1. Field of the Invention
This invention relates to a vapor phase growth apparatus allowing vapor phase growth of a silicon single crystal film on the main surface of a silicon single crystal substrate to proceed therein, and a method of fabricating an epitaxial wafer realized using the same.
2. Description of the Related Art
Silicon epitaxial wafer having a silicon single crystal film (simply referred to as “film”, hereinafter) grown in vapor phase on the main surface of a silicon single crystal substrate (simply referred to as “substrate”, hereinafter) is widely used for electronic devices such as bipolar IC, MOS-IC and so forth. With advancement in micronization of the electronic devices, requirement for flatness of the main surface of the epitaxial wafer in which the devices are fabricated has been becoming more stringent. Causal factors affecting the flatness include flatness of the substrate and distribution of the film thickness. In recent years, single-wafer-type vapor phase growth apparatus has become a mainstream in fabrication of epitaxial wafers having a diameter of 200 mm or more, in place of batch processing of a plurality of wafers. The apparatus holds a single substrate in a horizontally rotating manner in a reaction vessel, while allowing a source gas to flow from one end to the other end of the reaction vessel in a horizontal and unidirectional manner, to thereby proceed vapor phase growth of the film.
One important factor in view of making the resultant film thickness uniform in the above-described, single-wafer-type vapor phase growth apparatus is flow rate, or flow route of the source gas in the reaction vessel. The single-wafer-type vapor phase growth apparatus is generally configured as introducing the source gas through a gas supply duct and through a gas introducing port formed on one end of the reaction vessel, allowing the source gas to flow along the surface of a substrate, and discharging the source gas through a discharging port on the other end of the vessel. In order to reduce non-uniformity in the flow rate in thus-configured vapor phase growth apparatus, proposals have been made on an apparatus having a dispersion plate with a large number of throughholes formed therein disposed on the downstream side of the gas introducing port, and an apparatus having disposed therein a partition plate partitioning the gas flow in the width-wise direction.
Japanese Laid-Open Patent Publication “Tokkaihei” No. 7-193015 discloses a configuration of an apparatus allowing source gas supplied through a gas introducing port to flow towards an outer peripheral surface of a bank component disposed around a susceptor holding a substrate, so as to supply the source gas onto the surface of the substrate after climbing up the bank component. A basic concept of this method is to diffuse the source gas by allowing the flow thereof to collide against the outer peripheral surface of the bank component, to thereby resolve non-uniformity in the flow rate. Another proposal has been made on this sort of vapor phase growth apparatus having the bank component improved so as to allow the source gas to flow more smoothly towards the susceptor (Japanese Laid-Open Patent Publication “Tokkai” No. 2002-231641). Still another proposal has been made on the vapor phase growth apparatus improved so as to intentionally make variation in the flow of the source gas on both sides of the susceptor (Japanese Laid-Open Patent Publication “Tokkai” No. 2002-198316).
Typical known problems in the vapor phase epitaxial growth of the silicon single crystal film on the silicon single crystal substrate include deformation of a pattern. Several factors affecting the pattern deformation have been known, wherein the degree of pattern deformation can be reduced generally by lowering pressure in the reaction vessel so as to increase a diffusion coefficient of HCl gas produced on the surface of the substrate, to thereby depress the etching action by the HCl gas. For this reason, a reduced pressure condition is preferably applicable to vapor phase growth on the silicon single crystal substrate having patterns already formed thereon.
Epitaxial growth under a reduced pressure condition using the apparatus such as described in the aforementioned Japanese Laid-Open Patent Publication “Tokkaihei” No. 7-193015 may, however, sometimes encounters a difficulty in obtaining a desired distribution of film thickness.
It is therefore an object of this invention to provide a vapor phase growth apparatus capable of controlling the flow route of the source gas flowing over the silicon single crystal substrate in order to ensure a desirable distribution of film thickness, and a method of fabricating an epitaxial wafer using the same.
Patent Document 1: Japanese Laid-Open Patent Publication “Tokkaihei” No. 7-193015;
Patent Document 2: Japanese Laid-Open Patent Publication “Tokkai” No. 2002-231641; and
Patent Document 3: Japanese Laid-Open Patent Publication “Tokkai” No. 2002-198316.
