Field of the Invention
The invention relates to a vertical semiconductor component having a semiconductor body of one conductivity type, in whose surface region at least one zone of another conductivity type, opposite to the one conductivity type, is embedded. The semiconductor component further has regions of the other conductivity type which are provided in the semiconductor body in a plane running essentially parallel to a surface of the surface region. Semiconductor components of this type may be, in particular, n-channel or p-channel MOSFETs (MOS field-effect transistors), insulated gate bipolar transistors (IGBTs), junction field-effect transistors (JFETs), GTOs or diodes.
A Schottky diode, in whose semiconductor body of one conductivity type, floating regions of the other conductivity type are embedded in order to increase the reverse voltage, is known from U.S. Pat. No. 4,134,123. In addition MOSFETs composed of silicon carbide and having a high breakdown field strength and a low switch-on resistance are known from IEEE Electron Device Letters, Vol. 18, No. 12, December 1997, pages 589 to 591.
It is accordingly an object of the invention to provide a vertical semiconductor component having a reduced electrical surface field that overcomes the above-mentioned disadvantages of the prior art devices of this general type, which is distinguished by a considerable reduction in the electrical surface field while at the same time improving the lateral current distribution and the resistance or pass characteristic.
With the foregoing and other objects in view there is provided, in accordance with the invention, a vertical semiconductor component. The semiconductor component contains a semiconductor body of a first conductivity type and having a surface region with a surface, at least one zone of a second conductivity type, opposite the first conductivity type, and embedded in the surface region of the semiconductor body, and regions formed of the second conductivity type are disposed in the semiconductor body in a plane running substantially parallel to the surface of the surface region. The regions are sufficiently highly doped that they cannot be depleted of charge carriers when a voltage is applied in a reverse direction and in a forward direction of a pn junction formed by the semiconductor body and the zone.
In a vertical semiconductor component of the type mentioned initially, the object is achieved according to the invention in that the regions are sufficiently highly doped that they cannot be depleted of charge carriers when a voltage is applied in the reverse direction and in the forward direction of the pn junction formed by the semiconductor body with the zone of the second conductivity type. The regions may in this case be floating, or some or all of them may be at a fixed potential.
The incorporation of the preferably floating regions, which cannot be depleted, having dopants with a conductivity type opposite to that of the semiconductor body, that is to say, for example, the incorporation of p-conductive regions in an n-conductive semiconductor body, results in that an effective reduction in the electrical surface field can be achieved. This is particularly advantageous in a semiconductor body composed of silicon carbide since, with this semiconductor material and owing to its very high volume breakdown field strength (approximately 2 MV/cm in comparison to approximately 250 kV/cm for silicon), the surface field needs to be reduced in the area of thermal oxides (silicon dioxide approximately 8 MV/cm) in order to allow the maximum blocking capability of semiconductor components, for example transistors, produced from such bodies to be utilized even with small oxide thicknesses.
A development of the invention provides that the vertical distance between the zone of the second conductivity type and the regions, which are preferably floating, is chosen in such a manner that the vertical line integral between the lower edge of the zone facing away from the surface of the zone of the second conductivity type, and the upper edge of the regions, which are preferably floating, facing toward the zone across the doping of the semiconductor body remains below the specific breakdown charge (charge carriers·cm−2), which is dependent on the material of the semiconductor body. In a semiconductor body composed of silicon, the line integral thus remains less than 2·1012 charge carriers cm−2. Other possible semiconductor materials are, for example, germanium, gallium arsenide, and—as has already been mentioned—silicon carbide, in particular.
The line integral is thus formed at right angles to the pn-junction between the zone of the second conductivity type and the semiconductor body, across the doping in this body. The breakdown charge is in this case linked to the breakdown field strength via Maxwell's 3rd equation {overscore (VE)}=−4πρ(E=electrical field strength; ρ=charge density).
In another development of the invention, the preferably floating regions are in the form of dots, strips or grids. Therefore the majority charge carrier current, for example in the drift path of a vertical power MOSFET, is influenced as little as possible. In a transistor such as this, these regions may possibly also be connected at a number of points to the transistor well, which is at the source potential. This allows a considerable reduction to be achieved in the electrical surface field in the areas located between the respective wells.
The invention allows a considerable increase in the doping concentration “above” the preferably floating regions, that is to say between them and the surface of the semiconductor body. This increase in doping is dependent on a homogeneous current distribution and a reduction in the switch-on resistance. In a semiconductor body composed of silicon carbide, thermal silicon dioxide can be used without any problems for gate insulation, owing to the reduced surface field.
The semiconductor component according to the invention can be produced, for example, by implantation of the preferably floating regions and subsequent deposition of an epitaxy covering layer, or by etching of a trench, implantation and filling with monocrystalline semiconductor material. With the first-mentioned method, it is possible to set the doping level in the covering layer above the preferably floating regions freely, while in the second-mentioned method, the doping must actually be fixed during the production process for the semiconductor body.
Other features which are considered as characteristic for the invention are set forth in the appended claims.
Although the invention is illustrated and described herein as embodied in a vertical semiconductor component having a reduced electrical surface field, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
In all the figures of the drawing, sub-features and integral parts that correspond to one another bear the same reference symbol in each case. Referring now to the figures of the drawing in detail and first, particularly, to
According to the invention, p-conductive regions 8 are provided at a vertical distance from the source zone 5 such that a vertical line integral over the doping of the semiconductor layer 1 remains less than approximately 2·1012 charge carriers cm−2. N-conductive regions are embedded in an appropriate manner in a p-conductive semiconductive body. The regions 8 are in the form of dots, strips or grids and their dimensions are approximately 1-3 μm. The regions 8 can also be connected to the well 4 at a number of points. The regions 8 may also, however, all be floating. The doping concentration in the regions 8 is approximately 1017 charge carriers cm−3 and is sufficiently high that these regions are not depleted of charge carriers when a voltage is applied in a reverse direction and in a forward direction of the pn-junction formed between the well 4 and the semiconductor layer 1.
The regions 8 ensure homogeneous distribution of the current, as is indicated by arrows 9, and result in a reduction in the switch-on resistance.
The reduction in the surface field achieved by the region 8 allows a considerable increase in the doping level in the semiconductor layer 2 above the regions 8, which is advantageous especially in the case of silicon carbide. However, the invention can also be used with other semiconductor materials, as has been explained above.
The semiconductor component according to the invention may be, for example, n-channel or p-channel MOS power transistors, IGBTs, JFETs, GTOs or diodes.
This is a continuation of copending International Application PCT/DE99/02039, filed Jul. 2, 1999, which designated the United States.
Number | Name | Date | Kind |
---|---|---|---|
4134123 | Shannon | Jan 1979 | A |
4654679 | Muraoka | Mar 1987 | A |
4821095 | Temple | Apr 1989 | A |
5218226 | Slatter et al. | Jun 1993 | A |
5438215 | Tihanyi | Aug 1995 | A |
5608244 | Takahashi | Mar 1997 | A |
6091108 | Harris et al. | Jul 2000 | A |
6147381 | Hirler et al. | Nov 2000 | A |
Number | Date | Country |
---|---|---|
197 07 513 | Sep 1998 | DE |
0 426 252 | May 1991 | EP |
353068086 | Jun 1978 | JP |
357037879 | Mar 1982 | JP |
63-186475 | Aug 1988 | JP |
01-093169 | Apr 1989 | JP |
Number | Date | Country | |
---|---|---|---|
20010020732 A1 | Sep 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCTDE99/02039 | Jul 1999 | US |
Child | 09756539 | US |