.
Korean Decision for Grant dated Apr. 7, 2020 issued in Application No. KR 10-2020-7000199.
Korean Decision for Grant dated Nov. 5, 2021 issued in Application No. KR 10-2014-0192527.
Korean Final Rejection dated Jun. 30, 2021 issued in Application No. KR 10-2014-0192527.
Korean Final Rejection Office Action dated Apr. 27, 2021 issued in Application No. KR 10-2016-0064157.
Korean First Notification of Provisional Rejection, dated Dec. 8, 2010, issued in Application No. KR 2004-0036346.
Korean First Office Action dated Apr. 18, 2019 issued in Application No. KR 10-2014-7030125.
Korean First Office Action dated Aug. 2, 2021, issued in Application No. KR 10-2014-0184759.
Korean First Office Action dated Aug. 30, 2019 issued in Application No. KR 10-2013-0075854.
Korean First Office Action dated Aug. 6, 2020 issued in Application No. KR 10-2014-0044410.
Korean First Office Action dated Dec. 21, 2020 issued in Application No. KR 10-2014-0192527.
Korean First Office Action dated Jan. 1, 2019 issued in Application No. KR 10-2013-0089130.
Korean First Office Action dated Jul. 10, 2015 issued in Application No. KR 10-2014-0090283.
Korean First Office Action dated Jul. 12, 2021 issued in Application No. KR 10-2021-0063953.
Korean First Office Action dated Nov. 25, 2020 issued in Application No. KR 10-2020-0124056.
Korean First Office Action dated Oct. 1, 2020 issued in Application No. KR 10-2016-0064157.
Korean First Office Action dated Sep. 24, 2019 issued in Application No. KR 10-2013-0089834.
Korean First Office Action [No Translation] dated Oct. 21, 2019 issued in Application No. KR 10-2013-0108151.
Korean Notification of Provisional Rejection dated Jul. 17, 2012, issued in Application No. KR 2010-0087997.
Korean Office Action dated Jul. 19, 2013 issued in Application No. KR 2011-7004322.
Korean Office Action dated Jul. 28, 2021 issued in Application No. KR 10-2016-0064157.
Korean Office Action, dated Jun. 13, 2011, issued in Application No. KR 2011-0032098.
Korean Office Action dated Jun. 17, 2014 issued in Application No. KR 10-2013-7027117.
Korean Office Action dated Jun. 21, 2021 issued in Application No. KR 10-2020-0124056.
Korean Office Action dated Jun. 28, 2020 issued in Application No. KR 10-2020-0141428.
Korean Office Action dated Mar. 21, 2013 issued in Application No. KR 10-2010-0024905.
Korean Office Action, dated Mar. 28, 2013, issued in Application No. KR 10-2007-0012027.
Korean Office Action dated Mar. 4, 2013 in Application No. KR 2010-0035449.
Korean Office Action, dated Nov. 24, 2010, issued in Application No. KR 10-2004-0013210.
Korean Office Action dated Nov. 30, 2020 issued in Application No. KR 10-2020-0141428.
Korean Office Action dated Nov. 4, 2013 issued in Application No. KR 10-2013-7027117.
Korean Office Action dated Sep. 6, 2012 issued in Application No. KR 2011-7004322.
Korean Second Office Action dated Apr. 7, 2020 issued in Application No. KR 10-2013-0075854.
Korean Second Office Action dated Jan. 25, 2014 in Application No. KR 10-2010-0035453.
Korean Second Office Action dated Mar. 11, 2020 issued in Application No. KR 10-2013-0108151.
Korean Third Office Action dated Jun. 25, 2020 issued in Application No. KR 10-2013-0108151.
Korean Third Office Action dated Jun. 29, 2020 issued in Application No. KR 10-2013-0075854.
KR Office Action dated Dec. 14, 2021, in application No. 20210063953 with English translation.
KR Final Rejection dated Oct. 5, 2021, in application No. KR1020200141428 with English translation.
KR Office Action dated Jan. 11, 2022, in KR Application No. 10-2022-0000825 with English translation.
