The present invention relates to wafer processing apparatus, to wafer carriers for use in such processing apparatus, and to methods of wafer processing.
Many semiconductor devices are formed by epitaxial growth of a semiconductor material on a substrate. The substrate typically is a crystalline material in the form of a disc, commonly referred to as a “wafer.” For example, devices formed from compound semiconductors such as III-V semiconductors typically are formed by growing successive layers of the compound semiconductor using metal organic chemical vapor deposition or “MOCVD.” In this process, the wafers are exposed to a combination of gases, typically including a metal organic compound and a source of a group V element which flow over the surface of the wafer while the wafer is maintained at an elevated temperature. One example of a III-V semiconductor is gallium nitride, which can be formed by reaction of an organo-gallium compound and ammonia on a substrate having a suitable crystal lattice spacing, as for example, a sapphire wafer. Typically, the wafer is maintained at a temperature on the order of 500-1200° C. during deposition of gallium nitride and related compounds.
Composite devices can be fabricated by depositing numerous layers in succession on the surface of the wafer under slightly different reaction conditions, as for example, additions of other group III or group V elements to vary the crystal structure and bandgap of the semiconductor. For example, in a gallium nitride based semiconductor, indium, aluminum or both can be used in varying proportion to vary the bandgap of the semiconductor. Also, p-type or n-type dopants can be added to control the conductivity of each layer. After all of the semiconductor layers have been formed and, typically, after appropriate electric contacts have been applied, the wafer is cut into individual devices. Devices such as light-emitting diodes (“LEDs”), lasers, and other electronic and optoelectronic devices can be fabricated in this way.
In a typical chemical vapor deposition process, numerous wafers are held on a device commonly referred to as a wafer carrier so that a top surface of each wafer is exposed at the top surface of the wafer carrier. The wafer carrier is then placed into a reaction chamber and maintained at the desired temperature while the gas mixture flows over the surface of the wafer carrier. It is important to maintain uniform conditions at all points on the top surfaces of the various wafers on the carrier during the process. Minor variations in composition of the reactive gases and in the temperature of the wafer surfaces cause undesired variations in the properties of the resulting semiconductor device. For example, if a gallium and indium nitride layer is deposited, variations in wafer surface temperature will cause variations in the composition and bandgap of the deposited layer. Because indium has a relatively high vapor pressure, the deposited layer will have a lower proportion of indium and a greater bandgap in those regions of the wafer where the surface temperature is higher. If the deposited layer is an active, light-emitting layer of an LED structure, the emission wavelength of the LEDs formed from the wafer will also vary. Thus, considerable effort has been devoted in the art heretofore towards maintaining uniform conditions.
One type of CVD apparatus which has been widely accepted in the industry uses a wafer carrier in the form of a large disc with numerous wafer-holding regions, each adapted to hold one wafer. The wafer carrier is supported on a spindle within the reaction chamber so that the top surface of the wafer carrier having the exposed surfaces of the wafers faces upwardly toward a gas distribution element. While the spindle is rotated, the gas is directed downwardly onto the top surface of the wafer carrier and flows across the top surface toward the periphery of the wafer carrier. The used gas is evacuated from the reaction chamber through ports disposed below the wafer carrier. The wafer carrier is maintained at the desired elevated temperature by heating elements, typically electrical resistive heating elements disposed below the bottom surface of the wafer carrier. These heating elements are maintained at a temperature above the desired temperature of the wafer surfaces, whereas the gas distribution element and the walls of the chamber typically are maintained at a temperature well below the desired reaction temperature so as to prevent premature reaction of the gases. Therefore, heat is transferred from the resistive heating element to the bottom surface of the wafer carrier and flows upwardly through the wafer carrier to the individual wafers. Heat is transferred from the wafers and wafer carrier to the gas distribution element and to the walls of the chamber.
Although considerable effort has been devoted in the art heretofore to design an optimization of such systems, still further improvement would be desirable. In particular, it would be desirable to provide better uniformity of temperature across the surface of each wafer, and better temperature uniformity across the entire wafer carrier.