This invention was conceived aiming at solving the above-described problems so as to provide a vapor phase growth apparatus allowing vapor phase growth of a silicon single crystal film on the main surface of a silicon single crystal substrate to proceed therein, wherein the principal features reside in having a reaction vessel having a gas introducing port formed on a first end side in the horizontal direction, and having a gas discharging port on a second end side in the same direction, configured as allowing a source gas for forming the silicon single crystal film to be introduced through the gas introducing port into the reaction vessel, and to flow along the main surface of the silicon single crystal substrate held in a near-horizontally rotating manner in the inner space of the reaction vessel, and to be discharged through the gas discharging port, the silicon single crystal substrate being disposed on a disc-formed susceptor rotated in the inner space, and having a bank component disposed so as to surround the susceptor, and kept in a positional relation so as to align the top surface thereof at an almost same level with the top surface of the susceptor, and further configured so that the gas introducing port is opened so as to oppose to a outer peripheral surface of the bank component, so as to allow the source gas supplied through the gas introducing port to collide against the outer peripheral surface of the bank component and to climb up onto the top surface side thereof, and then to flow along the main surface of the silicon single crystal substrate on the susceptor, wherein, assuming a virtual center line along the direction of flow of the source gas, extending from the first end of the reaction vessel towards the second end, while crossing normal to the axis of rotation of the susceptor, as the horizontal standard line, and also assuming the direction normal to both of the axis of rotation of the susceptor and the horizontal standard line as the width-wise direction, a guide component dividing the flow of the source gas in the width-wise direction is disposed on the top surface of the bank component.
In the vapor phase growth apparatus of this invention, the guide component for the source gas is disposed on the top surface of the bank component. The source gas climbing up onto the top surface of the bank component is largely limited in the flow thereof in the width-wise direction by the guide component. Because the flow route in the width-wise direction of the source gas flowing over the substrate placed just downstream of the bank component can thus be controlled by partitioning the flow of the source gas directed towards the susceptor in the width-wise direction on the top surface of the bank component, it is made possible to obtain a silicon single crystal film having a more uniform distribution of the film thickness.
In one preferred embodiment, the guide component is configured so as to prevent the source gas from approaching the horizontal standard line. Because the bank component is formed with a cylindrical geometry so as to surround the disk-formed susceptor, the source gas colliding against the outer peripheral surface of the bank component and climbing up onto the top surface thereof tends to flow as being attracted towards the center of the substrate, or as approaching the horizontal standard line. Prevention or suppression of the source gas from approaching the horizontal standard line with the aid of the guide component in this invention is therefore successful in improving the flow route of the source gas.
More specifically, the guide component can be configured by a guide plate dividing the flow of the source gas into sides closer to, and more distant from the horizontal standard line. By adjusting modes of disposition (location of disposition, direction of disposition, the number of plates, thickness of the guide plate, and so forth) of the guide plate, the source gas can be controlled in a relatively easy manner so as to maximize the effect of controlling the direction of flow thereof.
The guide plate is preferably disposed so as to align the plate surface thereof in parallel with the axis of rotation of the susceptor and with the horizontal standard line. Such placement of the guide plate, not strongly obstructing the direction of flow of the source gas, is less likely to cause disturbance in the gas flow, so that it becomes easy to make the flow route of the source gas climbing up onto the top surface of the bank component uniform.
It is also preferable that a gas introducing component, introducing the source gas supplied through the gas introducing port towards the outer peripheral surface of the bank component, is disposed between the gas introducing port and the bank component as being symmetrically distributed with respect to the horizontal standard line in the width-wise direction, the gas introducing component having, in each of gas introducing spaces formed inside thereof, a gas-introducing-component-side partition plate partitioning the flow of the source gas in the width-wise direction, and having, on the outer peripheral surface of the bank component, a bank-component-side partition plate, partitioning the flow of the source gas into a plurality of streams in the width-wise direction, disposed as being symmetrically distributed with respect to the horizontal standard line. This configuration can make control of the flows in the width-wise direction also for the source gas flowing on the upstream side of the bank component and the source gas flowing likely to climb up onto the bank component, so that a synergistic effect as being combined with the guide plate disposed on the top surface of the bank component is expectable.