Lai, Ken et al. (Jul. 17, 2000) “Tungsten chemical vapor deposition using tungsten hexacarbonyl: microstructure of as-deposited and annealed films,” [http://dx.doi.org/10.1016/S0040-6090(00)00943-3], Thin Solid Films, 370:114-121.
Lai, Ken K. and Lamb, H. Henry (1995) “Precursors for Organometallic Chemical Vapor Deposition of Tungsten Carbide Films,” Chemistry Material, 7(12):2284-2292.
Lee et al. (Jan. 21, 2003) “Pulsed Deposition of Ultra Thin Tungsten and its Application for Plugfill of High Aspect Ratio Contacts,” Abstract, 1 page.
Li et al. (2002) “Deposition of WNxCy-Thin Films by ALCVDTM Method for Diffusion Barriers in Metallization,” IITC Conference Report, 3 pp.
Li, Z. et al., “Atomic Layer Deposition of Ultrathin Copper Metal Films from a Liquid Copper(I) Amidinate Precursor”, Journal of The Electrochemical Society, 2006, vol. 153, No. 11, pp. C787-C794.
Lim, B. et al., “Atomic Layer Deposition of Transition Metals”, Nature Materials, 2003, vol. 2, pp. 749-754.
Manik. P, et al. (2012) “Fermi-level unpinning and low resistivity in contacts to n-type Ge with a thin ZnO interfacial layer,” App. Phys. Lett. 101:182105-5.
Notice of Allowance dated Dec. 3, 2012, issued in U.S. Appl. No. 13/095,734.
PCT International Preliminary Report on Patentability and Written Opinion, dated Mar. 10, 2011, issued in PCT/US2009/055349.
PCT International Preliminary Report on Patentability and Written Opinion, dated Oct. 9, 2014, issued in PCT/US2013/034167.
PCT International Search Report and Written Opinion, dated Apr. 12, 2010, issued in PCT/US2009/055349.
PCT International Search Report and Written Opinion, dated Jul. 26, 2013, issued in PCT/US2013/034167.
PCT Search Report and Written Opinion, dated Jan. 19, 2005, issued in PCT/US2004/006940.
Saito et al. (2001) “A Novel Copper Interconnection Technology Using Self Aligned Metal Capping Method,” IEEE, 3pp.
Shioya, Yoshimi et al. (Dec. 1, 1985) “Analysis of stress in chemical vapor deposition tungsten silicide film,” [Retrieved online Dec. 18, 2013 at http://dx.doi.org/10.1063/1.335552], Journal of Applied Physics, 58(11):4194-4199.
Taiwan Examination Report dated Dec. 26, 2016 issued in Application No. TW 102123248.
Taiwan Examination Report, dated Jun. 22, 2017, issued in Application No. TW 103113287.
Taiwan Examination Report dated Mar. 16, 2017 issued in Application No. TW 102132433.
Taiwan Examination Report dated Oct. 26, 2016 issued in Application No. TW 102126696.
Taiwan Examination Report dated Oct. 26, 2016 issued in Application No. TW 102126976.
Taiwan First Office Action dated Jun. 27, 2018 issued in Application No. TW 103145125.
Taiwan First Office Action [Reissued] dated Jun. 20, 2018, issued in Application No. TW 103144260.
Taiwan Office Action and Search Report dated Feb. 12, 2015 issued in Application No. TW 099130354.
Taiwan Office Action dated Aug. 4, 2015 issued in Application No. TW 099111859.
Taiwan Office Action dated Dec. 27, 2014 issued in Application No. TW 099111860.
Taiwan Office Action dated Jan. 10, 2017 issued in Application No. TW 105105984.
Taiwan Office Action dated Jun. 8, 2015 issued in Application No. TW 099107504.
Taiwan Office Action dated Oct. 25, 2016 issued in Application No. TW 102110947.
Taiwan Office Action (Rejection Decision) dated Oct. 28, 2015 issued in Application No. TW 099130354.
Taiwan Search Report dated Nov. 30, 2016 issued in Application No. TW 099130354.
