The present application is related to “Seal for Surface Acoustic Wave Devices,” filed on the same date herewith, by inventors Gregory D. Miller, Mike Bruner, Lawrence Ragan, and Gary Green (Ser. No. 10/231,356).
1. Field of the Invention
The present invention relates generally to integrated circuits, and more particularly to integrated circuit fabrication processes and structures.
2. Description of the Background Art
Various non-silicon-based devices are being manufactured for use in communications and other applications. Such devices are often sensitive to contamination or to the atmosphere in which they operate, and hence it is desirable for them to operate in a controlled atmosphere. Examples of these atmosphere-sensitive non-silicon-based devices include surface acoustic wave (SAW) devices, electro-optic modulators, acoustic-optic devices, and so on.
For example, let us consider SAW devices in more detail. SAW devices are often used in communication devices, such as, for instance, radio frequency (RF) filters in mobile phone handsets and communication networks. SAW devices utilize waves that propagate along the surface (or near surface) of a substrate. As used herein, SAW devices include those that utilize piezoelectrically-coupled Rayleigh waves and may also include those that utilize non-Rayleigh (skimming or “leaky”) waves. A typical SAW filter includes input and output transducers formed on a non-silicon-based piezoelectric substrate, such as, for example, lithium tantalate, lithium niobate, or single crystal quartz. The transducers may be metallic electrodes, for example, interleaved aluminum fingers. As an example of the size of a typical SAW device, one operating at 2.5 GHz may have a minimum feature size of approximately 0.4 microns for the aluminum fingers of the transducers.
One problem encountered with SAW devices is that the regions of the device where the acoustic waves are present can be very sensitive to the presence of surface contaminants that alter the wave velocities and consequently degrade the device performance. Even a monolayer of contaminant on the surface of the crystal can noticeably alter the device performance. Also, it is desirable for the SAW devices to operate in a low pressure (near vacuum) atmosphere, rather than in atmospheric air. Operating in such a low pressure atmosphere can decrease the viscous damping of the acoustic waves. Another problem associated with SAW devices is that a change in acoustic wave velocity is temperature dependent. In other words, a temperature change can change the velocity of the acoustic waves. This temperature dependence effectively limits the operable temperature range of SAW devices.
One embodiment of the invention relates to a method for sealing an active area of a non-silicon-based device on a wafer. The method includes providing a sacrificial material over at least the active area of the non-silicon-based device, depositing a seal coating over the wafer so that the seal coating covers the sacrificial material, and replacing the sacrificial material with a target atmosphere.
Another embodiment of the invention relates to a non-silicon-based device sealed at the wafer level (i.e. prior to separation of the die from the wafer). The device includes an active area to be protected, a contact area, and a lithographically-formed structure sealing at least the active area and leaving at least a portion of the contact area exposed.
These and other features of the present invention will be readily apparent to persons of ordinary skill in the art upon reading the entirety of this disclosure, which includes the accompanying drawings and claims.
The use of the same reference label in different drawings indicates the same or like components. Drawings are not to scale unless otherwise noted.
The above described problems and difficulties with non-silicon-based devices may be overcome by controlling the atmosphere in which the devices operate.
One way to achieve this would be to seal the devices on the packaging level during packaging of the individual die. Seals may be formed, for example, in metal or ceramic packages. For instance, a metal package may be welded or soldered to seal it, and the individual leads may be sealed using separate glass seals to separate the leads from the metal. As another example, in ceramic packages, a metal seal band attached by glassy material may be used to facilitate the sealing by welding or soldering, and the leads may be embedded in the ceramic itself. Other types of packages and other sealing techniques at the packaging level may also be used.
As disclosed in detail in the present application, a different and advantageous way to control the atmosphere in which a non-silicon-based device operates is to fabricate a seal at the wafer level (i.e. prior to separation of the die from the wafer) using integrated circuit manufacturing technology. Fabricating a seal at the wafer level has various advantages over doing so at the packaging level.
One advantage is that the sealed non-silicon-based device on the die can be tested on the wafer prior to dicing. For example, current die sizes for SAW devices are typically in the 1 to 1.5 mm range so that about 6000 to 7000 die may be fabricated on a single four inch wafer. The wafer-level sealing of SAW devices allows for the identification and selection of devices that pass the acceptance testing before the die are separated from the wafer and so avoids the more cumbersome testing of individual die after the dicing and also avoids the subsequent packaging currently practiced.
In addition, a potential advantage is that the die so produced by sealing at the wafer level may be mountable on a printed circuit board (PCB) without further packaging. Such direct mounting onto a PCB may be possible because the non-silicon-based device is sealed at the wafer level during the fabrication process. Such direct mounting would avoid the additional costs and processing time associated with mounting in lead frames, wire bonding, and encapsulation. This may advantageously lead to production of the devices with higher quality, higher throughput, higher yield, and less expense.