One aspect of the present invention provides a wafer carrier comprising a body having oppositely-facing top and bottom surfaces extending in horizontal directions and a plurality of pockets open to the top surface, each such pocket being adapted to hold a wafer with a top surface of the wafer exposed at the top surface of the body, the carrier defining a vertical direction perpendicular to the horizontal directions. The wafer carrier body desirably includes one or more thermal control features such as trenches, pockets, or other cavities within the carrier body.
In one type of embodiment, a thermal control feature is buried within the body of the wafer carrier. In another type of embodiment, a combination of buried and non-buried (i.e., exposed), thermal control features is utilized. In a further embodiment, the thermal control features form a channel that permits the flow of process atmosphere.
In another embodiment, the thermal control features are specifically situated beneath the regions of the wafer carrier that are between the wafer pockets. These thermal control features limit the heat flow to the surface of these regions, thereby keeping those surface portions relatively cooler. In one type of embodiment, the surface temperature of the regions between the pockets is maintained at approximately the temperature of the wafers, thereby avoiding historic flow heating effects.
In another embodiment, a wafer carrier is provided with a through hole beneath the wafer that facilitates direct heating of the wafer. In one such embodiment, the wafer is supported by a heat-isolating support ring. In a related embodiment, the through-hole has an undercut that creates a larger opening at the bottom surface than at the top surface of the wafer carrier. Still further aspects of the invention include wafer processing apparatus incorporating the wafer carriers as discussed above, and methods of processing wafers using such carriers.
The above summary is not intended to describe each illustrated embodiment or every implementation of the subject matter hereof. The figures and the detailed description that follow more particularly exemplify various embodiments.
The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:
While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the character and scope of the invention as defined by the appended claims.
Chemical vapor deposition apparatus in accordance with one embodiment of the invention includes a reaction chamber 10 having a gas distribution element 12 arranged at one end of the chamber. The end having the gas distribution element 12 is referred to herein as the “top” end of the chamber 10. This end of the chamber typically, but not necessarily, is disposed at the top of the chamber in the normal gravitational frame of reference. Thus, the downward direction as used herein refers to the direction away from the gas distribution element 12 and the upward direction refers to the direction within the chamber, toward the gas distribution element 12, regardless of whether these directions are aligned with the gravitational upward and downward directions. Similarly, the “top” and “bottom” surfaces of elements are described herein with reference to the frame of reference of chamber 10 and element 12.
Gas distribution element 12 is connected to sources 14 of gases to be used in the CVD process, such as a carrier gas and reactant gases such as a source of a group III metal, typically a metalorganic compound, and a source of a group V element as, for example, ammonia or other group V hydride. The gas distribution element is arranged to receive the various gases and direct a flow of gasses generally in the downward direction. The gas distribution element 12 desirably is also connected to a coolant system 16 arranged to circulate a liquid through the gas distribution element so as to maintain the temperature of the element at a desired temperature during operation. The coolant system 16 is also arranged to circulate liquid through the wall of chamber 10 so as to maintain the wall at a desired temperature. Chamber 10 is also equipped with an exhaust system 18 arranged to remove spent gases from the interior of the chamber through ports (not shown) at or near the bottom of the chamber so as to permit continuous flow of gas in the downward direction from the gas distribution element.
A spindle 20 is arranged within the chamber so that the central axis 22 of the spindle extends in the upward and downward directions. The spindle has a fitting 24 at its top end, i.e., at the end of the spindle closest to the gas distribution element 12. In the particular embodiment depicted, the fitting 24 is a generally conical element. Spindle 20 is connected to a rotary drive mechanism 26 such as an electric motor drive, which is arranged to rotate the spindle about axis 22. A heating element 28 is mounted within the chamber and surrounds spindle 20 below fitting 24. The chamber is also provided with an openable port 30 for insertion and removal of wafer carriers. The foregoing elements may be of conventional construction. For example, suitable reaction chambers are sold commercially under the registered trademark TURBODISC by Veeco Instruments, Inc. of Plainview, N.Y., USA, assignee of the present application.