Taiwanese First Office Action dated Nov. 13, 2019 issued in Application No. TW 105116371.
Taiwanese First Office Action dated Nov. 25, 2019 issued in Application No. TW 105116363.
Taiwanese Second Office Action dated Aug. 19, 2020 issued in Application No. TW 105116371.
Taiwanese Third Office Action dated Mar. 16, 2021 issued in Application No. TW 105116371.
US Final Office Action, dated Apr. 14, 2017, issued in U.S. Appl. No. 14/965,806.
US Final Office Action, dated Apr. 28, 2009, issued in U.S. Appl. No. 11/782,570.
US Final Office Action, dated Apr. 30, 2012, issued in U.S. Appl. No. 12/755,248.
US Final Office Action, dated Dec. 28, 2005, issued in U.S. Appl. No. 10/815,560.
US Final Office Action, dated Dec. 30, 2010, issued in U.S. Appl. No. 11/963,698.
US Final Office Action, dated Dec. 9, 2009, issued in U.S. Appl. No. 11/963,698.
US Final Office Action, dated Feb. 14, 2014, issued in U.S. Appl. No. 13/560,688.
US Final Office Action, dated Feb. 25, 2009, issued in U.S. Appl. No. 11/349,035.
US Final Office Action, dated Feb. 26, 2009, issued in U.S. Appl. No. 11/265,531.
US Final Office Action, dated Feb. 7, 2011, issued in U.S. Appl. No. 12/202,126.
US Final Office Action, dated Jan. 13, 2010, issued in U.S. Appl. No. 12/030,645.
US Final Office Action, dated Jan. 14, 2016, issued in U.S. Appl. No. 13/949,092.
US Final Office Action, dated Jan. 20, 2017, issued in U.S. Appl. No. 14/723,275.
US Final Office Action, dated Jan. 26, 2010 from U.S. Appl. No. 11/951,236.
US Final Office Action, dated Jul. 14, 2005, issued in U.S. Appl. No. 10/649,351.
US Final Office Action, dated Jul. 17, 2015, issued in U.S. Appl. No. 14/502,817.
US Final Office Action, dated Jul. 2, 2014, issued in U.S. Appl. No. 13/020,748.
US Final Office Action, dated Jul. 23, 2010, issued in U.S. Appl. No. 12/030,645.
US Final Office Action, dated Jul. 25, 2016, issued in U.S. Appl. No. 14/738,685.
US Final Office Action, dated Jun. 15, 2011, issued in U.S. Appl. No. 12/636,616.
US Final Office Action, dated Jun. 2, 2015, issued in U.S. Appl. No. 14/097,160.
US Final Office Action dated Mar. 21, 2019, issued in U.S. Appl. No. 15/415,800.
US Final Office Action, dated May 17, 2006, issued in U.S. Appl. No. 10/984,126.
US Final Office Action, dated May 18, 2017, issued in U.S. Appl. No. 13/949,092.
US Final Office Action, dated May 31, 2016, issued in U.S. Appl. No. 14/135,375.
US Final Office Action, dated May 7, 2010, issued in U.S. Appl. No. 12/202,126.
US Final Office Action, dated Nov. 16, 2012, issued in U.S. Appl. No. 13/020,748.
US Final Office Action, dated Nov. 17, 2011, issued in U.S. Appl. No. 12/829,119.
US Final Office Action, dated Nov. 20, 2009, issued in U.S. Appl. No. 11/349,035.
US Final Office Action, dated Nov. 26, 2013, issued in U.S. Appl. No. 13/633,798.
US Final Office Action, dated Nov. 5, 2014, issued in U.S. Appl. No. 13/633,502.
US Final Office Action, dated Oct. 16, 2014, issued in U.S. Appl. No. 13/862,048.
US Final Office Action, dated Oct. 19, 2010, issued in U.S. Appl. No. 12/407,541.
US Final Office Action, dated Sep. 12, 2012, issued in U.S. Appl. No. 12/755,259.
US Final Office Action, dated Sep. 29, 2015, issued in U.S. Appl. No. 14/135,375.