More specifically, an exemplary mode of embodiment can be given as that the guide plate is disposed outside the locations of the bank-component-side partition plate and the gas-introducing-component- side partition plate disposed, in the width-wise direction. The source gas flowing more further in the outer region in the width-wise direction tends to reach the susceptor, after being largely deflected in the direction of flow thereof towards the center of the substrate, or the horizontal standard line. Formation of the guide plate of this invention in the outer region is therefore successful in making the flow route uniform in an efficient manner.
More preferably, the guide plate is configured as having a first guide plate disposed on the same plane with the bank-component-side partition plate and the gas-introducing-component-side partition plate, and a second guide plate disposed outside the location of the first guide plate disposed in the width-wise direction. This configuration is successful in further exactly controlling the flow of the source gas in the width-wise direction.
It is also allowable for the vapor phase growth apparatus of this invention to be provided with an evacuation system keeping the inner space of the reaction vessel under a reduced pressure lower than the atmospheric pressure. This configuration allows epitaxial growth under a reduced pressure condition contributive to reduction in the degree of pattern deformation, when it is desired to proceed the vapor phase growth on a substrate having patterns already formed thereon.
A method of fabricating an epitaxial wafer of this invention is characterized in disposing the silicon single crystal substrate in the reaction vessel of the above-described vapor phase growth apparatus, and in allowing the source gas to flow in the reaction vessel so as to epitaxially grow the silicon single crystal film on the silicon single crystal substrate in a vapor phase, to thereby obtain an epitaxial wafer.
The silicon single crystal film can epitaxially be grown on the silicon single crystal substrate in vapor phase, by using any one gas selected from the group consisting of monochlorosilane gas, dichlorosilane gas and trichlorosilane gas as the source gas for the vapor phase epitaxial growth, while keeping the inner space of the reaction vessel under a reduced pressure lower than the atmospheric pressure.
Although the foregoing paragraph has described that the bank component is disposed as being kept in a positional relation so as to align the top surface thereof at an almost same level with the top surface of the susceptor, this does not always mean that the top surface of the bank component and the top surface of the susceptor are aligned perfectly at the same level, but allowing instead that positional difference up to 2 mm or around is understood as the same level.
Paragraphs below will explain best modes for carrying out this invention, referring to the attached drawings.
FIGS. 1 to 4 schematically show an exemplary vapor phase growth apparatus 1 of this invention, allowing vapor phase growth of a silicon single crystal film on the main surface of a silicon single crystal substrate to proceed therein.
As shown in
In the internal space 5 of the reaction vessel 2, a bank component 23 is disposed so as to surround the susceptor 12, as shown in
In the vapor phase growth apparatus 1, as shown in
On the top surface 23a of the bank component 23, guide plates 40R, 40L, 41 R and 41 L are disposed as shown in
In this embodiment, each of the guide plates 40R, 40L, 41R and 41L is adjusted in size so that the upper edge thereof extends towards, and contacts with a lower surface 4a (also referred as a first surface 4a hereinafter) of the upper lining component 4 (see
It is also allowable to fix the guide plates on the upper lining component 4 side. More specifically, as shown in
Each of the guide plates 40R, 40L, 41R and 41L is disposed so as to divide the flow of the source gas G on the top surface 23a of the bank component 23 into the sides closer to, and more distant from the horizontal standard line HSL. In the embodiment shown in
As shown in
On the other hand, on the outer peripheral surface 23b of the bank component 23, as shown in
As shown in
As shown in
As known from
The bank-component-side partition plates 35R, 35L herein may be fabricated as being integrated with the guide plates 40R, 40L. More specifically, as shown in
The bank component 23 herein has a bow-formed notched portion 23k, as shown in
As shown in
Paragraphs below will describe a method of fabricating an epitaxial wafer using the above-described vapor phase growth apparatus 1. As shown in FIGS. 1 to 4, the substrate W is placed on the susceptor 12 in the reaction vessel 2, subjected to a pretreatment such as removal of a native oxide film if necessary, and heated under rotation to a predetermined reaction temperature using the infrared heating lamps 11. While keeping the condition unchanged, the source gas G is allowed to flow through the individual gas introducing ports 21A, 21B into the reaction vessel 2 at a predetermined flow rate, so as to proceed epitaxial growth of a silicon single crystal film on the substrate W, to thereby obtain an epitaxial wafer.