In the operative condition depicted in
The body desirably includes a main portion 38 formed as a monolithic slab of a non-metallic refractory first material as, for example, a material selected from the group consisting of silicon carbide, boron nitride, boron carbide, aluminum nitride, alumina, sapphire, quartz, graphite, and combinations thereof, with or without a refractory coating as, for example, a carbide, nitride or oxide.
The body of the wafer carrier has a central region 27 at and near the central axis 25, a pocket or wafer-holding region 29 encircling the central region and a peripheral region 31 encircling the pocket region and defining the periphery of the body. The peripheral region 31 defines a peripheral surface 2 extending between the top surface 34 and bottom surface 36 at the outermost extremity of the body.
The body of the carrier defines a plurality of circular pockets 40 open to the top surface in the pocket region 29. As best seen in
The minor portions 44 are frictionally engaged with the walls of the holes 42. For example, the minor portions may be press-fit into the holes or shrink-fitted by raising the main portion to an elevated temperature and inserting cold minor portions into the holes. Desirably, all of the pockets are of uniform depth. This uniformity can be achieved readily by forming all of the minor portions to a uniform thickness as, for example, by grinding or polishing the minor portions.
There is a thermal barrier 48 between each minor portion 44 and the surrounding material of the main portion 38. The thermal barrier is a region having thermal conductivity that is lower than the thermal conductivity of the bulk material of the main portion. The thermal barrier includes a macroscopic gap 48, as, for example, a gap about 100 microns or more thick, formed by a groove in the wall of the main portion 38 defining the hole 42. This gap contains a gas such as air or the process gasses encountered during operation, and hence has much lower thermal conductivity than the neighboring solid materials.
The abutting surfaces of the minor portions 44 and main portion 38 also define parts of the thermal barrier. Although these surfaces abut one another on a macroscopic scale, neither surface is perfectly smooth. Therefore, there will be microscopic, gas-filled gaps between parts of the abutting surfaces. These gaps will also impede thermal conduction between the minor portion 44 and main portion 38.
In a CVD system, the wafer carrier is predominantly heated by radiation, with the radiant energy impinging on the bottom of the carrier. A cold-wall CVD reactor design (i.e., one that uses non-isothermal heating) creates conditions in the reaction chamber where a top surface of the wafer carrier is cooler than the bottom surface. With reference to
The degree of radiative emission from the wafer carrier is determined by the emissivity of the carrier and the surrounding components. Changing the interior components of the reaction chamber such as the cold-plate, CIF, shutter, and other regions, to a higher emissivity material (i.e. black coating or rougher coatings instead of the current shiny silver portions) can result in increased radiative heat transfer. Likewise, reducing the emissivity of the carrier (whitening or other phenomenon) will result in less radiative heat removal from the carrier. The degree of convective cooling of the carrier surface is driven by the overall gas flow pumping through the chamber, along with the heat capacity of the gas mixture (H2, N2, NH3, OMs, etc.)
Introducing a wafer, such as a sapphire wafer, in a pocket enhances the transverse component of the thermal streamlines, resulting in a “blanketing” effect. For instance, consider a simple case of a single wafer on a carrier. In this case, there are no thermal packing (geometrical) issues resulting from the presence of nearby wafers. Thus, the thermal streamlines take a path of least resistance creating a lateral gradient, as illustrated with the non-parallel arrows in
One practical issue with this construction is that the trenches, exposed on the bottom of the carrier, reduce the structural integrity of the carrier. Thus, in a related embodiment, a multi-piece isolation carrier is provided, whereby a bottom plate is affixed to the bulk wafer carrier portion to provide structural support. For instance, as illustrated in
After the bottom plate 3450 is affixed, it can then be encapsulated along with the rest of the wafer carrier with the SiC coating 3454, thereby creating a stronger, unitary, wafer carrier. This assembled wafer carrier has one or more interior cavities 3456 that is completely buried (i.e., enclosed on all sides by the wafer carrier's body). A variety of interior cavity sizes, shapes, and orientations are contemplated according to various embodiments. For instance, any of the above-described trenches, or thermal barriers, can be buried according to this type of embodiment.