U.S. Non-Final Office Action dated Dec. 15, 2021 in U.S. Appl. No. 17/250,014.
U.S. Non-Final Office Action dated Sep. 21, 2021, in U.S. Appl. No. 16/638,430.
US Notice of Allowance and Fee Due, dated Jan. 24, 2011, issued in U.S. Appl. No. 12/030,645.
US Notice of Allowance,, dated Apr. 24, 2007, issued in U.S. Appl. No. 10/815,560.
US Notice of Allowance, dated Apr. 28, 2015, issued in U.S. Appl. No. 13/862,048.
US Notice of Allowance, dated Apr. 6, 2010, issued in U.S. Appl. No. 11/951,236.
US Notice of Allowance, dated Aug. 25, 2006, issued in U.S. Appl. No. 10/984,126.
US Notice of Allowance, dated Aug. 3, 2016, issued in U.S. Appl. No. 13/851,885.
US Notice of Allowance, dated Aug. 7, 2012, issued in U.S. Appl. No. 12/829,119.
US Notice of Allowance, dated Dec. 14, 2016, issued in U.S. Appl. No. 13/851,885.
US Notice of Allowance dated Dec. 24, 2013, issued in U.S. Appl. No. 12/723,532.
US Notice of Allowance, dated Jan. 12, 2018, issued in U.S. Appl. No. 13/949,092.
US Notice of Allowance, dated Jan. 19, 2005, issued in U.S. Appl. No. 10/435,010.
US Notice of Allowance, dated Jan. 19, 2018, issued in U.S. Appl. No. 15/398,462.
US Notice of Allowance, dated Jan. 20, 2017, issued in U.S. Appl. No. 14/989,444.
US Notice of Allowance, dated Jan. 22, 2015, issued in U.S. Appl. No. 13/928,216.
U.S. Notice of Allowance dated Jan. 25, 2022, in U.S. Appl. No. 16/638,430.
US Notice of Allowance, dated Jul. 10, 2013, issued in U.S. Appl. No. 12/755,259.
US Notice of Allowance, dated Jul. 21, 2006, issued in U.S. Appl. No. 10/649,351.
US Notice of Allowance, dated Jul. 25, 2011, issued in U.S. Appl. No. 12/363,330.
US Notice of Allowance, dated Jun. 17, 2015, issued in U.S. Appl. No. 13/862,048.
US Notice of Allowance, dated Jun. 2, 2015, issued in U.S. Appl. No. 14/173,733.
US Notice of Allowance, dated Jun. 30, 2011, issued in U.S. Appl. No. 12/538,770.
US Notice of Allowance, dated Jun. 7, 2013, issued in U.S. Appl. No. 12/202,126.
US Notice of Allowance, dated Mar. 12, 2003, issued in U.S. Appl. No. 09/975,074.
US Notice of Allowance, dated Mar. 2, 2010, issued in U.S. Appl. No. 11/349,035.
US Notice of Allowance, dated Mar. 2, 2012, issued in U.S. Appl. No. 12/556,490.
US Notice of Allowance, dated Mar. 2, 2015, issued in U.S. Appl. No. 13/633,502.
US Notice of Allowance, dated Mar. 24, 2017, issued in U.S. Appl. No. 13/851,885.
US Notice of Allowance, dated May 23, 2014, issued in U.S. Appl. No. 13/633,798.
US Notice of Allowance, dated May 4, 2009, issued in U.S. Appl. No. 11/265,531.
US Notice of Allowance, dated May 4, 2017, issued in U.S. Appl. No. 14/723,275.
US Notice of Allowance, dated Nov. 17, 2009, issued in U.S. Appl. No. 11/305,368.
US Notice of Allowance, dated Nov. 18, 2016, issued in U.S. Appl. No. 14/723,270.
US Notice of Allowance dated Nov. 29, 2012, issued in U.S. Appl. No. 13/244,016.
US Notice of Allowance, dated Nov. 4, 2014, issued in U.S. Appl. No. 13/560,688.