Another potential advantage relates to compensating for thermal expansion of the non-silicon crystal. It is possible to compensate for thermal expansion by inducing a strain in the crystal using the seal structure. The structural design and material used for the wafer-level seal may be used to induce such a strain. The seal material would be chosen such that the material had a thermal coefficient-of-expansion (TCE) mismatch with the crystal. The structure would be designed so that the TCE mismatch would effectively produce a strain as a countervailing force against the normal thermal expansion of the crystal.
In the present disclosure, numerous specific details are provided such as examples of apparatus, process parameters, materials, process steps, and structures to provide a thorough understanding of embodiments of the invention. Persons of ordinary skill in the art will recognize, however, that the invention can be practiced without one or more of the specific details. In other instances, well-known details are not shown or described to avoid obscuring aspects of the invention.
In another embodiment, the sacrificial material may comprise amorphous silicon. Advantageously, amorphous silicon may be deposited at a lower temperature than polysilicon.
In yet another embodiment, the sacrificial material 6 may be a polymer material, such as polyimide, photoresist, or polymethyl methacrylate (PMMA). These polymer sacrificial materials may be attractive when low temperature processing is needed through the sealing process. However, they may have the following disadvantages: (a) difficulty of removing material from within a pocket with significant lateral dimensions due to the directional nature of plasma etching; (b) impurities that do not react and thereby leave a residue (may not be an issue with PMMA); and (c) formation of water molecules that adsorb to the surfaces inside the pocket and may prevent hermeticity due to the moisture.
The polysilicon may be deposited at temperatures around 550 degrees Celsius, below the Curie temperature of lithium tantalate, and therefore is a candidate material to use as the sacrificial material. Materials with deposition temperatures above the Curie temperature of the substrate (about 600 degrees Celsius for congruent lithium tantalate or about 695 degrees Celsius for stoichiometric lithium tantalate) would not make good candidates for use as the sacrificial material as their high temperatures would adversely affect the substrate material. Amorphous silicon can be deposited at temperatures as low as 150 degrees Celsius and also may be dry etched in a highly selective manner using xenon difluoride gas.
For example, in one embodiment, the etching of a polysilicon (or amorphous silicon) sacrificial material on, for example, a lithium tantalate (or lithium niobate) wafer with a sealing layer of silicon dioxide (or silicon nitride or metal) may be accomplished by placing the wafer in a xenon-difluoride atmosphere. The xenon-difluoride enters the vias and attacks the sacrificial material with high selectivity (i.e. leaving the substrate and sealing coating substantially un-etched). The xenon-difuoride also removes the sacrificial material without leaving a substantial residue on the surface of the wafer. Leaving the acoustically active portion of the surface residue free prevents adverse alterations to wave propagation characteristics of the device. A pocket is thereby formed between the seal coating structure 20 and the surface of the wafer in the region previously occupied by the remaining sacrificial material 10. Alternatively, a different gas with similar characteristics to xenon-difluoride may be used to dry etch the sacrificial material.
Sputtering, when configured to be isotropic in nature, will fill in the vias 16 by coating the rims of the holes and building up material from the rims until the vias 16 are sealed. The isotropic nature of sputtering will introduce some of the silicon dioxide or metal into the pocket. If the sputtered material lands on the region to be occupied by the surface acoustic wave, the propagation properties of the acoustic wave may be altered in a detrimental manner. To avoid this detrimental effect, the coating structure 20 may be designed such that the via(s) 16 are not over or are not in the vicinity of the wave propagation area. This is so that the amount of sputtered material that lands on the wave propagation area may be minimized or reduced to an insubstantial amount that only insignificantly affects the propagation of the surface acoustic waves.
Alternatively, evaporation may be used where the silicon dioxide or metal beam is positioned at an angle to the wafer. Evaporation tends to be highly directional in nature. By positioning the beam at a substantial angle to the wafer, the highly directional beam can fill 24 the vias 16 without introducing significant evaporated material into the pocket. An additional advantage of evaporation is that a higher vacuum may be achieved in an evaporation chamber in comparison to a sputtering chamber.
As depicted in
Prior to mounting the sealed device onto the PCB board, the devices may be individually tested on the wafer and selected for acceptance or rejection. Thereafter, the wafer may be diced to produce individual die with the devices thereon. And the acceptable die may then be placed into a surface-mount-device tape-and-reel for subsequent surface-mount soldering onto a printed circuit board.