In the case of multi-wafer pocket geometries with non-concentric pocket locations, the thermal profile becomes more complicated, as the convective cooling is dependent upon the historical gas streamline path passing over both the wafer carrier and wafer regions. For high-speed rotating disc reactors, the gas streamlines spiral outward from inner to outer radius in a generally tangential direction. In this case, when the gas streamline is passing over the exposed portion of the wafer carrier (such as the regions 3602 between the wafers), it is heated up relative to the regions where it is passing over the wafers. In general, these regions 3602 are quite hot relative to the other regions of the carrier, as the heat flux streamlines due to the blanketing effect have channeled the streamlines into this region. Thus, the gas paths passing over the webs create a tangential gradient in temperature due to the convective cooling, which is hotter at the leading edge (entry of the fluid streamline to the wafer) relative to the trailing edge (exit of the fluid streamline over the wafer).
In another embodiment, this tangential gradient can be reduced by lowering the wafer carrier surface temperature (within the non-pocket regions 3602) to a temperature closer to that of the growth surface of the wafers. Utilizing the isolation features described above reduces the thermal streamline concentration into the web region.
An isolation cut such as the one illustrated in
In another related embodiment, as depicted in
Accordingly, in one embodiment, as depicted in
In related embodiments, two additional features are provided. The silicon wafer is situated on a thermally-isolating support ring 4202 to limit direct conductive heat transfer to the wafer's edges. The support ring 4202 can be made from any suitable material, such as a ceramic material (e.g., quartz). Also, the interior walls are undercut such that the opening is larger at the bottom than at the top, as depicted with reference numeral 4204. The interior walls in one embodiment have a frustoconical shape. This arrangement provides for more complete illumination of the wafer from the heating element situated below. A suitable undercut angle can be between 5 and 15 degrees according to one embodiment.
The embodiments above are intended to be illustrative and not limiting. Additional embodiments are within the claims. In addition, although aspects of the present invention have been described with reference to particular embodiments, those skilled in the art will recognize that changes can be made in form and detail without departing from the scope of the invention, as defined by the claims.
Persons of ordinary skill in the relevant arts will recognize that the invention may comprise fewer features than illustrated in any individual embodiment described above. The embodiments described herein are not meant to be an exhaustive presentation of the ways in which the various features of the invention may be combined. Accordingly, the embodiments are not mutually exclusive combinations of features; rather, the invention may comprise a combination of different individual features selected from different individual embodiments, as will be understood by persons of ordinary skill in the art.
Any incorporation by reference of documents above is limited such that no subject matter is incorporated that is contrary to the explicit disclosure herein. Any incorporation by reference of documents above is further limited such that no claims that are included in the documents are incorporated by reference into the claims of the present Application. The claims of any of the documents are, however, incorporated as part of the disclosure herein, unless specifically excluded. Any incorporation by reference of documents above is yet further limited such that any definitions provided in the documents are not incorporated by reference herein unless expressly included herein.
For purposes of interpreting the claims for the present invention, it is expressly intended that the provisions of Section 112, sixth paragraph of 35 U.S.C. are not to be invoked unless the specific terms “means for” or “step for” are recited in a claim.
This Application is a continuation of copending U.S. patent application Ser. No. 14/297,244, which claims the benefit of U.S. Provisional Application No. 61/831,496, filed June 5, 2013, the disclosures of which are incorporated by reference herein in their entirety.
Number | Date | Country | |
---|---|---|---|
61831496 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14297244 | Jun 2014 | US |
Child | 15403709 | US |