US Notice of Allowance, dated Oct. 13, 2016, issued in U.S. Appl. No. 14/738,685.
US Notice of Allowance, dated Oct. 25, 2016, issued in U.S. Appl. No. 14/135,375.
US Notice of Allowance, dated Oct. 4, 2012, issued in U.S. Appl. No. 13/276,170.
US Notice of Allowance, dated Oct. 7, 2004, issued in U.S. Appl. No. 10/435,010.
US Notice of Allowance, dated Sep. 14, 2005, issued in U.S. Appl. No. 10/690,492.
US Notice of Allowance, dated Sep. 17, 2009, issued in U.S. Appl. No. 11/782,570.
US Notice of Allowance, dated Sep. 19, 2011, issued in U.S. Appl. No. 12/407,541.
US Notice of Allowance, dated Sep. 2, 2011, issued in U.S. Appl. No. 11/963,698.
US Notice of Allowance, dated Sep. 25, 2015, issued in U.S. Appl. No. 14/502,817.
US Notice of Allowance, dated Sep. 30, 2011, issued in U.S. Appl. No. 12/636,616.
US Notice of Allowance dated Sep. 4, 2013 issued in U.S. Appl. No. 12/755,259.
US Notice of Allowance, dated Sep. 6, 2019, issued in U.S. Appl. No. 15/958,662.
US Notice of Allowance, dated Sep. 9, 2015, issued in U.S. Appl. No. 14/097,160.
US Notice of Allowance (Supplemental Notice of Allowability), dated Apr. 16, 2015, issued in U.S. Appl. No. 13/633,502.
US Office Action, dated Apr. 16, 2012, issued in U.S. Appl. No. 13/276,170.
US Office Action, dated Apr. 17, 2006, issued in U.S. Appl. No. 10/815,560.
US Office Action, dated Apr. 19, 2012, issued in U.S. Appl. No. 12/829,119.
US Office Action, dated Apr. 3, 2009, issued in U.S. Appl. No. 11/305,368.
US Office Action, dated Apr. 4, 2019, issued in U.S. Appl. No. 15/958,662.
US Office Action, dated Apr. 7, 2014, issued in U.S. Appl. No. 13/633,502.
US Office Action, dated Aug. 21, 2008, issued in U.S. Appl. No. 11/265,531.
US Office Action, dated Aug. 5, 2009, issued in U.S. Appl. No. 11/951,236.
US Office Action, dated Aug. 6, 2012, issued in U.S. Appl. No. 13/095,734.
US Office Action, dated Dec. 11, 2014, issued in U.S. Appl. No. 14/173,733.
US Office Action dated Dec. 18, 2012, issued in U.S. Appl. No. 12/723,532.
US Office Action, dated Dec. 18, 2014, issued in U.S. Appl. No. 14/097,160.
US Office Action, dated Dec. 18, 2014, issued in U.S. Appl. No. 14/502,817.
US Office Action, dated Dec. 23, 2014, issued in U.S. Appl. No. 13/851,885.
US Office Action, dated Dec. 30, 2005, issued in U.S. Appl. No. 10/649,351.
US Office Action, dated Feb. 1, 2016, issued in U.S. Appl. No. 14/723,275.
US Office Action, dated Feb. 15, 2013, issued in U.S. Appl. No. 12/755,248.
US Office Action, dated Feb. 16, 2012, issued in U.S. Appl. No. 12/755,259.
US Office Action, dated Feb. 24, 2014, issued in U.S. Appl. No. 13/020,748.
US Office Action, dated Feb. 8, 2005, issued in U.S. Appl. No. 10/649,351.
US Office Action, dated Jan. 12, 2016, issued in U.S. Appl. No. 14/738,685.
US Office Action, dated Jan. 21, 2016, issued in U.S. Appl. No. 14/135,375.
US Office Action, dated Jan. 25, 2011, issued in U.S. Appl. No. 12/636,616.
US Office Action, dated Jan. 7, 2013, issued in U.S. Appl. No. 12/202,126.