The source gas G is used for the vapor phase growth of the silicon single crystal film on the substrate W, and is selected from silicon compounds such as SiHCl3, SiCl4, SiH2Cl2, SiH4 and so forth. The source gas G is appropriately compounded with B2H6 or PH3 as a dopant gas, or with H2 as a dilution gas. For the case where the native oxide is removed in advance of the vapor phase growth of the film, a pretreatment gas prepared by diluting a corrosive gas such as HCl with a dilution gas is supplied into the reaction vessel 2, or the substrate W is subjected to high-temperature annealing in a H2 atmosphere.
Operations expectable during the flow of the source gas G in the reaction vessel 2 will be explained below. As indicated by the dashed line with an arrow head in the plan view of
When the flow velocity of the source gas G is not so large, the gas after climbing over the bank component 230 is once directed towards the center of the substrate, but immediately changes the direction of the flow to the downstream direction, due to an elevated pressure in the vicinity of the horizontal standard line HSL where the streams concentrate. Therefore, the event that the source gas G after climbing over the bank component 230 is once directed towards the center of the substrate will be of no critical issue, when the flow velocity of the source gas G is not so large. On the contrary, when the flow velocity of the source gas G is large, the momentum of the gas is large, thus the streams will not change their directions to the downstream direction up to positions showing the pressure in the vicinity of the horizontal standard line HSL, where the streams concentrate, elevated enough. In other words, the travel path towards the center of the substrate grows longer. As a consequence, the event that the source gas G after climbing over the bank component 230 is once directed towards the center of the substrate will result in a larger effect, when the flow velocity of the source gas G is large.
In the epitaxial growth of the silicon single crystal film in the reaction vessel having a pressure conditioned lower than the atmospheric pressure (so-called, reduced-pressure epitaxial growth), the flow velocity of the source gas G flowing through the reaction vessel is several times faster than in the normal-pressure epitaxial growth. Therefore, in particular in the reduced-pressure epitaxial growth, the event that the source gas G after climbing over the bank component 230 is once directed towards the center of the substrate becomes not negligible.
In contrast to this, the vapor phase growth apparatus 1 of this invention has the guide plates 40R, 40L, 41R, 41L, partitioning the flow of the source gas G in the width-wise direction, disposed on the top surface 23a of the bank component 23. The source gas G can therefore flow onto the susceptor 12 in a near-straightforward manner, as being controlled in the flow thereof in the width-wise direction WL even after climbing up the bank component 23, as shown in
Experimental Cases
(Computer Simulation Experiments)
A flow route of the source gas in the vapor phase growth apparatus 1 as shown in FIGS. 1 to 4 was found by computer simulation. For the comparative purpose, also a flow route of the source gas in a conventional vapor phase growth apparatus having no guide plates 40R, 40L, 41R, 41L was found. A growth rate distribution of the silicon single crystal film when it is epitaxially grown on the silicon single crystal substrate W in the vapor phase growth apparatus shown in FIGS. 1 to 4 was estimated by computer simulation. For the comparative purpose, also a growth rate distribution of the silicon single crystal film when it is epitaxially grown on the silicon single crystal substrate in the conventional vapor phase growth apparatus having no guide plates 40R, 40L, 41R, 41L was estimated. Set conditions were as listed below.
Software: Fluent Ver 6.0 (product of Fluent Asia Pacific Co., Ltd.)
(Dimensions)
First as seen in
The contour maps of the growth rate distribution as seen next in
Number | Date | Country | Kind |
---|---|---|---|
2003-419202 | Dec 2003 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP04/17192 | 11/18/2004 | WO | 6/14/2006 |