In the first step 102, an unsealed device is fabricated on the wafer. A cross-section of a fabricated SAW device before being sealed is illustrated in FIG. 1A. As described in relation to
In the second step 104, sacrificial material is deposited onto the wafer. A cross-section after deposition of the sacrificial layer is illustrated in FIG. 1B. As described in relation to
In the third step 106, the sacrificial layer is patterned using lithography. A cross-section after sacrificial layer patterning is illustrated in FIG. 1C. As described in relation to
In the fourth step 108, the seal coating is deposited onto the wafer. A cross-section after seal coating deposition is illustrated in FIG. 1D. As described in relation to
In the fifth step 110, the seal layer is patterned using lithography. A cross-section after seal layer patterning is illustrated in FIG. 1E. As described in relation to
In the sixth step 112, the sacrificial material may be etched by way of the vias to create a pocket above the device. A cross-section after etching the sacrificial material is illustrated in FIG. 1F. As described in relation to
In the seventh step 114, the substrate is placed into a target atmosphere and allowed to equilibriate. A cross-section after placement in the target atmosphere is illustrated in FIG. 1G. As described in relation to
In the eighth step 116, the vias (holes) are filled to seal the pocket. This step is performed while the wafer is still in the target atmosphere. A cross-section after the vias are filled is illustrated in FIG. 1H. As described in relation to
Finally, in the ninth step 118, electrodes 26 are built upon the contacts. A cross-section after the vias are filled is illustrated in FIG. 1I. As described in relation to
Subsequent to the ninth step 118, other steps may be performed to mount the device onto a printed circuit board (PCB). For example, the devices may be individually tested on the wafer, the wafer may be diced to produce individual die, and the acceptable die may then be placed into a surface-mount-device tape-and-reel for subsequent surface-mount soldering onto the PCB.
Although the above description focuses on a wafer-level seal for SAW devices, the technique may be applied to protect at the wafer level other devices employing non-silicon-based materials with an active area to protect. Such applications include a high dielectric strength vacuum insulation for domain patterning in ferroelectrics (such as lithium tantalate or lithium niobate), electro-optic modulators (for example, based as lithium tantalate or lithium niobate), and integrated optic structures. In each of these applications, non-silicon-based devices may be lithographically constructed to include a means for receiving a signal in electrical form, a means for applying the signal to an active area of the substrate, and a means for hermetically sealing the active area without impeding receiving of the electrical signal. For an SAW device, the active area to be protected would, of course, correspond to the wave propagation area. The technique may also be applicable to other near-surface devices. Near-surface devices include, for example, acoustic, optic, non-linear optic, electro-optic, acoustic-optic, and other devices.
While specific embodiments of the present invention have been provided, it is to be understood that these embodiments are for illustration purposes and not limiting. Many additional embodiments will be apparent to persons of ordinary skill in the art reading this disclosure. Thus, the present invention is limited only by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5712523 | Nakashima et al. | Jan 1998 | A |
5747857 | Eda et al. | May 1998 | A |
5747874 | Seki et al. | May 1998 | A |
5760522 | Kobayashi et al. | Jun 1998 | A |
5777422 | Kitabayashi et al. | Jul 1998 | A |
5786738 | Ikata et al. | Jul 1998 | A |
5831369 | Furbacher et al. | Nov 1998 | A |
5859473 | Ikata et al. | Jan 1999 | A |
5872331 | Ando et al. | Feb 1999 | A |
5991989 | Onishi et al. | Nov 1999 | A |
6018211 | Kanaboshi et al. | Jan 2000 | A |
6022759 | Seki et al. | Feb 2000 | A |
6078608 | Ohtsuka et al. | Jun 2000 | A |
6105226 | Gore et al. | Aug 2000 | A |
6115592 | Ueda et al. | Sep 2000 | A |
6136175 | Stelzl et al. | Oct 2000 | A |
6265807 | Koga et al. | Jul 2001 | B1 |
6310420 | Pahl et al. | Oct 2001 | B1 |
6377137 | Ruby | Apr 2002 | B1 |
6388545 | Kawachi et al. | May 2002 | B1 |
6413852 | Grill et al. | Jul 2002 | B1 |
6414415 | Shibutani et al. | Jul 2002 | B1 |
6417574 | Misawa et al. | Jul 2002 | B1 |
6426583 | Onishi et al. | Jul 2002 | B1 |
6437412 | Higuchi et al. | Aug 2002 | B1 |
6446316 | Furbacher et al. | Sep 2002 | B1 |
6449828 | Pahl et al. | Sep 2002 | B2 |
6455980 | Bernstein | Sep 2002 | B1 |
6456172 | Ishizaki et al. | Sep 2002 | B1 |
6498422 | Hori | Dec 2002 | B1 |
6509623 | Zhao | Jan 2003 | B2 |
6519822 | Stelzl et al. | Feb 2003 | B1 |
6528924 | Stelzl et al. | Mar 2003 | B1 |
6550664 | Bradley et al. | Apr 2003 | B2 |
6570469 | Yamada et al. | May 2003 | B2 |
6573121 | Yoneda et al. | Jun 2003 | B2 |
6573635 | Suga et al. | Jun 2003 | B2 |
6666371 | Nakazawa et al. | Dec 2003 | B2 |
20010010444 | Pahl et al. | Aug 2001 | A1 |
20020171121 | Ozgur | Nov 2002 | A1 |
20030155643 | Friedhoff | Aug 2003 | A1 |
20030159262 | Pasternak et al. | Aug 2003 | A1 |
20030193269 | Jang et al. | Oct 2003 | A1 |
20030224557 | Koduri et al. | Dec 2003 | A1 |