US Office Action, dated Jul. 12, 2005, issued in U.S. Appl. No. 10/815,560.
US Office Action, dated Jul. 12, 2016, issued in U.S. Appl. No. 14/723,270.
US Office Action, dated Jul. 17, 2002, issued in U.S. Appl. No. 09/975,074.
US Office Action dated Jul. 18, 2013, issued in U.S. Appl. No. 12/723,532.
US Office Action, dated Jul. 20, 2017, issued in U.S. Appl. No. 15/398,462.
US Office Action, dated Jul. 26, 2010 issued in Application No. 12/202, 126.
US Office Action, dated Jul. 28, 2016, issued in U.S. Appl. No. 14/723,275.
US Office Action, dated Jul. 7, 2016, issued in U.S. Appl. No. 14/989,444.
US Office Action, dated Jun. 11, 2009, issued in U.S. Appl. No. 11/963,698.
US Office Action, dated Jun. 11, 2010, issued in U.S. Appl. No. 11/963,698.
US Office Action, dated Jun. 14, 2011, issued in U.S. Appl. No. 12/556,490.
US Office Action, dated Jun. 14, 2013, issued in U.S. Appl. No. 13/633,798.
US Office Action, dated Jun. 20, 2013, issued in U.S. Appl. No. 13/560,688.
US Office Action, dated Jun. 22, 2004, issued in U.S. Appl. No. 10/435,010.
US Office Action, dated Jun. 24, 2009, issued in U.S. Appl. No. 12/030,645.
US Office Action, dated Jun. 27, 2008, issued in U.S. Appl. No. 11/305,368.
US Office Action, dated Jun. 30, 2011, issued in U.S. Appl. No. 12/829,119.
US Office Action, dated Jun. 4, 2009, issued in U.S. Appl. No. 11/349,035.
US Office Action, dated Mar. 23, 2005, issued in U.S. Appl. No. 10/690,492.
US Office Action, dated Mar. 6, 2012, issued in U.S. Appl. No. 13/244,016.
US Office Action, dated May 10, 2012, issued in U.S. Appl. No. 13/020,748.
US Office Action, dated May 13, 2011, issued in U.S. Appl. No. 12/755,248.
US Office Action, dated May 2, 2011, issued in U.S. Appl. No. 12/407,541.
US Office Action, dated May 29, 2015, issued in U.S. Appl. No. 13/949,092.
US Office Action, dated May 3, 2010, issued in U.S. Appl. No. 12/407,541.
US Office Action, dated May 30, 2014, issued in U.S. Appl. No. 13/862,048.
US Office Action, dated May 6, 2015, issued in U.S. Appl. No. 14/135,375.
US Office Action, dated Nov. 23, 2005, issued in U.S. Appl. No. 10/984,126.
US Office Action, dated Nov. 23, 2010, issued in U.S. Appl. No. 12/538,770.
US Office Action, dated Oct. 16, 2008, issued in U.S. Appl. No. 11/349,035.
US Office Action dated Oct. 21, 2009, issued in U.S. Appl. No. 12/202,126.
US Office Action, dated Oct. 24, 2018, issued in U.S. Appl. No. 15/415,800.
US Office Action, dated Oct. 28, 2011, issued in U.S. Appl. No. 12/755,248.
US Office Action, dated Sep. 11, 2017, issued in U.S. Appl. No. 14/965,806.
US Office Action, dated Sep. 18, 2014, issued in U.S. Appl. No. 13/928,216.
US Office Action, dated Sep. 19, 2016, issued in U.S. Appl. No. 13/949,092.
US Office Action, dated Sep. 2, 2016, issued in U.S. Appl. No. 14/965,806.
US Office Action, dated Sep. 28, 2006, issued in U.S. Appl. No. 10/815,560.
US Office Action, dated Sep. 29, 2008, issued in U.S. Appl. No. 11/782,570.
US Office Action Restriction/Election dated Sep. 9, 2021 issued in U.S. Appl. No. 17/250,014.
U.S. Appl. No. 13/758,928, Inventors Humayun et al., filed Feb. 4, 2013.
U.S. Appl. No. 17/601,918, Inventors Bowes et al., filed Oct. 6, 2021.
Wikipedia “Atomic layer deposition” [webpage] Mar. 25, 2020, pp. 1-9. retrieved from, URL: https://ja.wikipedia.org/w/index.php?title=Atomic Layer Deposition & oldid = 76757564.
Anonymous, “Lam Research enables next-generation memory with industry's first ALD process for low-fluorine tungsten fill” Semiconductor Digest News and Industry Trends for Solid State Technology, Aug. 2016, 2 Pages.
CN Office Action dated Feb. 14, 2023 in Application No. CN202080037670.4 with English translation.
CN Office Action dated Mar. 30, 2023, in Application No. CN202080027971.9 with English translation.
CN Office Action dated Oct. 11, 2022, in Application No. CN201910418672.7 with English translation.
Coventor Brochure “3D NAND: Challenges Beyond 96-Layer Memory Arrays”, Oct. 12, 2018, pp. 1-4.
Dominique, S. et al., “An alternative to Tungsten in 3D-NAND technology”, IEEE International Interconnect Technology Conference (IITC), 2021, pp. 1-3.
International Preliminary Report on Patentability and written opinion dated Sep. 15, 2022, in PCT Application No. PCT/US2021/020748.
International Preliminary Report on Patentability dated Dec. 2, 2021, issued in PCT/US2020/033461.
International Preliminary Report on Patentability dated Feb. 9, 2023 in PCT Application No. PCT/US2020/070325.
International Preliminary Report on Patentability dated Feb. 24, 2022 in PCT Application No. PCT/US2020/070394.
International Search Report and Written Opinion dated Apr. 27, 2021 in PCT Application No. PCT/US2020/070325.
International Search Report and Written Opinion dated Jun. 18, 2021, in PCT Application No. PCT/US2021/020748.
International Search Report and Written Opinion dated Nov. 27, 2020, in PCT Application No. PCT/US2020/070394.
International Search Report and Written Opinion dated Sep. 4, 2020 in PCT Application No. PCT/US2020/033461.
Japanese Office Action dated Feb. 14, 2023 issued in Application No. JP2020-508312 with English translation.
JP Office Action dated Jul. 19, 2022, in Application No. JP2020-508312 with English translation.
JP Office Action dated Jun. 6, 2023 in Application No. JP2020561743 With English translation.
JP Office Action dated May 31, 2022, in Application No. JP2016-104837 with English translation.
Kim, K et al., “Simulation of Residual Stress and Its Impact on a Poly-Silicon Channel for Three-Dimensional, Stacked, Vertical-NAND Flash Memories”, Journal of the Korean Physical Society, 2017, vol. 70 (12), pp. 1041-1048.
KR Office Action dated Apr. 19, 2022, in application No. KR20140184759 with English Translation.
KR Office Action dated Dec. 1, 2022, in Application No. KR10-2022-0088685 with English translation.
KR Office Action dated Dec. 6, 2022, in Application No. KR10-2022-0106634 with English translation.
KR Office Action dated Feb. 11, 2023 in Application No. KR10-2016-0064757 with English translation.
KR Office Action dated Feb. 16, 2022, in Application No. KR1020160064157 with English translation.
KR Office Action dated Jun. 23, 2022, in Application No. KR10-2022-0015236 with English translation.
KR Office action dated May 25, 2022, in Application No. KR20210063953 with English Translation.
Lee, B et al., “ALD Tungsten Solves Capacity Challenges in 3D NAND Device Manufacturing”, Lam Brochure, Jan. 2019, pp. 1-4.
TW Office Action dated Feb. 21, 2022, in Application No. TW107128141 with English translation.
U.S. Corrected Notice of Allowance dated May 5, 2022 in U.S. Appl. No. 16/638,430.
U.S. Non Final Office Action dated Mar. 16, 2023 in U.S. Appl. No. 17/312,594.
U.S. Notice of Allowance dated Jun. 7, 2022 in U.S. Appl. No. 17/250,014.
U.S. Notice of Allowance dated Sep. 16, 2022 in U.S. Appl. No. 17/250,014.
U.S. Appl. No. 17/907,959, inventors Birru et al., filed Aug. 29, 2022.
U.S. Appl. No. 18/003,137, inventors Schloss et al., filed Dec. 22, 2022.
U.S. Supplemental Notice of Allowance dated Dec. 14, 2022 in U.S. Appl. No. 17/250,014.
CN office action dated Jul. 26, 2023, in application No. CN202080037670.4 with English Translation.
CN Office Action dated Jun. 27, 2023, in Application No. CN201910418672.7 with English translation.
CN Office Action dated Mar. 10, 2023, in Application No. CN201880059689.1 with English translation.
International Search Report and Written Opinion dated Aug. 16, 2023, in Application No. PCT/US2023/017635.
JP Office Action dated Sep. 5, 2023, in Application No. JP2020-508312 with English translation.
Korean First Office Action dated Oct. 21, 2019 issued in Application No. KR 10-2013- 0108151 with English translation.
KR Office Action dated Aug. 22, 2023, in Application No. KR10-2022-0088685 with English translation.
KR Office Action dated Jul. 31, 2023, in Application No. KR10-2020-7007526 with English translation.
Mingxia L., et al., “Template-induced W Formation and Size Effect of Residual Stress and Resistivity in W Films,” Wanfang Data Knowledge Service Platform, 2007, pp. 328-334.
SG Office Action dated Jul. 24, 2023, in application No. SG11202111277U.
SG Written Opinion dated Sep. 1, 2023 in Application No. SG11202201293W.
TW Office Action dated May 23, 2023 in Application No. TW111140395 with English Translation.
U.S. Final Office Action dated Sep. 25, 2023, in U.S. Appl. No. 17/312,594.
U.S. Non-Final Office Action dated Sep. 14, 2023, in U.S. Appl. No. 17/601,918.
U.S. Restriction requirement dated Jun. 15, 2023 in U.S. Appl. No. 17/601,918.
CN Office Action dated Nov. 17, 2023 in CN Application No. 202080057266.3, with English Translation.
CN Office Action dated Feb. 18, 2024 in CN Application No. 201880059689.1, with English Translation.
CN Office Action dated Jan. 9, 2024 in CN Application No. 201910418672.7 with English Translation.
CN Office Action dated Jan. 26, 2024 in CN Application No. 202080027971.9, with English Translation.
CN Office Action dated Oct. 7, 2023, in Application No. CN201880059689.1 with English translation.
CN Office Action dated Oct. 11, 2023, in application No. CN202110914064.2 with Englishtranslation.
JP Office Action dated Jan. 30, 2024 in JP Application No. JP2021-533642, with English Translation.
KR Final Office Action dated Oct. 31, 2023 in KR Application No. KR10-2016-0064757, with English Translation.
KR Office Action dated Mar. 11, 2024 in KR Application No. 10-2020-7007526.
U.S. Notice of Allowance dated Dec. 19, 2023 in U.S. Appl. No. 17/312,594.
U.S. Notice of Allowance dated Jan. 2, 2024 in U.S. Appl. No. 17/312,594.
U.S. Notice of Allowance dated Jan. 23, 2024 in U.S. Appl. No. 17/601,918.
U.S. Notice of Allowance dated Jan. 31, 2024 in U.S. Appl. No. 17/601,918.
U.S. Restriction Requirement dated Jun. 17, 2016 in U.S. Appl. No. 14/965,806.
JP Office Action dated Mar. 19, 2024 in JP Application No. 2020-561743, with English Translation.
KR Office Action dated Mar. 11, 2024 in KR Application No. 10-2020-7007526 with English translation.
U.S. Notice of Allowance dated Mar. 27, 2024 in U.S. Appl. No. 17/312,594.
U.S. Appl. No. 18/612,005, inventors Deng R, et al., filed on Mar. 21, 2024.
Related Publications (1)
Number Date Country
20220364232 A1 Nov 2022 US